JP4044663B2 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP4044663B2
JP4044663B2 JP04399498A JP4399498A JP4044663B2 JP 4044663 B2 JP4044663 B2 JP 4044663B2 JP 04399498 A JP04399498 A JP 04399498A JP 4399498 A JP4399498 A JP 4399498A JP 4044663 B2 JP4044663 B2 JP 4044663B2
Authority
JP
Japan
Prior art keywords
data
circuit
output
signal
operation mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04399498A
Other languages
English (en)
Other versions
JPH11242068A (ja
Inventor
修 ▲廣▼岡
浩由 富田
達哉 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP04399498A priority Critical patent/JP4044663B2/ja
Priority to US09/131,880 priority patent/US6144595A/en
Priority to TW087113356A priority patent/TW392330B/zh
Priority to KR1019980033194A priority patent/KR100319418B1/ko
Publication of JPH11242068A publication Critical patent/JPH11242068A/ja
Application granted granted Critical
Publication of JP4044663B2 publication Critical patent/JP4044663B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Dram (AREA)
  • Tests Of Electronic Circuits (AREA)
  • For Increasing The Reliability Of Semiconductor Memories (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は半導体装置に関し、詳しくは半導体装置の試験を行うテストモードを備えた半導体装置に関する。
【0002】
【従来の技術】
DRAM等の半導体記憶装置においては、例えば16個のデータ出力端子が設けられている場合、データ出力構成(出力インターフェース構成)を、4ビット出力構成、8ビット出力構成、及び16ビット出力構成の何れかに自由に設定できるようになっている。この設定は、通常製品出荷時にヒューズ結線を操作することで行われる。
【0003】
例えば4ビット出力構成の場合には、特定の4個のデータ出力端子からのみデータが出力され、残りの12個のデータ出力端子からはデータが出力されない。即ち1つのコラムアドレスアクセスに対して、4ビットのデータが得られる。8ビット出力構成の場合には、特定の8個のデータ出力端子からのみデータが出力され、残りの8個のデータ出力端子からはデータが出力されない。即ち1つのコラムアドレスアクセスに対して、8ビットのデータが得られる。16ビット出力構成の場合には、16個のデータ出力端子全てが、データ出力用として使用される。即ち1つのコラムアドレスアクセスに対して、16ビットのデータが得られる。
【0004】
半導体記憶装置の記憶容量が64Mビットの場合を考えると、4ビット出力構成の場合には、連続してアクセスできるコラム方向の数は16Mであり、一つのデータ出力端子からは、連続して16Mビットのデータを出力することが出来る。また例えば16ビット出力構成の場合には、連続してアクセスできるコラム方向の数は4Mであり、一つのデータ出力端子からは、連続して4Mビットのデータを出力することが出来る。
【0005】
図8は、上記のような出力構成を実現する従来のデータバススイッチの構成を示す図である。図8は、説明の都合上、データ端子DQ0からDQ3までの4個のデータ端子に対するデータバススイッチを示す。
図8において、データバッファ600がデータを出力する4つのデータ端子DQ0乃至DQ3が設けられる。データ端子DQ0乃至DQ3から出力されるデータの各々に対して、データバススイッチ500−0乃至500−3が設けられる。即ち例えばデータバススイッチ500−1から供給されるデータは、データバッファ600を介して、データ端子DQ1から出力される。
【0006】
データバススイッチ500−0は、インバータ501乃至504、データ転送ゲート505乃至507、及びNOR回路508を含む。データバススイッチ500−1は、インバータ511乃至513、データ転送ゲート514、及びNOR回路515を含む。データバススイッチ500−2は、インバータ521乃至525、及びデータ転送ゲート526乃至530を含む。データバススイッチ500−3は、インバータ531乃至533、データ転送ゲート534、及びNOR回路535を含む。各データ転送ゲートは、並列接続されたPMOSトランジスタとNMOSトランジスタとからなる。
【0007】
図8の構成において、16ビット出力構成のときには、データ端子DQ0乃至DQ3の全てがデータ出力用に使用される(即ちDQ0乃至DQ3と同様の構成が、DQ4乃至DQ7、DQ8乃至DQ11、及びDQ12乃至DQ15の各々に対して設けられている)。この場合、データ端子DQ0乃至DQ3からは、データdat00、dat11、dat22、及びdat33が出力される。
【0008】
8ビット出力構成のときには、データ端子DQ0乃至DQ3のうちでDQ0及びDQ2のみがデータ出力に使用され、データ端子DQ0及びDQ2からデータdat00及びdat22が出力される。
また4ビット出力構成のときには、データ端子DQ0乃至DQ3のうちでDQ2のみがデータ出力に使用され、データ端子DQ2からデータdat20が出力される。
【0009】
ここでデータdatmnは、データ端子DQmに対して選択された、メモリセルから供給されるパラレルデータのn番目のビットを示す。このデータ選択は、データバススイッチ回路に供給されるコラムアドレスをデーコードした信号gatemnによって行われる。信号gatemnがHIGHのときに、対応するデータ転送ゲートが開かれ、対応するデータがデータバスDB及びデータバッファ600を介して対応するデータ端子DQmに出力される。
【0010】
出力構成の選択には、選択信号dx4z及びdx16zが用いられる。選択信号dx4zがHIGHのときには4ビット出力構成が選択され、選択信号dx16zがHIGHのときには16ビット出力構成が選択される。それ以外の場合には8ビット出力構成が選択される。
以上のようにして、データ端子DQ0乃至DQ3(実際にはDQ0乃至DQ15)からデータが出力される。
【0011】
【発明が解決しようとする課題】
一般に半導体装置においては、動作に関して試験を行うテストモードが設けられ、テスト結果をデータ端子DQから出力することが行われる。
上述のようにデータ出力構成は、16ビット構成、8ビット構成、或いは4ビット構成の何れかに選択して固定されるので、テスト結果を出力するデータ端子としては、4ビット構成時に使用される4個のデータ端子を用いる必要がある。仮に、図8の構成でテスト結果を出力するデータ端子をDQ0にしてしまうと、16ビット構成及び8ビット構成ではテスト結果を外部に出力できるが、4ビット構成に固定してしまった場合にはテスト結果を外部からアクセスできない。 従って図8に示されるように、テスト結果TSRSTは、データバススイッチ500−2を介して、データ端子DQ2から出力されるように構成される。
【0012】
テストモード時には、テストモード指示信号testzがHIGHになる。これによってテスト時には不要なデータ端子DQ0、DQ1、及びDQ3へのデータ出力を停止すると共に、データ端子DQ2へ通常は出力されるデータを停止して、代わりにテスト結果TSRSTをデータ端子DQ2へ出力させる。不要なデータ出力を停止することで、電流消費量を抑えることが可能である。
【0013】
このような構成で、通常は問題なくテストを実施して、適切なテスト結果を得ることが出来る。しかしながら、テスト結果が、半導体装置で消費する電流変動に応じた電源ノイズに影響を受けるような場合には、上述の構成では問題が生じることになる。例えば16ビット出力構成を選択して固定した場合には、通常の動作時に、常に16ビット分のデータに対してデータバスDBが動作することになる。この場合の電流消費量は、4ビット出力構成の場合の電流消費量とは大きく異なる。図8のような構成では、テスト動作時には4ビット分のデータしか出力されない為に、データバスDBは4ビット分のデータに対してしか動作しない。従ってテスト動作時には、16ビット出力構成における電流消費条件を試験できないことになる。
【0014】
特に同期信号のタイミングを調整する為のDLL(Delay locked loop )回路等は、電流消費の変動による電源変動に敏感である為、図8のような構成ではDLL回路等の試験を適切に実施できないことになる。
従って本発明は、テスト結果を出力するデータバス以外のデータバスが動作する電流消費条件の下でも、動作テストを実行可能な半導体装置を提供することを目的とする。
【0015】
【課題を解決するための手段】
請求項1の発明においては、通常動作モードで複数のデータ端子を使用してデータを出力し、テスト動作モードで該複数のデータ端子のうちの少なくとも一つのデータ端子からテスト結果を出力する半導体装置は、該複数のデータ端子に対応して該データを伝送する複数のデータバス線と、該テスト動作モードの第1の状態においては該少なくとも一つのデータ端子に対応するデータバス線のみを駆動状態にし、該テスト動作モードの第2の状態においては該複数のデータ端子に対応する該複数のデータバス線全てを駆動状態にするデータバススイッチを含み、前記テスト動作モードの第2の状態においては、前記少なくとも一つのデータ端子からは前記テスト結果が出力され、該少なくとも一つのデータ端子を除く前記複数のデータバス線からは前記データが出力されることを特徴とする。
【0016】
上記発明においては、通常動作モードで所定数のデータ端子からデータを出力する構成において、テスト動作モードの第2の状態においては、テスト結果を出力するデータバス線だけでなく、この所定数のデータ端子に対応する全てのデータバス線を駆動することが出来る。従って、通常動作モードでの電流消費に応じた電源変動の条件下で、半導体装置に対する試験を実施することが可能になり、適切な試験結果を得ることが出来る。また通常動作モードでデータが出力されるのと同一の条件下で、テスト動作モードにおける試験を実施することが出来る。
【0017】
請求項2の発明においては、請求項1記載の半導体装置において、出力インターフェース構成を設定可能であり、前記データの出力に使用される前記複数のデータ端子の数は、設定された出力インターフェース構成に応じて異なることを特徴とする。
上記発明においては、出力インターフェース構成を例えば16ビット構成、8ビット構成、或いは4ビット構成等に設定可能であり、データ出力に使用されるデータ端子数は、それぞれ16個、8個、或いは4個に設定される。テスト結果は4ビット構成で使用されるデータ端子から出力されるが、16ビット構成に設定した場合のテスト動作モードの第2の状態においては、16ビット分のデータバス線を駆動することが出来る。
【0019】
請求項の発明においては、請求項記載の半導体装置において、メモリセル回路を更に含み、前記複数のデータ端子から出力される前記データは該メモリセル回路に記憶されたデータであることを特徴とする。上記発明においては、半導体記憶装置において、テスト動作モードの第2の状態において、メモリセルからのデータをデータバス線を介して出力することで、通常動作モードでのデータ読み出し動作時と同様の条件下で試験を行うことが出来る。
【0020】
請求項の発明においては、請求項記載の半導体装置において、同期信号のタイミング安定化を図るタイミング安定化回路を更に含み、該テスト結果は該タイミング安定化回路を試験した結果であることを特徴とする。上記発明においては、電源変動に敏感に反応するタイミング安定化回路が設けられている場合に、タイミング安定化回路の試験を通常動作モードと同様の電源電圧の条件下で実行することが出来る。
【0021】
請求項5及び6の発明においては、前記タイミング安定化回路は前記同期信号のタイミングを安定させた時にロックオン信号を生成する回路を含み、前記テスト結果は該ロックオン信号を含むことを特徴とする。上記発明においては、タイミング安定化回路がロックオンしたか否か等の試験を、通常動作モードと同様の電源電圧の条件下で実行することが出来る。
【0022】
請求項7の発明においては、半導体装置は同期信号のタイミング安定化を図る複数のタイミング安定化回路を含み、該複数のタイミング安定化回路の各々は前記同期信号のタイミングを安定させた時にロックオン信号を生成する回路を含み、前記テスト結果は該ロックオン信号を含むことを特徴とする。
【0023】
上記発明においては、複数のタイミング安定化回路が設けられている場合であっても、タイミング安定化回路がロックオンしたか否か等の試験を、通常動作モードと同様の電源電圧の条件下で実行することが出来る。
【0024】
【発明の実施の形態】
以下に、本発明の実施例を添付の図面を用いて説明する。
図1は、本発明によるデータバススイッチの構成を示す図である。図1は、データ端子DQ0乃至DQ3の4個のデータ端子に対するデータバススイッチを示す。
【0025】
説明の都合上、データ端子の数は4として示されるが任意の数で良い。実際には例えば、16個の出力端子DQ0乃至DQ15が設けられている場合には、図1のDQ0乃至DQ3に対するデータバススイッチと同様の構成が、DQ4乃至DQ7、DQ8乃至DQ11、及びDQ12乃至DQ15の各々に対して設けられる。なお図1において図8と同一の構成要素は同一の符号で参照される。
【0026】
図1において、データバススイッチ10−0は、NMOSトランジスタ11、インバータ501乃至504、データ転送ゲート505乃至507、及びNOR回路508を含む。データバススイッチ10−1は、NMOSトランジスタ12、インバータ511乃至513、データ転送ゲート514、及びNOR回路515を含む。データバススイッチ10−2は、インバータ521乃至525、及びデータ転送ゲート526乃至530を含む。データバススイッチ10−3は、NMOSトランジスタ13、インバータ531乃至533、データ転送ゲート534、及びNOR回路535を含む。各データ転送ゲートは、並列接続されたPMOSトランジスタとNMOSトランジスタとからなる。
【0027】
図1の構成において、16ビット出力構成のときには、データ端子DQ0乃至DQ3の全てがデータ出力用に使用される。この場合、データ端子DQ0乃至DQ3からは、データdat00、dat11、dat22、及びdat33が出力される。8ビット出力構成のときには、データ端子DQ0乃至DQ3のうちでDQ0及びDQ2のみがデータ出力に使用され、データ端子DQ0及びDQ2からデータdat00及びdat22が出力される。また4ビット出力構成のときには、データ端子DQ0乃至DQ3のうちでDQ2のみがデータ出力に使用され、データ端子DQ2からデータdat20が出力される。
【0028】
ここでデータdatmnは、データ端子DQmに対して選択された、例えばメモリセル等から供給されるパラレルデータのn番目のビットを示す。このデータ選択は、データバススイッチ回路に供給されるコラムアドレスをデーコードした信号gatemnによって行われる。信号gatemnがHIGHのときに、対応するデータ転送ゲートが開かれ、対応するデータがデータバスDB及びデータバッファ600を介して対応するデータ端子DQmに出力される。
【0029】
出力構成の選択には、選択信号dx4z及びdx16zが用いられる。選択信号dx4zがHIGHのときには4ビット出力構成が選択され、選択信号dx16zがHIGHのときには16ビット出力構成が選択される。それ以外の場合(dx4z及びdx16zがLOWの場合)には、8ビット出力構成が選択される。
【0030】
以上のようにして、データ端子DQ0乃至DQ3(16個のデータ端子の場合にはDQ0乃至DQ15)からデータが出力される。
テストモード動作時には、テストモード指示信号testzがHIGHになり、データ転送ゲート507、514、及び534を閉じて、テスト時に不要なデータ端子DQ0、DQ1、及びDQ3へのデータ出力を停止する。更にデータ転送ゲート530を閉じて、データ端子DQ2へ通常は出力されるデータを停止して、代わりにテスト結果TSRSTをデータ端子DQ2へ出力させる。
【0031】
本発明においては、データバススイッチに、更にバス駆動テストモード指示信号test2zが供給される。バス駆動テストモード指示信号test2zは、テスト結果TSRSTを出力するデータバスDB以外のデータバスDBも駆動して動作試験を実行するときに、HIGHになる信号である。
バス駆動テストモード指示信号test2zがHIGHになると、データバススイッチ10−0のNMOSトランジスタ11、データバススイッチ10−1のNMOSトランジスタ12、及びデータバススイッチ10−3のNMOSトランジスタ13が導通される。これによってテストモード指示信号testzがLOWに接続され、データバススイッチ10−0、10−1、及び10−3においてテストモード指示信号testzを無効にすることが出来る。
【0032】
従って本発明においては、テストモード指示信号testzをHIGHにすることによって従来通りのテストを実行することが出来ると共に、テストモード指示信号testzとバス駆動テストモード指示信号test2zとを同時にHIGHにすることによって、テスト結果TSRSTを出力するデータバスDB以外のデータバスDBも駆動した条件下で動作試験を実施することが出来る。
【0033】
これによって、消費電流の変動に応じた電源ノイズにテスト結果TSRSTが影響を受けるような場合であっても、出力構成に対応した数のデータバスDBを駆動して、通常の電流消費条件と同一の条件下で試験を実施することで、適切なテスト結果TSRSTを得ることが出来る。例えば16ビット出力構成が選択固定されているのであれば、16ビット分のデータバスDBを駆動しながら試験を行うことが出来る。また8ビット出力構成が選択固定されているのであれば、8ビット分のデータバスDBを駆動しながら試験を行うことが出来る。特に同期信号のタイミングを調整する為のDLL(Delay locked loop )回路等は、電流消費の変動による電源変動に敏感である為、本発明のデータバススイッチ構成を用いることで、適切なDLL回路等の試験を実施することが可能である。
【0034】
図2は、本発明のデータバススイッチを適用した半導体記憶装置の構成例を示す図である。
図2の半導体記憶装置は、クロックバッファ20、アドレスバッファ21、コマンドバッファ・デコーダ22、コントロールシグナルラッチ23、モードレジスタ24、ワードデコーダ25、コラムデコーダ26、テストモードエントリー信号発生回路27、メモリコア回路28、データバススイッチ10、及びデータバッファ600を含む。
【0035】
クロックバッファ20は、クロック信号CLKを受け取り、入出力同期信号としてコマンドバッファ・デコーダ22、アドレスバッファ21、及びデータバッファ600に供給する。また更にクロックバッファ20は、動作制御のための同期信号を内部回路に供給する。
コマンドバッファ・デコーダ22は、/CS(chip select )、/RAS(row address strobe)、/CAS(column address strobe )、/WE(write enable)等のコマンド信号を受け取り、これらのコマンド信号をデコードする。コマンドバッファ・デコーダ22は、コマンド信号のデコード結果を、コントロールシグナルラッチ23及びモードレジスタ24に供給する。コントロールシグナルラッチ23は、コマンドバッファ・デコーダ22からのデコード結果をラッチして、このラッチされた内容に基づいてメモリコア回路28を制御する。
【0036】
アドレスバッファ21は、アドレス信号を受け取り、モードレジスタ24、ワードデコーダ25、及びコラムデコーダ26にアドレスデータを供給する。
モードレジスタ24は、一般にCASレイテンシやバースト長等のパラメータを格納するレジスタであり、レジスタに対する書き込み指令はコマンド信号でなされ、書き込み内容はアドレスデータで指定される。
【0037】
ワードデコーダ122は、供給されたローアドレスで指定されるメモリセルのデータをローアクセスする。ローアクセスされたデータは、メモリコア回路28内部のセンスアンプに読み出される。コラムデコーダ26は、供給されたコラムアドレスで指定されるセンスアンプのデータを、データバススイッチ10を介してデータバッファ600に供給する。データバッファ600は、供給されたデータを外部に出力する。
【0038】
テストモードエントリー信号発生回路27は、コマンドバッファ・デコーダ22からのデコード結果等に基づいて、テスト動作モードであるか通常動作モードであるかを判定する。テストモードエントリー信号発生回路27は、テスト動作モードであると判定するときに、テストモード指示信号testzをHIGHにする。また通常動作モード時と同数のデータバスを駆動してテストする場合には、バス駆動テストモード指示信号test2zを、テストモード指示信号testzと同時にHIGHにする。
【0039】
バス駆動テストモード指示信号test2zは、テスト動作モード時に、例えばコマンド信号としてReadコマンドを入力することで発生させることが出来る。即ち、Readコマンド入力に応じてコマンドバッファ・デコーダ22がデコード結果を供給することで、テストモードエントリー信号発生回路27が、バス駆動テストモード指示信号test2zを生成するようにすれば良い。
【0040】
代替的に、データバス駆動するか否か等のテスト内容の指定は、アドレスバッファ21からアドレスデータをテストモードエントリー信号発生回路27に供給し、アドレスデータをデコードすることで行っても良い。テスト動作モード及びテスト内容を指定するデコーダの構成は、従来技術でも用いられる通常の技術範囲内であるので、詳細な説明は省略する。
【0041】
データバススイッチ10は、図1のデータバススイッチ10−0乃至10−3を含む。図2の半導体記憶装置に例えば16個のデータ出力端子が設けられている場合には、データバススイッチ10は、データバススイッチ10−0乃至10−15を含むことになる。
データバススイッチ10は、テストモードエントリー信号発生回路27からテストモード指示信号testzとバス駆動テストモード指示信号test2zとを受け取り、図1を参照して説明した動作を行う。なおデータバススイッチ10はデコーダ部分10aを含み、コラムデコーダ26からコラムアドレスを受け取りデコードする。コラムアドレスをデコードすることで、前述の信号gatemnが生成される。デコーダ部分10aの構成は、通常のデコーダの回路構成である。
【0042】
図3は、タイミング安定化回路として、DLL回路を用いてデータ出力タイミングを調整する回路の構成図である。
図3の回路は、入力回路51、可変遅延回路52、出力回路53、位相比較器54、遅延制御回路55、ダミー可変遅延回路56、ダミー出力回路57、及びダミー入力回路58を含む。入力回路51が図2のクロックバッファ20に相当し、出力回路53が図2のデータバッファ600に相当する。
【0043】
入力回路51に入力されたクロック信号CLKは、参照基準電圧と比較されて、クロック信号i−clkとして入力回路51から出力される。クロック信号i−clkは、可変遅延回路52によって適当な遅延量だけ遅延されて、出力回路53に入力される。出力回路53においては、供給された内部クロック信号を同期信号として用いて、出力すべきデータDATAをラッチする。ラッチされたデータDATAは、出力回路53から、半導体装置の外部にデータDQとして供給される。
【0044】
クロック信号CLK入力から出力回路53までの経路には、回路固有の遅延が発生するため、出力回路53から外部に出力されるデータDQは、入力クロック信号CLKとはタイミングのずれたものとなる。この出力回路53から外部に出力されるデータDQを、外部から入力されるクロック信号CLKと所定のタイミング関係に合わせるために、主に位相比較器54、遅延制御回路55、及びダミー可変遅延回路56からなるDLL回路が用いられる。
【0045】
クロック信号i−clkはまた更に、ダミー可変遅延回路56に供給される。ダミー可変遅延回路56は、可変遅延回路52と同一の遅延量だけ、クロック信号i−clkを遅延するように制御される。ダミー可変遅延回路56から出力される遅延されたクロック信号は、出力回路53を模擬するダミー出力回路57に供給される。ダミー出力回路57から出力されるクロック信号は、入力回路51と同一の遅延特性を有するダミー入力回路58を介して、ダミークロック信号d−i−clkとして、位相比較器54に入力される。
【0046】
位相比較器54は、クロック信号i−clkとダミークロック信号d−i−clkとを位相に関して比較する。両クロック信号が同一の位相となるように、位相比較器54は、遅延制御回路55を介してダミー可変遅延回路56の遅延量を制御する。これによって、ダミー出力回路57から出力されるクロック信号が、入力クロック信号CLKと所定のタイミング関係になるように制御される。
【0047】
可変遅延回路52及び出力回路53の総遅延量は、ダミー可変遅延回路56及びダミー出力回路57の総遅延量と同一である。従って、ダミー出力回路57から出力されるクロック信号が、入力クロック信号CLKと所定のタイミング関係にある場合、出力回路53から外部に出力されるデータDQは、入力クロック信号CLKとこの所定のタイミング関係にあることになる。
【0048】
このとき電源電圧の変動や温度変動等により、入力回路51、可変遅延回路52、及び出力回路53の特性が変化しても、ダミー入力回路58、ダミー可変遅延回路56、及びダミー出力回路57の特性も同様に変化する。従って、出力回路53から外部に出力されるデータDQは、電源電圧変動や温度変動等に関わらず、常に入力クロック信号CLKと所定のタイミング関係になるように制御される。
【0049】
図4は、上述の可変遅延回路の回路構成を示す回路図である。図4の可変遅延回路52及びダミー可変遅延回路56は、図4に示すように同一の回路構成を有する。
図4の可変遅延回路は、複数のインバータ101、複数のインバータ102、複数のインバータ103、複数のNAND回路104、及び複数のNAND回路105を含む。ある一つのインバータ103と対応する一つのNAND回路105とは、1段の遅延素子を構成し、複数のインバータ103と複数のNAND回路105とで複数段の遅延素子列を構成する。各NAND回路104に供給される制御信号TC1乃至TC8は、遅延制御回路55から供給される制御信号であり、詳しくは後ほど説明する。制御信号TC1乃至TC8は、隣接する2つのみがHIGHであり残りはLOWである信号である。
【0050】
入力として供給される入力信号SIは、複数のインバータ101を介して、複数のNAND回路104に供給される。制御信号TC1乃至TC8のうちでHIGHである信号を受け取るNAND回路104を介して、入力信号SIは、複数のインバータ103と複数のNAND回路105とで構成される遅延素子列に入力される。入力信号SIは、遅延素子列を伝播して、更に複数のインバータ102を通過した後に、出力信号SOとして出力される。従って、制御信号TC1乃至TC8のうちでHIGHである信号の位置に応じて、入力信号SIが通過する遅延素子の段数が異なることになる。この位置によって、入力信号SIをどの程度遅延させるのかを制御することが出来る。
【0051】
図5は、遅延制御回路55の回路構成を示す回路図である。この遅延制御回路55が、前述の制御信号TC1乃至TC8を生成する。
遅延制御回路は、NOR回路121−1乃至121−8、インバータ122−1乃至122−8、NAND回路123−1乃至123−8、NMOSトランジスタ124−1乃至124−8、NMOSトランジスタ125−1乃至125−8、NMOSトランジスタ126−1乃至126−8、及びNMOSトランジスタ127−1乃至127−8を含む。リセット信号RがLOWにされると、遅延制御回路はリセットされる。即ち、リセット信号RがLOWになると、NAND回路123−1乃至123−8の出力がHIGHになり、インバータ122−1乃至122−8の出力がLOWになる。NAND回路123−1乃至123−8とインバータ122−1乃至122−8との各ペアは、互いの出力を互いの入力とすることでラッチを形成する。従って、上記リセット信号Rで設定された初期状態は、リセット信号RがHIGHに戻っても保持される。
【0052】
この初期状態では、図5に示されるように、NOR回路121−1の出力TC1はHIGHであり、NOR回路121−2乃至121−8の出力TC2乃至TC8はLOWである。即ち出力TC1だけがHIGHである。
位相調整対象の信号に関して、遅延量を大きくする必要がある場合には、信号線A及びBに交互にHIGHパルスを供給する。まず信号線Aに信号φSEのHIGHパルスが供給されると、NMOSトランジスタ124−1がオンになる。このときNMOSトランジスタ126−1がオンであるので、NAND回路123−1の出力がグランドに接続されて、強制的にHIGHからLOWに変化させられる。従ってインバータ122−1の出力はHIGHになり、この状態がNAND回路123−1とインバータ122−1からなるラッチに保持される。またこの時出力TC2はHIGHからLOWに変化する。従ってこの状態では、出力TC1及びTC2がHIGHになる。
【0053】
次に信号線Bに信号φSOのHIGHパルスが供給されると、NMOSトランジスタ124−2がオンになる。このときNMOSトランジスタ126−2がオンになっているので、NAND回路123−2の出力がグランドに接続されて、強制的にHIGHからLOWに変化させられる。従ってインバータ122−2の出力はHIGHになり、この状態がNAND回路123−2とインバータ122−2からなるラッチに保持される。またこの時出力TC1はHIGHからLOWに変化し、出力TC3はLOWからHIGHに変化する。従ってこの状態では、出力TC2及びTC3がHIGHになる。
【0054】
このように信号線A及びBに交互にHIGHパルスを供給することで、出力TC1乃至TC8のうちで、2つHIGHである隣接する出力を一つずつ右にずらしていくことが出来る。
遅延量を小さくする必要がある場合には、信号線C及びDに交互にHIGHパルスを供給する。この場合の動作は、上述の動作と逆であるので、詳細な説明は省略する。このようにして生成された制御信号TC1乃至TC8を、可変遅延回路に供給することで、位相調整対象である信号の遅延量を自由に調整することが出来る。
【0055】
信号線A乃至Dに供給されるのは、信号φSE、φSO、φRE、及びφROである。これらの信号φSE、φSO、φRE、及びφROは、図3の位相比較器54によって生成される。
図6は、位相比較器54の回路構成を示す回路図である。
図6の位相比較器は、エッジタイミング比較回路130、バイナリカウンタ160、及びパルス生成回路180を含む。
【0056】
エッジタイミング比較回路130は、NAND回路131乃至144、インバータ145乃至148、NOR回路149、及びAND回路150を含む。バイナリカウンタ160は、NAND回路161乃至168及びインバータ169乃至171を含む。パルス生成回路180は、NAND回路181乃至186、複数のインバータ187乃至192を含む。
【0057】
エッジタイミング比較回路130は、入力信号S1及びS2を受け取り、入力信号S1及びS2の何れの立ち上がりエッジが先であるかを判断する。入力信号S1及びS2の一方がダミークロック信号d−i−clkに対応し、もう一方がクロック信号i−clkに対応する。
例えば入力信号S1の立ち上がりエッジが先行する場合には、NAND回路131及び132からなるラッチの出力L1及びL2は、それぞれLOW及びHIGHとなる。またNAND回路133及び134からなるラッチの出力L3及びL4もまた、それぞれLOW及びHIGHとなる。
【0058】
その後、両方の入力信号S1及びS2がHIGHになると、NAND回路136の出力がLOWとなり、NOR回路149の出力が所定の期間だけHIGHになる。このNOR回路149からの出力は、NAND回路137乃至140からなるゲートを開き、ラッチ出力L1乃至L4が反転されてNAND回路141乃至144からなる2つのラッチに入力される。従って、NAND回路141及び142からなるラッチの出力φb及びφcは、それぞれHIGH及びLOWとなる。またNAND回路143及び144からなるラッチの出力φd及びφeは、それぞれHIGH及びLOWとなる。
【0059】
従って入力信号S1の立ち上がりエッジが先行する場合には、パルス生成回路180のNAND回路181が出力をLOWに変化させることになる。
逆に入力信号S2の立ち上がりエッジが入力信号S1の立ち上がりエッジよりも十分に先行する場合には、ラッチ出力φb及びφcはLOW及びHIGHとなり、またラッチ出力φd及びφeもまたLOW及びHIGHとなる。従って、パルス生成回路180のNAND回路182が出力をLOWに変化させることになる。
【0060】
入力信号S2の立ち上がりエッジが入力信号S1の立ち上がりエッジより先行するが、その時間差が小さい場合、NAND回路135及びインバータ148による信号遅延の影響で、NAND回路133及び134からなるラッチの出力L3及びL4は、それぞれLOW及びHIGHとなる。この場合、ラッチ出力φb及びφcはLOW及びHIGHであり、ラッチ出力φd及びφeはHIGH及びLOWとなる。従って、パルス生成回路180のNAND回路181及び182は、出力をHIGHのまま変化させない。
【0061】
このように、入力信号S1及びS2の立ち上がりエッジ間の時間差が小さく、両方の立ち上がりエッジが一致していると見なしてよい場合には、図6の位相比較回路は出力を生成しない構成となっている。
バイナリカウンタ160は、エッジタイミング比較回路130のNAND回路136からの信号を1/2分周して、分周信号D1をインバータ171から出力すると共に、この分周信号の反転信号D2をインバータ170から出力する。NAND回路136からの信号は、入力信号S1及びS2と同一の周期の信号である。従ってバイナリカウンタ160から出力される分周信号D1が、例えば入力信号の偶数番目のサイクルでHIGHになるとすると、分周信号D2は奇数番目のサイクルでHIGHになる。
【0062】
パルス信号生成回路180に於いては、上述のように、入力信号S1が先行する場合にはNAND回路181の出力がLOWになり、入力信号S2が十分に先行する場合にはNAND回路182の出力がLOWになる。
入力信号S1が先行する場合には、NAND回路181の出力がインバータ187によって反転されて、HIGHの信号がNAND回路183及び184に供給される。NAND回路183には更に分周信号D1が供給され、NAND回路184には更に分周信号D2が供給される。従ってこの場合には、パルス信号生成回路180は、信号φSE及びφSOとして、交互にHIGHパルスを出力することになる。
【0063】
入力信号S2が十分に先行する場合には、NAND回路182の出力がインバータ188によって反転されて、HIGHの信号がNAND回路185及び186に供給される。NAND回路185には更に分周信号D1が供給され、NAND回路186には更に分周信号D2が供給される。従ってこの場合、パルス信号生成回路180は、信号φRO及びφREとして、交互にHIGHパルスを出力することになる。
【0064】
これらの信号φSE、φSO、φRO、及びφREが、図5の遅延制御回路55に供給される。従って、信号S1及びS2のどちらの立ち上がりエッジが先行しているかに応じて、図5の遅延制御回路55を介して、図4の可変遅延回路の遅延量を制御することが出来る。
上述のDLL回路は、電源変動等が存在しても確実に出力データの同期を確立する為に使用される。即ち電源変動等に適応的に応答して、出力回路53(データバッファ600)のタイミングを調整する。従ってこのDLL回路の試験を行う場合には、通常の動作時に予想される電源変動が存在する条件下での試験が必要になる。前述のように本発明によるデータバススイッチ10は、通常動作モードでの電流消費条件を、テスト動作モードで実現するものである。
【0065】
DLL回路の試験としては、例えば、試験時に入力したクロック信号に対して、DLL回路がロックオンするまでに何クロック必要としたか等を調べる。この目的の為にDLL回路には、ロックオンした(タイミングが安定化した)際に、ロックオン信号を出力する機能が設けられる。
図6のエッジタイミング比較回路130のAND回路150が、ロックオン信号JSTを出力する機能を果たす。AND回路150は、信号φc及びφdを入力として受け取る。前述のように信号φc及びφdが共にHIGHになるのは、位相比較対象である信号同士がタイミングが合っていると判断される場合である。従ってロックオン信号JSTは、DLL回路がロックオンした場合にHIGHとなり、これによってロックオンしたことを通知することが出来る。
【0066】
DLL回路を試験する際には、例えばこのロックオン信号JSTが、図1のテスト結果TSRSTとして用いられる。これによってDLL回路がロックオンしたか否か、更には何時ロックオンしたか等を、半導体装置の外部で判断することが出来る。しかも本発明のデータバススイッチを用いることで、通常動作モードと同じバス駆動条件下、即ち通常動作モードと同じ電流消費条件下で、適切なテスト結果を得ることが出来る。
【0067】
異なったタイミングに対するタイミング安定化の為に、複数のDLL回路が一つの半導体装置内で用いられる場合がある。
図7は、複数のDLL回路が存在する場合に、全てのDLL回路がロックオンしたことを示すロックオン信号JST−Aを生成する構成を示す図である。
図7に示されるように、AND回路200は、複数のDLL回路210−1乃至210−nからのロックオン信号JSTを受け取って、全てのロックオン信号JSTのANDをとる。AND回路200の出力がロックオン信号JST−Aであり、全てのDLL回路210−1乃至210−nがロックオンしたときに、このロックオン信号JST−AはHIGHになる。
【0068】
前述の場合と同様に、ロックオン信号JST−Aをテスト動作モードでのテスト結果TSRSTとして出力することで、全てのDLL回路がロックオンしたか否か、更には何時ロックオンしたのか等を外部から判断することが出来る。しかも本発明のデータバススイッチを用いることで、通常動作モードと同じバス駆動条件下、即ち通常動作モードと同じ電流消費条件下で、適切なテスト結果を得ることが出来る。
【0069】
以上、本発明は実施例に基づいて説明されたが、本発明は上述の実施例に限定されるものではなく、特許請求の範囲に記載される範囲内で自由に変形・変更が可能である。
【0070】
【発明の効果】
請求項1の発明においては、通常動作モードで所定数のデータ端子からデータを出力する構成において、テスト動作モードの第2の状態においては、テスト結果を出力するデータバス線だけでなく、この所定数のデータ端子に対応する全てのデータバス線を駆動することが出来る。従って、通常動作モードでの電流消費に応じた電源変動の条件下で、半導体装置に対する試験を実施することが可能になり、適切な試験結果を得ることが出来る。また通常動作モードでデータが出力されるのと同一の条件下で、テスト動作モードにおける試験を実施することが出来る。
【0071】
請求項2の発明においては、出力インターフェース構成を例えば16ビット構成、8ビット構成、或いは4ビット構成等に設定可能であり、データ出力に使用されるデータ端子数は、それぞれ16個、8個、或いは4個に設定される。テスト結果は4ビット構成で使用されるデータ端子から出力されるが、16ビット構成に設定した場合のテスト動作モードの第2の状態においては、16ビット分のデータバス線を駆動することが出来る。
【0072】
請求項3の発明においては、半導体記憶装置において、テスト動作モードの第2の状態において、メモリセルからのデータをデータバス線を介して出力することで、通常動作モードでのデータ読み出し動作時と同様の条件下で試験を行うことが出来る。
【0073】
請求項の発明においては、電源変動に敏感に反応するタイミング安定化回路が設けられている場合に、タイミング安定化回路の試験を通常動作モードと同様の電源電圧の条件下で実行することが出来る。請求項5及び6の発明においては、タイミング安定化回路がロックオンしたか否か等の試験を、通常動作モードと同様の電源電圧の条件下で、適切に実行することが出来る。
【0074】
請求項7の発明においては、複数のタイミング安定化回路が設けられている場合であっても、タイミング安定化回路がロックオンしたか否か等の試験を、通常動作モードと同様の電源電圧の条件下で実行することが出来る。
【図面の簡単な説明】
【図1】本発明によるデータバススイッチの構成を示す図である。
【図2】本発明のデータバススイッチを適用した半導体記憶装置の構成例を示す図である。
【図3】DLL回路を用いてデータ出力タイミングを調整する回路の構成図である。
【図4】可変遅延回路の回路構成を示す回路図である。
【図5】遅延制御回路の回路構成を示す回路図である。
【図6】位相比較器の回路構成を示す回路図である。
【図7】複数のDLL回路が存在する場合に、全てのDLL回路がロックオンしたことを示すロックオン信号を生成する構成を示す図である。
【図8】従来のデータバススイッチの構成を示す図である。
【符号の説明】
10−0、10−1、10−2、10−3 データバススイッチ
10 データバススイッチ
20 クロックバッファ
21 アドレスバッファ
22 コマンドバッファ・デコーダ
23 コントロールシグナルラッチ
24 モードレジスタ
25 ワードデコーダ
26 コラムデコーダ
27 テストモードエントリー信号発生回路
28 メモリコア回路
600 データバッファ

Claims (7)

  1. 通常動作モードで複数のデータ端子を使用してデータを出力し、テスト動作モードで該複数のデータ端子のうちの少なくとも一つのデータ端子からテスト結果を出力する半導体装置であって、
    該複数のデータ端子に対応して該データを伝送する複数のデータバス線と、
    該テスト動作モードの第1の状態においては該少なくとも一つのデータ端子に対応するデータバス線のみを駆動状態にし、該テスト動作モードの第2の状態においては該複数のデータ端子に対応する該複数のデータバス線全てを駆動状態にするデータバススイッチを含み、
    前記テスト動作モードの第2の状態においては、前記少なくとも一つのデータ端子からは前記テスト結果が出力され、該少なくとも一つのデータ端子を除く前記複数のデータバス線からは前記データが出力されることを特徴とする半導体装置。
  2. 出力インターフェース構成を設定可能であり、前記データの出力に使用される前記複数のデータ端子の数は、設定された出力インターフェース構成に応じて異なることを特徴とする請求項1記載の半導体装置。
  3. メモリセル回路を更に含み、前記複数のデータ端子から出力される前記データは該メモリセル回路に記憶されたデータであることを特徴とする請求項1記載の半導体装置。
  4. 同期信号のタイミング安定化を図るタイミング安定化回路を更に含み、該テスト結果は該タイミング安定化回路を試験した結果であることを特徴とする請求項1記載の半導体装置。
  5. 前記タイミング安定化回路は、前記同期信号のタイミングを安定させた時にロックオン信号を生成する回路を含み、前記テスト結果は該ロックオン信号を含むことを特徴とする請求項4記載の半導体装置。
  6. 通常動作モードで複数のデータ端子を使用してデータを出力し、テスト動作モードで該複数のデータ端子のうちの少なくとも一つのデータ端子からテスト結果を出力する半導体装置であって、
    該複数のデータ端子に対応して該データを伝送する複数のデータバス線と、
    該テスト動作モードの第1の状態においては該少なくとも一つのデータ端子に対応するデータバス線のみを駆動状態にし、該テスト動作モードの第2の状態においては該複数のデータ端子に対応する該複数のデータバス線全てを駆動状態にするデータバススイッチと、
    同期信号のタイミングを安定させた時にロックオン信号を生成する回路を有するタイミング安定化回路と、
    を備え、前記テスト結果は該ロックオン信号を含むことを特徴とする半導体装置。
  7. 通常動作モードで複数のデータ端子を使用してデータを出力し、テスト動作モードで該複数のデータ端子のうちの少なくとも一つのデータ端子からテスト結果を出力する半導体装置であって、
    該複数のデータ端子に対応して該データを伝送する複数のデータバス線と、
    該テスト動作モードの第1の状態においては該少なくとも一つのデータ端子に対応するデータバス線のみを駆動状態にし、該テスト動作モードの第2の状態においては該複数のデータ端子に対応する該複数のデータバス線全てを駆動状態にするデータバススイッチと、
    同期信号のタイミング安定化を図る複数のタイミング安定化回路と、
    を備え、該複数のタイミング安定化回路の各々は前記同期信号のタイミングを安定させた時にロックオン信号を生成する回路を含み、前記テスト結果は該ロックオン信号を含むことを特徴とする半導体装置。
JP04399498A 1998-02-25 1998-02-25 半導体装置 Expired - Fee Related JP4044663B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP04399498A JP4044663B2 (ja) 1998-02-25 1998-02-25 半導体装置
US09/131,880 US6144595A (en) 1998-02-25 1998-08-10 Semiconductor device performing test operation under proper conditions
TW087113356A TW392330B (en) 1998-02-25 1998-08-13 Semiconductor device performing test operation under proper conditions
KR1019980033194A KR100319418B1 (ko) 1998-02-25 1998-08-17 반도체 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04399498A JP4044663B2 (ja) 1998-02-25 1998-02-25 半導体装置

Publications (2)

Publication Number Publication Date
JPH11242068A JPH11242068A (ja) 1999-09-07
JP4044663B2 true JP4044663B2 (ja) 2008-02-06

Family

ID=12679283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04399498A Expired - Fee Related JP4044663B2 (ja) 1998-02-25 1998-02-25 半導体装置

Country Status (4)

Country Link
US (1) US6144595A (ja)
JP (1) JP4044663B2 (ja)
KR (1) KR100319418B1 (ja)
TW (1) TW392330B (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10135582C1 (de) * 2001-07-20 2003-01-16 Infineon Technologies Ag Justierschaltung und Verfahren zum Abstimmen eines Taktsignals
US7199573B2 (en) * 2002-07-08 2007-04-03 Nxp B.V. Electronic circuit with test unit
DE10331543B4 (de) * 2003-07-11 2007-11-08 Qimonda Ag Verfahren zum Testen einer zu testenden Schaltungseinheit und Schaltungsanordnung zur Durchführung des Verfahrens
JP2009147829A (ja) * 2007-12-17 2009-07-02 Panasonic Corp Dll回路,撮像装置,メモリ装置
KR100974222B1 (ko) * 2008-11-13 2010-08-06 주식회사 하이닉스반도체 반도체 메모리 장치
DE102016102920A1 (de) * 2016-02-19 2017-08-24 Dspace Digital Signal Processing And Control Engineering Gmbh Verfahren zur Konfiguration eines zum Testen eines elektronischen Steuergeräts eingerichteten Testgeräts

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5265100A (en) * 1990-07-13 1993-11-23 Sgs-Thomson Microelectronics, Inc. Semiconductor memory with improved test mode
JP2812004B2 (ja) * 1991-06-27 1998-10-15 日本電気株式会社 スタティック型ランダムアクセスメモリ装置
JPH0554654A (ja) * 1991-08-27 1993-03-05 Nec Corp ダイナミツクram
JPH0785655A (ja) * 1993-09-16 1995-03-31 Mitsubishi Electric Corp 半導体記憶装置
JPH0877795A (ja) * 1994-09-07 1996-03-22 Seiko Epson Corp 半導体記憶装置
JP3563779B2 (ja) * 1994-09-13 2004-09-08 株式会社ルネサステクノロジ 半導体記憶装置
JP2616712B2 (ja) * 1994-09-22 1997-06-04 日本電気株式会社 半導体記憶装置
US5724366A (en) * 1995-05-16 1998-03-03 Mitsubishi Denki Kabushiki Kaisha Semiconductor memory device
JPH0963297A (ja) * 1995-08-29 1997-03-07 Mitsubishi Electric Corp 半導体記憶装置
KR0172347B1 (ko) * 1995-12-23 1999-03-30 김광호 반도체 메모리장치의 병렬테스트 회로

Also Published As

Publication number Publication date
KR19990071379A (ko) 1999-09-27
TW392330B (en) 2000-06-01
JPH11242068A (ja) 1999-09-07
US6144595A (en) 2000-11-07
KR100319418B1 (ko) 2002-02-19

Similar Documents

Publication Publication Date Title
JP3789629B2 (ja) 半導体装置
US7196966B2 (en) On die termination mode transfer circuit in semiconductor memory device and its method
US6446180B2 (en) Memory device with synchronized output path
US6259647B1 (en) Synchronous semiconductor memory device allowing easy and fast test
KR100274602B1 (ko) 동기형 메모리 장치
US7633833B2 (en) Semiconductor memory device
JP4031859B2 (ja) 半導体装置
US6680866B2 (en) Clock synchronous semiconductor memory device
US8134877B2 (en) Semiconductor device having delay control circuit
US20080192563A1 (en) Method and apparatus for controlling read latency of high-speed DRAM
US8509005B2 (en) Data strobe signal generating device and a semiconductor memory apparatus using the same
US6385129B1 (en) Delay locked loop monitor test mode
US8050118B2 (en) Semiconductor memory device
US8406080B2 (en) Data output control circuit of a double data rate (DDR) synchronous semiconductor memory device responsive to a delay locked loop (DLL) clock and method thereof
KR100527399B1 (ko) 반도체메모리장치의 디엘엘구동회로
JP2002093167A (ja) 半導体記憶装置
US7280410B2 (en) System and method for mode register control of data bus operating mode and impedance
JP4044663B2 (ja) 半導体装置
US7701799B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees