JP4008113B2 - 固体撮像装置およびその製造方法 - Google Patents

固体撮像装置およびその製造方法 Download PDF

Info

Publication number
JP4008113B2
JP4008113B2 JP24205198A JP24205198A JP4008113B2 JP 4008113 B2 JP4008113 B2 JP 4008113B2 JP 24205198 A JP24205198 A JP 24205198A JP 24205198 A JP24205198 A JP 24205198A JP 4008113 B2 JP4008113 B2 JP 4008113B2
Authority
JP
Japan
Prior art keywords
diffusion region
charge transfer
photoelectric conversion
conductivity type
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24205198A
Other languages
English (en)
Other versions
JP2000077645A (ja
Inventor
景士 立川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP24205198A priority Critical patent/JP4008113B2/ja
Publication of JP2000077645A publication Critical patent/JP2000077645A/ja
Application granted granted Critical
Publication of JP4008113B2 publication Critical patent/JP4008113B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、CCD(charge coupled device)を用いた固体撮像装置およびその製造方法に関するものである。
【0002】
【従来の技術】
近年、固体撮像装置を構成する固体撮像素子の小型化・高画素化が進み、その製造技術についても微細化が要求されている。また、このような動向に伴って感度および画質などの特性向上が課題となっている。
【0003】
図5は、従来の固体撮像装置の画素部の構造を示す断面図である。以下、図5に基づいて、従来の固体撮像装置の構造について説明する。
【0004】
半導体基板40に形成されたp型ウェル41内に、光電変換素子と電荷転送素子とが隣接するように形成されている。光電変換素子と電荷転送素子は交互に配列するように複数形成されており、1個の光電変換素子と1個の電荷転送素子とによって1画素が構成されている。光電変換素子は、n型不純物拡散領域である光電変換部42と、この光電変換部42上の半導体基板表層部に形成された高濃度のp型拡散領域43とによって構成されている。電荷転送素子は、n型不純物拡散領域であって電荷転送時にチャンネル領域として機能する電荷転送部44と、この電荷転送部44上に絶縁膜46を介して形成された転送電極47とによって構成されている。更に、電荷転送素子は、電荷転送部44の下端に接するように形成されたp型拡散領域45を備えている。また、電荷転送素子の上方には層間絶縁膜48を介して遮光膜49が形成されており、電荷転送素子を入射光から遮蔽してスミアの発生を抑制している。なお、遮光膜49には、光電変換部42の上方には開口部が形成されている。更に、遮光膜49上には表面保護膜50が形成されている。
【0005】
上記の構造を有する固体撮像装置の動作について説明する。遮光膜49の開口部から入射した光が、光電変換部42で信号電荷に変換され蓄積される。読み出しゲート電極を兼ねた転送電極47に電圧を印加すると、電荷転送部44からp型拡散領域45を経由して光電変換部42まで空乏層が広がり、p型拡散領域43と電荷転送部44との間の半導体基板表層部に読み出しチャネルが形成される。光電変換部42に蓄積された信号電荷は、この読み出しチャネルを経由して電荷転送部44へ転送される。
【0006】
【発明が解決しようとする課題】
p型拡散領域43表面に入射する光の大部分が光電変換部42へ到達し、光電変換部42において電荷を発生させる。しかし、入射光の一部は、p型拡散領域43で電荷を発生させる。p型拡散領域43で電荷が発生すると、半導体基板表面においてp型拡散領域43から電荷転送部44に向かって電荷密度に勾配が生じるため、電荷が拡散して電荷転送部44へ流入することがあり、この電荷によってスミアが発生するという問題があった。特に、従来の固体撮像装置においては、p型拡散領域43がp型ウェル41およびp型拡散領域45に比べて高濃度であり、半導体基板表面のポテンシャルがp型拡散領域43から電荷転送部44に向かって高くなるため、電荷転送部44への電荷の流入が助長されスミアが増大していた(図6のポテンシャル分布図を参照)。
【0007】
本発明は、スミアの発生を抑制した固体撮像装置およびその製造方法を提供することを目的とする。
【0008】
【発明が解決するための手段】
前記目的を達成するため、本発明の固体撮像装置は、第1導電型の半導体基板内に形成された第2導電型の光電変換部と、前記光電変換部上の前記半導体基板の表層部に形成された第1導電型の第1の拡散領域と、前記半導体基板の表層部の前記第1の拡散領域と離間した領域に形成された第2導電型の電荷転送部と、前記電荷転送部下に形成された第1導電型の第2の拡散領域と、前記電荷転送部上に絶縁膜を介して形成された転送電極とを備えた固体撮像装置であって、前記光電変換部に接し且つ前記第2の拡散領域下に位置する領域に、前記光電変換部よりも不純物濃度の高い第2導電型の第3の拡散領域が形成されており、前記第1の拡散領域と前記電荷転送部との間に、前記第1の拡散領域よりも不純物濃度の高い第1導電型の第4の拡散領域が形成されていることを特徴とする。
【0009】
このような構成にしたことにより、光電変換部上のp型拡散領域と電荷転送部との間に高濃度のp型拡散領域が形成されるため、光電変換部上のp型拡散領域と電荷転送部との間にポテンシャル障壁を形成し、光電変換部上のp型拡散領域で発生した電荷が電荷転送部に流入してスミアとなることを抑制することができる。
【0010】
光電変換部上のp型拡散領域から電荷転送部への電荷の流入を抑制する手段としては、前述した従来の固体撮像装置に、単に、p型拡散領域43と電荷転送部44との間にp型拡散領域43よりも不純物濃度の高いp型拡散領域を設けることも考えられる。しかし、従来の固体撮像装置においては、読み出しチャネルがp型拡散領域43と電荷転送部44との間の半導体基板表層部、つまり、高濃度のp型拡散領域を形成すればよいと考えられる領域に形成される。そのため、高濃度のp型拡散領域を形成すると読み出しに高い電圧を要するという不都合が生じる。
【0011】
しかし、本発明の固体撮像装置によれば、電荷転送部の下方に高濃度のn型拡散領域が形成されているため、電荷転送部の下方に信号電荷を蓄積することができる。このような構成にすることで、読み出しチャネルを、電荷転送部の下方に基板面に対して略垂直方向に形成することができるため、読み出し電圧が、光電変換部上のp型拡散領域と電荷転送部との間に形成されるp型拡散領域の濃度には依存しない構造とすることができる。よって、このp型拡散領域を高濃度としても読み出し電圧の増大という不都合を生じない。
【0012】
前記固体撮像装置においては、前記第4の拡散領域の不純物濃度が、前記第2の拡散領域の不純物濃度と異なることが好ましい。この好ましい例によれば、第4の拡散領域の不純物濃度を高くしてスミアの発生をより確実に抑制する一方で、第2の拡散領域を適度な不純物濃度に保って読み出し電圧が増大することを回避することができる。
【0013】
前記目的を達成するため、本発明の固体撮像装置の製造方法は、第1導電型の半導体基板内に第2導電型の光電変換部を形成する工程と、前記半導体基板の表層部に第1導電型の第1の拡散領域を前記光電変換部上に位置するように形成する工程と、前記半導体基板の表層部に第2導電型の電荷転送部を前記第1の拡散領域から離間するように形成する工程と、第1導電型の第2の拡散領域を前記電荷転送部下に位置するように形成する工程と、前記電荷転送部上に絶縁膜を介して転送電極を形成する工程とを含み、更に、前記光電変換部よりも不純物濃度の高い第2導電型の第3の拡散領域を、前記光電変換部に接し且つ前記第2の拡散領域下に位置するように形成する工程と、前記第1の拡散領域よりも不純物濃度の高い第1導電型の第4の拡散領域を、前記第1の拡散領域と前記電荷転送部との間に位置するように形成する工程とを含むことを特徴とする。
【0014】
このような構成としたことにより、読み出し電圧の増大という不都合を生じることなく、光電変換部上のp型拡散領域で発生した電荷によるスミアを抑制することができる固体撮像装置を製造することができる。
【0015】
前記製造方法においては、前記第4の拡散領域の不純物濃度を、前記第2の拡散領域の不純物濃度と相違させることが好ましい。第4の拡散領域の不純物濃度を高くしてスミアの発生をより確実に抑制する一方で、第2の拡散領域の不純物濃度を適正に保って読み出し電圧が増大することを回避した固体撮像装置とすることができるからである。
【0016】
また、前記製造方法においては、前記第2の拡散領域を形成する工程が、前記半導体基板に、第1導電型の不純物となるイオンを、100keV以上の加速電圧で注入することにより実施されることが好ましい。第2の拡散領域の濃度および形成位置を好適に制御できるからである。
【0017】
また、前記製造方法においては、前記第3の拡散領域を形成する工程が、前記半導体基板に、第2導電型の不純物となるイオンを、200keV以上、更には300keV以上の加速電圧で注入することにより実施されることが好ましい。第3の拡散領域の濃度および形成位置を好適に制御できるからである。
【0018】
【発明の実施の形態】
以下、図面を用いて本発明の固体撮像装置について説明する。
【0019】
図1は、本発明の固体撮像装置の画素部の構造の一例を示す断面図である。また、図2(a)〜(c)は、図1に示す固体撮像装置における半導体基板内のポテンシャル分布を示す図である。
【0020】
半導体基板には1個の光電変換素子と1個の電荷転送素子とによって構成される画素が二次元状に配置されている。つまり、特定の方向に関していえば、光電変換素子と電荷転送素子とが互いに隣接し、交互に配列するように形成されている。各素子は、n型半導体基板10内に形成されたp型ウェル11に形成されている。p型ウェル11の不純物濃度は、特に限定するものではないが、好ましくは1×1016cm-3以下に調整されている。
【0021】
電荷転送素子は、n型拡散領域である電荷転送部14と、p型拡散領域15とを備えている。電荷転送部14は半導体基板の表層部に形成され、その上方には絶縁膜16を介して転送電極17が形成されている。電荷転送部14は、通常、不純物濃度1×1016〜5×1017cm-3程度、拡散深さ0.2〜0.5μm程度が適当である。p型拡散領域15は電荷転送部14の下方に形成されている。このp型拡散領域15には、電荷蓄積時に電荷転送部14と後述するn型拡散領域21の間にポテンシャル障壁を形成し得る程度の不純物濃度が要求される。しかし、後述するように、p型拡散領域15の濃度は読み出し電圧に影響し、不純物濃度が高すぎると読み出し電圧が増大するため好ましくない。よって、p型拡散領域15の不純物濃度は、1×1015〜5×1016cm-3程度とすることが好ましい。
【0022】
光電変換素子は、n型拡散領域である光電変換部12と、p型拡散領域13とを備えている。光電変換部12は、半導体基板表層部に形成されたp型拡散領域13によって、半導体基板の内部に完全に埋め込まれている。このような構造により、半導体基板表面で発生する暗電流が光電変換部へ流入して蓄積されることを抑制している。特に限定するものではないが、p型拡散領域13の不純物濃度は、暗電流の流入を効果的に抑制するため、通常5×1017〜1×1020cm-3程度に調整される。また、拡散深さは0.2〜0.5μm程度が適当である。光電変換部12の不純物濃度は、光電変換を行える範囲であればよく、通常、1×1015〜5×1016cm-3程度に調整される。また、光電変換部12は、その拡散領域が広いほど感度を向上させることができるため、1〜3μm程度の深さまで拡散させることが好ましい。
【0023】
更に、光電変換部12に接する領域にはn型拡散領域21が形成されている。このn型拡散領域21は電荷転送部14の下方にまで延長しており、p型拡散領域15の下端に接するように形成されている。n型拡散領域21の不純物濃度は、光電変換部12よりも高くなるように調整される。その結果、図2(b)に示すように、n型拡散領域21のポテンシャルが光電変換部12よりも高くなり、光電変換部12で発生した電荷をn型拡散領域21に移動させて蓄積することができる。また、n型拡散領域21は光電変換部としても機能し、遮光膜19の開口部から斜めに入射してn型拡散領域21に到達した光はこの領域で電荷に変換されて蓄積される。また、n型拡散領域21の不純物濃度を電荷転送部14よりも高く調整すれば、p型拡散領域15で発生する電荷についてもn型拡散領域21に捕獲することができ、スミアの発生を低減することができる。以上のことから、n型拡散領域21の不純物濃度は、1×1016〜7×1017cm-3程度の範囲で光電変換部12の不純物濃度よりも高く調整することが好ましい。
【0024】
また、光電変換素子と電荷転送素子との間、具体的にはp型拡散領域13と電荷転送部14の間の半導体基板の表層部に、p型拡散領域22a、22bが形成されている。このp型拡散領域は、同一画素内に形成されているp型拡散領域と電荷転送部との間(22aの形成位置に相当する。)、および、隣接する別の画素内に形成されているp型拡散領域と電荷転送部との間(22bの形成位置に相当する。)のいずれに形成されてもよいが、その両方に形成されることが好ましい。図2(a)に示すように、p型拡散領域22a、22bは、光電変換素子と電荷転送素子とを分離するためのポテンシャル障壁を形成し、p型拡散領域13で発生した電荷が電荷転送部14に流入してスミアを発生させることを抑制する。p型拡散領域22a、22bの不純物濃度は、電荷転送部への電荷流入を効果的に抑制するため、p型拡散領域13よりも高く、好ましくは1×1018〜1×1021cm-3程度に調整される。また、拡散深さは、好ましくは、p型拡散領域13および電荷転送部14よりも深くなるように、0.2〜1.0μm程度に調整される。
【0025】
半導体基板上には、層間絶縁膜18を介して遮光膜19が形成されている。遮光膜19は、電荷転送素子を覆うように形成されており、光電変換素子の上方には開口が形成されている。この遮光膜19により、電荷転送素子を入射光から遮蔽してスミアの発生を抑制している。更に、遮光膜19の上方には半導体基板全面を覆うように表面保護膜20が形成されている。
【0026】
上記の構造を有する固体撮像装置の動作を、図2のポテンシャル分布図を用いて簡単に説明する。なお、図2の点A〜Fは、図1中に示す点A〜Fに各々対応するものである。遮光膜19の開口部から入射した光は、光電変換部12で信号電荷に変換される。n型拡散領域21の方が光電変換部12よりもポテンシャルが高いので(図2(b))、この信号電荷はn型拡散領域21に移動し蓄積される。また、斜め方向から入射してn型拡散領域21に到達した光は、n型拡散領域21で信号電荷に変換されて蓄積される。つまり、信号電荷は電荷転送部14の下方に蓄積されることになる。図2(c)に示すように、電荷蓄積時には、p型拡散領域15がポテンシャル障壁を形成するため、n型拡散領域21から電荷転送部14への電荷移動は実質的に起こらない。読み出し時には、読み出し電極を兼ねた転送電極17に電圧が印加されるため、図2(c´)に示すように、電荷転送部14から空乏層が広がってp型拡散領域15のポテンシャルを変化させ、n型拡散領域21と電荷転送部14との間に形成されていたポテンシャル障壁が消失する。その結果、n型拡散領域21に蓄積されていた電荷は、p型拡散領域15を経由して電荷転送部14へ読み出される。このように、本発明の固体撮像装置において読み出しチャネルは、電荷転送部14の下方に、基板表面に対して略垂直方向に形成される。よって、本発明の固体撮像装置において読み出し電圧は、p型拡散領域15の不純物濃度および拡散深さには依存するが、p型拡散領域22aの不純物濃度には依存しない。
【0027】
本発明の固体撮像装置によれば、p型拡散領域13と電荷転送部14との間にp型拡散領域22a、22bが形成されているため、p型拡散領域13と電荷転送部14との間にポテンシャル障壁を形成し、p型拡散領域13で発生した電荷が電荷転送部14に流入してスミアとなることを抑制することができる。また、本発明の固体撮像装置においては、読み出し電圧はp型拡散領域22aの濃度には依存しないため、読み出し電圧の増大という不都合を生じることなく、p型拡散領域22aを高濃度に調整することができる。そのため、p型拡散領域13と電荷転送部14との間に形成されるポテンシャル障壁を大きく、例えば数十mV以上に設定して確実にスミアを抑制し、且つ、読み出しの低電圧化を図ることも可能となる。
【0028】
また、図5に示すような従来の固体撮像装置では、読み出しチャネルがp型拡散領域43と電荷転送部44との間の半導体基板表層部に形成されるため、p型拡散領域45の形成位置のばらつき(イオン注入マスク合わせのばらつき)により、各画素の特性にばらつきが生じるという問題があった。しかし、本発明の固体撮像装置によれば、電荷転送部14の下方にn型拡散領域21が存在してさえいればよく、イオン注入マスク合わせに対して、従来の固体撮像装置ほどの厳密さを要求されない。
【0029】
次に、本発明の固体撮像装置の製造方法について説明する。図3および図4は、本発明の固体撮像装置の製造方法の一例を示す工程断面図である。なお、この製造方法によって製造される固体撮像装置は、図1に示すものと実質的に同様の構造を有するものである。
【0030】
まず、n型シリコン基板10に、ホウ素などのp型不純物をイオン注入してp型ウェル11を形成する(図3(a))。
【0031】
この半導体基板表面にフォトレジストを用いてマスクを形成した後、ホウ素などのp型不純物をイオン注入し、p型ウェル11内の所定の領域にp型拡散領域15を形成する。このイオン注入は、好ましくは100keV以上、更に好ましくは200〜700keV程度の加速電圧で実施する。また、ドーズ量は1×1011〜5×1012cm-2程度が適当である。次に、新たにマスクを形成した後、リンやヒ素などのn型不純物をイオン注入し、p型拡散領域15の表層部にn型拡散領域である電荷転送部14を形成する(図3(b))。このイオン注入は、p型拡散領域形成のためのイオン注入よりも小さい加速電圧、好ましくは20〜200keV程度の加速電圧で実施する。また、ドーズ量は1×1012〜5×1013cm-2程度が適当である。
【0032】
次に、半導体基板表面にフォトレジストを用いてマスクを形成した後、ホウ素などのp型不純物をイオン注入し、p型ウェル12の表層部の電荷転送部14の端部に接する領域にp型拡散領域22a、22bを形成する。このp型拡散領域は、好ましくは電荷転送部14の両端に形成される。このイオン注入は、ドーズ量5×1013〜5×1015cm-2程度、加速電圧10〜100keV程度で実施するのが適当である。
【0033】
以上の工程においては、p型拡散領域22a、22bとp型拡散領域15とを、一体化した1つの領域として一度のイオン注入によって形成する方法も考えられる。しかし、このような方法では、p型拡散領域22a、22bとp型拡散領域15の不純物濃度を相違させることができないので、読み出し電圧の増大を回避しながらスミアの低減を図ることが困難となるため好ましくない。
【0034】
次に、熱酸化によって、半導体基板表面にシリコン酸化膜であるゲート絶縁膜16を形成する(図3(c))。なお、ゲート酸化膜16の形成は、後述の光電変換部およびn型拡散領域を形成した後に実施してもよい。
【0035】
次に、半導体基板表面にフォトレジストを用いてマスクを形成した後、リンなどのn型不純物をイオン注入して、p型拡散領域15の下方にn型拡散領域21を形成する。このイオン注入は、p型拡散領域15形成のイオン注入よりも高い加速電圧200〜1500keV程度で実施する。また、ドーズ量は5×1011〜5×1013cm-2程度が適当である。次に、新たにマスクを形成した後、リンなどのn型不純物をイオン注入することにより、p型ウェル11内の電荷転送素子に隣接する領域に、n型拡散領域21に接するように光電変換部12を形成する(図4(d))。このとき、光電変換部12とn型拡散領域21とを確実に接触させるため、光電変換部12を形成するためのマスクは、その開口部(イオンが注入される部分)が、半導体基板表面においてn型拡散領域21を形成するためのマスクの開口部が形成されていた領域と若干(0.3μm以内とするのが適当である。)重なるように形成することが好ましい。このイオン注入は、形成される光電変換部12の不純物濃度がn型拡散領域21よりも低くなるように、ドーズ量1×1011〜1×1013cm-2程度で実施するのが適当である。また、加速電圧は、200〜1500keV程度とするのが適当である。
【0036】
なお、以上の各イオン注入工程を実施する順序は、特に限定するものではない。例えば、電荷転送部14の形成をp型拡散領域15の形成の前に実施することもでき、光電変換部12の形成をn型拡散領域21の形成の前に実施することもできる。また、光電変換部12およびn型拡散領域21の形成を、電荷転送部14、p型拡散領域15およびp型拡散領域22a、22bを形成する前に実施することもできる。
【0037】
ゲート絶縁膜16を形成したシリコン基板表面に、例えば、減圧CVD法によりポリシリコン膜を形成し、このポリシリコン膜の一部をエッチングによって除去することによって、電荷転送部14の上方に転送電極17を形成する。続いて、このゲート電極17をマスクとしてホウ素などのp型不純物をイオン注入し、光電変換部12の表層部にp型拡散領域13を形成する(図4(e))。このイオン注入は、p型拡散領域13の不純物濃度がp型拡散領域22a、22bよりも低くなるように、ドーズ量1×1013〜2×1015cm-2程度で実施するのが適当である。また、加速電圧は10〜100keV程度が適当である。
【0038】
更に、層間絶縁膜18、光電変換部の上方に開口部を有するようにパターニングされた遮光膜19、表面保護膜20を順に形成する(図4(f))。特に限定するものではないが、例えば、層間絶縁膜18は減圧CVD法によりホウ素およびリンをドープしたシリコン酸化膜(BPSG膜)を堆積することにより形成し、遮光膜19はスパッタリング法によりアルミニウム膜を堆積することにより形成し、表面保護膜20はプラズマCVD法によって基板全面にシリコン窒化膜を堆積してすることにより形成できる。
【0039】
なお、上記の製造方法において、マスクの形成、イオン注入、熱酸化、各種CDV法などは、基本的に常法に従って実施することができる。
【0040】
上記の製造方法によれば、本発明の固体撮像装置のような、読み出し電圧の増大という不都合を生じることなく、p型拡散領域で発生した電荷によるスミアを抑制することができる固体撮像装置を製造することができる。
【0041】
【発明の効果】
以上説明したように、本発明の固体撮像装置によれば、第1導電型の半導体基板内に形成された第2導電型の光電変換部と、前記光電変換部上の前記半導体基板の表層部に形成された第1導電型の第1の拡散領域と、前記半導体基板の表層部の前記第1の拡散領域から離間させた領域に形成された第2導電型の電荷転送部と、前記電荷転送部下に形成された第1導電型の第2の拡散領域と、前記電荷転送部上に絶縁膜を介して形成された転送電極とを含み、更に、前記光電変換部に接し且つ前記電荷転送部の下方に及ぶ領域に、前記光電変換部よりも不純物濃度の高い第2導電型の第3の拡散領域が形成され、前記第1の拡散領域と前記電荷転送部との間に、前記第1の拡散領域よりも不純物濃度の高い第1導電型の第4の拡散領域が形成されているため、光電変換部上のp型拡散領域と電荷転送部との間にポテンシャル障壁を形成し、このp型拡散領域で発生した電荷が電荷転送部に流入してスミアとなることを抑制することができる。
【0042】
また、本発明の製造方法によれば、第1導電型の半導体基板内に第2導電型の光電変換部を形成する工程と、前記半導体基板の表層部に第1導電型の第1の拡散領域を前記光電変換部上に位置するように形成する工程と、前記半導体基板の表層部に第2導電型の電荷転送部を前記第1の拡散領域から離間するように形成する工程と、第1導電型の第2の拡散領域を前記電荷転送部下に位置するように形成する工程と、前記電荷転送部上に絶縁膜を介して転送電極を形成する工程とを含み、更に、前記光電変換部よりも不純物濃度の高い第2導電型の第3の拡散領域を、前記光電変換部に接し且つ前記電荷転送部の下方に位置するように形成する工程と、前記第1の拡散領域よりも不純物濃度の高い第1導電型の第4の拡散領域を、前記第1の拡散領域と前記電荷転送部との間に位置するように形成する工程とを含むため、光電変換部上のp型拡散領域と電荷転送部との間にポテンシャル障壁を形成し、このp型拡散領域で発生した電荷によるスミアを抑制した固体撮像装置を製造することができる。
【図面の簡単な説明】
【図1】 本発明の固体撮像装置の構造の一例を示す断面図である。
【図2】 図1に示す固体撮像装置における半導体基板内のポテンシャル分布を示す図である。
【図3】 本発明の固体撮像装置の製造方法の一例を説明するための工程断面図である。
【図4】 本発明の固体撮像装置の製造方法の一例を説明するための工程断面図である。
【図5】 従来の固体撮像装置の構造を示す断面図である。
【図6】 図5に示す固体撮像装置における半導体基板内のポテンシャル分布を示す図である。
【符号の説明】
10、40 n型半導体基板
11、41 p型ウェル
12、42 光電変換部
13、43 p型拡散領域
14、44 電荷転送部
15、45 p型拡散領域
16、46 ゲート絶縁膜
17、47 転送電極
18、48 層間絶縁膜
19、49 遮光膜
20、50 表面保護膜
21 n型拡散領域
22a、22b 高濃度のp型拡散領域

Claims (6)

  1. 第1導電型の半導体基板内に形成された第2導電型の光電変換部と、前記光電変換部上の前記半導体基板の表層部に形成された第1導電型の第1の拡散領域と、前記半導体基板の表層部の前記第1の拡散領域から離間させた領域に形成された第2導電型の電荷転送部と、前記電荷転送部下に形成された第1導電型の第2の拡散領域と、前記電荷転送部上に絶縁膜を介して形成された転送電極とを備えた固体撮像装置であって、前記光電変換部に接し且つ前記第2の拡散領域下に位置する領域に、前記光電変換部よりも不純物濃度の高い第2導電型の第3の拡散領域が形成されており、前記第1の拡散領域と前記電荷転送部との間に、前記第1の拡散領域よりも不純物濃度の高い第1導電型の第4の拡散領域が形成されていることを特徴とする固体撮像装置。
  2. 前記第4の拡散領域の不純物濃度が、前記第2の拡散領域の不純物濃度と異なる請求項1に記載の固体撮像装置。
  3. 第1導電型の半導体基板内に第2導電型の光電変換部を形成する工程と、前記半導体基板の表層部に第1導電型の第1の拡散領域を前記光電変換部上に位置するように形成する工程と、前記半導体基板の表層部に第2導電型の電荷転送部を前記第1の拡散領域から離間するように形成する工程と、第1導電型の第2の拡散領域を前記電荷転送部下に位置するように形成する工程と、前記電荷転送部上に絶縁膜を介して転送電極を形成する工程とを含み、更に、前記光電変換部よりも不純物濃度の高い第2導電型の第3の拡散領域を、前記光電変換部に接し且つ前記第2の拡散領域下に位置するように形成する工程と、前記第1の拡散領域よりも不純物濃度の高い第1導電型の第4の拡散領域を、前記第1の拡散領域と前記電荷転送部との間に位置するように形成する工程とを含むことを特徴とする固体撮像装置の製造方法。
  4. 前記第4の拡散領域の不純物濃度を、前記第2の拡散領域の不純物濃度と相違させる請求項3に記載の固体撮像装置の製造方法。
  5. 前記第2の拡散領域を形成する工程が、前記半導体基板に、第1導電型の不純物となるイオンを100keV以上の加速電圧で注入することにより実施される請求項3または4に記載の固体撮像装置の製造方法。
  6. 前記第3の拡散領域を形成する工程が、前記半導体基板に、第2導電型の不純物となるイオンを200keV以上の加速電圧で注入することにより実施される請求項3〜5のいずれかに記載の固体撮像装置の製造方法。
JP24205198A 1998-08-27 1998-08-27 固体撮像装置およびその製造方法 Expired - Fee Related JP4008113B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24205198A JP4008113B2 (ja) 1998-08-27 1998-08-27 固体撮像装置およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24205198A JP4008113B2 (ja) 1998-08-27 1998-08-27 固体撮像装置およびその製造方法

Publications (2)

Publication Number Publication Date
JP2000077645A JP2000077645A (ja) 2000-03-14
JP4008113B2 true JP4008113B2 (ja) 2007-11-14

Family

ID=17083552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24205198A Expired - Fee Related JP4008113B2 (ja) 1998-08-27 1998-08-27 固体撮像装置およびその製造方法

Country Status (1)

Country Link
JP (1) JP4008113B2 (ja)

Also Published As

Publication number Publication date
JP2000077645A (ja) 2000-03-14

Similar Documents

Publication Publication Date Title
US5880495A (en) Active pixel with a pinned photodiode
JP2848268B2 (ja) 固体撮像装置およびその製造方法
JPH04355964A (ja) 固体撮像装置及びその製造方法
JPH1070263A (ja) 固体撮像素子
JP2004193547A (ja) 固体撮像装置及び固体撮像装置を用いたカメラシステム
JP2001291858A (ja) 固体撮像素子及びその製造方法
CN113451341A (zh) 具有增加的有效沟道宽度的晶体管
JP2005072236A (ja) 半導体装置および半導体装置の製造方法
CN113451340A (zh) 具有增加的有效沟道宽度的晶体管
JPH07107928B2 (ja) 固体撮像装置
JP2000012823A (ja) 固体撮像装置およびその製造方法
JP3322341B2 (ja) 光電変換素子、それを用いた固体撮像素子およびその製造方法
US5804465A (en) Compact isolation and antiblooming structure for full-frame CCD image sensors operated in the accumulation mode
JP4359739B2 (ja) 光電変換素子および固体撮像素子
JP2003037262A (ja) 固体撮像装置並びにその製造方法および駆動方法
JP2003101004A (ja) 固体撮像装置及びその製造方法
JP4008113B2 (ja) 固体撮像装置およびその製造方法
JPH08255888A (ja) 固体撮像装置およびその製造方法
JP3341517B2 (ja) 電荷結合デバイス型の固体撮像素子およびその製造方法
KR100748318B1 (ko) 이미지센서 및 그 제조 방법
JP2000022119A (ja) 固体撮像デバイス及びその製造方法
JP4561328B2 (ja) 固体撮像装置およびその製造方法
JPH0230183A (ja) 固体撮像素子
JP3105781B2 (ja) 固体撮像装置
JP4561327B2 (ja) 固体撮像装置およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees