JP2002333069A - Mechanical seal - Google Patents

Mechanical seal

Info

Publication number
JP2002333069A
JP2002333069A JP2001140117A JP2001140117A JP2002333069A JP 2002333069 A JP2002333069 A JP 2002333069A JP 2001140117 A JP2001140117 A JP 2001140117A JP 2001140117 A JP2001140117 A JP 2001140117A JP 2002333069 A JP2002333069 A JP 2002333069A
Authority
JP
Japan
Prior art keywords
mechanical seal
oil
seal
material structure
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001140117A
Other languages
Japanese (ja)
Other versions
JP4083394B2 (en
Inventor
Hisashi Kinugasa
比佐志 衣笠
Masato Wada
正人 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP2001140117A priority Critical patent/JP4083394B2/en
Publication of JP2002333069A publication Critical patent/JP2002333069A/en
Application granted granted Critical
Publication of JP4083394B2 publication Critical patent/JP4083394B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Mechanical Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a mechanical seal capable of forming and maintaining an appropriate lubricating oil film on the stable condition between sealing end surfaces regardless of the quality and quantity of the oil enclosed in an oil room, inhibiting the heat generation and abrasion caused by the sliding with a mating seal ring as much as possible, and performing the excellent shaft seal function for a long period of time. SOLUTION: The mechanical seal is structured for shaft-sealing the gap between an oil room A and the adjacent fluid room B by relatively rotating/ sliding the sealing end surfaces 1a and 3a of both seal rings 1 and 3. A recessed groove 7, for forcedly introducing the oil from the oil room A into the gap between the sealing end surfaces 1a and 3a according to the relative rotation of the sealing end surfaces 1a and 3a, is formed on the peripheral end edge on the oil room A side in one sealing end surface 1a. At least one seal ring 1 is made of a composite sintered material in which lipophilic material textures comprising a dense silicon carbide texture with densely aggregated fine amorphous carbons are distributed and mixed. The size of the lipophilic material texture is 1-100 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、油室を有する水中
ポンプ等の回転機器に装備されるメカニカルシールであ
って、両密封環の対向端面たる密封端面を相対回転摺接
させることにより油室とこれに隣接する流体室との間を
軸封するように構成されたメカニカルシールに関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mechanical seal mounted on a rotating device such as a submersible pump having an oil chamber. The mechanical seal is provided by bringing the sealing end faces of both sealing rings into opposite rotational sliding contact with each other. The present invention relates to a mechanical seal configured to seal a shaft between a fluid chamber and a fluid chamber adjacent thereto.

【0002】[0002]

【従来の技術】例えば、水中ポンプにあっては、ポンプ
室からモータ室への流体侵入を防止するために両室間に
油室を設けると共に、油室とこれに隣接する流体室であ
るポンプ室との間を軸封する手段としてメカニカルシー
ルが使用されている。而して、かかるメカニカルシール
としては、図6に示す如く、油室ケース2に軸線方向移
動可能に且つ相対回転不能に保持された密封環たる固定
環1と、回転軸4に固定保持された密封環たる回転環3
と、固定環1と油室ケース2のリテーナ部5との間に介
装されて固定環1を回転環3へと押圧附勢するスプリン
グ6とからなり、両密封環1,3の対向端面たる密封端
面1a,3aの相対回転摺接作用により、その相対回転
摺接部分の外周側領域である油室Aとその内周側領域で
あるポンプ室(流体室)Bとを軸封するように構成した
端面接触型のものが周知である。
2. Description of the Related Art For example, in a submersible pump, an oil chamber is provided between both chambers in order to prevent fluid from entering the motor chamber from the pump chamber, and a pump which is an oil chamber and a fluid chamber adjacent thereto is provided. A mechanical seal is used as a means for sealing the shaft between the chambers. As shown in FIG. 6, the mechanical seal includes a stationary ring 1 as a sealing ring held in the oil chamber case 2 so as to be movable in the axial direction and relatively non-rotatable, and fixed and held on the rotating shaft 4. Rotating ring 3 as a sealing ring
And a spring 6 interposed between the fixed ring 1 and the retainer portion 5 of the oil chamber case 2 to press and urge the fixed ring 1 against the rotating ring 3. By the relative rotary sliding action of the sealed end surfaces 1a and 3a, the oil chamber A, which is the outer peripheral area of the relative rotary sliding contact portion, and the pump chamber (fluid chamber) B, which is the inner peripheral area, are shaft-sealed. Is well known.

【0003】ところで、メカニカルシールは、密封環の
構成材上、密封環1,3の一方を焼結炭化珪素(Si
C)や焼結タングステンカーバイト(WC)等の硬質材
で構成すると共に他方を焼結カーボン等の軟質材で構成
したもの(以下「硬質材/軟質材シール」という)―と、
両密封環1,3を上記した硬質材で構成したもの(以下
「硬質材/硬質材シール」という)とに大別されるが、水
中ポンプにあっては、固形成分を含むスラリ流体を扱う
ことが多いため、硬質材/軟質材シールを使用した場合
には、密封端面がスラリ流体により摩耗,損傷し易く耐
久性に問題があり、長期に亘って良好な軸封機能(シー
ル機能)を発揮できない。したがって、水中ポンプのよ
うにスラリ流体を扱うことの多い回転機器においては、
一般に、硬質材/軟質材シールは使用されず、両密封環
1,3を耐摩耗性に優れるSiC,WC等の焼結材で構
成した硬質材/硬質材シールが使用されている。
[0003] In the mechanical seal, one of the sealing rings 1 and 3 is made of sintered silicon carbide (Si) on the material of the sealing ring.
C) and a hard material such as sintered tungsten carbide (WC) and the other made of a soft material such as sintered carbon (hereinafter referred to as “hard material / soft material seal”).
The two sealing rings 1 and 3 are broadly classified into those made of the above-described hard material (hereinafter, referred to as “hard material / hard material seal”). In a submersible pump, a slurry fluid containing a solid component is handled. In many cases, when a hard material / soft material seal is used, the sealing end face is easily worn and damaged by the slurry fluid, and there is a problem in durability. Therefore, a good shaft sealing function (seal function) is provided for a long time. I can't show it. Therefore, in rotating equipment that often handles slurry fluid such as submersible pumps,
In general, a hard material / soft material seal is not used, but a hard material / hard material seal in which both sealing rings 1 and 3 are made of a sintered material such as SiC or WC having excellent wear resistance is used.

【0004】[0004]

【発明が解決しようとする課題】しかし、SiC,WC
等の硬質材はカーボン等のような自己潤滑性を有しない
ものであり、摩擦係数が高いものであることから、硬質
材/硬質材シールにあっては、密封環1,3の摺動によ
る発熱や摩耗が激しく、長期に亘って良好な軸封機能を
発揮できない。また、密封端面1a,3a間には油室A
に封入された油により潤滑油膜が形成されるが、Si
C,WC等の硬質材は親油性に乏しいため、密封端面1
a,3a間に安定した潤滑油膜を形成,維持しておくこ
とができず、密封環1,3の摺動による発熱をさほど抑
制することができない。そして、かかる発熱により油温
が上昇して油の粘度が低下し、密封端面全体に潤滑油膜
が形成されなくなり、所謂油切れの半ドライ状態となっ
て、摩耗や漏れを生じる虞れがある。さらには、密封端
面1a,3a間に高温による油の分解物が堆積して、漏
れを増大させる虞れがある。かかる問題は、食品衛生上
や環境汚染上から油室Aに封入する油として潤滑性に乏
しい流動パラフィン等を使用せざるを得ない場合や油室
Aが小さく封入油量が少ない場合には、更に顕著に生じ
ることになる。
However, SiC, WC
Hard materials such as carbon do not have self-lubricating properties such as carbon and have a high coefficient of friction. Therefore, in a hard material / hard material seal, the sealing rings 1 and 3 slide. Heat generation and abrasion are severe, and a good shaft sealing function cannot be exhibited for a long time. Further, an oil chamber A is provided between the sealed end faces 1a and 3a.
A lubricating oil film is formed by the oil sealed in
Since hard materials such as C and WC have poor lipophilicity, the sealing end face 1
A stable lubricating oil film cannot be formed and maintained between a and 3a, and heat generated by sliding of the sealing rings 1 and 3 cannot be suppressed so much. Then, the oil temperature rises due to such heat generation, the viscosity of the oil decreases, the lubricating oil film is not formed on the entire sealing end face, and a so-called semi-dry state of oil shortage occurs, which may cause wear or leakage. Further, oil decomposition products due to high temperature may accumulate between the sealing end surfaces 1a and 3a, which may increase leakage. Such a problem arises from the viewpoint of food hygiene and environmental pollution, when liquid paraffin or the like having poor lubricity has to be used as the oil to be filled in the oil chamber A, or when the oil chamber A is small and the amount of sealed oil is small, This will occur more significantly.

【0005】本発明は、このような点に鑑みてなされた
もので、両密封環を硬質材で構成する場合にも、油室に
封入される油質や油量に拘わらず、密封端面間に適正な
潤滑油膜を安定した状態で形成,維持することができ、
相手密封環との摺動による発熱や摩耗を可及的に抑制し
得て、長期に亘って良好な軸封機能を発揮することがで
きるメカニカルシールを提供することを目的とするもの
である。
[0005] The present invention has been made in view of such a point, and even when both sealing rings are made of a hard material, regardless of the oil quality and the amount of oil sealed in the oil chamber, the distance between the sealing end faces is reduced. To form and maintain an appropriate lubricating oil film in a stable state,
An object of the present invention is to provide a mechanical seal capable of suppressing heat generation and wear caused by sliding with a mating seal ring as much as possible and exhibiting a good shaft sealing function for a long period of time.

【0006】[0006]

【課題を解決するための手段】本発明は、両密封環の対
向端面たる密封端面を相対回転摺接させることにより油
室とこれに隣接する流体室との間を軸封するように構成
されたメカニカルシールにおいて、上記の目的を達成す
べく、特に、一方の密封端面における油室側の周端縁部
に、密封端面の相対回転に伴って油室から密封端面間へ
と油を強制的に導入させる凹溝を形成しておくと共に、
少なくとも一方の密封環を、緻密な硬質材組織中に微細
な親油性材が密集する親油性材組織を分散配合してなる
複合焼結材で構成しておくことを提案するものである。
SUMMARY OF THE INVENTION The present invention is configured so that the oil chamber and the fluid chamber adjacent to the oil chamber are axially sealed by bringing the sealing end faces, which are the opposite end faces, of both sealing rings into sliding contact with each other. In order to achieve the above object, in the mechanical seal described above, in particular, the oil is forcibly applied to the peripheral edge on the oil chamber side of one of the sealing end faces from the oil chamber to between the sealing end faces with the relative rotation of the sealing end face. In addition to forming a groove to be introduced into
It is proposed that at least one of the sealing rings is made of a composite sintered material in which a lipophilic material structure in which fine lipophilic materials are densely packed in a dense hard material structure is dispersed and blended.

【0007】かかるメカニカルシールにあって、一方の
密封端面に形成される凹溝は、所謂ハイドロダイナミッ
クシール又はサーモハイドロダイナミックシールにおい
て密封端面に形成される流体導入溝ないし流体循環溝と
同一の機能を有するものである。すなわち、本発明のメ
カニカルシールは、ハイドロダイナミックシール又はサ
ーモハイドロダイナミックシールに構成されたものであ
る。なお、凹溝の形状,配置,数はシール条件に応じて
任意に設定することができる。一般には、凹溝は密封端
面の周方向に等間隔を隔てた複数箇所に形成され、ハイ
ドロダイナミックシールとして機能させる場合には、凹
溝は一端部が油室側に開口する扇形状等とされ、サーモ
ハイドロダイナミックシールとして機能させる場合に
は、凹溝は両端部が油室側に開口する円弧形状,U字形
状等とされる。また、凹溝は、何れの密封環に形成して
もよいが、凹溝による油の攪拌作用に起因する油温上昇
を考慮すれば、固定側の密封環(固定環)に形成してお
くことが好ましい。
In such a mechanical seal, the concave groove formed on one of the sealing end faces has the same function as a fluid introduction groove or a fluid circulation groove formed on the sealing end face in a so-called hydrodynamic seal or thermohydrodynamic seal. Have That is, the mechanical seal of the present invention is configured as a hydrodynamic seal or a thermohydrodynamic seal. The shape, arrangement and number of the grooves can be arbitrarily set according to the sealing conditions. Generally, the grooves are formed at a plurality of locations at equal intervals in the circumferential direction of the sealing end face, and when functioning as a hydrodynamic seal, the grooves are formed in a fan shape or the like having one end opening to the oil chamber side. When functioning as a thermohydrodynamic seal, the concave groove is formed in an arc shape, a U-shape or the like having both ends open to the oil chamber side. The groove may be formed in any of the sealing rings. However, in consideration of an increase in the oil temperature due to the oil stirring effect of the groove, the groove is formed in the sealing ring (fixed ring) on the fixed side. Is preferred.

【0008】また、硬質材としては耐摩耗性等に優れる
炭化珪素,タングステンカーバイト等が使用され、親油
性材としては油の吸着性,保持性に優れる非晶質カーボ
ン等が使用される。好ましい実施の形態にあっては、硬
質材組織は炭化珪素粒子又はタングステンカーバイト粒
子が焼結してなるものであり、親油性材組織は微細な非
晶質カーボンが密集した状態でその周囲の硬質材組織に
より保持されたものである。ところで、硬質材組織をな
す部分は焼結時において大きく収縮する(例えば、炭化
珪素組織は焼結時において約1/2程度の容積減とな
る)ことから、微細な親油性材が密集する親油性組織部
分は、その周囲の硬質材組織部分の収縮力によって強力
に圧縮されることになる。その結果、親油性組織部分に
おける粒子間結合力は、焼結による結合力自体は弱くと
も、上記した硬質材組織部分の収縮による外周側からの
圧縮作用によって大幅に増大することになる。したがっ
て、硬質材組織中に親油性材組織が分散配置された複合
焼結材全体としての硬度,耐摩耗性等は硬質材のみから
なる単一焼結材と同等となり、両密封環の一方を当該複
合焼結材で構成すると共に他方を当該複合焼結材又は一
般的な硬質材(炭化珪素焼結材等)で構成したメカニカ
ルシールは、スラリ流体を扱う水中ポンプ等の回転機器
にも好適に使用しうる硬質材/硬質材シールである。
As the hard material, silicon carbide, tungsten carbide or the like having excellent wear resistance and the like is used, and as the lipophilic material, amorphous carbon and the like having excellent oil adsorbing and retaining properties are used. In a preferred embodiment, the hard material structure is formed by sintering silicon carbide particles or tungsten carbide particles, and the lipophilic material structure is formed by dense fine amorphous carbon in the vicinity thereof. It is held by a hard material structure. By the way, since the portion forming the hard material structure is greatly shrunk during sintering (for example, the volume of the silicon carbide structure is reduced by about 焼 結 during sintering), the fine lipophilic material is densely packed. The oily tissue portion is strongly compressed by the contraction force of the surrounding hard material tissue portion. As a result, the bonding force between particles in the lipophilic structure portion is greatly increased by the compressive action from the outer peripheral side due to the contraction of the hard material structure portion, even though the bonding force itself by sintering is weak. Therefore, the hardness, wear resistance, etc. of the composite sintered material as a whole in which the lipophilic material structure is dispersed and arranged in the hard material structure are equivalent to that of a single sintered material composed of only the hard material, and one of the two sealing rings is used. A mechanical seal composed of the composite sintered material and the other composed of the composite sintered material or a general hard material (such as a silicon carbide sintered material) is also suitable for rotating equipment such as a submersible pump that handles a slurry fluid. It is a hard material / hard material seal that can be used for:

【0009】而して、本発明のメカニカルシールは、上
記した如く、ハイドロダイナミックシール又はサーモハ
イドロダイナミックシールに構成されたものであるか
ら、一方の密封端面に形成された凹溝により、両密封端
面の相対回転に伴って、油室の油が密封端面間に強制的
に導入される。そして、少なくとも一方の密封環は、緻
密な硬質材組織中に親油性材組織を分散配置してなる複
合焼結材で構成されていて、全体として硬質で耐摩耗性
に優れたものであるが、当該密封環の密封端面には油を
吸着,保持を積極的に行う親油性材組織が存在している
ことから、他方の密封環(相手密封環)が同質の複合焼
結材で構成されている場合には勿論、一般的な硬質材
(SiC,WC等の緻密質焼結材)で構成されている場
合(つまり硬質材/硬質材シールである場合)にも、凹
溝によって導入された油が密封端面間に確実に保持され
ることになる。したがって、油室に封入される油質や油
量に拘わらず、密封端面間には適正且つ安定した潤滑油
膜が形成,維持されることになり、密封環の摺動による
発熱や摩耗が可及的に防止される。
As described above, the mechanical seal of the present invention is configured as a hydrodynamic seal or a thermo-hydrodynamic seal. As a result, the oil in the oil chamber is forcibly introduced between the sealed end faces. At least one of the sealing rings is made of a composite sintered material in which a lipophilic material structure is dispersed and arranged in a dense hard material structure, and is generally hard and has excellent wear resistance. Since the seal end face of the seal ring has a lipophilic material structure that positively adsorbs and retains oil, the other seal ring (the other seal ring) is made of the same composite sintered material. Of course, even if it is made of a general hard material (a dense sintered material such as SiC or WC) (that is, a hard material / hard material seal), it is introduced by the groove. Oil is reliably retained between the sealing end faces. Therefore, a proper and stable lubricating oil film is formed and maintained between the sealing end faces irrespective of the oil quality and the amount of oil sealed in the oil chamber, and heat and abrasion due to sliding of the sealing ring are possible. Is prevented.

【0010】ところで、親油性材組織の大きさが1μm
未満であるとき又は親油性材組織の硬質材組織に対する
配合割合((親油性材含有量/(親油性材含有量+硬質
材含有量))×100で与えられる割合であり、以下
「親油性材配合割合」という)が5%未満であるときは、
密封端面における油の吸着力,保持力が十分に発揮され
ず、密封端面間における潤滑油膜の形成,維持を効果的
に行い得ない。かかる潤滑油膜の形成,維持は、親油性
材組織の大きさが5μm以上である場合に、より効果的
に行われる。一方、親油性材組織の大きさが100μm
を超えるとき又は親油性材配合割合が50%を超えると
きは、複合焼結材全体の硬度,耐摩耗性が低下して、ス
ラリ流体のような固形成分を含む流体を扱う回転機器に
好適に使用できる硬質材/硬質材シールを構成し得な
い。特に、一般的な硬質材製の密封環と同等の硬度,耐
摩耗性を確保するためには、親油性材組織は50μmと
しておくことが好ましい。したがって、親油性材組織の
大きさは1〜100μmとしておくことが好ましく、5
〜50μmとしておくことがより好ましい。また、親油
性材配合割合は5〜50%としておくことが好ましい。
Incidentally, the size of the lipophilic material structure is 1 μm.
When the ratio is less than or the blending ratio of the lipophilic material structure to the hard material structure, the ratio is given by ((lipophilic material content / (lipophilic material content + hard material content)) × 100). Is less than 5%,
The oil adsorbing force and the holding force on the sealing end faces are not sufficiently exhibited, and the formation and maintenance of the lubricating oil film between the sealing end faces cannot be performed effectively. The formation and maintenance of the lubricating oil film is more effectively performed when the size of the lipophilic material structure is 5 μm or more. On the other hand, the size of the lipophilic material structure is 100 μm
When the ratio exceeds 50% or when the proportion of the lipophilic material exceeds 50%, the hardness and abrasion resistance of the entire composite sintered material are reduced, which is suitable for a rotary device handling a fluid containing a solid component such as a slurry fluid. A hard material / hard material seal that can be used cannot be constructed. In particular, in order to secure the same hardness and wear resistance as a general sealing ring made of a hard material, it is preferable that the lipophilic material structure be 50 μm. Therefore, the size of the lipophilic material structure is preferably set to 1 to 100 μm,
It is more preferable to set the thickness to 50 μm. Further, the lipophilic material mixing ratio is preferably set to 5 to 50%.

【0011】また、親油性材組織は非晶質カーボン等の
親油性材のみで構成する他、硬質材組織と同質材である
硬質材(炭化珪素,タングステンカーバイト等)との混
合組織となすこともできるが、硬質材の配合割合は、上
記した親油性材組織による潤滑油膜の形成,維持機能を
確保するために、親油性材:硬質材=20:80を超え
ないように設定しておくことが好ましい。すなわち、親
油性材組織には、硬質材組織と同質材である硬質材の微
粒子が親油性材:硬質材=100:0〜20:80の割
合で配合されていることが好ましい。
The lipophilic material structure is composed of only a lipophilic material such as amorphous carbon or a mixed structure of a hard material structure and a hard material (silicon carbide, tungsten carbide, etc.) of the same material. However, in order to secure the function of forming and maintaining the lubricating oil film by the lipophilic material structure, the mixing ratio of the hard material is set so as not to exceed lipophilic material: hard material = 20: 80. Preferably. That is, in the lipophilic material structure, it is preferable that fine particles of a hard material, which is the same material as the hard material structure, are blended in a ratio of lipophilic material: hard material = 100: 0 to 20:80.

【0012】[0012]

【実施例】実施例1として、図1及び図2に示すメカニ
カルシールを製作した。すなわち、実施例1のメカニカ
ルシール(以下「第1シール」という)は、図1及び図2
に示す如く、シールケースたる油室ケース2に軸線方向
移動可能に且つ相対回転不能に保持された密封環たる固
定環1と、回転軸4に固定保持された密封環たる回転環
3と、固定環1と油室ケース2のリテーナ部5との間に
介装されて固定環1を回転環3へと押圧附勢するスプリ
ング6とからなり、両密封環1,3の対向端面たる密封
端面1a,3aの相対回転摺接作用により、その相対回
転摺接部分の外周側領域である油室Aとその内周側領域
である流体室Bとを軸封するように構成された端面接触
型のものであって、固定環1を一般的な硬質材である炭
化珪素焼結材で構成すると共に回転環3を上述した複合
焼結材で構成した硬質材/硬質材シールであり、固定環
1の密封端面1aにおける油室側の周端縁部たる外周端
縁部に、周方向に等間隔を隔てた3箇所に配して、密封
端面1a,3aの相対回転に伴って油室Aから密封端面
1a,3a間へと油を強制的に導入させる扇状の凹溝7
…を形成したハイドロダイナミックシールに構成されて
いる。
EXAMPLE As Example 1, a mechanical seal shown in FIGS. 1 and 2 was manufactured. That is, the mechanical seal of the first embodiment (hereinafter, referred to as “first seal”) is similar to that of FIGS.
As shown in FIG. 1, a stationary ring 1 as a sealing ring held in an oil chamber case 2 as a seal case so as to be axially movable and relatively non-rotatable, a rotating ring 3 as a sealing ring fixed and held on a rotating shaft 4, A spring 6 interposed between the ring 1 and the retainer portion 5 of the oil chamber case 2 to press and urge the fixed ring 1 against the rotating ring 3; An end face contact type in which an oil chamber A, which is an outer peripheral area of the relative rotational sliding contact portion, and a fluid chamber B, which is an inner peripheral area thereof, are axially sealed by the relative rotational sliding action of 1a and 3a. Wherein the stationary ring 1 is made of a silicon carbide sintered material that is a general hard material, and the rotating ring 3 is a hard material / hard material seal composed of the above-described composite sintered material. 1 on the outer peripheral edge, which is the peripheral edge on the oil chamber side, of the sealed end face 1a By placement into three spaced, seal end faces 1a, sector-shaped groove 7 which forcibly introducing oil from the oil chamber A in accordance with the relative rotation 3a to between the seal end faces 1a, 3a
Are formed.

【0013】而して、回転環3は、緻密な炭化珪素組織
中に微細な非晶質カーボンが密集する親油性材組織を分
散配置してなる複合炭化珪素焼結材で構成されたもので
あり、次のような予備造粒工程,焼結原料混合工程,本
造粒工程,予備成形工程,焼成工程,仕上げ工程により
製作されたものである。
The rotating ring 3 is made of a composite silicon carbide sintered material in which a lipophilic material structure in which fine amorphous carbon is densely packed is dispersed in a dense silicon carbide structure. It is manufactured by the following pre-granulation step, sintering raw material mixing step, main granulation step, pre-forming step, firing step, and finishing step.

【0014】予備造粒工程: 平均粒子径0.7μmの
α型炭化珪素(α−SiC)粉末100gと、焼結助剤
としての炭化ホウ素(B4 C)粉末0.5gと、ポリマ
助剤である平均分子量1000のポリビニルアルコール
(PVA#1000)2gを水300gに溶解させた溶
解液とからなる親油性材組織原料に、親油性材である非
晶質カーボン(カーボンブラック)の粉末100gを添
加して、これらをボールミルにより24時間混合し、そ
の混合液をスプレードライヤーにより噴霧乾燥すること
によって造粒(顆粒化)し、径20〜80μmの球形状
の予備造粒材(顆粒)を得た。
Pre-granulation step: 100 g of α-type silicon carbide (α-SiC) powder having an average particle diameter of 0.7 μm, 0.5 g of boron carbide (B 4 C) powder as a sintering aid, and a polymer aid 100 g of lipophilic material amorphous carbon (carbon black) was added to a lipophilic material tissue raw material composed of a solution obtained by dissolving 2 g of polyvinyl alcohol (PVA # 1000) having an average molecular weight of 1000 in 300 g of water. These are mixed for 24 hours by a ball mill, and the mixture is granulated (granulated) by spray drying with a spray drier to obtain a spherical preliminary granulated material (granules) having a diameter of 20 to 80 μm. Was.

【0015】焼結原料混合工程: 平均粒子径0.7μ
mのα−SiC粉末80gに、焼結助剤としてのB4
粉末0.4g、カーボン源としてのフェノール樹脂(残
炭率50%)3.5g、成形助剤としての平均分子量6
000のポリエチレングリコール(PEG#6000)
2g及びステアリン酸1gを添加し、これらを溶剤であ
るメタノールと共にボールミルで24時間混合して、硬
質材組織焼結原料を得た。
Sintering raw material mixing step: Average particle size 0.7 μm
the alpha-SiC powder 80g of m, B 4 C as a sintering aid
0.4 g of powder, 3.5 g of phenol resin as carbon source (residual carbon ratio: 50%), average molecular weight of 6 as molding aid
000 polyethylene glycol (PEG # 6000)
2 g and 1 g of stearic acid were added, and these were mixed with methanol as a solvent in a ball mill for 24 hours to obtain a hard material structure sintered material.

【0016】本造粒工程: 焼結原料混合工程で得られ
た硬質材組織焼結原料を攪拌容器に採って、これに予備
造粒工程で得られた予備造粒材20gを添加し、これら
を1時間攪拌混合し、その混合スラリをスプレードライ
ヤーにより噴霧乾燥することによって造粒(顆粒化)し
て、径20〜80μmの球形状の本造粒材(顆粒)を得
た。
Main granulation step: The hard material structure sintering raw material obtained in the sintering raw material mixing step is taken in a stirring vessel, and 20 g of the pre-granulated material obtained in the pre-granulation step is added thereto. Was stirred and mixed for 1 hour, and the mixed slurry was granulated (granulated) by spray-drying with a spray drier to obtain a spherical main granulated material (granules) having a diameter of 20 to 80 μm.

【0017】予備成形工程: 本造粒工程で得られた本
造粒材を所定の金型に充填した上、1500kg/cm
2 で冷間プレス成形して、回転環3に対応する環状形態
をなす予備成形体を得た。なお、予備成形体の形状は、
焼結時における収縮を考慮して設定される。
Pre-forming step: The granulated material obtained in the granulating step is filled in a predetermined mold, and then 1500 kg / cm
A cold press molding was performed in 2 to obtain a preform having an annular shape corresponding to the rotating ring 3. The shape of the preform is
It is set in consideration of shrinkage during sintering.

【0018】焼成工程: 予備成形工程で得られた予備
成形体を、加圧することなく、2150℃のアルゴン雰
囲気中で焼成して、回転環3に相当する密封環形状をな
す複合炭化珪素焼結材を得た。
Firing step: The preformed body obtained in the preforming step is fired in an argon atmosphere at 2150 ° C. without applying pressure, and sintered to form a sealed ring shape corresponding to the rotating ring 3. Wood was obtained.

【0019】仕上げ工程: 焼成工程で得られた複合炭
化珪素焼結材の端面(密封端面3a)をRa=0.05
の鏡面に表面研磨(ラップ)する等により、回転環3を
得た。
Finishing step: The end face (sealed end face 3a) of the composite silicon carbide sintered material obtained in the firing step is Ra = 0.05.
The rotating ring 3 was obtained by, for example, polishing (lapping) the surface on the mirror surface.

【0020】かくして得られた回転環3は、図3に示す
如く、緻密な硬質材組織(炭化珪素の焼結組織)中に親
油性材組織(非晶質カーボン(カーボンブラック)と炭
化珪素との混合組織であり、図3における黒色部分であ
る)が分散配置された複合炭化珪素焼結材である。かか
る複合炭化珪素焼結材における親油性材組織の大きさは
5〜50μmであり、親油性材配合割合は10%であ
り、親油性材組織における非晶質カーボンと炭化珪素と
の配合比率は親油性材(非晶質カーボン):硬質材(炭
化珪素)=50:50である(以下、かかる組成,構成
の複合炭化珪素焼結材を「当該複合炭化珪素焼結材」とい
う)。なお、図3は回転環3の密封端面(表面研磨され
た鏡面)3aを100倍に拡大して示す顕微鏡写真であ
る。
As shown in FIG. 3, the rotating ring 3 thus obtained has a lipophilic material structure (amorphous carbon (carbon black) and silicon carbide) in a dense hard material structure (sintered structure of silicon carbide). (A black portion in FIG. 3) is a composite silicon carbide sintered material dispersedly arranged. The size of the lipophilic material structure in such a composite silicon carbide sintered material is 5 to 50 μm, the compounding ratio of the lipophilic material is 10%, and the compounding ratio of amorphous carbon and silicon carbide in the lipophilic material structure is Lipophilic material (amorphous carbon): hard material (silicon carbide) = 50: 50 (hereinafter, the composite silicon carbide sintered material having such composition and configuration is referred to as “the composite silicon carbide sintered material”). FIG. 3 is a photomicrograph showing the sealed end surface (mirror surface polished) 3a of the rotating ring 3 at a magnification of 100 times.

【0021】また、固定環1は緻密質の炭化珪素焼結材
で構成されたものであり、次のような造粒工程,予備成
形工程,焼成工程,仕上げ工程により製作されたもので
ある。
The stationary ring 1 is made of a dense sintered silicon carbide material, and is manufactured by the following granulating step, preforming step, firing step and finishing step.

【0022】造粒工程: 平均粒子径0.6μmのβ−
SiC粉末100gに、焼結助剤としてのB4 C粉末
0.5g及びカーボン源としてのフェノール樹脂(レゾ
ール型)4gを添加し、さらに成形助剤としてPEG
(#6000)2g及びステアリン酸1gを添加して、
これらをメタノールと共にボールミルで24時間混合
し、その混合スラリをスプレードライヤーにより噴霧乾
燥することによって造粒して、径20〜80μmの球形
状の造粒材を得た。
Granulation step: β- having an average particle diameter of 0.6 μm
To 100 g of SiC powder, 0.5 g of B 4 C powder as a sintering aid and 4 g of a phenol resin (resole type) as a carbon source were added, and PEG was further added as a forming aid.
(# 6000) 2 g and stearic acid 1 g are added,
These were mixed with methanol for 24 hours in a ball mill, and the mixed slurry was granulated by spray drying with a spray drier to obtain a spherical granulated material having a diameter of 20 to 80 μm.

【0023】予備成形工程: 本造粒工程で得られた本
造粒材を所定の金型(以下「固定環成形用金型」という)
に充填した上、1500kg/cm2 で冷間プレス成形
して、固定環1に対応する環状形態をなす予備成形体を
得た。なお、予備成形体の形状は、焼結時における収縮
を考慮して設定される。
Preforming step: The granulated material obtained in the main granulating step is subjected to a predetermined mold (hereinafter referred to as "fixed ring forming mold").
, And cold-pressed at 1500 kg / cm 2 to obtain a preform having an annular shape corresponding to the stationary ring 1. The shape of the preform is set in consideration of shrinkage during sintering.

【0024】焼成工程: 予備成形工程で得られた予備
成形体を、加圧することなく、2150℃のアルゴン雰
囲気中で焼成して、固定環1に相当する密封環形状をな
す複合炭化珪素焼結材を得た。
Firing step: The preformed body obtained in the preforming step is fired in an argon atmosphere at 2150 ° C. without applying pressure, and sintered to form a sealed ring shape corresponding to the stationary ring 1. Wood was obtained.

【0025】仕上げ工程: 焼成工程で得られた複合炭
化珪素焼結材の端面(密封端面1a)をRa=0.05
の鏡面に表面研磨(ラップ)する等により、固定環1を
得た。かくして得られた固定環1は、一般的な炭化珪素
製密封環と同質の炭化珪素焼結材(密度:3.10g/
cm3)である(以下、かかる組成の炭化珪素焼結材を
「当該単一炭化珪素焼結材」という)。
Finishing Step: The end face (sealed end face 1a) of the composite silicon carbide sintered material obtained in the firing step is Ra = 0.05.
The fixed ring 1 was obtained by polishing (lapping) the surface to the mirror surface of the above. The stationary ring 1 thus obtained is a silicon carbide sintered material of the same quality as a general sealing ring made of silicon carbide (density: 3.10 g /
cm 3 ) (hereinafter, the silicon carbide sintered material having such a composition is referred to as “the single silicon carbide sintered material”).

【0026】また、実施例2として、固定環1を当該複
合炭化珪素焼結材で構成した点を除いて、第1シールと
同一構成のメカニカルシール(以下「第2シール」とい
う)を製作した。すなわち、第2シールは、図1及び図
2に示す構成をなすものであり、両密封環1,3を当該
複合炭化珪素焼結材で構成したものである。
Further, as Example 2, a mechanical seal (hereinafter, referred to as "second seal") having the same configuration as the first seal except that the stationary ring 1 was formed of the composite silicon carbide sintered material was manufactured. . That is, the second seal has the configuration shown in FIGS. 1 and 2, and both sealing rings 1 and 3 are made of the composite silicon carbide sintered material.

【0027】また、実施例3として、凹溝7…を回転環
3の密封端面3aに形成した点及び回転環3を当該単一
炭化珪素焼結材で構成した点を除いて、第2シールと同
一構成のメカニカルシールを製作した。すなわち、実施
例3のメカニカルシール(以下「第3シール」という)
は、図4及び図5に示す如く、油室ケース2に軸線方向
移動可能に且つ相対回転不能に保持された密封環たる固
定環1と、回転軸4に固定保持された密封環たる回転環
3と、固定環1と油室ケース2のリテーナ部5との間に
介装されて固定環1を回転環3へと押圧附勢するスプリ
ング6とからなり、両密封環1,3の対向端面たる密封
端面1a,3aの相対回転摺接作用により、その相対回
転摺接部分の外周側領域である油室Aとその内周側領域
である流体室Bとを軸封するように構成された端面接触
型のものであって、固定環1を当該複合炭化珪素焼結材
で構成すると共に回転環3を当該単一炭化珪素焼結材で
構成した硬質材/硬質材シールであり、回転環3の密封
端面3aにおける油室側の周端縁部たる外周端縁部に、
周方向に等間隔を隔てた3箇所に配して、密封端面1
a,3aの相対回転に伴って油室Aから密封端面1a,
3a間へと油を強制的に導入させる扇状の凹溝7…を形
成したハイドロダイナミックシールに構成されている。
As the third embodiment, the second seal is provided except that the grooves 7 are formed on the sealing end face 3a of the rotary ring 3 and that the rotary ring 3 is made of the single silicon carbide sintered material. A mechanical seal having the same configuration as that of was manufactured. That is, the mechanical seal of the third embodiment (hereinafter referred to as “third seal”)
As shown in FIG. 4 and FIG. 5, a stationary ring 1 as a sealing ring held in the oil chamber case 2 so as to be movable in the axial direction and relatively non-rotatable, and a rotary ring as a sealing ring fixed and held on the rotating shaft 4. 3 and a spring 6 interposed between the fixed ring 1 and the retainer portion 5 of the oil chamber case 2 to press and urge the fixed ring 1 against the rotating ring 3. Due to the relative rotational sliding action of the sealed end faces 1a, 3a, which are end faces, the oil chamber A, which is the outer peripheral area of the relative rotational sliding contact portion, and the fluid chamber B, which is the inner peripheral area, are sealed. A hard / hard material seal in which the stationary ring 1 is made of the composite silicon carbide sintered material and the rotating ring 3 is made of the single silicon carbide sintered material. In the outer peripheral edge which is the peripheral edge on the oil chamber side on the sealed end face 3a of the ring 3,
The seal end face 1 is arranged at three places at equal intervals in the circumferential direction.
a, 3a from the oil chamber A with the relative rotation of the sealed end faces 1a,
The hydrodynamic seal is formed with fan-shaped concave grooves 7 for forcibly introducing the oil into the gaps 3a.

【0028】さらに、実施例4として、回転環3を当該
複合炭化珪素焼結材で構成した点を除いて、第3シール
と同一構成のメカニカルシール(以下「第4シール」とい
う)を製作した。すなわち、第4シールは、図4及び図
5に示す構成をなすものであり、両密封環1,3を当該
複合炭化珪素焼結材で構成したものである。
Further, as Example 4, a mechanical seal having the same configuration as the third seal (hereinafter referred to as "fourth seal") was manufactured except that the rotating ring 3 was formed of the composite silicon carbide sintered material. . That is, the fourth seal has the configuration shown in FIGS. 4 and 5, and both sealing rings 1 and 3 are made of the composite silicon carbide sintered material.

【0029】また、比較例1として、何れの密封端面1
a,3aにも凹溝7…を形成しない点及び両密封環1,
3を当該単一炭化珪素焼結材で構成した点を除いて、第
1メカニカルシールと同一構成のメカニカルシール(以
下「第5シール」という)を製作した。すなわち、第5シ
ールは、図6に示す一般的な硬質材/硬質材シールと同
一構成をなすものである。
As Comparative Example 1, any of the sealed end faces 1
a and 3a are not formed with the concave grooves 7.
A mechanical seal (hereinafter, referred to as a "fifth seal") having the same configuration as that of the first mechanical seal was prepared except that No. 3 was formed of the single silicon carbide sintered material. That is, the fifth seal has the same configuration as the general hard material / hard material seal shown in FIG.

【0030】また、比較例2として、両密封環1,3を
当該単一炭化珪素焼結材で構成した点を除いて、第1シ
ールと同一構成をなすメカニカルシール(以下「第6シ
ール」という)を製作した。
Also, as Comparative Example 2, a mechanical seal (hereinafter referred to as a "sixth seal") having the same configuration as the first seal except that both sealing rings 1 and 3 were formed of the single silicon carbide sintered material. Was produced.

【0031】さらに、比較例3として、両密封環1,3
を当該単一炭化珪素焼結材で構成した点を除いて、第3
シールと同一構成をなすメカニカルシール(以下「第7
シール」という)を製作した。
Further, as Comparative Example 3, both sealing rings 1 and 3
, Except that the single silicon carbide sintered material was used.
Mechanical seal having the same configuration as the seal (hereinafter referred to as “7th
A seal).

【0032】而して、第1〜第7シールを使用して、次
のようなシール試験を行った。すなわち、このシール試
験にあっては、油室Aに油として流動パラフィン(粘
度:60mPa.s)を封入すると共に流体室Bに工業
用水を供給した状態で100時間連続運転して、運転中
における両密封端面1a,3aからの油の漏れ量(m
l)を測定し、100時間経過後における油温(℃)を
測定すると共に摺動面状態を判定した。摺動面状態の判
定は、密封端面1a,3aにおける油分解付着物の有無
を確認する共に表面形態(相手密封環との摺接により環
状痕が発生しているか否か等)を視認することによって
行った。
The following seal tests were performed using the first to seventh seals. That is, in this sealing test, liquid paraffin (viscosity: 60 mPa.s) was sealed as an oil in the oil chamber A, and continuous operation was performed for 100 hours with industrial water supplied to the fluid chamber B. Oil leakage amount (m) from both sealed end faces 1a, 3a
l) was measured, the oil temperature (° C.) after 100 hours had elapsed, and the sliding surface condition was determined. The determination of the sliding surface state is performed by confirming the presence or absence of oil-decomposed substances on the sealing end surfaces 1a and 3a and visually checking the surface form (whether or not an annular mark is generated by sliding contact with a mating seal ring). Made by.

【0033】かかるシール試験の結果は、表1に示す通
りであった。なお、表1において、当該複合炭化珪素焼
結材で構成されている密封環については「複合SiC」と
記載し、当該単一炭化珪素焼結材で構成されている密封
環については「SiC」と記載し、凹溝7が形成されてい
る密封環については「/H」と記載してある。また、摺動
面状態の判定結果については、油分解付着物の有無のみ
を記載した。
The results of the seal test are as shown in Table 1. In Table 1, the sealing ring made of the composite silicon carbide sintered material is described as “composite SiC”, and the sealing ring made of the single silicon carbide sintered material is described as “SiC”. And the sealing ring in which the concave groove 7 is formed is described as “/ H”. In addition, as to the judgment result of the sliding surface state, only the presence or absence of oil-decomposition deposits is described.

【0034】表1から理解されるように、本発明に係る
第1〜第4シールについては、漏れを全く生じておら
ず、油温も55〜63℃に上昇するに止まった。また、
密封端面1a,3aの状態も、摺接による環状痕等は全
く認められず、油分解付着物もなく、極めて良好であっ
た。これに対して、比較例の第5〜第7シールでは、5
〜15mlの漏れを生じ、油温も71〜78℃まで上昇
しており、密封端面1a,3aには茶褐色の油分解付着
物が認められた。これらの点から明らかなように、凹溝
7によるハイドロダイナックシール機能と親油性材組織
による油の吸着,保持機能により、安定した潤滑油膜が
形成,維持され、良好なシール機能が発揮されることが
理解される。
As can be understood from Table 1, no leakage occurred in the first to fourth seals according to the present invention, and the oil temperature only increased to 55 to 63 ° C. Also,
In the state of the sealed end faces 1a and 3a, no annular marks or the like due to sliding contact were observed at all, and there was no oil decomposition adhering matter, and the condition was extremely good. On the other hand, in the fifth to seventh seals of the comparative example, 5
1515 ml of leakage occurred, the oil temperature also rose to 71-78 ° C., and brown oil decomposition deposits were observed on the sealed end faces 1a and 3a. As is apparent from these points, a stable lubricating oil film is formed and maintained by the hydrodynamic sealing function by the concave groove 7 and the oil adsorbing and retaining function by the lipophilic material structure, and a good sealing function is exhibited. Is understood.

【0035】また、凹溝7を有する第6及び第7シール
では、凹溝7を有しない第5シールに比して、漏れ量及
び油温の上昇が小さくなっているが、同じく凹溝7を有
する第1〜第4シールに比しては、漏れ量及び油温の上
昇が大きくなっている。かかる点から、適正な潤滑油膜
の形成,維持を行うに凹溝7の形成のみでは不十分であ
り、少なくとも一方の密封環を親油性材組織を有する当
該複合炭化珪素焼結材で構成しておくことが必要である
ことが理解される。なお、第3及び第4シールにあって
は、第1及び第2シールに比して、油温がやや高くなっ
ているが、これは、凹溝7を回転環3に形成したため
に、凹溝7の回転による油の攪拌作用が促進されたこと
によると考えられる。この点からして、凹溝7は固定環
1に形成しておくことが好ましいと考えられる。
In the sixth and seventh seals having the groove 7, the leakage amount and the rise in the oil temperature are smaller than those of the fifth seal without the groove 7. In comparison with the first to fourth seals having the above, the rise of the leak amount and the oil temperature is large. From this point, the formation of the groove 7 alone is not enough to form and maintain a proper lubricating oil film. At least one of the sealing rings is made of the composite silicon carbide sintered material having the lipophilic material structure. It is understood that it is necessary to keep. In the third and fourth seals, the oil temperature is slightly higher than in the first and second seals, but this is because the groove 7 is formed in the rotating ring 3. It is considered that the effect of stirring the oil by the rotation of the groove 7 was promoted. From this point, it is considered preferable that the concave groove 7 be formed in the fixed ring 1.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【発明の効果】以上の説明から理解されるように、本発
明のメカニカルシールによれば、油室に封入される油が
流動パラフィンのような潤滑性の低いものである場合
等、潤滑条件が悪い場合にも、密封端面間に適正な潤滑
油膜を安定した状態で形成,維持することができ、相手
密封環との摺動による発熱や摩耗を可及的に抑制し得
て、長期に亘って良好な軸封機能を発揮することができ
る。
As will be understood from the above description, according to the mechanical seal of the present invention, the lubricating condition is reduced when the oil filled in the oil chamber has low lubricity such as liquid paraffin. Even in a bad case, an appropriate lubricating oil film can be formed and maintained between the sealing end faces in a stable state, and the heat generation and abrasion due to sliding with the mating seal ring can be suppressed as much as possible, and for a long time. And a good shaft sealing function can be exhibited.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1又は第2シールを示す縦断側面図である。FIG. 1 is a longitudinal sectional side view showing a first or second seal.

【図2】図1のII−II線に沿う縦断背面図である。FIG. 2 is a longitudinal rear view taken along the line II-II of FIG.

【図3】当該複合炭化珪素焼結材で構成された密封環の
密封端面(鏡面)を100倍に拡大して示す顕微鏡写真
である。
FIG. 3 is a photomicrograph showing the sealed end face (mirror surface) of the sealing ring made of the composite silicon carbide sintered material at a magnification of 100 times.

【図4】第3又は第4シールを示す縦断側面図である。FIG. 4 is a vertical sectional side view showing a third or fourth seal.

【図5】図4のV−V線に沿う縦断正面図である。FIG. 5 is a vertical sectional front view taken along line VV of FIG. 4;

【図6】一般的な端面接触型メカニカルシールを示す縦
断側面図である。
FIG. 6 is a longitudinal sectional side view showing a general end face contact type mechanical seal.

【符号の説明】[Explanation of symbols]

1…固定環(密封環)、1a…固定環の密封端面、3…
回転環(密封環)、7…凹溝、A…油室、B…流体室。
DESCRIPTION OF SYMBOLS 1 ... Fixed ring (sealing ring), 1a ... Sealed end surface of fixed ring, 3 ...
Rotating ring (sealing ring), 7: concave groove, A: oil chamber, B: fluid chamber.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3H022 AA01 BA06 CA23 CA47 CA51 DA13 DA18 3J041 AA02 BA04 BC02  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 3H022 AA01 BA06 CA23 CA47 CA51 DA13 DA18 3J041 AA02 BA04 BC02

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 両密封環の対向端面たる密封端面を相対
回転摺接させることにより油室とこれに隣接する流体室
との間を軸封するように構成されたメカニカルシールに
おいて、一方の密封端面における油室側の周端縁部に、
密封端面の相対回転に伴って油室から密封端面間へと油
を強制的に導入させる凹溝を形成すると共に、少なくと
も一方の密封環を、緻密な硬質材組織中に微細な親油性
材が密集する親油性材組織を分散配合してなる複合焼結
材で構成したことを特徴とするメカニカルシール。
1. A mechanical seal configured so as to axially seal a space between an oil chamber and a fluid chamber adjacent to the oil chamber by bringing the sealing end faces, which are opposite end faces of both sealing rings, into relative rotational sliding contact with each other. At the peripheral edge on the oil chamber side on the end face,
Along with the relative rotation of the sealing end faces, a concave groove for forcibly introducing oil from the oil chamber to between the sealing end faces is formed, and at least one of the sealing rings is formed by a fine lipophilic material in a dense hard material structure. A mechanical seal comprising a composite sintered material obtained by dispersing and blending a dense lipophilic material structure.
【請求項2】 硬質材組織は炭化珪素粒子又はタングス
テンカーバイト粒子が焼結してなるものであり、親油性
材組織は微細な非晶質カーボンが密集した状態でその周
囲の硬質材組織により保持されたものであることを特徴
とする、請求項1に記載するメカニカルシール。
2. The hard material structure is formed by sintering silicon carbide particles or tungsten carbide particles, and the lipophilic material structure is formed by a hard material structure surrounding fine amorphous carbon in a dense state. The mechanical seal according to claim 1, wherein the mechanical seal is held.
【請求項3】 親油性材組織は1〜100μmの大きさ
をなすものであることを特徴とする、請求項1又は請求
項2に記載するメカニカルシール。
3. The mechanical seal according to claim 1, wherein the lipophilic material structure has a size of 1 to 100 μm.
【請求項4】 親油性材組織は5〜50μmの大きさを
なすものであることを特徴とする、請求項1又は請求項
2に記載するメカニカルシール。
4. The mechanical seal according to claim 1, wherein the lipophilic material structure has a size of 5 to 50 μm.
【請求項5】 親油性材組織には、硬質材組織と同質材
である硬質材の微粒子が親油性材:硬質材=100:0
〜20:80の割合で配合されていることを特徴とす
る、請求項1、請求項2、請求項3又は請求項4に記載
するメカニカルシール。
5. In the lipophilic material structure, fine particles of a hard material which is the same material as the hard material structure include lipophilic material: hard material = 100: 0.
The mechanical seal according to claim 1, wherein the mechanical seal is blended at a ratio of 2020: 80.
【請求項6】 親油性材組織が硬質材組織に対して5〜
50%の割合で配置されていることを特徴とする、請求
項1、請求項2、請求項3、請求項4又は請求項5に記
載するメカニカルシール。
6. The lipophilic material structure is 5 to the hard material structure.
6. The mechanical seal according to claim 1, wherein the mechanical seal is arranged at a rate of 50%.
JP2001140117A 2001-05-10 2001-05-10 End-contact mechanical seal for submersible pumps handling slurry fluids Expired - Fee Related JP4083394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001140117A JP4083394B2 (en) 2001-05-10 2001-05-10 End-contact mechanical seal for submersible pumps handling slurry fluids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001140117A JP4083394B2 (en) 2001-05-10 2001-05-10 End-contact mechanical seal for submersible pumps handling slurry fluids

Publications (2)

Publication Number Publication Date
JP2002333069A true JP2002333069A (en) 2002-11-22
JP4083394B2 JP4083394B2 (en) 2008-04-30

Family

ID=18986776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001140117A Expired - Fee Related JP4083394B2 (en) 2001-05-10 2001-05-10 End-contact mechanical seal for submersible pumps handling slurry fluids

Country Status (1)

Country Link
JP (1) JP4083394B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100666787B1 (en) 2005-11-03 2007-01-09 현대자동차주식회사 Manufacturing method of mechanical seal of water pump for fuel cell
CN104895830A (en) * 2015-06-02 2015-09-09 沈阳潜水泵业有限公司 External sealing structure of latent halogen pump motor and manufacturing method
CN106122078A (en) * 2016-08-30 2016-11-16 湖北双剑鼓风机股份有限公司 The asymmetric carbon ring seal device of card slot type for centrifugal blower
JPWO2016035860A1 (en) * 2014-09-04 2017-06-15 イーグル工業株式会社 mechanical seal
CN104847687B (en) * 2014-02-16 2018-12-25 杭州大路实业有限公司 Drum pump novel sealing ring and preparation method thereof
JP2019027466A (en) * 2017-07-27 2019-02-21 日本ピラー工業株式会社 mechanical seal

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100666787B1 (en) 2005-11-03 2007-01-09 현대자동차주식회사 Manufacturing method of mechanical seal of water pump for fuel cell
CN104847687B (en) * 2014-02-16 2018-12-25 杭州大路实业有限公司 Drum pump novel sealing ring and preparation method thereof
JPWO2016035860A1 (en) * 2014-09-04 2017-06-15 イーグル工業株式会社 mechanical seal
US10054230B2 (en) 2014-09-04 2018-08-21 Eagles Industry Co., Ltd. Mechanical seal
CN104895830A (en) * 2015-06-02 2015-09-09 沈阳潜水泵业有限公司 External sealing structure of latent halogen pump motor and manufacturing method
CN106122078A (en) * 2016-08-30 2016-11-16 湖北双剑鼓风机股份有限公司 The asymmetric carbon ring seal device of card slot type for centrifugal blower
JP2019027466A (en) * 2017-07-27 2019-02-21 日本ピラー工業株式会社 mechanical seal
CN110177967A (en) * 2017-07-27 2019-08-27 日本皮拉工业株式会社 Mechanical sealing member

Also Published As

Publication number Publication date
JP4083394B2 (en) 2008-04-30

Similar Documents

Publication Publication Date Title
CN1040341C (en) Bearing material of porous SiC having a trimodal pore composition
US5538649A (en) Carbon composite mateiral for tribological applications
KR101275873B1 (en) Mechanical seal device
JPH0255273A (en) Silicon carbide sintered form for mechanical seal and mechanical seal using same
EP2375111B1 (en) Sliding component and mechanical seal, faucet valve, and rolling support device equipped with same
JP2002333069A (en) Mechanical seal
EP3273119B1 (en) Mechanical seal device and sliding ring thereof for use in aqueous environment
EP1988067B1 (en) Sintered ceramic, slide part therefrom, and process for producing sintered ceramic
JP4199504B2 (en) Sliding parts and manufacturing method thereof
JP4635042B2 (en) Free ring mechanical seal
JP2002147617A (en) Seal ring for mechanical seal, and mechanical seal using the same
JP4030426B2 (en) Sliding member for sealing and manufacturing method thereof
JP4141778B2 (en) Sliding parts and manufacturing method thereof
JP3999468B2 (en) SLIDING BODY, MANUFACTURING METHOD THEREOF, AND MECHANICAL SEAL
JP2001139376A (en) Silicon carbide sintered compact, and mechanical seal and segment seal using the silicon carbide sintered compact
JPH09292033A (en) Mechanism seal
JP2003200344A (en) Rotary joint for cmp device
JP4865146B2 (en) Silicon carbide sintered part, mechanical seal using the same, and manufacturing method thereof
JP3650739B2 (en) SLIDING BODY, MANUFACTURING METHOD THEREOF, AND MECHANICAL SEAL
JPS6331003B2 (en)
JP2002338357A (en) Sliding body and mechanical seal
JP2003042305A (en) Sliding component, mechanical seal using the sliding component, and manufacturing method therefor
JP5530739B2 (en) Seal ring for mechanical seal and manufacturing method thereof
JP2543093B2 (en) Sliding parts for seals
KR100286532B1 (en) Sealing Material with Silicon Carbide and Manufacturing Method of the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041222

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050221

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060314

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060810

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080213

R150 Certificate of patent or registration of utility model

Ref document number: 4083394

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees