JP3988771B2 - 複合型薄膜磁気ヘッド、磁気ヘッドアセンブリ及び磁気ディスクドライブ装置 - Google Patents

複合型薄膜磁気ヘッド、磁気ヘッドアセンブリ及び磁気ディスクドライブ装置 Download PDF

Info

Publication number
JP3988771B2
JP3988771B2 JP2005034280A JP2005034280A JP3988771B2 JP 3988771 B2 JP3988771 B2 JP 3988771B2 JP 2005034280 A JP2005034280 A JP 2005034280A JP 2005034280 A JP2005034280 A JP 2005034280A JP 3988771 B2 JP3988771 B2 JP 3988771B2
Authority
JP
Japan
Prior art keywords
layer
magnetic pole
shield layer
substrate
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005034280A
Other languages
English (en)
Other versions
JP2006221739A (ja
Inventor
健朗 加々美
寛顕 笠原
哲哉 桑島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2005034280A priority Critical patent/JP3988771B2/ja
Priority to US11/348,487 priority patent/US7542245B2/en
Publication of JP2006221739A publication Critical patent/JP2006221739A/ja
Application granted granted Critical
Publication of JP3988771B2 publication Critical patent/JP3988771B2/ja
Priority to US12/427,314 priority patent/US7672084B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3912Arrangements in which the active read-out elements are transducing in association with active magnetic shields, e.g. magnetically coupled shields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3909Arrangements using a magnetic tunnel junction
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B2005/3996Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects large or giant magnetoresistive effects [GMR], e.g. as generated in spin-valve [SV] devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Magnetic Heads (AREA)

Description

本発明は、インダクティブ書込みヘッド素子及び積層面と垂直の方向にセンス電流を流すCPP(Current Perpendicular to Plane)構造の磁気抵抗効果(MR)読出しヘッド素子を備えた複合型薄膜磁気ヘッド、磁気ヘッドアセンブリ及び磁気ディスクドライブ装置に関する。
近年、ハードディスクドライブ(HDD)装置の大容量小型化に伴い、高感度かつ高出力の薄膜磁気ヘッドが要求されている。この要求に対応するため、巨大磁気抵抗効果(GMR)読出しヘッド素子を有するGMRヘッドの特性改善が進んでおり、一方では、GMRヘッドの2倍以上の抵抗変化率が期待できるトンネル磁気抵抗効果(TMR)読出しヘッド素子を有するTMRヘッドの開発も積極的に行われている。
TMRヘッドと一般的なGMRヘッドとでは、センス電流の流れる方向の違いからヘッド構造が互いに異なっている。一般的なGMRヘッドのように、積層面(膜面)に対して平行にセンス電流を流すヘッド構造をCIP(Current In Plane)構造と呼び、TMRヘッドのように膜面に対して垂直方向にセンス電流を流すヘッド構造をCPP(Current Perpendicular to Plane)構造と呼んでいる。最近は、後者のCPP構造を有するGMRヘッドの開発も行われている。
CPP構造は、磁気シールド層そのものを電極として用いることができるため、CIP構造における狭リードギャップ化において深刻な問題となっている磁気シールド層と素子との間の短絡(絶縁不良)が本質的に生じない。このため、CPP構造は、高記録密度化に非常に有利となっている。
最近のCPP構造のGMRヘッドとしては、CIP構造のGMRヘッドの場合と同様のスピンバルブ磁性多層膜(デュアルスピンバルブ型磁性多層膜を含む)を有するものも検討されている。
このような書込み磁気ヘッド素子及び読出し磁気ヘッド素子を含めたHDD装置の小型化が進むと問題となるのが、書込み側と読出し側との間のクロストークである。特に、磁気ヘッド素子の小型化が進むと、放熱特性が悪化するのみならず素子断面積の減少により素子を流れる電流密度が増大し、また、書込み周波数の高周波化が図られることにより、書込みヘッド素子に印加される電圧が急峻に変化する。その結果、書込み側から読出し側へのクロストークが生じる。
非特許文献1には、サスペンション上に形成された書込み側トレース導体と読出し側トレース導体との間の結合メカニズムを解析し、両者間のクロストークを低減させる技術が提案されている。この文献では、クロストークのほとんどが、書込み側トレース導体及び読出し側トレース導体間の結合に起因するものであり、磁気ヘッド内の内部結合には起因しないと結論している。
しかしながら、本願発明者等は、書込み側トレース導体及び読出し側トレース導体間の結合以外に、薄膜磁気ヘッド内部における結合も書込み側及び読出し側間のクロストークに大きな影響を与えるのではないかと考え、解析及び検討を行った。
その結果、インダクティブ書込みヘッド素子及びMR読出しヘッド素子を有する複合型薄膜磁気ヘッドにおいて、各層間に発生する寄生キャパシタンスがクロストーク発生に関係することを見出した。特に、CPP構造を有する読出しヘッド素子を有する複合型薄膜磁気ヘッドでは、下部シールド層及び上部シールド層を読出しヘッド素子の電極として用いるため、書込みコイルと上部シールド層との間の寄生キャパシタンスが書込みコイルと下部シールド層との間の寄生キャパシタンスより必ず大きくなるから、読出しヘッド素子の両端間にクロストーク電圧が発生してしまう。
クロストーク電圧が発生すると、CPP−GMR読出しヘッド素子では、エレクトロマイグレーションの加速による短寿命化や層間拡散の加速による磁気特性の劣化が生じてしまう。また、TMR読出しヘッド素子では、バリア層にピンホールが形成されて絶縁破壊が生じ、素子抵抗が低下して読出し特性が大幅に劣化してしまう。
さらに、CPP構造を有する読出しヘッド素子では、その基板に入ったノイズが基板から距離の近い下部シールド層側の電極により多く現れ、下部シールド層側の電極のノイズと上部シールド層側の電極のノイズとの差分がプリアンプで増幅されて再生信号に重畳されてしまう。従って、CPP構造を有する読出しヘッド素子は、外来ノイズに対して不利となる。
Klass B.Klaassen et al., "Write-to-Read Coupling", IEEE Trans. Magn. Vol.30, pp61-67, January 2002
そこで、本出願人は、CPP構造のMR読出しヘッド素子を備えた複合型薄膜磁気ヘッドにおいて、基板と読出しヘッド素子の下部シールド層との間の寄生キャパシタンスC4と、読出しヘッド素子の上部シールド層と書込みヘッド素子の下部磁極層との間の寄生キャパシタンスC2とをほぼ等しくすると共に、基板と下部磁極層とを同電位となるように構成することによって、書込み側及び読出し側間のクロストークを低減しかつ外来ノイズの影響を受けにくくすることを提案した(特願2004−301548)。
しかしながら、基板と下部シールド層との間の絶縁層の層厚及び上部シールド層と下部磁極層との間の絶縁層の層厚にはそれぞれ制約があり、また、下部シールド層、上部シールド層及び下部磁極層の形状及び大きさにも制約があるため、これらを調整して寄生キャパシタンスC4と寄生キャパシタンスC2とを等しくさせることは容易ではない。
即ち、基板と下部シールド層との間の絶縁層及び上部シールド層と下部磁極層との間の絶縁層の層厚は、書込み時の熱による磁極***を抑えるための放熱効率を考えると必要以上に厚くはできず、また、製造時間に係る量産性の点からは薄いほど良い。逆に、チャージアップによって絶縁破壊を防ぐためには、あまり薄すぎてもいけない。従って、この層厚を調整して寄生キャパシタンスC4及び/又はC2の調整を行うことは非常に難しい。一方、下部シールド層、上部シールド層及び下部磁極層の層厚、形状及び面積は、外部磁場に対する耐性、書込みストレスによるシールド磁区特性、及び読出し/書込み特性に大きく影響するため、自由に変更することは非常に困難である。従って、これらの層厚、形状及び面積等を調整して寄生キャパシタンスC4及び/又はC2の調整を行うことは非常に困難である。
本発明の目的は、基板と下部シールド層との間の絶縁層及び上部シールド層と下部磁極層との間の絶縁層の層厚、下部シールド層、上部シールド層及び下部磁極層の層厚、形状及び面積を変更することなく、寄生キャパシタンスC4及び/又はC2の調整を行うことが可能な、CPP構造のMR読出しヘッド素子を備えた複合型薄膜磁気ヘッド、磁気ヘッドアセンブリ及び磁気ディスクドライブ装置を提供することにある。
本発明によれば、基板と、第1の絶縁層を介して基板上に形成されており、下部シールド層、上部シールド層並びに下部シールド層及び上部シールド層を介して積層面と垂直の方向にセンス電流が流れるMR層を有するMR読出しヘッド素子と、第2の絶縁層を介してMR読出しヘッド素子上に形成されており、下部磁極層、先端部が下部磁極層の先端部に記録ギャップ層を介して対向する上部磁極層及び書込みコイルを有するインダクティブ書込みヘッド素子と、下部シールド層と基板との実質的な対向面積を増大するために、下部シールド層に電気的に導通しており基板に対向している非磁性導電層とを備えており、基板と下部シールド層との間の寄生キャパシタンスが、上部シールド層と下部磁極層との間の寄生キャパシタンスにほぼ等しく、基板と下部磁極層との間の抵抗値が100Ω以下である複合型薄膜磁気ヘッドが提供される。
下部シールド層に導通した非磁性の導電層を、基板に対向するように設けて下部シールド層と基板との実質的な対向面積を増大させている。下部シールド層と基板との実質的な対向面積を増大させれば、下部シールド層と基板との間の寄生キャパシタンスC4が増大する。そして、基板と下部シールド層との間の寄生キャパシタンスC4が、上部シールド層と下部磁極層との間の寄生キャパシタンスC2にほぼ等しく、さらに、基板と下部磁極層との間の抵抗値が100Ω以下、例えば数Ω、であるため、基板と下部磁極層とが同電位となり、実質的な寄生キャパシタンスC4と実質的な寄生キャパシタンスC2とがほぼ等しくなる。その結果、MR読出しヘッド素子の両端間の電圧がほぼゼロとなり、クロストーク電圧が発生しない。しかも、新たに設けたこの導電層は非磁性であり、下部シールド層、上部シールド層及び下部磁極層の層厚、形状及び面積を変更しなくとも良いため、外部磁場に対する耐性、書込みストレスによるシールド磁区特性、及び読出し/書込み特性が変わってしまうような不都合も生じない。
非磁性導電層が、下部シールド層の基板側の面に積層されていることが最も好ましい。基板側の面に積層されていれば、非磁性導電層と基板との距離が大きくならないので、寄生キャパシタンスC4を増大させる効果が大きい。
非磁性導電層が、下部シールド層の基板とは反対側の面に積層されていても良い。下部シールド層の層厚が薄ければ、基板との距離がさほど大きくならないので、寄生キャパシタンスC4を増大させる効果が生じる。
第2の絶縁層の層厚が第1の絶縁層の層厚より薄いことが好ましい。表面平坦性がさほど良くない基板上に成膜される第1の絶縁層より、表面平坦性の良好な上部シールド層上に成膜される第2の絶縁層の方が薄膜化が可能であり、これによって寄生キャパシタンスC2が増大するが、本発明によればC2=C4とすることができる。第2の絶縁層が薄いことで、放熱特性が向上し、さらに、量産コストも低減できる。
本発明によれば、さらに、基板と、第1の絶縁層を介して基板上に形成されており、下部シールド層、上部シールド層並びに下部シールド層及び上部シールド層を介して積層面と垂直の方向にセンス電流が流れるMR層を有するMR読出しヘッド素子と、第2の絶縁層を介してMR読出しヘッド素子上に形成されており、下部磁極層、先端部が下部磁極層の先端部に記録ギャップ層を介して対向する上部磁極層及び書込みコイルを有するインダクティブ書込みヘッド素子と、上部シールド層と下部磁極層との実質的な対向面積を増大するために、上部シールド層に電気的に導通しており下部磁極層に対向している非磁性導電層とを備えており、基板と下部シールド層との間の寄生キャパシタンスが、上部シールド層と下部磁極層との間の寄生キャパシタンスにほぼ等しく、基板と下部磁極層との間の抵抗値が100Ω以下である複合型薄膜磁気ヘッドが提供される。
上部シールド層に導通した非磁性の導電層を、下部磁極層に対向するように設けて上部シールド層と下部磁極層との実質的な対向面積を増大させている。上部シールド層と下部磁極層との実質的な対向面積を増大させれば、上部シールド層と下部磁極層との間の寄生キャパシタンスC2が増大する。そして、基板と下部シールド層との間の寄生キャパシタンスC4が、上部シールド層と下部磁極層との間の寄生キャパシタンスC2にほぼ等しく、さらに、基板と下部磁極層との間の抵抗値が100Ω以下、例えば数Ω、であるため、基板と下部磁極層とが同電位となり、実質的な寄生キャパシタンスC4と実質的な寄生キャパシタンスC2とがほぼ等しくなる。その結果、MR読出しヘッド素子の両端間の電圧がほぼゼロとなり、クロストーク電圧が発生しない。しかも、新たに設けたこの導電層は非磁性であり、下部シールド層、上部シールド層及び下部磁極層の層厚、形状及び面積を変更しなくとも良いため、外部磁場に対する耐性、書込みストレスによるシールド磁区特性、及び読出し/書込み特性が変わってしまうような不都合も生じない。
非磁性導電層が、上部シールド層の下部磁極層側の面に積層されていることが最も好ましい。下部磁極層側の面に積層されていれば、非磁性導電層と下部磁極層との距離が大きくならないので、寄生キャパシタンスC2を増大させる効果が大きい。
非磁性導電層が、上部シールド層の下部磁極層とは反対側の面に積層されていても良い。上部シールド層の層厚が薄ければ、下部磁極層との距離がさほど大きくならないので、寄生キャパシタンスC2を増大させる効果が生じる。
本発明によれば、さらにまた、基板と、第1の絶縁層を介して基板上に形成されており、下部シールド層、上部シールド層並びに下部シールド層及び上部シールド層を介して積層面と垂直の方向にセンス電流が流れるMR層を有するMR読出しヘッド素子と、第2の絶縁層を介してMR読出しヘッド素子上に形成されており、下部磁極層、先端部が下部磁極層の先端部に記録ギャップ層を介して対向する上部磁極層及び書込みコイルを有するインダクティブ書込みヘッド素子と、下部磁極層と上部シールド層との実質的な対向面積を増大するために、下部磁極層に電気的に導通しており上部シールド層に対向している非磁性導電層とを備えており、基板と下部シールド層との間の寄生キャパシタンスが、上部シールド層と下部磁極層との間の寄生キャパシタンスにほぼ等しく、基板と下部磁極層との間の抵抗値が100Ω以下である複合型薄膜磁気ヘッドが提供される。
下部磁極層に導通した非磁性の導電層を、上部シールド層に対向するように設けて下部磁極層と上部シールド層との実質的な対向面積を増大させている。下部磁極層と上部シールド層との実質的な対向面積を増大させれば、下部磁極層と上部シールド層との間の寄生キャパシタンスC2が増大する。そして、基板と下部シールド層との間の寄生キャパシタンスC4が、上部シールド層と下部磁極層との間の寄生キャパシタンスC2にほぼ等しく、さらに、基板と下部磁極層との間の抵抗値が100Ω以下、例えば数Ω、であるため、基板と下部磁極層とが同電位となり、実質的な寄生キャパシタンスC4と実質的な寄生キャパシタンスC2とがほぼ等しくなる。その結果、MR読出しヘッド素子の両端間の電圧がほぼゼロとなり、クロストーク電圧が発生しない。しかも、新たに設けたこの導電層は非磁性であり、下部シールド層、上部シールド層及び下部磁極層の層厚、形状及び面積を変更しなくとも良いため、外部磁場に対する耐性、書込みストレスによるシールド磁区特性、及び読出し/書込み特性が変わってしまうような不都合も生じない。
非磁性導電層が、下部磁極層の上部シールド層側の面に積層されていることが最も好ましい。上部シールド層側の面に積層されていれば、非磁性導電層と上部シールド層との距離が大きくならないので、寄生キャパシタンスC2を増大させる効果が大きい。
非磁性導電層が、下部磁極層の上部シールド層とは反対側の面に積層されていても良い。下部磁極層の層厚が薄ければ、上部シールド層との距離がさほど大きくならないので、寄生キャパシタンスC2を増大させる効果が生じる。
このように書込みヘッド素子から読出しヘッド素子への直接的なクロストーク電圧を低減することより、TMR読出しヘッド素子では、そのバリア層にピンホールが形成されて素子抵抗が低下し読出し特性が劣化することを確実に防止できる。また、CPP構造のGMR読出しヘッド素子では、エレクトロマイグレーションの加速によって生じる読出しヘッド素子の短寿命化を防止でき、金属原子の層間拡散の加速によって生じる磁気特性劣化を防止することができる。
MR読出しヘッド素子が、GMR読出しヘッド素子又はTMR読出しヘッド素子であることが好ましい。
本発明によれば、さらに、上述した複合型薄膜磁気ヘッドと、この複合型薄膜磁気ヘッドを支持する支持機構とを備えた磁気ヘッドアセンブリが提供される。ここで、磁気ヘッドアセンブリとは、書込みヘッド素子及び読出し磁気ヘッド素子を備えた複合型薄膜磁気ヘッド(磁気ヘッドスライダ)とその支持機構とを機械的、電気的に組み立てたアセンブリである。具体例を挙げると、磁気ヘッドスライダとサスペンションとのアセンブリの場合にはヘッドジンバルアセンブリ(HGA)と称され、磁気ヘッドスライダとこれを支持するサスペンション及び支持アームのアセンブリの場合にはヘッドアームアセンブリ(HAA)と称され、HAAが複数積み重ねられる場合にはヘッドスタックアセンブリ(HSA)と称されることが多い。
本発明によれば、さらに、少なくとも1つの磁気ディスクと、少なくとも1つの上述した磁気ヘッドアセンブリとを備えた磁気ディスクドライブ装置が提供される。
本発明によれば、寄生キャパシタンスC4と寄生キャパシタンスC2とが等しくなるように容易に調整することが可能となる。しかも、この導電層が非磁性であり、下部シールド層、上部シールド層及び下部磁極層の層厚、形状及び面積を変更しなくとも良いため、外部磁場に対する耐性、書込みストレスによるシールド磁区特性、及び読出し/書込み特性が変わってしまうような不都合も生じない。
図1は本発明の一実施形態として、磁気ディスクドライブ装置の要部の構成を概略的に示す斜視図であり、図2は図1のHGAの一構成例を示す斜視図であり、図3は図2のHGAの先端部に装着されている複合型薄膜磁気ヘッドを示す斜視図である。
図1において、10はスピンドルモータ11の回転軸の回りを回転する複数の磁気ディスク、12は複合型薄膜磁気ヘッド(磁気ヘッドスライダ)をトラック上に位置決めするためのアセンブリキャリッジ装置、13は薄膜磁気ヘッドの読み書き動作を制御するための記録再生回路をそれぞれ示している。
アセンブリキャリッジ装置12には、複数の駆動アーム14が設けられている。これら駆動アーム14は、ボイスコイルモータ(VCM)15によってピボットベアリング軸16を中心にして角揺動可能であり、この軸16に沿った方向にスタックされている。各駆動アーム14の先端部には、HGA17が取り付けられている。各HGA17には、複合型薄膜磁気ヘッドが、各磁気ディスク10の表面に対向するように設けられている。磁気ディスクドライブ装置に、単数の磁気ディスク10、駆動アーム14、HGA17及び複合型薄膜磁気ヘッドを設けるようにしても良い。
図2に示すように、HGAは、サスペンション20の先端部に、インダクティブ書込みヘッド素子及びCPP構造のMR読出しヘッド素子を有する複合型薄膜磁気ヘッド21を固着し、さらにその薄膜磁気ヘッド21の端子電極に配線部材25の一端を電気的に接続して構成される。
サスペンション20は、複合型薄膜磁気ヘッド21に印加される荷重を発生するロードビーム22と、このロードビーム22上に固着され支持された弾性を有するフレクシャ23と、ロードビーム22の基部に設けられたベースプレート24と、フレクシャ23及びロードビーム22上に設けられておりリード導体及びその両端に電気的に接続された接続パッドからなる配線部材25とから主として構成されている。
本発明の磁気ヘッドアセンブリ(HGA)におけるサスペンションの構造は、以上述べた構造に限定されるものではないことは明らかである。なお、図示されていないが、サスペンション20の途中にヘッド駆動用ICチップを装着してもよい。
図3に示すように、本実施形態における磁気ヘッドスライダは、互いに積層されたインダクティブ書込みヘッド素子及びMR読出しヘッド素子からなる複合型磁気ヘッド素子30と、これらの素子に接続された4つの信号端子電極31及び32とを、その素子形成面33上に備えている。なお、34は磁気ヘッドスライダの浮上面(ABS)である。なお、これらの端子電極の数及び位置は、図3の形態に限定されるものではない。
図4は本実施形態における複合型薄膜磁気ヘッドの構成を概略的に示す中心断面図である。
例えばAl−TiC(AlTiC)等の導電性材料からなる基板(スライダ基板)40上に例えばAl又はSiO等の絶縁材料からなる下地層(本願発明の第1の絶縁層に対応)41が積層されている。
この基板40のABSに近い側では、この下地層41の上に例えばTi、Ta、Au、Ru、Cu等の非磁性導電材料からなる非磁性導電層42が付加的に積層されており、さらにその上に、例えばFeAlSi、NiFe、CoFe、NiFeCo、FeN、FeZrN、FeTaN、CoZrNb、CoZrTa等の金属磁性材料からなる下部電極層を兼用する下部シールド層(SF)43が積層されている。
一般に、下部シールド層43は下地層41を介して基板40に対向しており、従って、下部シールド層43及び基板40が対向電極として機能し、寄生キャパシタンスC4がこの部分に発生する。特に本実施形態では、非磁性導電層42が下部シールド層43の基板40側の面に積層されているので、この非磁性導電層42と基板40とがこの寄生キャパシタンスC4を発生する対向電極として働く。
図5(A)に示すように、非磁性導電層42が下部シールド層43の外形サイズより大きな外形サイズを有しているため、後述するように、下部シールド層43の基板40に対する実質的な対向面積、即ちこの寄生キャパシタンスC4を発生する対向電極面積が増大する。下部シールド層43の層厚が例えば2μm程度であるのに対し、非磁性導電層42の層厚は例えば0.1μm程度である。
なお、図5(B)に示すように、非磁性導電層42′が一部に貫通部42a′を有し、その貫通部に下部シールド層43′が充填されている構成であっても良い。このように、たとえ、非磁性導電層42′自体の面積が下部シールド層43の面積より小さい場合であっても、非磁性導電層42′の外形サイズが下部シールド層43′の外形サイズより大きければ、下部シールド層43′の基板40に対する実質的な対向面積、即ちこの寄生キャパシタンスC4を発生する対向電極面積が増大する。
下部シールド層43上には、CPP構造のMR層44と、例えばAl又はSiO等の絶縁材料からなる絶縁層45とが積層されている。
CPP構造のMR層44は、CPP−GMR層の場合、例えばNiFe、CoFe、NiFeCo等の強磁性材料によるフリー層、例えばCu等の非磁性導電材料による非磁性層、例えばNiFe、CoFe、NiFeCo等の強磁性材料によるピンド層及び例えばPtMn、FeMn、MnIr、NiMn、CrMnPt等の反強磁性材料によるピン層の多層構造で構成されている。TMR層の場合、上述の非磁性層の代わりに、Ti、Ta、Al、Zr、Hf、Si又はZnの酸化物等の絶縁材料による薄いバリア層が用いられる。CPP構造のMR層44としては、その他の種々の層構成が適用可能であることはもちろんである。また、このMR層44には、図示されていない磁区制御層等が積層されている。
CPP構造のMR層44及び絶縁層45上には、例えばFeAlSi、NiFe、CoFe、NiFeCo、FeN、FeZrN、FeTaN、CoZrNb、CoZrTa等の金属磁性材料からなる上部電極層を兼用する上部シールド層(SS1)46が積層されている。
下部シールド層43、MR層44、絶縁層45、上部シールド層46、磁区制御層及び図示されていないリード導体層等からCPP構造のMR読出しヘッド素子が構成されている。
上部シールド層46上には、例えばAl又はSiO等の絶縁材料からなるシールド間絶縁層(本願発明の第2の絶縁層に対応)47が積層されており、その上には、例えばFeAlSi、NiFe、CoFe、NiFeCo、FeN、FeZrN、FeTaN、CoZrNb、CoZrTa等の金属磁性材料からなる下部磁極層(SS2)48が積層されている。
下部磁極層48上には、例えばRu等の金属材料又はSiO等の絶縁材料からなる記録ギャップ層49が積層されており、その上には、例えばFeAlSi、NiFe、CoFe、NiFeCo、FeN、FeZrN、FeTaN、CoZrNb、CoZrTa等の金属磁性材料からなる上部磁極層50の上部磁極部50aと、レジスト等の絶縁材料による絶縁層51で覆われたCu等の導電性材料からなる書込みコイル層52とが積層されている。下部磁極層48の先端部(ABS側の端部)である下部磁極部48aと、上部磁極層50の先端部(ABS側の端部)である上部磁極部50aとは、記録ギャップ層49を介して互いに対向している。
なお、本実施形態において、書込みコイル層52は2層構造となっているが、単層構造又はその他の構造であっても良いことは明らかである。
書込みコイル層52上には、絶縁層51を介して上部磁極層50の上部ヨーク部50bが形成されており、その上には、例えばAl等の絶縁材料からなる保護層53が積層されている。
下部磁極層48、記録ギャップ層49、上部磁極層50、絶縁層51及び書込みコイル層52等からインダクティブ書込みヘッド素子が構成されている。
絶縁層51及び書込みコイル層52は、下部磁極層48及び上部磁極層50を磁気的に連結するバックギャップ部54より後方(ABSとは反対方向側)位置にも形成されている。
この後方位置には、ヘッド内で発生する熱を基板側へ逃がすためのヒートシンク層55が形成されている。このヒートシンク層55は、下部シールド層43、上部シールド層46及び下部磁極層48とは分離してそれぞれ形成されかつ互いに密着して積層された層43″、46″及び48″からなる積層体として構成されている。このヒートシンク層55の底部は、下地層41を一部除去して形成された貫通孔41aを通って基板40に接続されている。
中央断面位置に存在しないため、図4には示されていないが、ヒートシンク層55と下部磁極層48とを電気的に接続するストリップ状の薄い接続導体56が設けられている。図6はこの構成を説明する図であり、中央よりずれた位置の断面を表している。
この接続導体56は、例えばCu等の導電性材料によって形成されているが、その層厚が例えば0.1μmと薄く、またその幅がかなり細いため、全体で数Ω程度の電気抵抗を有している。一方、ヒートシンク層55は金属磁性材料で構成されているため良導電体である。従って、基板40と下部磁極層48とは、数Ω程度の抵抗体で接続されていることとなる。この抵抗値は後述するように、100Ω以下であることが望ましい。
図7は複合型薄膜磁気ヘッドの概略的な等価回路図であり、図8は図4に示した複合型薄膜磁気ヘッドの構成を模式的に示した図である。
図7に示すように、CPP構造のMR読出しヘッド素子を備えた複合型薄膜磁気ヘッドでは、インダクティブ書込みヘッド素子の書込みコイル52と下部磁極層(SS2)48との間で寄生キャパシタンスC1が発生し、下部磁極層48と上部シールド層(SS1)46との間で寄生キャパシタンスC2が発生し、上部シールド層46と下部シールド層(SF)43との間で寄生キャパシタンスC3が発生し、下部シールド層43と基板40との間で寄生キャパシタンスC4が発生する。
前にも述べたように、書込み側及び読出し側間のクロストークを低減しかつ外来ノイズの影響を受けにくくするためには、(1)基板40と下部磁極層48とを同電位となるように構成すると共に、(2)寄生キャパシタンスC4と寄生キャパシタンスC2とを等しくすることが必要となる。
(1)については、接続導体56及びヒートシンク層55を用いることにより、基板40と下部磁極層48とを100Ω以下の抵抗体で接続することができるので、実現されている。一方、(2)については、本実施形態では、非磁性導電層42と基板40との互いに対向する部分の電極面積を変えて寄生キャパシタンスC4を調整し、C2=C4を実現するようにしている。
良く知られているように、寄生キャパシタンスC2及びC4は、次式で与えられる。ここで、ε2はシールド間絶縁層47の絶縁材料の誘電率、ε4は下地層41の絶縁材料の誘電率、t2はシールド間絶縁層47の層厚、t4は下地層41の層厚、S2は下部磁極層48と上部シールド層46との互いに対向する部分の電極面積、S4は非磁性導電層42と基板40との互いに対向する部分の電極面積である。
C2=ε2×S2/t2、C4=ε4×S4/t4
図8に示すように、本実施形態では、非磁性導電層42を下部シールド層43の基板40側の面に積層することで、電極面積S4を増大させ、寄生キャパシタンスC4を増大させることで調整を行ってC2=C4を実現している。なお、同図において、57及び58は、CPP構造のMR読出しヘッド素子の下部電極及び上部電極をそれぞれ構成する下部シールド層43及び上部シールド層46に図示しないリード導体等によって電気的に接続された端子電極である。
下地層41及びシールド間絶縁層47の層厚は、書込み時の熱による磁極***を抑えるための放熱効率を考えると必要以上に厚くはできず、また、製造時間に係る量産性の点からは薄いほど良い。逆に、チャージアップによって絶縁破壊を防ぐためには、あまり薄すぎてもいけない。下地層41は表面平坦性がさほど良くない基板40上に成膜されるため、絶縁性の観点からAlで構成した場合、0.3μm程度の層厚を最小限維持する必要がある。従って、この層厚を調整して寄生キャパシタンスC4及び/又はC2の調整を行うことは非常に難しい。
ただし、シールド間絶縁層47は化学的機械的研磨(CMP)によって表面平坦性が改善された表面上に成膜されるので、0.3μmより薄くすることができるが、これによって寄生キャパシタンスC2は増大してしまう。
下地層41及びシールド間絶縁層47として誘電率ε4及びε2が互いに異なる絶縁材料を用いることもできるが、生産性の観点から、同じ材料を用いることが好ましい。
下部シールド層(SF)43、上部シールド層(SS1)46及び下部磁極層(SS2)48自体の形状及び面積を変えることによって互いに対向する部分の電極面積を調整することも考えられるが、これらは、外部磁場に対する耐性、書込みストレスによるシールド磁区特性、及び読出し/書込み特性に大きく影響するため、自由に変更することが非常に困難である。従って、これらの形状及び面積等を調整して寄生キャパシタンスC4及び/又はC2の調整を行うことは非常に困難である。
本実施形態では、下部シールド層43に導通した非磁性の導電層42を基板40に対向するように付加することによって、下部シールド層43と基板40との実質的な対向面積を増大させ、寄生キャパシタンスC4を増大させている。従って、寄生キャパシタンスC4と寄生キャパシタンスC2とが等しくなるように容易に調整することができ、しかも、この導電層は非磁性であり、下部シールド層43、上部シールド層46及び下部磁極層48の層厚、形状及び面積を変更しなくとも良いため、外部磁場に対する耐性、書込みストレスによるシールド磁区特性、及び読出し/書込み特性が変わってしまうような不都合も生じない。
さらに、本実施形態のように、非磁性導電層42を下部シールド層43の基板40側の面に積層することにより、非磁性導電層42と基板40との距離が大きくならず、寄生キャパシタンスC4を増大させる効果が大きい。
寄生キャパシタンスC4を大きくすれば、寄生キャパシタンスC2を大きくしても良いので、シールド間絶縁層47をより薄くすることも可能である。
本実施形態のごとく、基板40と下部磁極層48とを100Ω以下の抵抗体で接続することにより基板40と下部磁極層48とがほぼ同電位となり、さらに、寄生キャパシタンスを調整してC2=C4とすることにより、CPP構造のMR読出しヘッド素子の下部電極及び上部電極をそれぞれ構成する下部シールド層43及び上部シールド層46間の電位差がほぼ零となる。その結果、外来ノイズが侵入しても、再生信号には現れなくなり、外来ノイズによるエラー発生がなくなり、磁気ヘッドの信頼性が向上する。
図9は寄生キャパシタンスの比C2/C4をパラメータとした場合の、再生信号信号周波数(MHz)に対する再生信号に含まれる外来ノイズ(V)の特性を表した図である。
同図からも明らかのように、C2/C4=1の場合は、ノイズがほとんど発生していない。
図10は基板40と下部磁極層48と間の抵抗体の抵抗値をパラメータとした場合の、寄生キャパシタンスの比C2/C4に対するクロストーク電圧(%)の特性を表した図である。
同図から、抵抗体の抵抗値が100Ω以下であり、かつC2/C4=1の場合は、クロストークは発生していない。
このように書込みヘッド素子から読出しヘッド素子への直接的なクロストーク電圧を低減することより、TMR読出しヘッド素子では、そのバリア層にピンホールが形成されて素子抵抗が低下し読出し特性が劣化することを確実に防止できる。また、CPP構造のGMR読出しヘッド素子では、エレクトロマイグレーションの加速によって生じる読出しヘッド素子の短寿命化を防止でき、金属原子の層間拡散の加速によって生じる磁気特性劣化を防止することができる。
本実施形態の変更態様として、非磁性導電層42を下部シールド層43の基板40とは反対側の面に積層した構成としても良い。例えば、シールド間絶縁層47を薄くした結果、寄生キャパシタンスC2が大きくなり、C2=C4とするために、寄生キャパシタンスC4を増大させる必要がある場合、この変更態様のごとく構成しても、C4を増大させ、C2=C4の調整ができる。
また、本実施形態の他の変更態様として、非磁性導電層42を下部シールド層43に積層することなく基板40と対向させかつ下部シールド層43に電気的に導通させるような構成としても良い。
図11は本発明の他の実施形態における複合型薄膜磁気ヘッドの構成を模式的に示した図である。
本実施形態では、非磁性導電層112を上部シールド層(SS1)46の下部磁極層48側の面に付加的に積層している。本実施形態におけるその他の構成は図1〜図10の実施形態の場合と全く同様であるため、説明を省略する。また、同様の構成要素については同じ参照符号を使用する。
寄生キャパシタンスC4と寄生キャパシタンスC2とを等しくするために、本実施形態では、非磁性導電層112と下部磁極層48との互いに対向する部分の電極面積を変えて寄生キャパシタンスC2を調整し、C2=C4を実現するようにしている。即ち、本実施形態では、非磁性導電層112を上部シールド層46の下部磁性層48側の面に積層することで、電極面積S2を増大させ、寄生キャパシタンスC2を増大させることで、C2=C4を実現しているのである。なお、同図において、57及び58は、CPP構造のMR読出しヘッド素子の下部電極及び上部電極をそれぞれ構成する下部シールド層43及び上部シールド層46に図示しないリード導体等によって電気的に接続された端子電極である。
下地層41及びシールド間絶縁層47の層厚は、書込み時の熱による磁極***を抑えるための放熱効率を考えると必要以上に厚くはできず、また、製造時間に係る量産性の点からは薄いほど良い。逆に、チャージアップによって絶縁破壊を防ぐためには、あまり薄すぎてもいけない。下地層41は表面平坦性がさほど良くない基板40上に成膜されるため、絶縁性の観点からAlで構成した場合、0.3μm程度の層厚を最小限維持する必要がある。従って、この層厚を調整して寄生キャパシタンスC4及び/又はC2の調整を行うことは非常に難しい。
ただし、シールド間絶縁層47は化学的機械的研磨(CMP)によって表面平坦性が改善された表面上に成膜されるので、0.3μmより薄くすることができ、これによっても寄生キャパシタンスC2を増大させることができる。しかし、それ以上に寄生キャパシタンスC2を増大させたいときは、非磁性導電層112によりこの寄生キャパシタンスC2を調整することが有効である。
下地層41及びシールド間絶縁層47として誘電率ε4及びε2が互いに異なる絶縁材料を用いることもできるが、生産性の観点から、同じ材料を用いることが好ましい。
下部シールド層(SF)43、上部シールド層(SS1)46及び下部磁極層(SS2)48自体の形状及び面積を変えることによって互いに対向する部分の電極面積を調整することも考えられるが、これらは、外部磁場に対する耐性、書込みストレスによるシールド磁区特性、及び読出し/書込み特性に大きく影響するため、自由に変更することが非常に困難である。従って、これらの形状及び面積等を調整して寄生キャパシタンスC4及び/又はC2の調整を行うことは非常に困難である。
本実施形態では、上部シールド層46に導通した非磁性の導電層112を下部磁極層48に対向するように付加することによって、上部シールド層46と下部磁極層48との実質的な対向面積を増大させ、寄生キャパシタンスC2を増大させている。従って、寄生キャパシタンスC4と寄生キャパシタンスC2とが等しくなるように容易に調整することができ、しかも、この導電層は非磁性であり、下部シールド層43、上部シールド層46及び下部磁極層48の層厚、形状及び面積を変更しなくとも良いため、外部磁場に対する耐性、書込みストレスによるシールド磁区特性、及び読出し/書込み特性が変わってしまうような不都合も生じない。
さらに、本実施形態のように、非磁性導電層112を上部シールド層46の下部磁極層48側の面に積層することにより、非磁性導電層112と下部磁極層48との距離が大きくならず、寄生キャパシタンスC2を増大させる効果が大きい。
本実施形態のごとく、基板40と下部磁極層48とを100Ω以下の抵抗体で接続することにより基板40と下部磁極層48とがほぼ同電位となり、さらに、寄生キャパシタンスを調整してC2=C4とすることにより、CPP構造のMR読出しヘッド素子の下部電極及び上部電極をそれぞれ構成する下部シールド層43及び上部シールド層46間の電位差がほぼ零となる。その結果、外来ノイズが侵入しても、再生信号には現れなくなり、外来ノイズによるエラー発生がなくなり、磁気ヘッドの信頼性が向上する。
本実施形態の変更態様として、非磁性導電層112を上部シールド層46の下部磁極層48とは反対側の面に積層した構成としても良い。例えば、C2<C4でありかつシールド間絶縁層47を薄くできない場合、C2=C4とするためには寄生キャパシタンスC2をさらに増大させる必要がある。このような場合、この変更態様のごとく構成しても、C2を増大させ、C2=C4の調整ができる。
また、本実施形態の他の変更態様として、非磁性導電層112を上部シールド層46に積層することなく下部磁極層48と対向させかつ上部シールド層46に電気的に導通させるような構成としても良い。
図12は本発明のさらに他の実施形態における複合型薄膜磁気ヘッドの構成を模式的に示した図である。
本実施形態では、非磁性導電層122を下部磁極層(SS2)48の上部シールド層46側の面に付加的に積層している。本実施形態におけるその他の構成は図1〜図10の実施形態の場合と全く同様であるため、説明を省略する。また、同様の構成要素については同じ参照符号を使用する。
寄生キャパシタンスC4と寄生キャパシタンスC2とを等しくするために、本実施形態では、非磁性導電層122と上部シールド層46との互いに対向する部分の電極面積を変えて寄生キャパシタンスC2を調整し、C2=C4を実現するようにしている。即ち、本実施形態では、非磁性導電層122を下部磁性層48の上部シールド層46側の面に積層することで、電極面積S2を増大させ、寄生キャパシタンスC2を増大させることで、C2=C4を実現しているのである。なお、同図において、57及び58は、CPP構造のMR読出しヘッド素子の下部電極及び上部電極をそれぞれ構成する下部シールド層43及び上部シールド層46に図示しないリード導体等によって電気的に接続された端子電極である。
下地層41及びシールド間絶縁層47の層厚は、書込み時の熱による磁極***を抑えるための放熱効率を考えると必要以上に厚くはできず、また、製造時間に係る量産性の点からは薄いほど良い。逆に、チャージアップによって絶縁破壊を防ぐためには、あまり薄すぎてもいけない。下地層41は表面平坦性がさほど良くない基板40上に成膜されるため、絶縁性の観点からAlで構成した場合、0.3μm程度の層厚を最小限維持する必要がある。従って、この層厚を調整して寄生キャパシタンスC4及び/又はC2の調整を行うことは非常に難しい。
ただし、シールド間絶縁層47は化学的機械的研磨(CMP)によって表面平坦性が改善された表面上に成膜されるので、0.3μmより薄くすることができ、これによっても寄生キャパシタンスC2を増大させることができる。しかし、それ以上に寄生キャパシタンスC2を増大させたいときは、非磁性導電層122によりこの寄生キャパシタンスC2を調整することが有効である。
下地層41及びシールド間絶縁層47として誘電率ε4及びε2が互いに異なる絶縁材料を用いることもできるが、生産性の観点から、同じ材料を用いることが好ましい。
下部シールド層(SF)43、上部シールド層(SS1)46及び下部磁極層(SS2)48自体の形状及び面積を変えることによって互いに対向する部分の電極面積を調整することも考えられるが、これらは、外部磁場に対する耐性、書込みストレスによるシールド磁区特性、及び読出し/書込み特性に大きく影響するため、自由に変更することが非常に困難である。従って、これらの形状及び面積等を調整して寄生キャパシタンスC4及び/又はC2の調整を行うことは非常に困難である。
本実施形態では、下部磁極層48に導通した非磁性の導電層122を上部シールド層46に対向するように付加することによって、下部磁極層48と上部シールド層46との実質的な対向面積を増大させ、寄生キャパシタンスC2を増大させている。従って、寄生キャパシタンスC4と寄生キャパシタンスC2とが等しくなるように容易に調整することができ、しかも、この導電層は非磁性であり、下部シールド層43、上部シールド層46及び下部磁極層48の層厚、形状及び面積を変更しなくとも良いため、外部磁場に対する耐性、書込みストレスによるシールド磁区特性、及び読出し/書込み特性が変わってしまうような不都合も生じない。
さらに、本実施形態のように、非磁性導電層122を下部磁極層48の上部シールド層46側の面に積層することにより、非磁性導電層122と上部シールド層46との距離が大きくならず、寄生キャパシタンスC2を増大させる効果が大きい。
本実施形態のごとく、基板40と下部磁極層48とを100Ω以下の抵抗体で接続することにより基板40と下部磁極層48とがほぼ同電位となり、さらに、寄生キャパシタンスを調整してC2=C4とすることにより、CPP構造のMR読出しヘッド素子の下部電極及び上部電極をそれぞれ構成する下部シールド層43及び上部シールド層46間の電位差がほぼ零となる。その結果、外来ノイズが侵入しても、再生信号には現れなくなり、外来ノイズによるエラー発生がなくなり、磁気ヘッドの信頼性が向上する。
本実施形態の変更態様として、非磁性導電層122を下部磁極層48の上部シールド層46とは反対側の面に積層した構成としても良い。例えば、C2<C4でありかつシールド間絶縁層47を薄くできない場合、C2=C4とするためには寄生キャパシタンスC2をさらに増大させる必要がある。このような場合、この変更態様のごとく構成しても、C2を増大させ、C2=C4の調整ができる。
また、本実施形態の他の変更態様として、非磁性導電層122を下部磁極層48に積層することなく上部シールド層46と対向させかつ下部磁極層48に電気的に導通させるような構成としても良い。
以上述べた実施形態は全て本発明を例示的に示すものであって限定的に示すものではなく、本発明は他の種々の変形態様及び変更態様で実施することができる。従って本発明の範囲は特許請求の範囲及びその均等範囲によってのみ規定されるものである。
本発明の一実施形態として、磁気ディスクドライブ装置の要部の構成を概略的に示す斜視図である。 図1のHGAの一構成例を示す斜視図である。 図2のHGAの先端部に装着されている複合型薄膜磁気ヘッドを示す斜視図である。 図3の複合型薄膜磁気ヘッドの構成を概略的に示す中心断面図である。 図3の複合型薄膜磁気ヘッドにおける下部シールド層及び非磁性導電層の構造例を説明するための斜視図である。 ヒートシンク層と下部磁極層とを電気的に接続する接続導体の構成を説明する図である。 複合型薄膜磁気ヘッドの概略的な等価回路図である。 図4に示した複合型薄膜磁気ヘッドの構成を模式的に示した図である。 寄生キャパシタンスの比C2/C4をパラメータとした場合の、再生信号信号周波数(MHz)に対する再生信号に含まれる外来ノイズ(V)の特性を表した図である。 基板と下部磁極層と間の抵抗体の抵抗値をパラメータとした場合の、寄生キャパシタンスの比C2/C4に対するクロストーク電圧(%)の特性を表した図である。 本発明の他の実施形態における複合型薄膜磁気ヘッドの構成を模式的に示した図である。 本発明のさらに他の実施形態における複合型薄膜磁気ヘッドの構成を模式的に示した図である。
符号の説明
10 磁気ディスク
11 スピンドルモータ
12 アセンブリキャリッジ装置
13 記録再生回路
14 駆動アーム
15 ボイスコイルモータ(VCM)
16 ピボットベアリング軸
17 HGA
20 サスペンション
21 薄膜磁気ヘッド
22 ロードビーム
23 フレクシャ
24 ベースプレート
25 配線部材
30 書込み及び読出し磁気ヘッド素子
31、31 信号端子電極
33 素子形成面
34、40a ABS
40 基板
41 下地層
41a 貫通孔
42、42′、112、122 非磁性導電層
42a′ 貫通部
43、43′ 下部シールド層
44 CPP構造のMR層
45、51 絶縁層
46 上部シールド層
47 シールド間絶縁層
48 下部磁極層
48a 下部磁極部
49 記録ギャップ層
50 上部磁極層
50a 上部磁極部
50b 上部ヨーク部
52 書込みコイル層
53 保護層
54 バックギャップ部
55 ヒートシンク層
43″、46″、48″ 層
56 接続導体
57、58 端子電極

Claims (14)

  1. 基板と、第1の絶縁層を介して該基板上に形成されており、下部シールド層、上部シールド層並びに該下部シールド層及び該上部シールド層を介して積層面と垂直の方向にセンス電流が流れる磁気抵抗効果層を有する磁気抵抗効果読出しヘッド素子と、第2の絶縁層を介して該磁気抵抗効果読出しヘッド素子上に形成されており、下部磁極層、先端部が該下部磁極層の先端部に記録ギャップ層を介して対向する上部磁極層及び書込みコイルを有するインダクティブ書込みヘッド素子と、前記下部シールド層と前記基板との実質的な対向面積を増大するために、該下部シールド層に電気的に導通しており該基板に対向している非磁性導電層とを備えており、前記基板と前記下部シールド層との間の寄生キャパシタンスが、前記上部シールド層と前記下部磁極層との間の寄生キャパシタンスに等しく、前記基板と前記下部磁極層との間の抵抗値が100Ω以下であることを特徴とする複合型薄膜磁気ヘッド。
  2. 前記非磁性導電層が、前記下部シールド層の前記基板側の面に積層されていることを特徴とする請求項1に記載の複合型薄膜磁気ヘッド。
  3. 前記非磁性導電層が、前記下部シールド層の前記基板とは反対側の面に積層されていることを特徴とする請求項1に記載の複合型薄膜磁気ヘッド。
  4. 前記第2の絶縁層の層厚が前記第1の絶縁層の層厚より薄いことを特徴とする請求項1から3のいずれか1項に記載の複合型薄膜磁気ヘッド。
  5. 基板と、第1の絶縁層を介して該基板上に形成されており、下部シールド層、上部シールド層並びに該下部シールド層及び該上部シールド層を介して積層面と垂直の方向にセンス電流が流れる磁気抵抗効果層を有する磁気抵抗効果読出しヘッド素子と、第2の絶縁層を介して該磁気抵抗効果読出しヘッド素子上に形成されており、下部磁極層、先端部が該下部磁極層の先端部に記録ギャップ層を介して対向する上部磁極層及び書込みコイルを有するインダクティブ書込みヘッド素子と、前記上部シールド層と前記下部磁極層との実質的な対向面積を増大するために、該上部シールド層に電気的に導通しており該下部磁極層に対向している非磁性導電層とを備えており、前記基板と前記下部シールド層との間の寄生キャパシタンスが、前記上部シールド層と前記下部磁極層との間の寄生キャパシタンスに等しく、前記基板と前記下部磁極層との間の抵抗値が100Ω以下であることを特徴とする複合型薄膜磁気ヘッド。
  6. 前記非磁性導電層が、前記上部シールド層の前記下部磁極層側の面に積層されていることを特徴とする請求項5に記載の複合型薄膜磁気ヘッド。
  7. 前記非磁性導電層が、前記上部シールド層の前記下部磁極層とは反対側の面に積層されていることを特徴とする請求項5に記載の複合型薄膜磁気ヘッド。
  8. 基板と、第1の絶縁層を介して該基板上に形成されており、下部シールド層、上部シールド層並びに該下部シールド層及び該上部シールド層を介して積層面と垂直の方向にセンス電流が流れる磁気抵抗効果層を有する磁気抵抗効果読出しヘッド素子と、第2の絶縁層を介して該磁気抵抗効果読出しヘッド素子上に形成されており、下部磁極層、先端部が該下部磁極層の先端部に記録ギャップ層を介して対向する上部磁極層及び書込みコイルを有するインダクティブ書込みヘッド素子と、前記下部磁極層と前記上部シールド層との実質的な対向面積を増大するために、該下部磁極層に電気的に導通しており該上部シールド層に対向している非磁性導電層とを備えており、前記基板と前記下部シールド層との間の寄生キャパシタンスが、前記上部シールド層と前記下部磁極層との間の寄生キャパシタンスに等しく、前記基板と前記下部磁極層との間の抵抗値が100Ω以下であることを特徴とする複合型薄膜磁気ヘッド。
  9. 前記非磁性導電層が、前記下部磁極層の前記上部シールド層側の面に積層されていることを特徴とする請求項8に記載の複合型薄膜磁気ヘッド。
  10. 前記非磁性導電層が、前記下部磁極層の前記上部シールド層とは反対側の面に積層されていることを特徴とする請求項8に記載の複合型薄膜磁気ヘッド。
  11. 前記磁気抵抗効果読出しヘッド素子が、巨大磁気抵抗効果読出しヘッド素子であることを特徴とする請求項1から10のいずれか1項に記載の複合型薄膜磁気ヘッド。
  12. 前記磁気抵抗効果読出しヘッド素子が、トンネル磁気抵抗効果読出しヘッド素子であることを特徴とする請求項1から10のいずれか1項に記載の複合型薄膜磁気ヘッド。
  13. 請求項1から12のいずれか1項に記載の複合型薄膜磁気ヘッドと、該複合型薄膜磁気ヘッドを支持する支持機構とを備えたことを特徴とする磁気ヘッドアセンブリ。
  14. 少なくとも1つの磁気ディスクと、少なくとも1つの請求項13に記載の磁気ヘッドアセンブリとを備えたことを特徴とする磁気ディスクドライブ装置。
JP2005034280A 2005-02-10 2005-02-10 複合型薄膜磁気ヘッド、磁気ヘッドアセンブリ及び磁気ディスクドライブ装置 Expired - Fee Related JP3988771B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005034280A JP3988771B2 (ja) 2005-02-10 2005-02-10 複合型薄膜磁気ヘッド、磁気ヘッドアセンブリ及び磁気ディスクドライブ装置
US11/348,487 US7542245B2 (en) 2005-02-10 2006-02-07 Composite thin-film magnetic head with non-magnetic conductive layer to balance parasitic capacitances
US12/427,314 US7672084B2 (en) 2005-02-10 2009-04-21 Composite thin-film magnetic head with non-magnetic conductive layer electrically connected with lower pole layer to increase counter electrode area

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005034280A JP3988771B2 (ja) 2005-02-10 2005-02-10 複合型薄膜磁気ヘッド、磁気ヘッドアセンブリ及び磁気ディスクドライブ装置

Publications (2)

Publication Number Publication Date
JP2006221739A JP2006221739A (ja) 2006-08-24
JP3988771B2 true JP3988771B2 (ja) 2007-10-10

Family

ID=36779678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005034280A Expired - Fee Related JP3988771B2 (ja) 2005-02-10 2005-02-10 複合型薄膜磁気ヘッド、磁気ヘッドアセンブリ及び磁気ディスクドライブ装置

Country Status (2)

Country Link
US (2) US7542245B2 (ja)
JP (1) JP3988771B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005293663A (ja) * 2004-03-31 2005-10-20 Tdk Corp 複合型薄膜磁気ヘッド
JP2005293762A (ja) * 2004-04-02 2005-10-20 Tdk Corp 複合型薄膜磁気ヘッド
US7392579B2 (en) * 2005-03-07 2008-07-01 Headway Technologies, Inc. Method for protecting a slider mounted CPP GMR or TMR read head sensor from noise and ESD damage
JP4704947B2 (ja) * 2006-04-12 2011-06-22 ヒタチグローバルストレージテクノロジーズネザーランドビーブイ 薄膜磁気ヘッド
JP4830876B2 (ja) * 2007-01-31 2011-12-07 Tdk株式会社 トンネル型磁気検出素子及びその製造方法
JP2009158065A (ja) * 2007-12-27 2009-07-16 Fujitsu Ltd ヘッドスライダおよび磁気記憶装置
JP2009181623A (ja) * 2008-01-30 2009-08-13 Fujitsu Ltd 磁気ヘッドおよび磁気ヘッドの製造方法
US8472146B2 (en) 2010-08-27 2013-06-25 HGST Netherlands B.V. Current perpendicular magnetoresistive sensor with a dummy shield for capacitance balancing
US8531800B1 (en) * 2012-11-29 2013-09-10 HGST Netherlands B.V. Magnetic write head having dual parallel capacitors for integrated transmission line compensation
JP6280610B1 (ja) * 2016-10-03 2018-02-14 Tdk株式会社 磁気抵抗効果素子及びその製造方法、並びに位置検出装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3975772A (en) * 1975-06-02 1976-08-17 International Business Machines Corporation Double shielded magnetorestive sensing element
JP2741837B2 (ja) * 1993-08-06 1998-04-22 インターナショナル・ビジネス・マシーンズ・コーポレイション 薄膜磁気抵抗ヘッド
US5763108A (en) * 1997-03-05 1998-06-09 Headway Technologies, Inc. High saturtion magnetization material and magnetic head fabricated therefrom
US6181537B1 (en) * 1999-03-29 2001-01-30 International Business Machines Corporation Tunnel junction structure with junction layer embedded in amorphous ferromagnetic layers
JP3737927B2 (ja) 2000-02-23 2006-01-25 アルプス電気株式会社 複合磁気ヘッド
JP4282249B2 (ja) * 2001-04-13 2009-06-17 Tdk株式会社 磁気抵抗効果型素子およびそれを用いた薄膜磁気ヘッド、磁気ヘッド装置ならびに磁気ディスク装置
US20030117749A1 (en) * 2001-12-20 2003-06-26 Shukh Alexander M. Perpendicular read/write head for use in a disc drive storage system
JP3846329B2 (ja) 2002-02-15 2006-11-15 Tdk株式会社 磁気抵抗効果センサ及び該センサを有する薄膜磁気ヘッド
JP4032030B2 (ja) * 2004-02-20 2008-01-16 アルプス電気株式会社 磁気ヘッドの製造方法
JP4377777B2 (ja) * 2004-08-31 2009-12-02 株式会社東芝 磁気ヘッド、ヘッドサスペンションアッセンブリ、および磁気再生装置
US7516538B2 (en) * 2004-09-20 2009-04-14 Headway Technologies, Inc. Method of manufacturing a magnetic head for perpendicular magnetic recording
US7436633B2 (en) * 2004-10-15 2008-10-14 Tdk Corporation Thin-film magnetic head, head gimbal assembly and hard disk system

Also Published As

Publication number Publication date
US7542245B2 (en) 2009-06-02
US7672084B2 (en) 2010-03-02
JP2006221739A (ja) 2006-08-24
US20060176618A1 (en) 2006-08-10
US20090213501A1 (en) 2009-08-27

Similar Documents

Publication Publication Date Title
JP3922303B1 (ja) 複合型薄膜磁気ヘッド、磁気ヘッドアセンブリ及び磁気ディスクドライブ装置
JP3988771B2 (ja) 複合型薄膜磁気ヘッド、磁気ヘッドアセンブリ及び磁気ディスクドライブ装置
US10777222B1 (en) Two-dimensional magnetic recording (TDMR) read head structure with different stacked sensors and disk drive incorporating the structure
JP4322882B2 (ja) 薄膜磁気ヘッド及び該薄膜磁気ヘッドの製造方法
US8125743B2 (en) Thin-film magnetic head, magnetic head assembly, magnetic disk drive apparatus and method for manufacturing thin-film magnetic head
US6657826B2 (en) Magnetoresistive device and method of manufacturing same, thin-film magnetic head and method of manufacturing same, head gimbal assembly and hard disk drive
JP2007157221A (ja) 磁気抵抗効果素子、該素子を備えた薄膜磁気ヘッド及びその製造方法
US7916430B2 (en) Thin-film magnetic head and manufacturing method thereof
JP6397712B2 (ja) 磁気抵抗効果素子、磁気抵抗効果素子の製造方法、磁気ヘッド、および磁気記録再生装置
US7864489B2 (en) Thin-film magnetic head having an antistatic layer preventing a protective coat from being electrostatically charged
US8102623B2 (en) Thin-film magnetic head with a magnetic pole having an inclined step at its top end section surface, magnetic head assembly with the thin-film magnetic head, magnetic disk drive apparatus with the magnetic head assembly, and manufacturing method of thin-film magnetic head
US7215516B2 (en) Magnetoresistive head having magnetoresistive film including free layer and pinned layer arranged in head height direction
US7978438B2 (en) Thin-film magnetic head with shield layer profile having obtuse or rounded corners, magnetic head assembly, magnetic disk drive apparatus and manufacturing method of thin-film magnetic head
US8149547B2 (en) Magnetoresistive effect element and thin-film magnetic head with the magnetoresistive effect element
JP2005251342A (ja) 磁気ヘッド、ヘッドサスペンションアセンブリ及び磁気ディスク装置
CN100373455C (zh) 复合薄膜磁头、磁头组件和磁盘驱动装置
JP2004327651A (ja) 磁気抵抗効果素子、薄膜磁気ヘッド、磁気ヘッド装置及び磁気記録再生装置
US20100061023A1 (en) Magnetic head device and magnetic disk drive apparatus with the magnetic head device
JP2006323900A (ja) 薄膜磁気ヘッドおよびその製造方法、ヘッドジンバルアセンブリ、ヘッドアームアセンブリならびに磁気ディスク装置
JP3858045B1 (ja) 薄膜磁気ヘッド、磁気ヘッド装置及び磁気ディスク装置
JP2006228326A (ja) 薄膜磁気ヘッド、ヘッドジンバルアセンブリ、ヘッドアームアセンブリおよび磁気ディスク装置
JP2006128453A (ja) 磁気抵抗効果素子、該磁気抵抗効果素子を備えた薄膜磁気ヘッド、該薄膜磁気ヘッドを備えたヘッドジンバルアセンブリ及び該ヘッドジンバルアセンブリを備えた磁気ディスク装置
JP2004326915A (ja) 磁気抵抗効果装置、薄膜磁気ヘッドおよびそれらの製造方法、ヘッドジンバルアセンブリならびにハードディスク装置
JP2008102980A (ja) 薄膜磁気ヘッド及び磁気ディスクドライブ装置
JP2006244672A (ja) 薄膜磁気ヘッド、ヘッドジンバルアセンブリ、ヘッドアームアセンブリおよび磁気ディスク装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees