JP5318401B2 - Free-cutting copper-tungsten alloy - Google Patents

Free-cutting copper-tungsten alloy Download PDF

Info

Publication number
JP5318401B2
JP5318401B2 JP2007302229A JP2007302229A JP5318401B2 JP 5318401 B2 JP5318401 B2 JP 5318401B2 JP 2007302229 A JP2007302229 A JP 2007302229A JP 2007302229 A JP2007302229 A JP 2007302229A JP 5318401 B2 JP5318401 B2 JP 5318401B2
Authority
JP
Japan
Prior art keywords
free
alloy
cutting
burrs
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007302229A
Other languages
Japanese (ja)
Other versions
JP2009102725A (en
Inventor
幹雄 矢坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Die Co Ltd
Original Assignee
Fuji Die Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Die Co Ltd filed Critical Fuji Die Co Ltd
Priority to JP2007302229A priority Critical patent/JP5318401B2/en
Publication of JP2009102725A publication Critical patent/JP2009102725A/en
Application granted granted Critical
Publication of JP5318401B2 publication Critical patent/JP5318401B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

本発明は、放電加工用電極材料である銅(Cu)−タングステン(W)系合金に関する。  The present invention relates to a copper (Cu) -tungsten (W) alloy that is an electrode material for electric discharge machining.

放電加工用電極材料としては、Cu−W合金、またはそのCu−W合金電極の放電特性(放電加工速度、電極消耗量など)の改善のため、アルカリ金属、アルカリ土類金属、希土類金属またはそれらの酸化物などの化合物を約5質量%以下添加した合金が多く用いられている。ここでCuは、電極に所望の電気伝導率を付与するために添加されているが、軟質なため、電極の切削加工時にバリ、カエリ、ムシレが発生しやすく、特に微細精密放電加工用電極のように高形状精度を必要とする電極を作製する場合に問題となっていた。しかし、この問題に対する電極材料側からの改善策は、未だなされていない。  As an electrode material for electric discharge machining, in order to improve the discharge characteristics (discharge machining speed, electrode consumption, etc.) of the Cu-W alloy or the Cu-W alloy electrode, alkali metal, alkaline earth metal, rare earth metal, or those Alloys to which a compound of about 5% by mass or less is added are often used. Here, Cu is added to give a desired electrical conductivity to the electrode, but since it is soft, burrs, burrs, and burrs are likely to occur during the cutting of the electrode. Thus, there has been a problem in producing an electrode that requires high shape accuracy. However, no improvement measures from the electrode material side for this problem have been made yet.

本発明は、Cu−W系合金からなる放電加工用電極材料の被削性を向上させ、特に微細精密放電加工用電極のように高形状精度を必要とする電極に適した、快削性Cu−W系合金を提供しようとするものである。  The present invention improves the machinability of an electrode material for electric discharge machining made of a Cu-W alloy, and is particularly suitable for an electrode that requires high shape accuracy, such as an electrode for fine precision electric discharge machining. -To provide a W-based alloy.

5〜50質量%のCu、5質量%以下のアルカリ金属、アルカリ土類金属、希土類金属またはそれらの酸化物などの化合物、残部がWおよび不可避不純物よりなるCu−W系合金に、ビスマス(Bi)またはその酸化物を0.01〜5.0質量%添加することにより、怏削性の合金とする。Biの酸化物以外の化合物は室温大気中不安定で添加物として適さず(水との反応、潮解性等)、またBiの金属間化合物は電極の電気伝導率を下げ放電特性に影響するため適さない。なおBiの酸化物は、高温水素雰囲気中でたやすく還元されBiに変わる事から、焼結雰囲気に水素を使用することにより、Biの酸化物は結果としてBiと全く同じ効果が得られる。また放電特性を向上させるために、アルカリ金属、アルカリ土類金属、希土類金属またはそれらの酸化物などの化合物が添加されたCu−W合金であっても、Biまたはその酸化物添加による快削性の向上効果は全く変わらない。  5-50 mass% Cu, 5 mass% or less of alkali metal, alkaline earth metal, rare earth metal or their oxides, etc., Cu—W alloy comprising the balance of W and inevitable impurities is added to bismuth (Bi ) Or its oxide is added in an amount of 0.01 to 5.0% by mass to obtain a machinable alloy. Compounds other than Bi oxides are unstable in the atmosphere at room temperature and are not suitable as additives (reaction with water, deliquescence, etc.), and Bi intermetallic compounds lower the electrical conductivity of the electrode and affect the discharge characteristics. Not suitable. Since Bi oxide is easily reduced and converted to Bi in a high-temperature hydrogen atmosphere, the use of hydrogen in the sintering atmosphere results in the same effect as Bi oxide. Moreover, even if it is a Cu-W alloy to which compounds such as alkali metals, alkaline earth metals, rare earth metals or oxides thereof are added in order to improve discharge characteristics, free machinability due to the addition of Bi or oxides thereof. The improvement effect is not changed at all.

ここで、Biまたはその酸化物の添加量を0.01〜5.0質量%としたのは、0.01質量%以下では快削性が改善されず、5.0質量%以上では合金強度が低下し実用的でなくなるからである。Biは、常温においてCuに固溶せずCu粒界に析出し、Cuの展延性を低下させるため、切削時の切り屑が細かく分断され、被削性が向上するのである。  Here, the addition amount of Bi or its oxide is set to 0.01 to 5.0 mass% because the free-cutting property is not improved at 0.01 mass% or less, and the alloy strength at 5.0 mass% or more. This is because it is not practical. Bi does not dissolve in Cu at room temperature, but precipitates at the Cu grain boundaries and lowers the spreadability of Cu. Therefore, chips at the time of cutting are finely divided and machinability is improved.

本発明合金は、被削性に優れるため、特に微細放電加工用電極に用いる場合、切削加工時にバリ、カエリ、ムシレが発生しにくく、高形状精度の電極が得やすくなり、放電加工用電極としてきわめて有用である。  Since the alloy of the present invention is excellent in machinability, particularly when used for an electrode for fine electrical discharge machining, it is difficult to generate burrs, burrs, and mussels during cutting, and it is easy to obtain an electrode with high shape accuracy. Very useful.

発明を実施するための最良の形態・実施例BEST MODE FOR CARRYING OUT THE INVENTION

以下、本発明の好適な実施例を説明する。以下の実施例は粉末冶金法により合金を製造する場合のものであるが、本発明には溶浸法も適用可能である。  Hereinafter, preferred embodiments of the present invention will be described. The following examples are for the case of producing an alloy by powder metallurgy, but the infiltration method can also be applied to the present invention.

原料W粉末としては、平均粒径0.5〜5μmのものが適しているが、ここでは平均粒径約2μmのW粉末を用いた。このW粉末と−325meshのCu粉末、およびボールミルにて予備粉砕したBi粉末とをボールミルにて48時間乾式混合した。得られた混合粉末をプレス成形し圧粉体を得た。この圧粉体を水素気流中1300℃にて30分焼結し、表1に示す組成の切削試験用試料を作製した。ここでBiの酸化物粉末による添加は結果として焼結中還元され表1の合金組成になることを付記する。  As the raw material W powder, one having an average particle size of 0.5 to 5 μm is suitable, but here, W powder having an average particle size of about 2 μm was used. This W powder, -325 mesh Cu powder, and Bi powder pre-ground in a ball mill were dry mixed in a ball mill for 48 hours. The obtained mixed powder was press-molded to obtain a green compact. This green compact was sintered in a hydrogen stream at 1300 ° C. for 30 minutes to prepare a cutting test sample having the composition shown in Table 1. Here, it should be noted that the addition of Bi by oxide powder results in reduction during sintering and the alloy composition shown in Table 1.

Figure 0005318401
Figure 0005318401

試料形状は、φ30mm×100mmの円柱状とし、これら試料を切削速度100m/min、切り込み量0.5mm、送り0.15mm/revの条件で乾式旋削加工した(工具材料:K10超硬合金)。快削性の判断基準としては、被加工物のバリ、カエリ、ムシレ等の発生しにくさが考えられるが、切削加工時のバリ、カエリ、ムシレの発生と切り屑の形態には相関関係がある。すなわち、切り屑がより細かく分断されるほど、被加工物のバリ、カエリ、ムシレは減少し、快削性は良好と言える。表2に上記加工条件にて切削加工した時の、各試料の切り屑の形態を示す。  The sample shape was a cylindrical shape of φ30 mm × 100 mm, and these samples were dry-turned under the conditions of a cutting speed of 100 m / min, a cutting depth of 0.5 mm, and a feed of 0.15 mm / rev (tool material: K10 cemented carbide). The criteria for determining free-cutting properties include the difficulty of generating burrs, burrs, burrs, etc. in the workpiece, but there is a correlation between the occurrence of burrs, burrs, burrs and the shape of chips during cutting. is there. That is, as the chips are more finely divided, the burrs, burrs, and mussels of the workpiece decrease, and it can be said that the free cutting property is good. Table 2 shows the shape of the chips of each sample when cutting is performed under the above processing conditions.

Figure 0005318401
Figure 0005318401

表2によると、快削効果は0.01質量%のBiまたはその酸化物添加で現われ、それらの添加量が増えるにつれて大きくなる。しかし、Biまたはその酸化物の添加量の増加とともに合金強度は低下するため、実際の使用にあたっては、強度と快削性を考慮しつつ最適な添加量を選定することになる。また、表1に付記したように5.0質量%までのBiまたはその酸化物添加によっては、合金の電気伝導率などの放電加工特性はほとんど低下せず、同一Cu量でBiまたはその酸化物添加の有無による放電加工速度、電極消耗量の相違はほとんど認められなかった。  According to Table 2, the free-cutting effect appears with the addition of 0.01% by mass of Bi or its oxide, and increases as the amount of addition increases. However, since the alloy strength decreases with an increase in the amount of Bi or its oxide added, the optimum addition amount is selected in consideration of strength and free-cutting properties in actual use. Further, as noted in Table 1, by adding Bi or its oxide up to 5.0 mass%, the electrical discharge machining characteristics such as the electrical conductivity of the alloy are hardly deteriorated, and Bi or its oxide with the same amount of Cu. There was almost no difference between the electric discharge machining speed and the electrode consumption due to the presence or absence of addition.

Claims (2)

質量%でBi:3.1〜5.0%、Cu:14〜50%、かつCuの量をRとしBiの量をS(それぞれ質量%)とすると0.8×R+2.5×S>23.5であり、残部がWおよび不可避不純物からなる、被切削性の優れた銅−タングステン合金。 Bi: 3.1 to 5.0% in mass%, Cu: 14 to 50%, and when the amount of Cu is R and the amount of Bi is S (each mass%), 0.8 × R + 2.5 × S> A copper-tungsten alloy excellent in machinability , the balance being 23.5, the balance being W and inevitable impurities. 質量%でBi:1.0〜5.0%、Cu:14〜50%、BaWOまたはY:0.1〜1.0%、かつCuの量をRとしBiの量をS(それぞれ質量%)とすると0.8×R+2.5×S>23.5であり、残部がWおよび不可避不純物からなる、被切削性の優れた銅−タングステン合金。 Bi: 1.0 to 5.0% by mass, Cu: 14 to 50%, BaWO 4 or Y: 0.1 to 1.0%, and the amount of Cu is R and the amount of Bi is S (each mass %), A copper-tungsten alloy having excellent machinability, wherein 0.8 × R + 2.5 × S> 23.5, and the balance is W and inevitable impurities.
JP2007302229A 2007-10-25 2007-10-25 Free-cutting copper-tungsten alloy Active JP5318401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007302229A JP5318401B2 (en) 2007-10-25 2007-10-25 Free-cutting copper-tungsten alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007302229A JP5318401B2 (en) 2007-10-25 2007-10-25 Free-cutting copper-tungsten alloy

Publications (2)

Publication Number Publication Date
JP2009102725A JP2009102725A (en) 2009-05-14
JP5318401B2 true JP5318401B2 (en) 2013-10-16

Family

ID=40704704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007302229A Active JP5318401B2 (en) 2007-10-25 2007-10-25 Free-cutting copper-tungsten alloy

Country Status (1)

Country Link
JP (1) JP5318401B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0241816A (en) * 1988-07-29 1990-02-13 Daiwa Gokin Kk Electrode material for electric discharge machining
JP2004042190A (en) * 2002-07-11 2004-02-12 Nippon Tungsten Co Ltd Electrode for electric discharge machining
JP3809435B2 (en) * 2002-11-11 2006-08-16 住友電気工業株式会社 Electrode material for EDM
JP4295491B2 (en) * 2002-11-18 2009-07-15 靖 渡辺 Copper-tungsten alloy and method for producing the same
JP2007126702A (en) * 2005-11-02 2007-05-24 Silver Roi:Kk Cu-W-BASED ALLOY, AND ELECTRODE USING THE ALLOY FOR ELECTRIC SPARK MACHINING

Also Published As

Publication number Publication date
JP2009102725A (en) 2009-05-14

Similar Documents

Publication Publication Date Title
JP5519875B1 (en) Ceramic sintered body and bonded body
JP5054854B2 (en) Electrode for electrical discharge machining
JPWO2012053507A1 (en) Cubic boron nitride sintered body and cubic boron nitride sintered body tool
JP2006328477A (en) Wc based cemented carbide member, and coated wc based cemented carbide member
JP5318401B2 (en) Free-cutting copper-tungsten alloy
JP4598212B2 (en) Method for producing WC-based composite ceramic sintered body
JP4746310B2 (en) Mold
JP3809435B2 (en) Electrode material for EDM
JPH09111391A (en) Cemented carbide for die
JP2007126702A (en) Cu-W-BASED ALLOY, AND ELECTRODE USING THE ALLOY FOR ELECTRIC SPARK MACHINING
JPH0723263B2 (en) Cutting tool made of aluminum oxide based ceramics
JPH0598384A (en) Tungsten carbide base sintered hard alloy having high strength and high hardness
JP4078937B2 (en) Electrode material for EDM
JP4369398B2 (en) Cu-W alloy electrode material for electric discharge machining and method for producing the same
JP2005068515A (en) Hard metal containing fine particles
JP4112431B2 (en) Cemented carbide
JP2621301B2 (en) Tungsten carbide based cemented carbide cutting tool
JP2019123903A (en) Heat-resistant WC-based composite material having high thermal conductivity and method for producing the same
JPS6240340A (en) Diamond-type sintered material for cutting tool
JPH01122971A (en) Cubic boron nitride sintered product
JP4078939B2 (en) Electrode material for EDM
JP2003306738A (en) Tough cemented carbide
JP2004130486A (en) Electrode material for electric discharge
JP4535493B2 (en) Cemented carbide for discharge electrodes
JP2003193169A (en) Hard metal alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130710

R150 Certificate of patent or registration of utility model

Ref document number: 5318401

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250