JP4032612B2 - 動作周波数測定装置および画像形成装置 - Google Patents

動作周波数測定装置および画像形成装置 Download PDF

Info

Publication number
JP4032612B2
JP4032612B2 JP2000195563A JP2000195563A JP4032612B2 JP 4032612 B2 JP4032612 B2 JP 4032612B2 JP 2000195563 A JP2000195563 A JP 2000195563A JP 2000195563 A JP2000195563 A JP 2000195563A JP 4032612 B2 JP4032612 B2 JP 4032612B2
Authority
JP
Japan
Prior art keywords
circuit
delay
test data
clock
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000195563A
Other languages
English (en)
Other versions
JP2002014140A (ja
Inventor
満男 東井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2000195563A priority Critical patent/JP4032612B2/ja
Publication of JP2002014140A publication Critical patent/JP2002014140A/ja
Application granted granted Critical
Publication of JP4032612B2 publication Critical patent/JP4032612B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Tests Of Electronic Circuits (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は動作周波数測定装置および画像形成装置に関し、さらに詳しくは、回路の動作周波数の上限を検査することが可能な動作周波数測定装置、および、この動作周波数測定装置を備えた画像形成装置に関する。
【0002】
【従来の技術】
各種ディジタル回路において、回路動作のためにクロックを必要としている。このクロックは、各種方式のクロック発生回路によって生成されている。そして、近年、各回路に高速処理が要求されてきており、クロックの周波数(動作周波数)も年々高くなってきている。
【0003】
なお、回路の動作周波数は、各デバイスの遅延量に依存しており、これは製造ばらつき、温度変動、電源電圧変動などの各種要因により変動するものである。
なお、規定の動作周波数で回路を動作せるためには、
・各種ばらつきに対して十分なマージンを持った回路設計を行う。
・回路記述、論理合成、レイアウトなどの面でそれぞれ、工夫を行う。
・コンピュータ上の専用ツールを用いて、遅延シミュレーションや遅延解析などを行って確認し、回路設計にフィードバックさせる。
【0004】
【発明が解決しようとする課題】
なお、回路の動作周波数を測定するためには、専用のテスタを用いて、実デバイスにテストデータを入力し、デバイスの出力と予め求めておいた期待値とをテスタ内部で比較する。これにより、実デバイスを、特定の動作周波数で動作可能か否かをテストすることができる。さらに、動作周波数を変更しつつ、このテストを実行することで、動作周波数の上限(最大動作周波数)を求めることができる。この結果、製造ばらつきなどのために設けておいたマージン分を排除して、動作周波数を向上させることが可能になる。しかし、高価な専用のテスタが必要になる問題があり、さらに、量産デバイスの全てにテストをしなければならないといった問題もある。
【0005】
また、以上の専用のテスタを用いる手法以外に、スキャンパス手法や、バウンダリスキャン手法(JTAG)も用いられている。これらの手法では、回路のデバイス内部の論理部やデバイスの端子間について、専用回路を付加し、専用ツールでテストデータを自動的に生成して、全ての端子間やデバイスをもれなく検査する手法である。ただし、実動作と異なるテストデータを用いることや、技術的制約から実動作周波数での検査ができないといった問題が存在している。
【0006】
さらに、BIST(Built-In Self-Test)と呼ばれる手法があり、被検査回路内部に、被検査回路に供給する入力テストデータと、被検査回路に入力テストデータを供給して正常時に期待される期待値テストデータとを発生するテストデータ生成部と、前記被検査回路が前記入力テストデータを受けて出力する出力テストデータと前記期待値テストデータとを比較することにより前記被検査回路の動作状態を判定する判定部とを備え、自動的に自己テストを実行する。
【0007】
しかし、このようなBISTであっても、実際の装置での実装状態で、動作周波数を自在に変更しつつ、動作周波数の上限(最大動作周波数)を求めて、製造ばらつきなどのために設けておいたマージン分を排除して、動作周波数を向上させることは困難であった。すなわち、クロック発生部にPLL回路を用いて周波数を可変にしたとしても、変更した周波数で安定した状態を得るまでに一定の時間が必要であり、周波数を頻繁に変更して動作周波数を求めるには多くの時間が必要になる。
【0008】
本発明は、上記の課題を解決するためになされたものであって、実際の装置での実装状態で、動作周波数を自在に変更しつつ、動作周波数の上限(最大動作周波数)を求めて、製造ばらつきなどのために設けておいたマージン分を排除して、動作周波数を向上させることが可能な動作周波数測定装置および画像形成装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
上述の課題は以下の構成により解決することができる。
(1)本発明は、発生するクロックの周波数を周波数データにより指示する制御部と、前記周波数データに応じた周波数のクロックを発生するクロック発生装置と、被検査回路に入力テストデータを供給し、前記被検査回路が入力テストデータを受けて出力する出力テストデータと前記期待値テストデータとを比較することにより前記被検査回路の動作状態を判定するテスト回路と、を備え、前記クロック発生装置が発生するクロックの周波数を変化させつつ、前記被検査回路の動作状態を判定することで、被検査回路の動作可能な周波数を測定する動作周波数測定装置であって、前記クロック発生装置は、基準クロックを遅延させた複数の遅延クロックを生成するためにディレイ素子をチェーン状に接続したディレイチェーン部と、前記ディレイチェーン部の出力から遅延情報を導き出す遅延検出部と、前記遅延情報と前記周波数データとを参照して、前記複数の遅延クロックの中から選択すべき遅延クロックを示す切替制御情報を生成する切替制御部と前記切替制御情報に基づいて前記複数の遅延クロックの中から選択して所望の周波数のクロックを生成するセレクト部と、により構成され、前記遅延検出部は、前記ディレイチェーン部からの複数の遅延信号の出力にそれぞれフリップフロップを接続し、前記遅延信号の出力のうち基準クロックに同期している同期ポイント情報を検出する回路を設け、隣り合う前記同期ポイン情報からそれらの間の遅延段数を遅延情報として出力し、前記テスト回路は、被検査回路に供給する入力テストデータと、被検査回路に入力テストデータを供給して正常時に期待される期待値テストデータとを発生するテストデータ生成部と、前記被検査回路が前記入力テストデータを受けて出力する出力テストデータと前記期待値テストデータとを比較することにより前記被検査回路の動作状態を判定する判定部と、により構成されている、ことを特徴とする動作周波数測定装置である。
【0010】
この動作周波数測定装置の発明では、被検査回路の動作可能な周波数を測定する際に、クロック発生装置が発生するクロックの周波数を変化させつつ、被検査回路の動作状態を判定していることで、被検査回路の動作可能な周波数の上限を測定することができる。
【0011】
これにより、実際の装置での実装状態で、動作周波数を自在に変更しつつ、動作周波数の上限(最大動作周波数)を求めて、製造ばらつきなどのために設けておいたマージン分を排除して、動作周波数を向上させることが可能になる。そして、この場合、高価なテスタを用いる必要がなくなる。また、被検査回路に、高価なプロセス技術を用いずに、安価なC−MOSプロセスのディジタル回路を用いることが可能になる。
【0012】
また、被検査回路の回路基板を変更することなく、ソフトウェアによる設定で、被検査回路の動作速度を変更することが可能になる。また、これに伴って、EMIの影響を考慮して動作周波数を決定することも可能になる。
【0014】
)また、以上の(1において、前記テスト回路は、被検査回路に供給する入力テストデータと、被検査回路に入力テストデータを供給して正常時に期待される期待値テストデータとを発生するテストデータ生成部と、前記被検査回路が前記入力テストデータを受けて出力する出力テストデータと前記期待値テストデータとを比較することにより前記被検査回路の動作状態を判定する判定部と、により構成されることが望ましい。
【0015】
)また、以上の(1)または)において、前記各部が集積回路で構成されることが望ましい。
【0016】
(4)また、以上の(1)〜()において、前記各部がデジタル回路で構成されることが望ましい。
【0017】
)また、以上の(1)〜()の動作周波数測定装置を備え、画像処理回路を被検査回路とすることも望ましい。
【0018】
【発明の実施の形態】
以下、図面を参照して、本発明の動作周波数測定装置、および動作周波数測定装置を適用した画像形成装置の実施の形態例を詳細に説明する。
【0019】
〈動作周波数測定装置の全体構成〉
以下、本発明の実施の形態例の動作周波数測定装置の実施の形態例を詳細に説明する。
【0020】
この図1において、100は動作可能な周波数の測定がなされる被検査回路であり、各種の回路が対象となるが、画像形成装置内の画像処理回路などが望ましい。101はクロック発生装置全体または動作周波数測定装置全体を制御する制御部として動作するCPUである。なお、このCPU101が、クロックの周波数を設定するために周波数データ(図1▲3▼)を生成している。102は被検査回路100に供給する入力テストデータ(図1▲8▼)と、被検査回路100に入力テストデータを供給した際の正常時に期待される期待値テストデータ(図1▲7▼)とを発生するテストデータ生成部である。なお、このテストデータ生成部102は入力テストデータと期待値テストデータとを生成するが、それぞれのテストデータを別個の回路で生成するようにしてもよい。103は被検査回路100が入力テストデータを受けて出力する出力テストデータ(図1▲9▼)と期待値テストデータ(図1▲7▼)とを比較することにより、被検査回路100の動作状態を判定する判定部である。なお、請求項におけるテスト回路は、テストデータ生成部102と判定部103とにより構成されている。
【0021】
400はクロック発生部であり、以下の410〜450により構成されている。410は基準となるクロック(基準クロック)を生成する基準クロック発生部である。
【0022】
420は入力信号(基準クロック発生部410からの基準クロック)を遅延させて位相が少しずつ異なる複数の遅延クロック(複数のクロック:図1▲1▼)を得るためディレイチェーン部である。
【0023】
ここで、ディレイチェーン部420は、位相が少しずつ異なる遅延クロックについて、基準クロックの2周期分にわたって生成できる段数になるようにチェーン状に多数のディレイ素子が縦続接続されている
【0024】
430はディレイチェーン部420の出力から遅延情報を導き出す遅延検出部である。すなわち、複数のクロック(図1▲2▼)の中で基準クロック(所望の入力信号の先端位置)に同期している遅延クロックの段数(同期ポイント)を検出する手段であり、遅延情報を出力する。なお、この遅延情報を位相差状態と呼ぶこともでき、この遅延情報(位相差状態)は、後述する同期ポイント情報や位相差そのものの状態(位相差状態)を含む。
【0025】
ここで、遅延検出部430には、基準クロック発生部410からの基準クロックとディレイチェーン部420からの複数のクロックとが与えられており、複数のクロック(図1中の丸数字1)の中で、最初に基準クロックに同期している第1同期ポイント情報V1stと、2番目に基準クロックに同期している第2同期ポイント情報V2ndと、それらの間の遅延段数Vprd(図1中の丸数字2)を出力できる
【0026】
図2では基準クロックと複数のクロックのうちのDL19〜DL51とを示しており、ここに示す例では、第1同期ポイント情報V1st=20,第2同期ポイント情報V2nd=50,遅延段数Vprd=30,となっている。
【0027】
なお、以上のように基準クロックに同期する段数を検出するためには、複数のディレイチェーン部420の隣接する各出力同士を入力とするフリップフロップを設け、隣接する入力の論理が反転する箇所を検出するようにすればよい。
【0029】
440はセレクト段数情報を生成する切替制御部であり、基準クロック発生部410からの基準クロックと、遅延検出部430からの同期ポイント情報(図1▲2▼)と、CPU101からの周波数データ(図1▲3▼)とをもとにして、所望のタイミング(所定の時刻もしくは所定の時間)にクロックの立ち上がりと立ち下がりを生じさせて所望の周波数(所望の周期)クロックパルスを生成するために、複数のクロック(図1▲2▼)の中からどの位相のクロックを選択すべきかのセレクト段数情報(図1▲4▼)を出力する。
【0030】
セレクト部450は、切替制御部440からのセレクト段数情報(図1▲4▼)を受け、ディレイチェーン部420からの複数のクロック(図1▲1▼)の中から、所望の立ち上がりと立ち下がりのクロックを選択して、所望の周波数のクロックパルス(図1▲5▼)を生成する。
【0031】
なお、このセレクト部450は、図3に示すように、所望の立ち上がりタイミングのクロックを選択するためのセレクタ451と、所望の立ち下がりタイミングのクロックを選択するためのセレクタ452と、所望の立ち上がりタイミングのクロックと所望の立ち下がりタイミングのクロックとによって所望のクロックパルス(図1▲5▼)を生成する論路回路(AND,OR,NAND,NOR,ExOR,ExNORなど)で構成された組み合わせ回路452で構成されている。
【0032】
以上のような回路構成により、ディレイチェーン部420で生成される複数のクロック(図2参照)についての遅延情報に応じて切替制御部440が決定したセレクト段数情報に従って、セレクト部450は所望のタイミングかつ所望の周波数のクロックパルスを生成することができる。
【0033】
このクロック発生部400はCPU101からの指示を受けて、出力するクロックパルスの立ち上がりと立ち下がりとをディジタル的に決定(選択)しているため、瞬時に周波数やタイミングを変更することが可能である。また、ディレイチェーン部420の素子によって遅延時間が変動したとしても、遅延検出部430でその変動が検出されるため、最終的なクロックパルスに影響がでることはなく、安定したタイミングと周波数のクロックパルスを得ることができている。すなわち、従来のPLL回路による周波数の変更のようなセットアップタイムが必要になるといった問題は生じない。すなわち、リアルタイムで演算して瞬時に所望のクロックパルスを得ることが可能になっている。
【0034】
また、このクロック発生部400では、複数のクロックを用いて、最終的なクロックパルスの立ち上がりと立ち下がりとを決定しているため、一般的なディジタル回路の逓倍や分周などと異なり、基準クロックの周波数の整数倍等に限られない、任意の周波数のクロックパルスを得ることが可能である。
【0035】
図4は本実施の形態例の動作周波数測定装置の動作状態を示すタイムチャートである。
ここでは、基準クロック発生部410からの基準クロックが100MHzであるとする(図4(a))。そして、図4(b)の開始信号がHレベルになるタイミングで動作周波数測定を開始する。
【0036】
最初のテスト期間では、CPU101は基準クロックを2分周して50MHzのクロックパルスを生成するための周波数データ(図1▲3▼)を、切替制御部440と判定部103とに供給している。次のテスト期間では、CPU101は基準クロックに等しい100MHzのクロックパルスを生成するための周波数データ(図1▲3▼)を、切替制御部440と判定部103とに供給している。さらに次のテスト期間では、CPU101は基準クロックを1.5逓倍して150MHzのクロックパルスを生成するための周波数データ(図1▲3▼)を、切替制御部440と判定部103とに供給している(図4(d))。
【0037】
なお、たとえば、画像処理演算のためのパラメータなど被検査回路100を動作させるために必要な各種設定値に関しては、動作周波数測定の前に予め設定しておく。
【0038】
まず、最初のテスト期間では、50MHzのクロックパルスを供給されている被検査回路100の入力端子に対して入力テストデータ(図1▲8▼)を供給すると、被検査回路100の出力端子から出力テストデータ(図1▲9▼)が得られる。この出力テストデータ(図1▲9▼)と、テストデータ生成部102が生成する期待値テストデータ(図1▲7▼)とを、判定部103が比較する。クロックパルス50MHzにおける出力テストデータ(図4(h))と期待値テストデータ(図4(h))とは一致しているため、判定部103は「OK」の判定をする(図4(i))。
【0039】
そして、次のテスト期間では、100MHzのクロックパルスを供給されている被検査回路100の入力端子に対して入力テストデータ(図1▲8▼)を供給すると、被検査回路100の出力端子から出力テストデータ(図1▲9▼)が得られる。この出力テストデータ(図1▲9▼)と、テストデータ生成部102が生成する期待値テストデータ(図1▲7▼)とを、判定部103が比較する。クロックパルス100MHzにおける出力テストデータ(図4(h))と期待値テストデータ(図4(h))とは大部分一致しているが、一部で不一致が発生しているため、判定部103は「NG」の判定をする(図4(i))。
【0040】
なお、100MHzで「NG」の判定が出たため、CPU101はこれ以上の高い周波数でのテストは不要であると判断し、テストモードを終了しても構わない。
【0041】
以上のような判定部103からの判定結果を受けたCPU101では、判定結果として「OK」がでた最大の周波数を、動作周波数の上限(最大動作周波数)として定める。この実施の形態例の場合では、50MHzを最大動作周波数としてCPU101が定める(図4(j))。
【0042】
なお、以上の実施の形態例では、説明を簡単にするために、基準クロック100MHzの場合に、クロックパルスを50MHz,100MHz,150MHzで測定したが、この周波数に限られるものではない。クロック発生部400では自由にクロックパルスの周波数を選択することができるので、1MHz単位等の細かなステップで徐々に周波数を上げていって、被検査回路100の最大動作周波数を厳密に求めることが可能である。
【0043】
すなわち、本実施の形態例によれば、実際の装置での実装状態で、動作周波数を自在に変更しつつ、動作周波数の上限(最大動作周波数)を求めることができる。さらに、製造ばらつきなどのために設けておいたマージン分を排除して、動作周波数を向上させることも可能になる。
【0044】
また、この実施の形態例では、クロック発生部400がディジタル的に瞬時に周波数を変更することが可能であるので、周波数を変更しつつ最大動作周波数を測定する動作を無駄な時間を必要とせずに安定した状態で短時間に実行できる。
【0045】
また、この実施の形態例によれば、被検査回路100を、EMIの最も少ない周波数で動作させるように設定することも可能になる。
また、本実施の形態例では、簡単な構成で済ませることができ、従来のような高価なテスタを用いる必要がなくなる。また、被検査回路に、高価なプロセス技術を用いずに、安価なC−MOSプロセスのディジタル回路を用いることが可能になる。
【0046】
また、本実施の形態例の動作周波数測定装置は、被検査回路100を画像処理回路とした場合に、複写機などの画像形成装置に組み込むことが可能である。その場合には、基板の変更無く、CPU101の制御(ソフトウェアの処理)によって画像処理の周波数を変更することが可能になる。また、画像形成速度に合わせて画像処理の速度を変更することも可能になる。
【0047】
【発明の効果】
以上詳細に説明したように、本発明によれば、実際の装置での実装状態で、動作周波数を自在に変更しつつ、動作周波数の上限(最大動作周波数)を求めることが可能になる。さらに、製造ばらつきなどのために設けておいたマージン分を排除して、動作周波数を向上させることも可能になる。
【図面の簡単な説明】
【図1】本発明の一実施の形態例の動作周波数測定装置の全体の電気的構成を示す構成図である。
【図2】本発明の一実施の形態例の動作周波数測定装置のクロック発生の動作を説明するタイムチャートである。
【図3】本発明の一実施の形態例の動作周波数測定装置の主要部の電気的構成を示す構成図である。
【図4】本発明の一実施の形態例の動作周波数測定装置の動作を説明するタイムチャートである。
【符号の説明】
100 被検査回路
101 CPU
102 テストデータ生成部
103 判定部
410 基準クロック発生部
420 ディレイチェーン部
430 遅延検出部
440 切替制御部
450 セレクト部

Claims (5)

  1. 生するクロックの周波数を周波数データにより指示する制御部と、
    前記周波数データに応じた周波数のクロックを発生するクロック発生装置と、
    被検査回路に入力テストデータを供給し、前記被検査回路が入力テストデータを受けて出力する出力テストデータと前記期待値テストデータとを比較することにより前記被検査回路の動作状態を判定するテスト回路と、を備え、
    前記クロック発生装置が発生するクロックの周波数を変化させつつ、前記被検査回路の動作状態を判定することで、被検査回路の動作可能な周波数を測定する動作周波数測定装置であって、
    前記クロック発生装置は、
    基準クロックを遅延させた複数の遅延クロックを生成するためにディレイ素子をチェーン状に接続したディレイチェーン部と、
    前記ディレイチェーン部の出力から遅延情報を導き出す遅延検出部と、
    前記遅延情報と前記周波数データとを参照して、前記複数の遅延クロックの中から選択すべき遅延クロックを示す切替制御情報を生成する切替制御部と、
    前記切替制御情報に基づいて前記複数の遅延クロックの中から選択して所望の周波数のクロックを生成するセレクト部と、により構成され、
    前記遅延検出部は、前記ディレイチェーン部からの複数の遅延信号の出力にそれぞれフリップフロップを接続し、前記遅延信号の出力のうち基準クロックに同期している同期ポイント情報を検出する回路を設け、隣り合う前記同期ポイン情報からそれらの間の遅延段数を遅延情報として出力することを特徴とする動作周波数測定装置。
  2. 前記テスト回路は、
    被検査回路に供給する入力テストデータと、被検査回路に入力テストデータを供給して正常時に期待される期待値テストデータとを発生するテストデータ生成部と、
    前記被検査回路が前記入力テストデータを受けて出力する出力テストデータと前記期待値テストデータとを比較することにより前記被検査回路の動作状態を判定する判定部と、により構成されていることを特徴とする請求項1記載の動作周波数測定装置。
  3. 前記各部が集積回路で構成される、ことを特徴とする請求項1または請求項2のいずれかに記載の動作周波数測定装置。
  4. 前記各部がデジタル回路で構成される、ことを特徴とする請求項1乃至請求項3のいずれかに記載の動作周波数測定装置。
  5. 前記請求項1乃至請求項4のいずれかの動作周波数測定装置を備え、画像処理回路を被検査回路とする、ことを特徴とする画像形成装置。
JP2000195563A 2000-06-29 2000-06-29 動作周波数測定装置および画像形成装置 Expired - Fee Related JP4032612B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000195563A JP4032612B2 (ja) 2000-06-29 2000-06-29 動作周波数測定装置および画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000195563A JP4032612B2 (ja) 2000-06-29 2000-06-29 動作周波数測定装置および画像形成装置

Publications (2)

Publication Number Publication Date
JP2002014140A JP2002014140A (ja) 2002-01-18
JP4032612B2 true JP4032612B2 (ja) 2008-01-16

Family

ID=18694214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000195563A Expired - Fee Related JP4032612B2 (ja) 2000-06-29 2000-06-29 動作周波数測定装置および画像形成装置

Country Status (1)

Country Link
JP (1) JP4032612B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4558405B2 (ja) 2004-08-17 2010-10-06 株式会社アドバンテスト 試験エミュレータ、エミュレーションプログラム、及び半導体デバイス製造方法
WO2010150322A1 (ja) * 2009-06-26 2010-12-29 富士通株式会社 Acカップリング入力バッファのテスト方法、テストシステム及び半導体集積回路

Also Published As

Publication number Publication date
JP2002014140A (ja) 2002-01-18

Similar Documents

Publication Publication Date Title
US6760873B1 (en) Built-in self test for speed and timing margin for a source synchronous IO interface
US20100102890A1 (en) Variable-Loop-Path Ring Oscillator Test Circuit and Systems and Methods Utilizing Same
KR100870037B1 (ko) 테스트가 용이한 반도체 장치, 반도체 장치 테스트 방법,반도체 장치 테스트를 위한 테스트 클럭 생성 방법 및 장치
US6996032B2 (en) BIST circuit for measuring path delay in an IC
US5206861A (en) System timing analysis by self-timing logic and clock paths
US20060026476A1 (en) Integrated circuit device and testing device
US6907585B2 (en) Semiconductor integrated circuit and its design methodology
JPH1010179A (ja) 遅延素子試験装置および試験機能を有する集積回路
US7228476B2 (en) System and method for testing integrated circuits at operational speed using high-frequency clock converter
US6867613B1 (en) Built-in self timing test method and apparatus
JP4792340B2 (ja) 試験装置および試験方法
JP2003262664A (ja) 半導体集積回路装置及びそのテスト方法
US7257756B2 (en) Digital frequency synthesis clocked circuits
US7216279B2 (en) Testing with high speed pulse generator
JP2004157090A (ja) パス遅延測定回路
JP2003043109A (ja) 半導体集積回路装置及びその試験装置
JP4032612B2 (ja) 動作周波数測定装置および画像形成装置
JP2004325228A (ja) 遅延不良補正装置および画像形成装置
JP3442226B2 (ja) ディレー評価回路付き集積回路
JP3202722B2 (ja) クロック同期式回路用動作速度評価回路及び方法
US20060107137A1 (en) Chip testing methods and chips
US20060136853A1 (en) Timing skew measurement system
US7472033B1 (en) Apparatus for controlling semiconductor chip characteristics
JP2679622B2 (ja) クロック位相制御回路
JPH08201481A (ja) 半導体集積回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees