JP2006234574A - Capacitance thermometer - Google Patents

Capacitance thermometer Download PDF

Info

Publication number
JP2006234574A
JP2006234574A JP2005049566A JP2005049566A JP2006234574A JP 2006234574 A JP2006234574 A JP 2006234574A JP 2005049566 A JP2005049566 A JP 2005049566A JP 2005049566 A JP2005049566 A JP 2005049566A JP 2006234574 A JP2006234574 A JP 2006234574A
Authority
JP
Japan
Prior art keywords
capacitance
temperature
srti
single crystal
sensitivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005049566A
Other languages
Japanese (ja)
Inventor
Hiroshi Takashima
浩 高島
Mitsuru Ito
満 伊藤
Akio Kouchi
明夫 古内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuuchi Kagaku Kk
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Furuuchi Kagaku Kk
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuuchi Kagaku Kk, National Institute of Advanced Industrial Science and Technology AIST filed Critical Furuuchi Kagaku Kk
Priority to JP2005049566A priority Critical patent/JP2006234574A/en
Publication of JP2006234574A publication Critical patent/JP2006234574A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To realize a capacitance thermometer with high temperature sensitivity and high absolute sensitivity which has a high dielectric constant at a cryogenic temperature. <P>SOLUTION: The capacitance thermometer carries out a temperature measurement by detecting the capacitance of a capacitor which has a dielectric material made of a single crystal of SrTi(<SP>18</SP>O<SB>x</SB><SP>16</SP>O<SB>1-x</SB>)<SB>3</SB>whose crystal orientation is (100) and whose replacement range is following: 0.35>x>0.6, or a dielectric material made of a single crystal of SrTi(<SP>18</SP>O<SB>x</SB><SP>16</SP>O<SB>1-x</SB>)<SB>3</SB>whose crystal orientation is (110) and whose replacement range is following: 0.38>x>0.6. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、チタン酸ストロンチウ単結晶からなる誘電体を有するコンデンサのキャパシタンスを検出することによって温度測定を行うキャパシタンス温度計に関する。   The present invention relates to a capacitance thermometer that measures temperature by detecting the capacitance of a capacitor having a dielectric made of strontium titanate single crystal.

バルク単結晶のチタン酸ストロンチウムは、量子常誘電体として知られ、その比誘電率は4.2Kで20,000以上の値を示す。また、その誘電率は、バイアス依存性、ストレス依存性を持ち、それらによって低下する特長を持っている。   Bulk single crystal strontium titanate is known as a quantum paraelectric, and has a relative dielectric constant of 4.2K and a value of 20,000 or more. Further, the dielectric constant has a bias dependency and a stress dependency, and has a feature of decreasing by them.

米国特許第3649891号には、強誘電体材料をキャパシタンス温度計として用いることが記載されている。   U.S. Pat. No. 3,648,891 describes the use of a ferroelectric material as a capacitance thermometer.

米国特許第3649891号U.S. Pat. No. 3,648,891

上述したように、バルク単結晶のチタン酸ストロンチウムは、低温で高い誘電率を示すため、超伝導デバイスや低温で使用される半導体デバイスで使用した場合は、極めて有用な誘電体である。   As described above, bulk single crystal strontium titanate exhibits a high dielectric constant at low temperatures, and is therefore a very useful dielectric when used in superconducting devices and semiconductor devices used at low temperatures.

一方、通常、強誘電体材料をキャパシタンス温度計として利用しようとすると、温度変化によって残留分極が生じ、その結果、ヒシテリシス特性が現れるため、温度と測定されたキャパシタンス値との間に1対1の相対関係を有するキャパシタンス温度計が得られなかった。
また、強誘電体材料を利用してキャパシタンス温度計とするものは商品化されているが、その絶対感度は0.02と小さく、キャパシタンス温度計としては測定温度精度が低いことが問題となっていた。
On the other hand, in general, when a ferroelectric material is used as a capacitance thermometer, remanent polarization occurs due to a temperature change, and as a result, hysteresis characteristics appear. Therefore, there is a one-to-one relationship between the temperature and the measured capacitance value. A capacitance thermometer having a relative relationship could not be obtained.
In addition, a capacitance thermometer using a ferroelectric material has been commercialized, but its absolute sensitivity is as small as 0.02, and the measurement temperature accuracy is low as a capacitance thermometer. It was.

本発明は上記の問題点に鑑み、本発明の第1の目的は、結晶方位が(100)であって置換範囲がx<0.3のSrTi(18 161−x単結晶からなる量子常誘電性を有するコンデンサのキャパシタンスを測定することにより、極低温で高い誘電率を有し、残留分極特性がなく、高い温度感度と絶対感度を有するキャパシタンス温度計を実現することにある。
また、本発明の第2の目的は、結晶方位が(100)であって置換範囲が0.35>x>0.6のSrTi(18 161−x単結晶からなる強誘電性を有するコンデンサのキャパシタンスを測定することにより、極低温で高い誘電率を有し、高い温度感度と絶対感度を有するキャパシタンス温度計を実現することにある。
また、本発明の第3の目的は、結晶方位が(110)であって置換範囲がx<0.3のSrTi(18 161−x単結晶からなる量子常誘電性を有するコンデンサのキャパシタンスを測定することにより、極低温で高い誘電率を有し、残留分極特性がなく、高い温度感度と絶対感度を有するキャパシタンス温度計を実現することにある。
また、本発明の第4の目的は、結晶方位が(110)であって置換範囲が0.38>x>0.6のSrTi(18 161−x単結晶からなる高い誘電率を有するコンデンサのキャパシタンスを測定することにより、極低温で高い誘電率を有し、高い温度感度と絶対感度を有するキャパシタンス温度計を実現することにある。
In view of the above problems, the first object of the present invention is to provide SrTi ( 18 O x 16 O 1-x ) 3 single crystal having a crystal orientation of (100) and a substitution range of x <0.3. By measuring the capacitance of a capacitor having a quantum paraelectric property consisting of crystals, a capacitance thermometer having a high dielectric constant at a very low temperature, no remanent polarization characteristic, and high temperature sensitivity and absolute sensitivity is realized. is there.
The second object of the present invention is to provide a strong crystal composed of SrTi ( 18 O x 16 O 1-x ) 3 single crystal having a crystal orientation of (100) and a substitution range of 0.35>x> 0.6. By measuring the capacitance of a capacitor having dielectric properties, a capacitance thermometer having a high dielectric constant at a very low temperature and high temperature sensitivity and absolute sensitivity is realized.
The third object of the present invention is to provide quantum paraelectricity composed of SrTi ( 18 O x 16 O 1-x ) 3 single crystal having a crystal orientation of (110) and a substitution range of x <0.3. It is to realize a capacitance thermometer having a high dielectric constant at a very low temperature, no remanent polarization characteristic, and high temperature sensitivity and absolute sensitivity by measuring the capacitance of the capacitor.
A fourth object of the present invention is a high crystal composed of SrTi ( 18 O x 16 O 1-x ) 3 single crystal having a crystal orientation of (110) and a substitution range of 0.38>x> 0.6. By measuring the capacitance of a capacitor having a dielectric constant, a capacitance thermometer having a high dielectric constant at a very low temperature and high temperature sensitivity and absolute sensitivity is realized.

本発明は、上記の課題を解決するために下記の手段を採用した。
第1の手段は、結晶方位が(100)であって置換範囲がx<0.3のSrTi(18 161−x単結晶からなる誘電体を有するコンデンサのキャパシタンスを検出することによって温度測定を行うことを特徴とするキャパシタンス温度計である。
The present invention employs the following means in order to solve the above problems.
First means, the replacement range a crystal orientation (100) detects the capacitance of a capacitor having a dielectric made of SrTi (18 O x 16 O 1 -x) 3 single crystal x <0.3 The capacitance thermometer is characterized in that temperature measurement is performed.

第2の手段は、結晶方位が(100)であって置換範囲が0.35>x>0.6のSrTi(18 161−x単結晶からなる誘電体を有するコンデンサのキャパシタンスを検出することによって温度測定を行うことを特徴とするキャパシタンス温度計である。 Second means, the replacement range a crystal orientation (100) 0.35>x> 0.6 of SrTi (18 O x 16 O 1 -x) 3 of the capacitor having a dielectric made of monocrystalline The capacitance thermometer is characterized in that temperature measurement is performed by detecting capacitance.

第3の手段は、結晶方位が(110)であって置換範囲がx<0.3のSrTi(18 161−x単結晶からなる誘電体を有するコンデンサのキャパシタンスを検出することによって温度測定を行うことを特徴とするキャパシタンス温度計である。 Third means, the replacement range a crystal orientation (110) detects the capacitance of a capacitor having a dielectric made of SrTi (18 O x 16 O 1 -x) 3 single crystal x <0.3 The capacitance thermometer is characterized in that temperature measurement is performed.

第4の手段は、結晶方位が(110)であって置換範囲が0.38>x>0.6のSrTi(18 161−x単結晶からなる誘電体を有するコンデンサのキャパシタンスを検出することによって温度測定を行うことを特徴とするキャパシタンス温度計である。 A fourth means is a capacitor having a dielectric made of SrTi ( 18 O x 16 O 1-x ) 3 single crystal having a crystal orientation of (110) and a substitution range of 0.38>x> 0.6. The capacitance thermometer is characterized in that temperature measurement is performed by detecting capacitance.

第5の手段は、第1の手段乃至第4の手段のいずれか1つの手段において、前記温度測定を行う場が磁場中であることを特徴とするキャパシタンス温度計である。   A fifth means is the capacitance thermometer according to any one of the first means to the fourth means, wherein the temperature measurement field is in a magnetic field.

請求項1に記載の発明によれば、感度は50pF/K以下であり、絶対感度は0.05以下であるが、誘電体が量子常誘電性を示すので、温度変化によって残留分極が生じず、ヒシテリシス特性が現れないため、温度と測定されたキャパシタンス値との間に1対1の相対関係を有するキャパシタンス温度計が得られる。   According to the first aspect of the present invention, the sensitivity is 50 pF / K or less and the absolute sensitivity is 0.05 or less. However, since the dielectric exhibits quantum paraelectricity, no remanent polarization occurs due to temperature change. Since no hysteresis characteristic appears, a capacitance thermometer having a one-to-one relative relationship between the temperature and the measured capacitance value is obtained.

請求項2に記載の発明によれば、高い感度と絶対感度を有するキャパシタンス温度計が得られる。例えば、酸素16を同位体酸素18で45%置換したときは、感度は2.2Kで300pF/Kに達し、0.3mKの高い分解能を有するキャパシタンス温度計が得られ、また絶対感度も0.123であり、従来のものと比べて、非常に高い絶対感度がを有するキャパシタンス温度計が得られる。また、量子常誘電性から強誘電性への転移温度よりも高温側では1.0以上と高い絶対感度が得られ、この範囲では量子常誘電性を示すので、温度ヒシテリシスのないキャパシタンス温度計が得られる。   According to the second aspect of the present invention, a capacitance thermometer having high sensitivity and absolute sensitivity can be obtained. For example, when oxygen 16 is replaced with isotope oxygen 45% by 45%, the sensitivity reaches 300 pF / K at 2.2K, a capacitance thermometer having a high resolution of 0.3 mK is obtained, and the absolute sensitivity is also 0.1. 123, and a capacitance thermometer having a very high absolute sensitivity compared to the conventional one can be obtained. In addition, a high absolute sensitivity of 1.0 or higher is obtained at a temperature higher than the transition temperature from quantum paraelectricity to ferroelectricity, and in this range, it exhibits quantum paraelectricity. Therefore, a capacitance thermometer without temperature hysteresis is provided. can get.

請求項3に記載の発明によれば、感度は200pF/K以下であり、絶対感度は0.01以下であるが、誘電体が量子常誘電性を示すので、温度変化によって残留分極が生じず、ヒシテリシス特性が現れないため、温度と測定されたキャパシタンス値との間に1対1の相対関係を有するキャパシタンス温度計が得られる。   According to the third aspect of the present invention, the sensitivity is 200 pF / K or less and the absolute sensitivity is 0.01 or less. However, since the dielectric exhibits quantum paraelectricity, no remanent polarization occurs due to temperature change. Since no hysteresis characteristic appears, a capacitance thermometer having a one-to-one relative relationship between the temperature and the measured capacitance value is obtained.

請求項4に記載の発明によれば、高い感度と絶対感度を有するキャパシタンス温度計が得られる。例えば、酸素16を同位体酸素18で38%置換したときは、感度は、2.2Kで3000pF/Kにも達し、0.03mKと極めて高い分解能を有するキャパシタンス温度計が得られる。また絶対感度も0.08であり、従来のものと比べて、高い絶対感度を有するキャパシタンス温度計が得られる。また、量子常誘電性から強誘電性への転移温度よりも高温側では1.0以上と高い絶対感度が得られ、この範囲では量子常誘電性を示すので、温度ヒシテリシスのないキャパシタンス温度計が得られる。   According to the fourth aspect of the present invention, a capacitance thermometer having high sensitivity and absolute sensitivity can be obtained. For example, when oxygen 16 is replaced with isotope oxygen 18 by 38%, the sensitivity reaches 3000 pF / K at 2.2K, and a capacitance thermometer having an extremely high resolution of 0.03 mK is obtained. The absolute sensitivity is 0.08, and a capacitance thermometer having a higher absolute sensitivity than that of the conventional one can be obtained. In addition, a high absolute sensitivity of 1.0 or higher is obtained at a temperature higher than the transition temperature from quantum paraelectricity to ferroelectricity, and in this range, it exhibits quantum paraelectricity. Therefore, a capacitance thermometer without temperature hysteresis is provided. can get.

請求項5に記載の発明によれば、温度測定を行う場が磁場中であっても、磁場の影響を受けずに温度測定を行うことができる。   According to the fifth aspect of the present invention, temperature measurement can be performed without being affected by the magnetic field even when the temperature measurement field is in a magnetic field.

本発明の実施形態を図1乃至図8を用いて説明する。   An embodiment of the present invention will be described with reference to FIGS.

図1は、本実施形態の発明に係るキャパシタンス温度計の作製工程を示す図である。
はじめに、結晶方位(100)のSrTi(18 161−x単結晶の酸素16を同位体酸素18で重量30%以下に置換する場合について説明する。
SrTi16単結晶は、切断や形状処理、また成長段階にできる格子欠陥によつてその表面に低誘電体層が生じる。そのため、例えば、図1に示すように、厚さ200μmを有するSrTi16単結晶をリン酸によるエッチング処理を行ったり、また切り出し作業等によって生じたストレスを受けた層を除去するためにケミカルエッチング処理を行い、厚さ100μmまで薄くして低誘電体層を除去する。
その後、SrTi16単結晶の酸素16を同位体酸素18で重量30%以下、例えば、重量26%置換する。置換の方法は、同位体酸素18と単結晶SrTi16を密閉した容器中に封入し、600℃から1000℃の高温で所定時間熱処理を行う。これによって同位体酸素18は均一に結晶中に導入される。なお、同位体酸素18の置換重量はこの熱処理時間に依存する。その後、蒸着によって銅を成膜し、さらに金を蒸着して電極を形成する。
その結果、量子常誘電性を有するSrTi(18 161−x単結晶からなる誘電体を有するコンデンサのキャパシタンスを検出して温度測定を行うキャパシタンス温度計が得られる。
FIG. 1 is a diagram showing a manufacturing process of a capacitance thermometer according to the invention of this embodiment.
First , a case where oxygen 16 of SrTi ( 18 O x 16 O 1-x ) 3 single crystal having a crystal orientation (100) is replaced with isotope oxygen 18 to a weight of 30% or less will be described.
The SrTi 16 O 3 single crystal has a low dielectric layer on its surface due to lattice defects that can be cut, shaped, or grown. Therefore, for example, as shown in FIG. 1, in order to remove a layer subjected to stress caused by an etching process using phosphoric acid or a cutting operation or the like on a SrTi 16 O 3 single crystal having a thickness of 200 μm. Etching is performed to reduce the thickness to 100 μm and remove the low dielectric layer.
Thereafter, oxygen 16 of the SrTi 16 O 3 single crystal is replaced with isotope oxygen 18 by 30% by weight or less, for example, 26% by weight. In the replacement method, isotope oxygen 18 and single crystal SrTi 16 O 3 are sealed in a sealed container, and heat treatment is performed at a high temperature of 600 ° C. to 1000 ° C. for a predetermined time. As a result, the isotope oxygen 18 is uniformly introduced into the crystal. The substitution weight of isotope oxygen 18 depends on the heat treatment time. Then, copper is formed into a film by vapor deposition, and gold is vapor-deposited to form an electrode.
As a result, it is possible to obtain a capacitance thermometer that measures the temperature by detecting the capacitance of a capacitor having a dielectric composed of SrTi ( 18 O x 16 O 1-x ) 3 single crystal having quantum paraelectric properties.

また、結晶方位(100)のSrTi16単結晶の酸素16を同位体酸素18で重量35%以上60%以下に置換する場合は、上記の置換の段階で、同位体酸素18とSrTi16単結晶を密閉した容器中に封入し、600℃から1000℃の高温で所定時間熱処理を行い、その後、蒸着によって銅を成膜し、さらに金を蒸着して電極を形成する。
その結果、量子常誘電性及び強誘電性を有するSrTi(18 161−x単結晶からなる誘電体を有するコンデンサのキャパシタンスを検出して温度測定を行うキャパシタンス温度計が得られる。
In addition, when oxygen 16 of SrTi 16 O 3 single crystal having a crystal orientation (100) is substituted with isotope oxygen 18 to a weight of 35% or more and 60% or less, isotope oxygen 18 and SrTi 16 are replaced at the above-described substitution stage. An O 3 single crystal is enclosed in a sealed container, heat-treated at a high temperature of 600 ° C. to 1000 ° C. for a predetermined time, copper is then formed by vapor deposition, and gold is further vapor deposited to form an electrode.
As a result, it is possible to obtain a capacitance thermometer that detects the capacitance of a capacitor having a dielectric made of SrTi ( 18 O x 16 O 1-x ) 3 single crystal having quantum paraelectricity and ferroelectricity and performs temperature measurement. .

次に、結晶方位(110)のSrTi16単結晶の酸素16を同位体酸素18で重量30%以下に置換する場合も、図1に示した作製工程と同様の工程で行う。SrTi16単結晶はその表面に低誘電体層が生じるので、例えば、厚さ200μmを有するSrTi16単結晶をリン酸によるエッチング処理を行ったり、また切り出し作業等によって生じたストレスを受けた層を除去するためにケミカルエッチング処理を行い、厚さ100μmまで薄くして低誘電体層を除去する。
その後、結晶方位(110)のSrTi16単結晶の酸素16を同位体酸素18で重量30%以下置換する。置換の方法は、同位体酸素18と結晶方位(110)の単結晶SrTi16を密閉した容器中に封入し、600℃から1000℃の高温で所定時間熱処理を行う。その後、蒸着によって銅を成膜し、さらに金を蒸着して電極を形成する。
その結果、量子常誘電性を有するSrTi(18 161−x単結晶からなる誘電体を有するコンデンサのキャパシタンスを検出して温度測定を行うキャパシタンス温度計が得られる。
Next, also in the case where the oxygen 16 of the SrTi 16 O 3 single crystal having the crystal orientation (110) is replaced with isotope oxygen 18 by 30% or less in weight, the same process as the manufacturing process shown in FIG. Since a low dielectric layer is formed on the surface of the SrTi 16 O 3 single crystal, for example, an SrTi 16 O 3 single crystal having a thickness of 200 μm is subjected to an etching treatment with phosphoric acid, or stress caused by a cutting operation or the like. A chemical etching process is performed to remove the received layer, and the thickness is reduced to 100 μm to remove the low dielectric layer.
Thereafter, the oxygen 16 of the SrTi 16 O 3 single crystal having the crystal orientation (110) is replaced with an isotope oxygen 18 by 30% or less in weight. In the replacement method, isotope oxygen 18 and single crystal SrTi 16 O 3 having a crystal orientation (110) are sealed in a sealed container, and heat treatment is performed at a high temperature of 600 ° C. to 1000 ° C. for a predetermined time. Then, copper is formed into a film by vapor deposition, and gold is vapor-deposited to form an electrode.
As a result, it is possible to obtain a capacitance thermometer that measures the temperature by detecting the capacitance of a capacitor having a dielectric composed of SrTi ( 18 O x 16 O 1-x ) 3 single crystal having quantum paraelectric properties.

また、結晶方位(110)のSrTi16単結晶の酸素16を同位体酸素18で重量38%以上60%以下に置換する場合は、上記の置換の段階で、同位体酸素18とSrTi16単結晶を密閉した容器中に封入し、600℃から1000℃の高温で所定時間熱処理を行い、その後、蒸着によって銅を成膜し、その後金を蒸着して電極を形成する。
その結果、量子常誘電性及び強誘電性を有するSrTi(18 161−x単結晶からなる誘電体を有するコンデンサのキャパシタンスを検出して温度測定を行うキャパシタンス温度計が得られる。
When oxygen 16 of SrTi 16 O 3 single crystal having a crystal orientation (110) is substituted with isotope oxygen 18 to a weight of 38% or more and 60% or less, isotope oxygen 18 and SrTi 16 are replaced at the above-described substitution stage. An O 3 single crystal is sealed in a sealed container, heat-treated at a high temperature of 600 ° C. to 1000 ° C. for a predetermined time, and then copper is formed by vapor deposition, and then gold is vapor deposited to form an electrode.
As a result, it is possible to obtain a capacitance thermometer that detects the capacitance of a capacitor having a dielectric made of SrTi ( 18 O x 16 O 1-x ) 3 single crystal having quantum paraelectricity and ferroelectricity and performs temperature measurement. .

図2は、結晶方位が(100)のSrTi16単結晶の酸素16を同位体酸素18で置換したときのキャパシタンス温度計の比誘電率の置換効果を説明する図である。
図2(a)は、同位体酸素18の置換重量0%のときの比誘電率の温度依存性を示す図であり、図2(b)は、同位体酸素18の置換重量26%のときの比誘電率の温度依存性を示す図である。
図2(c)は、同位体酸素18の置換重量37%のときの比誘電率の温度依存性を示す図であり、図2(d)は、同位体酸素18の置換重量45%のときの比誘電率の温度依存性を示す図であり、図2(e)は、同位体酸素18の置換重量57%のときの比誘電率の温度依存性を示す図であり、図2(f)は、同位体酸素18の置換重量72%のときの比誘電率の温度依存性を示す図である。
これらの図から明らかなように、図2(a)及び図2(b)の各特性はともに量子常誘電性を示している。また、図2(c)から図2(f)の各特性は量子常誘電性及び強誘電性を示しており、量子常誘電性から強誘電性への転移点は、それぞれ8K、9K、15K、18Kである。
FIG. 2 is a diagram for explaining the effect of substituting the relative permittivity of the capacitance thermometer when oxygen 16 of SrTi 16 O 3 single crystal having a crystal orientation of (100) is replaced with isotope oxygen 18.
FIG. 2A is a diagram showing the temperature dependence of the relative permittivity when the substitution weight of isotope oxygen 18 is 0%, and FIG. 2B is the case where the substitution weight of isotope oxygen 18 is 26%. It is a figure which shows the temperature dependence of the relative dielectric constant.
FIG. 2 (c) is a graph showing the temperature dependence of the relative permittivity when the substitution weight of isotope oxygen 18 is 37%, and FIG. 2 (d) is the figure when the substitution weight of isotope oxygen 18 is 45%. FIG. 2 (e) is a diagram showing the temperature dependence of the relative dielectric constant when the substitution weight of the isotope oxygen 18 is 57%, and FIG. ) Is a graph showing the temperature dependence of the relative dielectric constant when the substitution weight of isotope oxygen 18 is 72%.
As is clear from these figures, each characteristic of FIG. 2A and FIG. 2B shows quantum paraelectric properties. 2C to 2F show quantum paraelectricity and ferroelectricity, and transition points from quantum paraelectricity to ferroelectricity are 8K, 9K, and 15K, respectively. , 18K.

図2(a)における比誘電率の温度依存性は、温度2.2Kで比誘電率は約20000であり、極低温領域で比誘電率が飽和する量子常誘電性を示している。
それに対して、SrTi16単結晶の酸素16を同位体酸素18で重量26%置換したときの、図2(b)における比誘電率の温度依存性は、2.2Kで比誘電率は50000を超え、かつ量子常誘電性を維持している。
The temperature dependence of the relative permittivity in FIG. 2A is a quantum paraelectric property in which the relative permittivity is about 20000 at a temperature of 2.2 K, and the relative permittivity is saturated in a very low temperature region.
On the other hand, the temperature dependence of the relative permittivity in FIG. 2B when oxygen 16 of SrTi 16 O 3 single crystal is replaced by 26% by weight with isotope oxygen 18 is 2.2K and the relative permittivity is It exceeds 50,000 and maintains a quantum paraelectric property.

図3は、結晶方位が(110)のSrTi16単結晶の酸素16を同位体酸素18で置換したときのキャパシタンス温度計の比誘電率の置換効果を説明する図である。
図3(a)は、同位体酸素18の置換重量0%のときの比誘電率の温度依存性を示す図であり、図3(b)は、同位体酸素18の置換重量25%のときの比誘電率の温度依存性を示す図である。
図3(c)は、同位体酸素18の置換重量38%のときの比誘電率の温度依存性を示す図であり、図3(d)は、同位体酸素18の置換重量45%のときの比誘電率の温度依存性を示す図であり、図3(e)は、同位体酸素18の置換重量60%のときの比誘電率の温度依存性を示す図であり、図3(f)は、同位体酸素18の置換重量75%のときの比誘電率の温度依存性を示す図であり、図3(g)は、同位体酸素18の置換重量84%のときの比誘電率の温度依存性を示す図である。
これらの図から明らかなように、図3(a)及び図3(b)の各特性はともに量子常誘電性を示している。また図3(c)から図3(g)の各特性は量子常誘電性及び強誘電性を示しており、その量子常誘電性から強誘電性への転移点は、それぞれ7K、10K、15K、19K、22Kである。
FIG. 3 is a diagram for explaining the effect of substituting the relative permittivity of the capacitance thermometer when oxygen 16 of a SrTi 16 O 3 single crystal having a crystal orientation of (110) is replaced with isotope oxygen 18.
FIG. 3A is a diagram showing the temperature dependence of the relative permittivity when the substitution weight of isotope oxygen 18 is 0%, and FIG. 3B is the diagram when the substitution weight of isotope oxygen 18 is 25%. It is a figure which shows the temperature dependence of the relative dielectric constant.
FIG. 3C shows the temperature dependence of the relative permittivity when the substitution weight of isotope oxygen 18 is 38%, and FIG. 3D shows the case where the substitution weight of isotope oxygen 18 is 45%. FIG. 3 (e) is a diagram showing the temperature dependence of the relative permittivity when the substitution weight of the isotope oxygen 18 is 60%, and FIG. ) Is a graph showing the temperature dependence of the relative permittivity when the substitution weight of isotope oxygen 18 is 75%, and FIG. 3G shows the relative permittivity when the substitution weight of isotope oxygen 18 is 84%. It is a figure which shows the temperature dependence of.
As is clear from these figures, each characteristic in FIGS. 3A and 3B shows quantum paraelectric properties. 3C to 3G show quantum paraelectricity and ferroelectricity, and the transition points from the quantum paraelectricity to the ferroelectricity are 7K, 10K, and 15K, respectively. , 19K, 22K.

図3(a)における比誘電率の温度依存性は、温度2.2Kで比誘電率は約20000であり、極低温領域で誘電率が飽和する量子常誘電性を示していることが分る。
それに対して、SrTi16単結晶の酸素16を同位体酸素18で重量25%置換したときの、図2(b)における誘電率の温度依存性は、2.2Kで比誘電率は40000を超え、量子常誘電性を維持していることが分る。
The temperature dependence of the relative permittivity in FIG. 3 (a) shows that the relative permittivity is about 20000 at a temperature of 2.2K, indicating a quantum paraelectric property in which the permittivity is saturated in a very low temperature region. .
On the other hand, when oxygen 16 of SrTi 16 O 3 single crystal is substituted with isotope oxygen 18 by 25% by weight, the temperature dependence of the dielectric constant in FIG. 2B is 2.2K and the relative dielectric constant is 40,000. It can be seen that the quantum paraelectric property is maintained.

通常、キャパシタンス温度計の性能は、その素子の任意温度での1K当りのキャパシタンス変化分(感度)S=ΔC/ΔTと、その感度をキャパシタンスで除算し温度を乗じた値(絶対感度)Sd=(T/C)ΔC/ΔTで評価される。   In general, the performance of a capacitance thermometer is a capacitance change per 1K (sensitivity) S = ΔC / ΔT at an arbitrary temperature of the element, and a value obtained by dividing the sensitivity by the capacitance and multiplying by the temperature (absolute sensitivity) Sd = (T / C) It is evaluated by ΔC / ΔT.

図4は、結晶方位が(100)のSrTi(18 161−x単結晶の酸素16を同位体酸素18で45%置換したときの温度(K)に対するキャパシタンス温度計の感度S及び絶対感度Sdの関係を示す図である。
この図から明らかなように、図4における感度Sは、2.2Kで300pF/Kに達し、0.3mKの高い分解能を有するキャパシタンス温度計が得られることが分かる。また絶対感度Sdは0.123であり、従来のものと比べて、非常に高い絶対感度を有するキャパシタンス温度計が得られる。また、量子常誘電性から強誘電性への転移温度よりも高温側では1.0以上と高い絶対感度が得られることが分かる。またこの範囲では量子常誘電性を示し、温度ヒシテリシスのないキャパシタンス温度計が得られる。
FIG. 4 shows the sensitivity of a capacitance thermometer with respect to temperature (K) when 45% substitution of oxygen 16 of SrTi ( 18 O x 16 O 1-x ) 3 single crystal having a crystal orientation of (100) with isotope oxygen 18 is performed. It is a figure which shows the relationship between S and absolute sensitivity Sd.
As can be seen from FIG. 4, the sensitivity S in FIG. 4 reaches 300 pF / K at 2.2K, and a capacitance thermometer having a high resolution of 0.3 mK can be obtained. The absolute sensitivity Sd is 0.123, and a capacitance thermometer having an extremely high absolute sensitivity compared to the conventional one can be obtained. Further, it can be seen that an absolute sensitivity as high as 1.0 or higher can be obtained on the higher temperature side than the transition temperature from quantum paraelectric to ferroelectric. In this range, a capacitance thermometer exhibiting a quantum paraelectric property and having no temperature hysteresis can be obtained.

図5は、結晶方位が(110)のSrTi(18 161−x単結晶の酸素16を同位体酸素18で38%置換したときの温度(K)に対するキャパシタンス温度計の感度Sおよび絶対感度Sdの関係を示す図である。
この図から明らかなように、図5における感度Sは、2.2Kで3000pF/Kにも達し、0.03mKの極めて高い分解能を有するキャパシタンス温度計が得られることが分かる。また絶対感度Sdは0.08であり、従来のものと比べて、高い絶対感度がを有するキャパシタンス温度計が得られる。また、量子常誘電性から強誘電性への転移温度よりも高温側では1.0以上と高い絶対感度が得られることが分かる。またこの範囲では量子常誘電性を示すので、温度ヒシテリシスのないキャパシタンス温度計が得られる。
FIG. 5 shows the sensitivity of the capacitance thermometer with respect to the temperature (K) when 38% of oxygen 16 of SrTi ( 18 O x 16 O 1-x ) 3 single crystal having a crystal orientation of (110) is substituted with isotope oxygen 18. It is a figure which shows the relationship between S and absolute sensitivity Sd.
As can be seen from FIG. 5, the sensitivity S in FIG. 5 reaches 3000 pF / K at 2.2K, and a capacitance thermometer having an extremely high resolution of 0.03 mK can be obtained. The absolute sensitivity Sd is 0.08, and a capacitance thermometer having a higher absolute sensitivity than that of the conventional one can be obtained. Further, it can be seen that an absolute sensitivity as high as 1.0 or higher can be obtained on the higher temperature side than the transition temperature from quantum paraelectric to ferroelectric. In this range, quantum paraelectric property is exhibited, so that a capacitance thermometer without temperature hysteresis can be obtained.

図6は、結晶方位が(100)のSrTi(18 161−x単結晶の酸素16を同位体酸素18で置換したときの置換重量に対する外部磁束密度B=0、2Kにおける感度および絶対感度の関係を示す図である。
同図に示すように、置換重量が30%以下のときには量子常誘電性を示し、感度は50pF/K以下であり、絶対感度は0.05以下であることが分かる。また置換重量が35%以上では強誘電性を示し、置換重量45%で感度が最大300pF/Kであり、また、置換重量が37%から57%の範囲では0.1以上と非常に高い絶対感度が得られることが分かる。
FIG. 6 shows that the external magnetic flux density B = 0 and 2K with respect to the substitution weight when oxygen 16 of SrTi ( 18 O x 16 O 1-x ) 3 single crystal having a crystal orientation of (100) is substituted with isotope oxygen 18. It is a figure which shows the relationship between a sensitivity and an absolute sensitivity.
As shown in the figure, it can be seen that when the substitution weight is 30% or less, quantum paraelectric property is exhibited, the sensitivity is 50 pF / K or less, and the absolute sensitivity is 0.05 or less. In addition, when the substitution weight is 35% or more, ferroelectricity is exhibited, and when the substitution weight is 45%, the sensitivity is a maximum of 300 pF / K, and when the substitution weight is in the range of 37% to 57%, the absolute value is 0.1 or more. It can be seen that sensitivity can be obtained.

図7は、結晶方位が(110)のSrTi(18 161−x単結晶の酸素16を同位体酸素18で置換したときの置換重量に対する外部磁束密度B=0、2Kにおける感度及び絶対感度の関係を示す図である。
同図に示すように、置換重量が30%以下のときには量子常誘電性を示し、感度は200pF/K以下であり、絶対感度は0.01以下であることが分かる。また置換重量が38%以上では強誘電性を示し、置換重量38%で感度が最大3000pF/Kであり、また、置換重量が38%から60%の範囲では0.08以上と高い絶対感度が得られることが分かる。
FIG. 7 shows that the external magnetic flux density B = 0 and 2K with respect to the substitution weight when oxygen 16 of SrTi ( 18 O x 16 O 1-x ) 3 single crystal having a crystal orientation of (110) is substituted with isotope oxygen 18. It is a figure which shows the relationship between a sensitivity and an absolute sensitivity.
As shown in the figure, it can be seen that when the substitution weight is 30% or less, quantum paraelectric property is exhibited, the sensitivity is 200 pF / K or less, and the absolute sensitivity is 0.01 or less. When the substitution weight is 38% or more, ferroelectricity is exhibited, and when the substitution weight is 38%, the maximum sensitivity is 3000 pF / K, and when the substitution weight is in the range of 38% to 60%, the absolute sensitivity is as high as 0.08 or more. You can see that

図8は、本実施形態の発明に係るキャパシタンス温度計を用いた温度測定装置の構成の一例を示す図である。
同図において、1は低温容器、2は低温容器1に設けられ、図示していない被測定物に設けられるキャパシタンス温度計、3は低温プローブ、4はキャパシタンス温度計2のキャパシタンスを測定する、例えば、LCRメーターやキャパシタンスブリッジ等からなる測定器、5は、例えば、パソコン等からなる測定されたキャパシタンス値から温度値を求める測定器である。
なお、一般にキャパシタンスの測定は、磁場の影響を受けないので、磁場中での温度計測に適している。
FIG. 8 is a diagram showing an example of a configuration of a temperature measuring device using the capacitance thermometer according to the invention of the present embodiment.
In the same figure, 1 is a cryogenic container, 2 is a cryogenic container 1, a capacitance thermometer provided on an object not shown, 3 is a cryogenic probe, 4 is a capacitance thermometer, 4 measures the capacitance of the capacitance thermometer 2, for example, The measuring device 5 composed of an LCR meter, a capacitance bridge, etc. is a measuring device for obtaining a temperature value from a measured capacitance value composed of, for example, a personal computer.
In general, capacitance measurement is not affected by a magnetic field and is suitable for temperature measurement in a magnetic field.

本実施形態の発明に係るキャパシタンス温度計の作製工程を示す図である。It is a figure which shows the preparation process of the capacitance thermometer which concerns on invention of this embodiment. 結晶方位が(100)のSrTi16単結晶の酸素16を同位体酸素18で置換したときのキャパシタンス温度計の比誘電率の置換効果を説明する図である。Crystal orientation is a diagram illustrating the displacement effect of the dielectric constant of the capacitance thermometer when replacing the oxygen 16 SrTi 16 O 3 single crystal with an isotope of oxygen 18 (100). 結晶方位が(110)のSrTi16単結晶の酸素16を同位体酸素18で置換したときのキャパシタンス温度計の比誘電率の置換効果を説明する図である。Crystal orientation is a diagram illustrating the displacement effect of the dielectric constant of the capacitance thermometer when replacing the oxygen 16 SrTi 16 O 3 single crystal with an isotope of oxygen 18 (110). 結晶方位が(100)のSrTi(18 161−x単結晶の酸素16を同位体酸素18で45%置換したときの温度(K)に対するキャパシタンス温度計の感度Sおよび絶対感度Sdの関係を示す図である。Sensitivity S and absolute sensitivity of capacitance thermometer with respect to temperature (K) when oxygen 16 of SrTi ( 18 O x 16 O 1-x ) 3 single crystal having crystal orientation (100) is substituted by 45% of isotope oxygen 18 It is a figure which shows the relationship of Sd. 結晶方位が(110)のSrTi(18 161−x単結晶の酸素16を同位体酸素18で38%置換したときの温度(K)に対するキャパシタンス温度計の感度Sおよび絶対感度Sdの関係を示す図である。Sensitivity S and absolute sensitivity of capacitance thermometer with respect to temperature (K) when oxygen 16 of SrTi ( 18 O x 16 O 1-x ) 3 single crystal having crystal orientation (110) is substituted by isotope oxygen 18% It is a figure which shows the relationship of Sd. 結晶方位が(100)のSrTi(18 161−x単結晶の酸素16を同位体酸素18で置換したときの置換重量に対する2Kにおける感度および絶対感度の関係を示す図である。Is a diagram illustrating a relationship sensitivity and absolute sensitivity in 2K to the substitutions weight when substituted with SrTi (18 O x 16 O 1 -x) 3 isotope oxygen 18 oxygen 16 of a single crystal of a crystal orientation of (100) . 結晶方位が(110)のSrTi(18 161−x単結晶の酸素16を同位体酸素18で置換したときの置換重量に対する2Kにおける感度及び絶対感度の関係を示す図である。Is a diagram illustrating the sensitivity and absolute sensitivity relationship at 2K for substitution weight when substituted with SrTi (18 O x 16 O 1 -x) 3 isotope oxygen 18 oxygen 16 of a single crystal of a crystal orientation of (110) . 本実施形態の発明に係るキャパシタンス温度計を用いた温度測定装置の構成の一例を示す図である。It is a figure which shows an example of a structure of the temperature measurement apparatus using the capacitance thermometer which concerns on invention of this embodiment.

符号の説明Explanation of symbols

1 低温容器
2 キャパシタンス温度計
3 低温プローブ
4 測定器
5 測定器
1 Cryogenic container 2 Capacitance thermometer 3 Cryogenic probe 4 Measuring instrument 5 Measuring instrument

Claims (5)

結晶方位が(100)であって置換範囲がx<0.3のSrTi(18 161−x単結晶からなる誘電体を有するコンデンサのキャパシタンスを検出することによって温度測定を行うことを特徴とするキャパシタンス温度計。 Temperature measurement is performed by detecting the capacitance of a capacitor having a dielectric made of SrTi ( 18 O x 16 O 1-x ) 3 single crystal having a crystal orientation of (100) and a substitution range of x <0.3. A capacitance thermometer characterized by that. 結晶方位が(100)であって置換範囲が0.35>x>0.6のSrTi(18 161−x単結晶からなる誘電体を有するコンデンサのキャパシタンスを検出することによって温度測定を行うことを特徴とするキャパシタンス温度計。 By detecting the capacitance of a capacitor having a dielectric composed of SrTi ( 18 O x 16 O 1-x ) 3 single crystal with a crystal orientation of (100) and a substitution range of 0.35>x> 0.6 Capacitance thermometer for measuring temperature. 結晶方位が(110)であって置換範囲がx<0.3のSrTi(18 161−x単結晶からなる誘電体を有するコンデンサのキャパシタンスを検出することによって温度測定を行うことを特徴とするキャパシタンス温度計。 Temperature measurement is performed by detecting the capacitance of a capacitor having a dielectric made of SrTi ( 18 O x 16 O 1-x ) 3 single crystal having a crystal orientation of (110) and a substitution range of x <0.3. A capacitance thermometer characterized by that. 結晶方位が(110)であって置換範囲が0.38>x>0.6のSrTi(18 161−x単結晶からなる誘電体を有するコンデンサのキャパシタンスを検出することによって温度測定を行うことを特徴とするキャパシタンス温度計。 By detecting the capacitance of a capacitor having a dielectric composed of SrTi ( 18 O x 16 O 1-x ) 3 single crystal with a crystal orientation of (110) and a substitution range of 0.38>x> 0.6 Capacitance thermometer for measuring temperature. 前記温度測定を行う場が磁場中であることを特徴とする請求項1乃至請求項4のいずれか1つの請求項に記載のキャパシタンス温度計。   The capacitance thermometer according to any one of claims 1 to 4, wherein a field for performing the temperature measurement is in a magnetic field.
JP2005049566A 2005-02-24 2005-02-24 Capacitance thermometer Pending JP2006234574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005049566A JP2006234574A (en) 2005-02-24 2005-02-24 Capacitance thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005049566A JP2006234574A (en) 2005-02-24 2005-02-24 Capacitance thermometer

Publications (1)

Publication Number Publication Date
JP2006234574A true JP2006234574A (en) 2006-09-07

Family

ID=37042392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005049566A Pending JP2006234574A (en) 2005-02-24 2005-02-24 Capacitance thermometer

Country Status (1)

Country Link
JP (1) JP2006234574A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008151617A (en) * 2006-12-15 2008-07-03 National Institute Of Advanced Industrial & Technology Capacitance thermometer
JP2010260776A (en) * 2009-05-11 2010-11-18 Hitachi Ltd Dielectric material, dielectric element, and method for manufacturing dielectric element
CN107063488A (en) * 2017-03-22 2017-08-18 合肥仁德电子科技有限公司 A kind of electronic product capacitance detecting device and detection method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3649891A (en) * 1970-06-18 1972-03-14 Corning Glass Works Capacitive cryogenic thermometer
JPS55159506A (en) * 1979-05-30 1980-12-11 Matsushita Electric Ind Co Ltd Temperature sensor and method of manufacturing same
JP2002188967A (en) * 2000-12-19 2002-07-05 Japan Science & Technology Corp Magnetic field calibration method of thermometer having magnetic field dependency
JP2003209266A (en) * 2001-08-31 2003-07-25 Kanagawa Acad Of Sci & Technol Method for changing permittivity, optical variable condensor, ultraviolet sensor and magnetic sensor
JP2004349481A (en) * 2003-05-22 2004-12-09 National Institute Of Advanced Industrial & Technology Strontium titanate thin film laminate and its forming method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3649891A (en) * 1970-06-18 1972-03-14 Corning Glass Works Capacitive cryogenic thermometer
JPS55159506A (en) * 1979-05-30 1980-12-11 Matsushita Electric Ind Co Ltd Temperature sensor and method of manufacturing same
JP2002188967A (en) * 2000-12-19 2002-07-05 Japan Science & Technology Corp Magnetic field calibration method of thermometer having magnetic field dependency
JP2003209266A (en) * 2001-08-31 2003-07-25 Kanagawa Acad Of Sci & Technol Method for changing permittivity, optical variable condensor, ultraviolet sensor and magnetic sensor
JP2004349481A (en) * 2003-05-22 2004-12-09 National Institute Of Advanced Industrial & Technology Strontium titanate thin film laminate and its forming method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008151617A (en) * 2006-12-15 2008-07-03 National Institute Of Advanced Industrial & Technology Capacitance thermometer
JP2010260776A (en) * 2009-05-11 2010-11-18 Hitachi Ltd Dielectric material, dielectric element, and method for manufacturing dielectric element
CN107063488A (en) * 2017-03-22 2017-08-18 合肥仁德电子科技有限公司 A kind of electronic product capacitance detecting device and detection method

Similar Documents

Publication Publication Date Title
Park et al. Origin of temperature‐dependent ferroelectricity in Si‐doped HfO2
Tenne et al. Ferroelectricity in ultrathin BaTiO 3 films: probing the size effect by ultraviolet Raman spectroscopy
Rupprecht et al. Electromechanical behavior of single-crystal strontium titanate
Lee et al. Giant flexoelectric effect through interfacial strain relaxation
US7134785B2 (en) Capacitance temperature sensor and temperature measuring device
Guggilla et al. Pyroelectric ceramics for infrared detection applications
Davis et al. Piezoelectric glass-ceramic for high-temperature applications
BRPI0905621B1 (en) PIEZOELECTRIC CERAMIC COMPOSITION AND PIEZOELECTRIC ELEMENT PRODUCED USING THE SAME
Wang et al. Improved thermal stability of [0 0 1] c poled 0.24 Pb (In1/2Nb1/2) O3–0.47 Pb (Mg1/3Nb2/3) O3–0.29 PbTiO3 single crystal with manganese doping
Sanlialp et al. Modified differential scanning calorimeter for direct electrocaloric measurements
Zhao et al. Pyroelectric performances of relaxor‐based ferroelectric single crystals and related infrared detectors
JP2006234574A (en) Capacitance thermometer
Ren et al. Investigation of strain gauges based on interdigitated Ba0. 5Sr0. 5TiO3 thin film capacitors
Young et al. Thermal analysis of phase transitions in perovskite electroceramics
Mishra et al. Dielectric and polarized Raman spectroscopic studies on 0.85 Pb (Zn1/3Nb2/3) O3-0.15 PbTiO3 single crystal
Garten et al. The field induced e31, f piezoelectric and Rayleigh response in barium strontium titanate thin films
Singh et al. Evidence of pseudocubic structure in sol-gel derived Pb1− xCaxTiO3 (x= 0.35–0.48) ceramic by dielectric and Raman spectroscopy
JP2006278478A (en) Thin film for infrared sensor, its manufacturing method and infrared sensor using it
Ribeiro et al. Theoretical investigations of the bulk modulus in the tetra-cubic transition of PbTiO3 material
Xu et al. Influence of the Strain on Dielectric and Ferroelectric Properties of 0.5 BaZr0. 2Ti0. 8O3–0.5 Ba0. 7Ca0. 3TiO3
Rossel et al. Temperature dependence of the transverse piezoelectric coefficient of thin films and aging effects
Ali et al. Novel Fluorite‐Structured Materials for Solid‐State Refrigeration
Wang et al. Down-conversion luminescence and its temperature-sensing properties from Er 3+-doped sodium bismuth titanate ferroelectric thin films
JP4686759B2 (en) Capacitance thermometer
Xiao et al. Effect of large strain on dielectric and ferroelectric properties of Ba0. 5Sr0. 5TiO3 thin films

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110215