JP4078939B2 - Electrode material for EDM - Google Patents

Electrode material for EDM Download PDF

Info

Publication number
JP4078939B2
JP4078939B2 JP2002299763A JP2002299763A JP4078939B2 JP 4078939 B2 JP4078939 B2 JP 4078939B2 JP 2002299763 A JP2002299763 A JP 2002299763A JP 2002299763 A JP2002299763 A JP 2002299763A JP 4078939 B2 JP4078939 B2 JP 4078939B2
Authority
JP
Japan
Prior art keywords
electrode
particles
electrode material
electric discharge
machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002299763A
Other languages
Japanese (ja)
Other versions
JP2004130487A (en
Inventor
昇 上西
紀人 胡間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2002299763A priority Critical patent/JP4078939B2/en
Publication of JP2004130487A publication Critical patent/JP2004130487A/en
Application granted granted Critical
Publication of JP4078939B2 publication Critical patent/JP4078939B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、主として型彫り放電加工に用いられる加工電極として好適な放電加工用電極材料に関する。
【0002】
【従来の技術】
放電加工においては、被加工物の加工速度が速いこと、及び加工電極自体の消耗が少ないことが望まれてきた。同時にまた、被加工物には加工電極の表面状態が転写されるため、加工電極の表面や内部に巣がないこと、若しくは巣の大きさができるだけ小さいことが望まれてきた。
【0003】
この様な要望を満たすために、従来から様々な放電加工用電極材料が開発されてきたが、その中でもCu−W合金及びAg−W合金は、Wの高い融点や沸点、Cu又はAgの高い熱伝導性と電気伝導性を活かして、消耗が少なく、精密加工や仕上げ加工に適した電極材料として、特に精密加工用途や超硬型の放電加工用途に適した放電加工用電極材料として使用されてきた。
【0004】
かかるCu−W合金及びAg−W合金からなる放電加工用電極材料の製造方法の一つとして、W粉末を主成分とする粉末を電極形状に型押しした後、この型押し体中に最終合金組成となるように純Cu又は純Agを溶融浸透させる溶浸法がある。また、別の製造方法として、W粉末とCu又はAg粉末を最終合金組成に配合した後、電極形状に型押しし、焼結して作製する焼結法がある。
【0005】
【発明が解決しようとする課題】
これらのCu−W合金及びAg−W合金からなる放電加工用電極材料については、電極製造時に巣の発生を抑えることと共に、実際の放電加工現場における能率アップの要求から、電極の消耗を少なくすること、加工速度を上げて放電加工特性を向上させることが検討されている。
【0006】
例えば、特開昭63−195242号公報や特開昭50−109595号公報に記載されるように、これらのCu−W合金又はAg−W合金中に、NaやK等のアルカリ金属元素、SrやCa等のアルカリ土類金属元素、La等の希土類元素、又はこれらの酸化物等を添加することにより、合金の仕事関数を小さくし、加工速度を向上させた電極材料が開発されている。
【0007】
しかしながら、上記したアルカリ金属元素、アルカリ土類金属元素、希土類元素、又はその酸化物等を含む放電加工用電極材料は、確かにその仕事関数が低く、加工速度の向上等に改善が得られるものの、添加する上記金属元素等の中には毒性があるものや、吸湿性を有するものがあるため、その取り扱いが不便であり、製造が難しいという欠点があった。
【0008】
また、これらの元素やその酸化物を含む放電加工用電極材料には、WやCu、Agを含まない巣と呼ばれる穴の部分が発生しやすいという欠点があった。内部欠陥として大きな巣が存在すると、加工電極として使用できなかったり、放電加工の際に被加工物に悪影響を与えたりするため、巣が無いか若しくは巣が問題にならない程度に小さいこと、具体的には電極の使用目的にもよるが約4μm以下であることが望まれている。
【0009】
更に最近では、放電加工においても益々微細加工が要求されるようになり、放電加工用電極材料自体の加工性も大きな改善要因となりつつある。例えばR0.4mmの半月形断面で長さ30mmの形状のように微細な加工を電極に施す場合には、その加工途中で電極にクラックが発生しやすかった。従って、このような微細加工を施す電極材料については、放電加工特性が優れているだけでなく、機械加工時にクラックが生じ難いなど電極材料自体の加工性の向上が望まれている。
【0010】
更には、一般の放電加工現場では加工電極は消耗品として広く使用されていることから、コストが安く、且つ生産性が良くて短納期で製造できる放電加工用電極材料の開発が望まれている。
【0011】
本発明は、このような従来の事情に鑑み、Cu−W合金からなり、電極の消耗が少なく且つ加工速度が速く、巣の発生がないか又は巣が極めて小さいうえ、電極材料自体の加工性が良く、安価で生産性に優れた放電加工用電極材料を提供することを目的とする。
【0012】
【課題を解決するための手段】
上記目的を達成するため、本発明が提供する放電加工用電極材料は、Ni、Cu、W以外の元素又はその硼素化物若しくは酸化物を0.05重量%以上含まず、W濃度が40重量%以上のCu−W合金からなり、該合金中のW粒子は粒径1μm以下の粒子及び粒径3μm以上の粒子を含まないか又は30%未満含み、且つ硝酸液で腐食した後のWスケルトンの硬度がビッカース硬度で22以上であることを特徴とする。
【0013】
本発明においては、W粒子の粒径の測定は下記の方法によって行う。走査電子顕微鏡観察により1500倍の写真を撮影し、これをコピー機にて4倍に拡大複写する。この拡大した写真内に長さ20cmの線分を任意に引き、この線分と交差したW粒子について、その交差した長さを測定してW粒子の粒径とする。また、粒径が1μm以下及び3ミクロン以上のW粒子の割合は、上記の作業を測定数が所定数、例えば300個になるまで繰り返し、その300個の粒子中に含まれる当該粒径のW粒子の百分率をもって表すものとする。
【0014】
【発明の実施の形態】
本発明者らは、Cu−W合金からなる放電加工用電極材料自体の機械加工性に関して検討した結果、微細なW粉末を用いた場合には、電極に微細加工を施す際に不定期にクラックが発生する頻度が高くなることを見出した。この知見に基づいて更に検討を重ね、放電加工用電極材料の機械加工性を改善し、微細加工時のクラック発生を防止するためには、W粒子の粒度を適正化すると共に、W粒子同士の固着性又は接合性を向上させることが必要であるとの知見を得た。
【0015】
即ち、本発明の放電加工用電極材料は、W濃度が40重量%以上のCu−W合金からなり、この合金中のW粒子は粒径1μm以下の粒子を含まないか又は含んでも30%未満であること、及び粒径3μm以上の粒子を含まないか又は含んでも30%未満であること、更に硝酸液で腐食した後のWスケルトンの硬度がビッカース硬度で22以上であることが必要である。
【0016】
粒径1μm以下の微細なW粒子の使用は、電極強度が高くなる反面、粉末の混合が難いことや焼結性のバラツキ等のために脆くなることもあり、クラックの発生を招きやすい。一方、粒径が3μm以上の粗大なW粒子は、W粒子同士の固着性又は結合性が弱いため好ましくない。このような理由から、本発明においては、合金組織中のW粒子として、粒径1μm以下の粒子及び粒径3μm以上の粒子は全く含まれないか、又は含まれても全W粒子の30%未満とする。
【0017】
また、W粒子を微粒化することによって、放電加工時における電極の耐消耗性及び加工速度を改善し得ることが分った。この観点からも、W粒子は細かい方が好ましく、余りに粗大なW粒子の割合を減ずること、即ち3μm以上のW粒子は含まないか、又は全W粒子の30%未満とする必要がある。
【0018】
W粒子同士の固着性又は結合性に関しては、Cu−W合金を硝酸液に浸漬してCuを腐食し、得られたWスケルトンの硬度を測定することにより評価することができる。即ち、上記Wスケルトンの硬度として、ビッカース硬度が22以上であるとき、W粒子が相互に強固に接合されているため、電極加工時におけるクラックの発生を抑制することができる。
【0019】
また、W粒子同士の固着性又は結合性を高めること、即ち上記のごとくWスケルトンの硬度としてビッカース硬度22以上とすることによって、放電加工に伴う電極の消耗を小さくし且つ加工速度も向上する。このビッカース硬度は高ければ高いほど、上記放電加工性にとって好都合である。
【0020】
加工電極を短い納期で且つ低コストで製造するためには、原料であるW粉末として一般に大量に生産されている品種を選び、製造工程も簡便なものであることが望まれる。極めて細かいか又は粗いW粉末は、原料費の点でコスト的に難があるだけでなく、例えば混合条件、型押し条件、焼結条件などの製造条件が特殊になり、しかも厳密に選定する必要があるため、納期的且つコスト的に不利である。
【0021】
このような放電加工用電極材料の製造上の観点からも、W粒子は細か過ぎず且つ粗過ぎないことが望ましく、Cu−W合金中のW粒子について粒径1μm以下の粒子及び粒径3μm以上の粒子を含まないか、又は全W粒子の30%未満とする。特に、Cu−W合金中の全W粒子のうち、粒径が1μmを超え且つ3μm未満のW粒子が70%以上であり、残りが粒径1μm以下のW粒子である放電加工用電極材料は、電極自体の加工性やコストの面からも、また電極の耐消耗性や加工速度の観点からも望ましいものである。
【0022】
本発明の放電加工用電極材料は、W濃度が40重量%以上、多くの場合は60重量%のCu−W合金からなる。また、巣の発生を抑制するため、アルカリ金属元素、アルカリ土類金属元素、希土類元素、又はその酸化物等を0.05重量%以上含まないことが必要である。これにより、巣は全くないか、若しくは実際の電極使用において問題ない程度、具体的には巣の大きさを4μm以下に抑えることができ、多くの場合は1μm未満にすることができる。
【0023】
一般に、アルカリ金属元素やアルカリ土類金属元素等を添加する場合には、これらの元素が焼結性を阻害するため、Niのような焼結促進効果のある元素を0.05〜5重量%程度添加する必要があった。しかしながら、アルカリ金属元素やアルカリ土類金属元素等を含まない本発明のCu−W合金においては、Niのような焼結促進効果のある元素等を必ずしも含む必要はない。従って、Niを添加しない場合には、NiがCu中に固溶して電気伝導度を下げるという不都合を避けることが可能である。
【0024】
本発明のCu−W合金からなる放電加工用電極材料の製造は、以下の溶浸法による。
【0025】
即ち、粒径1μm以下のW粒子及び粒径3μm以上のW粒子が30重量%未満となるような粒度分布を持つW粉末をそのまま、又はこのW粉末に例えば2〜3重量%程度のCu粉末を混合した後、所望の形状に型押しし、この型押し体内にW−30重量%Cu等の最終合金組成となるようにCuを溶浸させる。具体的なCuの溶浸については、型押し体をCuの溶融液体中に浸漬する方法、型押し体とCuを接触させた状態で、Cuの融点以上の温度に加熱する方法等がある。
【0026】
更に、Wスケルトンの硬度が高いCu−W合金を製造する方法としては、上記の溶浸法の場合、W粒子同士の焼結状態をより強固にする手法、例えばW粒子の焼結を1350℃以上、より望ましくは1410℃よりも高い温度で行う等の方法をとることができる。
【0027】
【実施例】
実施例1
0.5〜5μmの粒度分布を持つW粉末とCu粉末を原料とし、W−2重量%Cuの組成となるように配合して、アトライターにて混合した後、この混合粉末を電極形状に型押しした。このW−2重量%Cu組成の型押し体に、純Cu粉末を型押しした材料を接触させ、水素雰囲気中にて1410℃(試料A)で加熱焼結すると同時にCuを溶浸させることにより、最終合金組成がW−30重量%Cuである電極材料を作製した。
【0028】
比較例として、焼結温度を1230℃とした以外は上記試料Aの場合と同様にして、最終合金組成がW−30重量%Cuである試料Bの電極材料を作製した。また、試料Cは粗粒を多く含む粒度分布のW粉末を用いた以外、試料Dでは微粒を多く含む粒度分布のW粉末を用いた以外は、それぞれ上記試料Aの場合と同様にして、最終合金組成がW−30重量%Cuである電極材料を作製した。
【0029】
更に、比較例の試料Eとして、上記試料BにおけるW粉末の一部に代えてCaO粉末とThO粉末を添加し、それ以外は試料Bと同様にして、最終合金組成がW−30重量%Cu−0.5重量%CaO−0.5重量%ThOである電極材料を作製した。
【0030】
得られた本発明の試料Aの電極材料、並びに比較例の試料B〜Eの各電極材料について、それぞれ30%の硝酸液で腐食した後のWスケルトン硬度(ビッカース硬度Hv)を測定した。また、試料A〜Eの各電極材料の合金中に含まれる粒径3μm以上及び粒径1μm以下の各W粒子量を求め、これらの結果を焼結温度等の製造条件と共に下記表1に示した。
【0031】
【表1】

Figure 0004078939
【0032】
上記試料A〜Eの各電極材料について、R0.4mmの半月形断面で長さ30mmの形状に機械加工し、その際の電極のクラック発生率を求めた。また、各電極材料について、巣の大きさを測定し、その平均値を求めた。
【0033】
更に、上記試料A〜Dの各電極材料から電極面が15×15mmの加工電極を作製し、この電極面が15×5mmだけ超硬合金(硬さ88.5HRA)の被加工材にかかるように対向させて、ピーク電流(Ip)=135A、加工電圧(V)=80V、パルス幅(ON)=8.7μsec、休止時間(OFF)=128μsecの条件で、4mmの加工深さまで放電加工を実施した。この放電加工における電極消耗量と加工速度を求めた。得られた結果を下記表2に示した。
【0034】
【表2】
Figure 0004078939
【0035】
上記の結果から分るように、本発明の試料Aの電極材料は、Wスケルトン硬度がHvで22以上と高く、巣の大きさが小さく、電極の耐消耗性及び加工速度も充分満足できるものであると同時に、電極の機械加工時におけるクラック発生率を極めて少なくすることができた。また、原料として微細又は粗大な粒子を多く含まないW粉末を用いるため、原料コストを抑えることができ、しかも特殊な製造条件を必要としないことから短納期での製造が可能であった。
【0036】
一方、比較例の各電極材料については、試料Bは焼結温度が低く、Wスケルトン硬度も低いため、試料Aに比べて電極の機械加工時におけるクラック発生率が高くなり、巣の大きさ、電極の耐消耗性及び加工速度も劣っている。試料Cは、粒径3μm以上の粗大のW粒子が多いため、電極の機械加工時におけるクラック発生率が高くなり、電極の耐消耗性及び加工速度も低下した。
【0037】
また、比較例の試料Dは、粒径1μm以下の微粒のW粒子が多いため、電極の耐消耗性と加工速度は優れているが、電極の機械加工時におけるクラック発生率が大幅に悪化した。更に、酸化物を含む試料Eは、電極の耐消耗性及び加工速度は優れているが、電極の機械加工時におけるクラック発生率が高く、しかも40μmを超える極めて大きな巣が発生した。
【0038】
【発明の効果】
本発明によれば、Cu−W合金からなる放電加工用電極材料について、アルカリ金属元素、アルカリ土類金属元素、希土類元素、又はその酸化物等を含まず、電極の耐消耗性及び加工速度に優れ、巣の発生を抑制できるうえ、機械加工性が良いため微細形状の電極に加工する際にクラック等が発生し難く、安価で生産性に優れた放電加工用電極材料を提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrode material for electric discharge machining suitable as a machining electrode mainly used for die-sinking electric discharge machining.
[0002]
[Prior art]
In electric discharge machining, it has been desired that the machining speed of the workpiece is high and that the machining electrode itself is less consumed. At the same time, since the surface state of the machining electrode is transferred to the workpiece, it has been desired that there is no nest on the surface or inside of the machining electrode, or that the size of the nest is as small as possible.
[0003]
In order to satisfy such a demand, various electrode materials for electric discharge machining have been developed conventionally. Among them, Cu-W alloys and Ag-W alloys have a high melting point and boiling point of W, and a high Cu or Ag. Utilizing thermal conductivity and electrical conductivity, it is used as an electrode material with low wear and suitable for precision machining and finishing, especially as an electrode material for electrical discharge machining suitable for precision machining and carbide-type electrical discharge machining applications. I came.
[0004]
As one of the methods for producing an electrode material for electric discharge machining comprising such a Cu—W alloy and an Ag—W alloy, a powder containing W powder as a main component is embossed into an electrode shape, and then the final alloy is placed in the embossed body There is an infiltration method in which pure Cu or pure Ag is melt-infiltrated so as to have a composition. As another manufacturing method, there is a sintering method in which W powder and Cu or Ag powder are blended into the final alloy composition, then embossed into an electrode shape and sintered.
[0005]
[Problems to be solved by the invention]
Regarding the electrode material for electric discharge machining made of these Cu-W alloy and Ag-W alloy, the generation of the nest is suppressed at the time of manufacturing the electrode, and the consumption of the electrode is reduced due to the demand for efficiency improvement at the actual electric discharge machining site. In addition, it has been studied to improve the electric discharge machining characteristics by increasing the machining speed.
[0006]
For example, as described in JP-A-63-195242 and JP-A-50-109595, in these Cu—W alloys or Ag—W alloys, an alkali metal element such as Na or K, Sr Electrode materials have been developed in which the work function of the alloy is reduced and the processing speed is improved by adding alkaline earth metal elements such as Ca and Ca, rare earth elements such as La, or oxides thereof.
[0007]
However, the electrode material for electric discharge machining containing the above-mentioned alkali metal element, alkaline earth metal element, rare earth element, oxide thereof, etc. certainly has a low work function, and can be improved in improving the machining speed. However, some of the metal elements to be added are toxic or hygroscopic, so that they are inconvenient to handle and difficult to manufacture.
[0008]
In addition, the electrode material for electric discharge machining containing these elements and oxides thereof has a drawback that a hole portion called a nest that does not contain W, Cu, or Ag is easily generated. If there is a large nest as an internal defect, it cannot be used as a machining electrode, or the work piece will be adversely affected during electric discharge machining, so there is no nest or the nest is small enough not to cause a problem. Depending on the purpose of use of the electrode, it is desired to be about 4 μm or less.
[0009]
In recent years, more and more fine machining is required in electric discharge machining, and the workability of the electrode material for electric discharge machining itself is becoming a major improvement factor. For example, when the electrode is subjected to fine processing such as an R0.4 mm half-moon-shaped cross section having a length of 30 mm, cracks are likely to occur in the electrode during the processing. Accordingly, it is desired that the electrode material to be subjected to such fine processing not only has excellent electric discharge machining characteristics, but also improves the workability of the electrode material itself such that cracks are less likely to occur during machining.
[0010]
Furthermore, since machining electrodes are widely used as consumables at general electric discharge machining sites, it is desired to develop an electrode material for electric discharge machining that is low in cost, has high productivity, and can be manufactured in a short delivery time. .
[0011]
In view of such a conventional situation, the present invention is made of a Cu-W alloy, consumes little electrode, has a high processing speed, has no nest formation, or has a very small nest, and the workability of the electrode material itself. An object of the present invention is to provide an electrode material for electric discharge machining that is good, inexpensive and excellent in productivity.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the electrode material for electrical discharge machining provided by the present invention does not contain 0.05% by weight or more of an element other than Ni, Cu, W, or a boride or oxide thereof, and the W concentration is 40% by weight. The above-mentioned Cu-W alloy, and the W particles in the alloy contain no particles having a particle size of 1 μm or less and particles having a particle size of 3 μm or more or less than 30%, The hardness is 22 or more in terms of Vickers hardness.
[0013]
In the present invention, the particle size of W particles is measured by the following method. A 1500 × photograph is taken by scanning electron microscope observation, and this is magnified 4 × with a copier. A line segment having a length of 20 cm is arbitrarily drawn in the enlarged photograph, and for the W particles intersecting with the line segment, the intersected length is measured to obtain the particle diameter of the W particles. The ratio of W particles having a particle size of 1 μm or less and 3 microns or more is determined by repeating the above operation until the number of measurements reaches a predetermined number, for example, 300, and the W of the particle size included in the 300 particles. Expressed as a percentage of particles.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
As a result of studying the machinability of the electrode material itself for electric discharge machining made of a Cu—W alloy, the present inventors have found that when fine W powder is used, irregular cracks occur when the electrode is finely processed. It has been found that the frequency of occurrence increases. Based on this finding, in order to improve the machinability of the electrode material for electric discharge machining and prevent the occurrence of cracks during micromachining, the particle size of W particles is optimized and The knowledge that it was necessary to improve the adhesiveness or bondability was obtained.
[0015]
That is, the electrode material for electric discharge machining of the present invention is made of a Cu-W alloy having a W concentration of 40% by weight or more, and the W particles in this alloy do not contain particles having a particle size of 1 μm or less or are less than 30%. And that it does not contain particles with a particle size of 3 μm or more or contains less than 30%, and the hardness of the W skeleton after being corroded with nitric acid solution needs to be 22 or more in terms of Vickers hardness. .
[0016]
The use of fine W particles having a particle size of 1 μm or less increases the electrode strength, but is difficult to mix the powder and may become brittle due to variations in sinterability, and is liable to cause cracks. On the other hand, coarse W particles having a particle size of 3 μm or more are not preferable because the adhesion or bonding between the W particles is weak. For this reason, in the present invention, as W particles in the alloy structure, particles having a particle size of 1 μm or less and particles having a particle size of 3 μm or more are not included at all, or even if included, 30% of all W particles. Less than.
[0017]
Further, it has been found that the wear resistance and machining speed of the electrode during electric discharge machining can be improved by atomizing W particles. Also from this point of view, finer W particles are preferable, and it is necessary to reduce the proportion of W particles that are too coarse, that is, W particles of 3 μm or more are not included or less than 30% of the total W particles.
[0018]
The adhesion or bonding between W particles can be evaluated by immersing a Cu-W alloy in a nitric acid solution to corrode Cu and measuring the hardness of the obtained W skeleton. That is, as the hardness of the W skeleton, when the Vickers hardness is 22 or more, the W particles are firmly bonded to each other, so that generation of cracks during electrode processing can be suppressed.
[0019]
Further, by increasing the adhesion or bonding property between the W particles, that is, by setting the hardness of the W skeleton to Vickers hardness of 22 or more, it is possible to reduce the consumption of the electrode accompanying electric discharge machining and to improve the machining speed. The higher the Vickers hardness, the more favorable for the electric discharge machining.
[0020]
In order to manufacture a processed electrode with a short delivery time and at a low cost, it is desired that a variety generally produced in large quantities as a W powder as a raw material is selected and the manufacturing process is simple. Extremely fine or coarse W powder is not only difficult in terms of raw material cost, but also has special manufacturing conditions such as mixing conditions, stamping conditions, and sintering conditions, and must be selected strictly. This is disadvantageous in terms of delivery and cost.
[0021]
From the viewpoint of manufacturing such an electrode material for electric discharge machining, it is desirable that the W particles are not too fine and not too coarse. The W particles in the Cu—W alloy have a particle size of 1 μm or less and a particle size of 3 μm or more. Or less than 30% of the total W particles. In particular, among all the W particles in the Cu-W alloy, the electrode material for electric discharge machining in which the particle size is more than 70% and the remaining particles are less than 3 μm and the remaining particle size is less than 1 μm. It is desirable also from the viewpoint of workability and cost of the electrode itself, and from the viewpoint of electrode wear resistance and processing speed.
[0022]
The electrode material for electric discharge machining of the present invention comprises a Cu—W alloy having a W concentration of 40% by weight or more, and in many cases 60% by weight. Further, in order to suppress the formation of nests, it is necessary not to contain 0.05% by weight or more of an alkali metal element, an alkaline earth metal element, a rare earth element, or an oxide thereof. As a result, there is no nest, or the nest size can be suppressed to 4 μm or less to the extent that there is no problem in actual electrode use, and in many cases, it can be reduced to less than 1 μm.
[0023]
In general, when an alkali metal element, an alkaline earth metal element, or the like is added, since these elements hinder sinterability, an element having an effect of promoting sintering such as Ni is 0.05 to 5% by weight. It was necessary to add about. However, the Cu—W alloy of the present invention that does not contain an alkali metal element, an alkaline earth metal element, or the like does not necessarily include an element such as Ni that has a sintering promoting effect. Therefore, when Ni is not added, it is possible to avoid the inconvenience that Ni dissolves in Cu and lowers electrical conductivity.
[0024]
Manufacture of the electrode material for electric discharge machining which consists of Cu-W alloy of this invention is based on the following infiltration method .
[0025]
That is, a W powder having a particle size distribution such that W particles having a particle size of 1 μm or less and W particles having a particle size of 3 μm or more are less than 30% by weight is used as it is or, for example, about 2 to 3% by weight of Cu powder. Then, the mold is embossed into a desired shape, and Cu is infiltrated into the embossed body so as to have a final alloy composition such as W-30 wt% Cu. Specific infiltration of Cu includes a method of immersing the embossed body in a molten liquid of Cu, a method of heating to a temperature equal to or higher than the melting point of Cu in a state where the embossed body and Cu are in contact with each other.
[0026]
Furthermore, as a method for producing a Cu—W alloy having a high hardness of the W skeleton, in the case of the infiltration method described above , a technique for strengthening the sintered state of the W particles, for example, sintering of the W particles at 1350 ° C. As described above, a method such as performing at a temperature higher than 1410 ° C. is more preferable.
[0027]
【Example】
Example 1
W powder and Cu powder having a particle size distribution of 0.5 to 5 μm are used as raw materials, mixed so as to have a composition of W-2 wt% Cu, mixed with an attritor, and then this mixed powder is formed into an electrode shape. Embossed. By contacting a material obtained by embossing pure Cu powder with this embossed body of W-2 wt% Cu composition, and heat-sintering at 1410 ° C. (sample A) in a hydrogen atmosphere and simultaneously infiltrating Cu. An electrode material having a final alloy composition of W-30 wt% Cu was produced.
[0028]
As a comparative example, an electrode material of Sample B having a final alloy composition of W-30 wt% Cu was produced in the same manner as in Sample A except that the sintering temperature was 1230 ° C. In addition, sample C was used in the same manner as in sample A except that W powder having a particle size distribution containing a lot of coarse particles was used, and W powder having a particle size distribution containing a lot of fine particles was used in sample D. An electrode material having an alloy composition of W-30 wt% Cu was produced.
[0029]
Further, as a sample E of the comparative example, CaO powder and ThO 2 powder were added instead of a part of the W powder in the sample B, and other than that, the final alloy composition was W-30 wt% in the same manner as the sample B. An electrode material of Cu-0.5 wt% CaO-0.5 wt% ThO 2 was produced.
[0030]
For the obtained electrode material of Sample A of the present invention and each of the electrode materials of Comparative Samples B to E, W skeleton hardness (Vickers hardness Hv) after being corroded with 30% nitric acid solution was measured. Further, the amount of each W particle having a particle diameter of 3 μm or more and a particle diameter of 1 μm or less contained in the alloy of each electrode material of Samples A to E was obtained, and these results are shown in Table 1 below together with the production conditions such as the sintering temperature. It was.
[0031]
[Table 1]
Figure 0004078939
[0032]
Each of the electrode materials of Samples A to E was machined into a shape of 30 mm in length with an R0.4 mm semicircular cross section, and the crack occurrence rate of the electrode at that time was determined. For each electrode material, the size of the nest was measured and the average value was obtained.
[0033]
Further, a processed electrode having an electrode surface of 15 × 15 mm is produced from each of the electrode materials of Samples A to D, and this electrode surface is applied to a workpiece of a cemented carbide (hardness 88.5 HRA) by 15 × 5 mm. The electric discharge machining is performed up to a machining depth of 4 mm under the conditions of peak current (Ip) = 135 A, machining voltage (V) = 80 V, pulse width (ON) = 8.7 μsec, pause time (OFF) = 128 μsec. Carried out. The electrode consumption and machining speed in this electric discharge machining were obtained. The obtained results are shown in Table 2 below.
[0034]
[Table 2]
Figure 0004078939
[0035]
As can be seen from the above results, the electrode material of sample A of the present invention has a high W skeleton hardness of 22 or higher in Hv, a small nest size, and sufficiently satisfies the electrode wear resistance and processing speed. At the same time, the crack generation rate during machining of the electrode could be extremely reduced. In addition, since W powder that does not contain many fine or coarse particles is used as a raw material, the raw material cost can be suppressed, and no special manufacturing conditions are required, so that it is possible to manufacture in a short delivery time.
[0036]
On the other hand, for each electrode material of the comparative example, since sample B has a low sintering temperature and low W skeleton hardness, the crack occurrence rate during machining of the electrode is higher than that of sample A, the size of the nest, Electrode wear resistance and processing speed are also poor. Since sample C had many coarse W particles having a particle diameter of 3 μm or more, the crack generation rate during machining of the electrode was increased, and the wear resistance and machining speed of the electrode were also lowered.
[0037]
Further, the sample D of the comparative example has many fine W particles having a particle diameter of 1 μm or less, so that the electrode wear resistance and processing speed are excellent, but the crack generation rate during electrode machining is greatly deteriorated. . Further, Sample E containing an oxide is excellent in electrode wear resistance and processing speed, but has a high crack generation rate during electrode machining and an extremely large nest exceeding 40 μm.
[0038]
【The invention's effect】
According to the present invention, the electrode material for electric discharge machining made of a Cu—W alloy does not contain an alkali metal element, an alkaline earth metal element, a rare earth element, or an oxide thereof, etc. Excellent, can suppress the formation of nests, and since it has good machinability, it is difficult to generate cracks or the like when processing into a fine-shaped electrode, and can provide an electrode material for electric discharge machining that is inexpensive and excellent in productivity. .

Claims (1)

W粉末又はW粉末にCuを混合した粉末を所望の形状に型押しした後、その型押し体に1350℃よりも高い温度でCuを溶浸させて得られたCu−W合金からなり、W濃度が40重量%以上で且つNi、Cu、W以外の元素又はその硼化物若しくは酸化物を0 . 05重量%以上含まず、該合金中のW粒子は粒径1μm以下の粒子及び粒径3μm以上の粒子を含まないか又は30%未満含み、該合金を硝酸液で腐食した後のWスケルトンの硬度がビッカース硬度で22以上であって、該合金中の巣の大きさが4μm以下であることを特徴とする放電加工用電極材料。 W powder or a mixture of W powder and Cu powder is embossed into a desired shape, and then Cu is infiltrated into the embossed body at a temperature higher than 1350 ° C. and Ni at a concentration of 40 wt% or more, Cu, elemental or borides other than W or oxide 0.05 excluding wt% or more, W particles following particle and particle size 3μm particle size 1μm of該合in gold Does not contain the above particles or less than 30%, the W skeleton hardness after corroding the alloy with nitric acid solution is 22 or more in terms of Vickers hardness, and the size of the nest in the alloy is 4 μm or less An electrode material for electric discharge machining characterized by the above.
JP2002299763A 2002-10-15 2002-10-15 Electrode material for EDM Expired - Fee Related JP4078939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002299763A JP4078939B2 (en) 2002-10-15 2002-10-15 Electrode material for EDM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002299763A JP4078939B2 (en) 2002-10-15 2002-10-15 Electrode material for EDM

Publications (2)

Publication Number Publication Date
JP2004130487A JP2004130487A (en) 2004-04-30
JP4078939B2 true JP4078939B2 (en) 2008-04-23

Family

ID=32288809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002299763A Expired - Fee Related JP4078939B2 (en) 2002-10-15 2002-10-15 Electrode material for EDM

Country Status (1)

Country Link
JP (1) JP4078939B2 (en)

Also Published As

Publication number Publication date
JP2004130487A (en) 2004-04-30

Similar Documents

Publication Publication Date Title
JP3541108B2 (en) Ceramic sintered body and ceramic mold
JP5054854B2 (en) Electrode for electrical discharge machining
JPWO2009040986A1 (en) Probe needle material, probe needle and probe card using the same, and inspection method
JP2006102737A5 (en)
JP4078939B2 (en) Electrode material for EDM
JP4078937B2 (en) Electrode material for EDM
JP4078938B2 (en) Electrode material for EDM
JP3809435B2 (en) Electrode material for EDM
KR101080528B1 (en) Electrode material for electric discharge machining and method for production thereof
JPH0665733B2 (en) Electrode machining electrode material and method for producing the same
JP2854916B2 (en) Ceramic-copper alloy composite
JP2007126702A (en) Cu-W-BASED ALLOY, AND ELECTRODE USING THE ALLOY FOR ELECTRIC SPARK MACHINING
JP2006152409A (en) Cemented carbide for die and die
JP2004154929A (en) Electrode material for electrical discharge processing
KR890004489B1 (en) Sintered material for cutting tool having excellent high temperature characteristic and its production
JPH0772315B2 (en) Highly wear-resistant alloy with excellent corrosion resistance to halogen gas and its manufacturing method
JPH06240381A (en) Production of ti alloy sintered compact by injection-molding of metal powder
JP2004307968A (en) Energizing roll and its manufacturing method
JP2002045957A (en) Member for molten metal excellent in erosion resistance to molten metal and its producing method
JPH055141A (en) Copper or copper-silver alloy metal oxide composite material and production thereof
JPH07331361A (en) Copper-tungsten alloy
JP2620055B2 (en) Cu-W alloy
JP2004358623A (en) Electrode material for electric discharge machining
JP2005307260A (en) Production method of sintered compact and sintered compact obtained by the production method
JP5318401B2 (en) Free-cutting copper-tungsten alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees