JP3976322B2 - エンジン制御装置 - Google Patents

エンジン制御装置 Download PDF

Info

Publication number
JP3976322B2
JP3976322B2 JP2003540508A JP2003540508A JP3976322B2 JP 3976322 B2 JP3976322 B2 JP 3976322B2 JP 2003540508 A JP2003540508 A JP 2003540508A JP 2003540508 A JP2003540508 A JP 2003540508A JP 3976322 B2 JP3976322 B2 JP 3976322B2
Authority
JP
Japan
Prior art keywords
intake
stroke
engine
fuel injection
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003540508A
Other languages
English (en)
Other versions
JPWO2003038261A1 (ja
Inventor
倫久 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Publication of JPWO2003038261A1 publication Critical patent/JPWO2003038261A1/ja
Application granted granted Critical
Publication of JP3976322B2 publication Critical patent/JP3976322B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/08Throttle valves specially adapted therefor; Arrangements of such valves in conduits
    • F02D9/10Throttle valves specially adapted therefor; Arrangements of such valves in conduits having pivotally-mounted flaps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/045Detection of accelerating or decelerating state
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Valve Device For Special Equipments (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

技術分野
本発明は、エンジンを制御するエンジン制御装置に関するものであり、特に燃料を噴射する燃料噴射装置を備えたエンジンの制御に好適なものである。
背景技術
近年、インジェクタと呼ばれる燃料噴射装置が普及するにつれて、燃料を噴射するタイミングや噴射燃料量、つまり空燃比などの制御が容易になり、高出力化、低燃費化、排ガスのクリーン化などを促進することができるようになった。このうち、特に燃料を噴射するタイミングについては、厳密には吸気バルブの状態、つまり一般的にはカムシャフトの位相状態を検出し、それに合わせて燃料を噴射するのが一般的である。しかしながら、カムシャフトの位相状態を検出するための所謂カムセンサは高価であり、特に二輪車両などではシリンダヘッドが大型化するなどの問題があって採用できないことが多い。そのため、例えば特開平10−227252号公報では、クランクシャフトの位相状態及び吸気圧力を検出し、それらから気筒の行程状態を検出するエンジン制御装置が提案されている。従って、この従来技術を用いることにより、カムシャフトの位相を検出することなく、行程状態を検出することができるので、その行程状態に合わせて燃料の噴射タイミングなどを制御することが可能となる。
ところで、前述したような燃料噴射装置から噴射する燃料噴射量を制御するには、例えばエンジン回転数やスロットル開度に応じた目標空燃比を設定し、実際の吸入空気量を検出して、目標空燃比の逆比に乗ずれば、目標燃料噴射量を算出することができる。
この吸入空気量の検出には、一般的にホットワイヤ式エアフローセンサやカルマン渦流センサが、それぞれ質量流量及び体積流量を測定するセンサとして使用されているが、逆流する空気による誤差要因を排除するため、圧力脈動を抑制する容積体(サージタンク)を必要としたり、逆流した空気が侵入しない位置への取付けを必要としたりする。しかしながら、多くの二輪車のエンジンは各気筒毎への所謂独立吸気系となっているか、若しくはエンジンそのものが単気筒エンジンであり、これらの必要条件を十分に満足することができないことが多く、これらの流量センサを用いても吸入空気量を正確に検出することができない。
また、吸入空気量の検出は、吸気行程の終盤か若しくは圧縮行程の初期であり、既に燃料は噴射されているため、この吸入空気量を用いた空燃比制御は、次のサイクルでしか行えない。このことは、次のサイクルまでの間に、例えば運転者がスロットルを開いて加速しようとしたにもかかわらず、それ以前の目標空燃比で空燃比制御を行ったために、加速に見合うトルクや出力を得ることができず、十分な加速感が得られないという違和感となる。このような問題を解決するためには、スロットルの状態を検出するスロットルバルブセンサやスロットルポジションセンサを用いて運転者の加速の意思を検出すればよいが、特に二輪車の場合には、これらのセンサが大型であったり高価であったりするために採用できず、問題未解決というのが現状である。
本発明は前記諸問題を解決すべく開発されたものであり、スロットルバルブセンサやスロットルポジションセンサを用いることなく、運転者の加速の意思を検出して空燃比を制御することにより、十分な加速考えられるエンジン制御装置を提供する。
発明の開示
上記諸問題を解決するため、本発明のエンジン制御装置は、4サイクルエンジンのクランクシャフトの位相を検出する位相検出手段と、スロットルバルブの下流側で前記エンジンの吸気通路内の吸気圧力を検出する吸気圧力検出手段と、前記位相検出手段で検出されたクランクシャフトの位相及び前記吸気圧力検出手段で検出された吸気圧力に基づいて前記エンジンの負荷を検出し、この検出されたエンジン負荷に基づいて当該エンジンの運転状態を制御するエンジン制御手段とを備え、前記スロットルバルブからエンジンの吸気ポートまでの容積をシリンダ行程容積以下としたことを特徴とするものである。
発明を実施するための最良の形態
以下、本発明の実施の形態について説明する。
図1は、例えばモータサイクル用のエンジン及びその制御装置の一例を示す概略構成である。このエンジン1は、比較的小排気量の単気筒4サイクルエンジンであり、シリンダボディ2、クランクシャフト3、ピストン4、燃焼室5、吸気管6、吸気バルブ7、排気管8、排気バルブ9、点火プラグ10、点火コイル11を備えている。また、吸気管6内には、アクセル開度に応じて開閉されるスロットルバルブ12が設けられ、このスロットルバルブ12の下流側の吸気管(吸気通路)6に、燃料噴射装置としてのインジェクタ13が設けられている。このインジェクタ13は、燃料タンク19内に配設されているフィルタ18、燃料ポンプ17、圧力制御バルブ16に接続されている。
このエンジン1の運転状態は、エンジンコントロールユニット15によって制御される。そして、このエンジンコントロールユニット15の制御入力、つまりエンジン1の運転状態を検出する手段として、クランクシャフト3の回転角度、つまり位相を検出するためのクランク角度センサ20、シリンダボディ2の温度又は冷却水温度、即ちエンジン本体の温度を検出する冷却水温度センサ21、排気管8内の空燃比を検出する排気空燃比センサ22、吸気管6内の吸気圧力を検出するための吸気圧力センサ24、吸気管6内の温度、即ち吸気温度を検出する吸気温度センサ25が設けられている。そして、前記エンジンコントロールユニット15は、これらのセンサの検出信号を入力し、前記燃料ポンプ17、圧力制御バルブ16、インジェクタ13、点火コイル11に制御信号を出力する。
ここで、前記クランク角度センサ20から出力されるクランク角度信号の原理について説明する。本実施形態では、図2aに示すように、クランクシャフト3の外周に、略等間隔で複数の歯23を突設し、その接近を磁気センサ等のクランク角度センサ20で検出して、適宜電気的処理を施してパルス信号を送出する。各歯23間の周方向へのピッチは、クランクシャフト3の位相(回転角度)にして30°であり、各歯23の周方向への幅は、クランクシャフト3の位相(回転角度)にして10°としている。但し、一箇所だけ、このピッチに従っておらず、その他の歯23のピッチに対して二倍のピッチになっている箇所がある。それは、図2aに二点鎖線で示すように、本来、歯のある部分に歯がない、特殊な設定になっており、この部分が不等間隔に相当する。以下、この部分を歯抜け部とも記す。
従って、クランクシャフト3が等速回転しているときの各歯23のパルス信号列は図2bのように表れる。そして、図2aは圧縮上死点時の状態を示している(排気上死点も形態としては同じである)が、この圧縮上死点時の直前のパルス信号を図示“0”とし、その次のパルス信号に図示“1”、次のパルス信号に図示“2”、といった順で図示“4”までナンバリング(番号付け)する。この図示“4”のパルス信号に相当する歯23の次は歯抜け部なので、それを、あたかも歯が存在すると考えて1歯余分にカウントし、次の歯23のパルス信号には図示“6”とナンバリングする。これを繰り返してゆくと、今度は図示“16”のパルス信号の次に歯抜け部が接近するので、前述と同様に1歯余分にカウントし、次の歯23のパルス信号には図示“18”とナンバリングする。クランクシャフト3が二回転すると、4つの行程のサイクルが全て完了するので、図示“23”までナンバリングが済んだら、次の歯23のパルス信号には再び図示“0”とナンバリングする。原則的に、この図示“0”とナンバリングされた歯23のパルス信号の直後が圧縮上死点になっているはずである。このように、検出されたパルス信号列、又はその単体のパルス信号をクランクパルスと定義する。そして、このクランクパルスに基づいて、後述のようにして行程検出を行うと、クランクタイミングを検出することができる。なお、前記歯23は、クランクシャフト3と同期回転する部材の外周に設けても、全く同じである。
一方、前記エンジンコントロールユニット15は、図示されないマイクロコンピュータなどによって構成されている。図3は、このエンジンコントロールユニット15内のマイクロコンピュータで行われるエンジン制御演算処理の実施形態を示すブロック図である。この演算処理では、前記クランク角度信号からエンジン回転数を算出するエンジン回転数算出部26と、同じくクランク角度信号及び前記吸気圧力信号からクランクタイミング情報、即ち行程状態を検出するクランクタイミング検出部27と、このクランクタイミング検出部27で検出されたクランクタイミング情報を読込み、前記吸気温度信号及び前記吸気圧力信号から吸入空気量を算出する吸入空気量算出部28と、前記エンジン回転数算出部26で算出されたエンジン回転数及び前記吸入空気量算出部28で算出された吸入空気量に基づいて目標空燃比を設定したり、加速状態を検出したりすることにより、燃料噴射量と燃料噴射時期を算出設定する燃料噴射量設定部29と、前記クランクタイミング検出部27で検出されたクランクタイミング情報を読込み、前記燃料噴射量設定部29で設定された燃料噴射量及び燃料噴射時期に応じた噴射パルスを前記インジェクタ13に向けて出力する噴射パルス出力部30と、前記クランクタイミング検出部27で検出されたクランクタイミング情報を読込み、前記エンジン回転数算出部26で算出されたエンジン回転数及び前記燃料噴射量設定部29で設定された燃料噴射量に基づいて点火時期を設定する点火時期設定部31と、前記クランクタイミング検出部27で検出されたクランクタイミング情報を読込み、前記点火時期設定部31で設定された点火時期に応じた点火パルスを前記点火コイル11に向けて出力する点火パルス出力部32とを備えて構成される。
前記エンジン回転数算出部26は、前記クランク角度信号の時間変化率から、エンジンの出力軸であるクランクシャフトの回転速度をエンジン回転数として算出する。具体的には、前記隣合う歯23間の位相を、対応するクランクパルス検出所要時間で除したエンジン回転数の瞬間値と、その移動平均値からなるエンジン回転数の平均値とを算出する。
前記クランクタイミング検出部27は、前述した特開平10−227252号公報に記載される行程判別装置と同様の構成を有し、これにより例えば図4に示すように各気筒毎の行程状態を検出し、それをクランクタイミング情報として出力する。即ち、4サイクルエンジンにおいて、クランクシャフトとカムシャフトとは所定の位相差で常時回転し続けているから、例えば図4に示すようにクランクパルスが読込まれているとき、前述した歯抜け部から四番目の図示“9”又は“21”のクランクパルスは排気行程か又は圧縮行程の何れかである。周知のように、排気行程では排気バルブが閉じ、吸気バルブが閉じているので吸気圧力が高く、圧縮行程の初期は、未だ吸気バルブが開いているために吸気圧力が低く、若しくは吸気バルブが閉じていても、先行する吸気行程で吸気圧力が低くなっている。従って、吸気圧力が低いときの図示“21”のクランクパルスは圧縮行程にあることを示しており、図示“0”のクランクパルスが得られた直後が圧縮上死点になる。このようにして、何れかの行程状態が検出できたら、この行程の間を、クランクシャフトの回転速度で補間すれば、現在の行程状態を更に細かく検出することができる。
前記吸入空気量算出部28は、図5に示すように、前記吸気圧力信号及びクランクタイミング情報から吸気圧力を検出する吸気圧力検出部281と、吸気圧力から吸入空気の質量流量を検出するためのマップを記憶している質量流量マップ記憶部282と、この質量流量マップを用いて検出された吸気圧力に応じた質量流量を算出する質量流量算出部283と、前記吸気温度信号から吸気温度を検出する吸気温度検出部284と、前記質量流量算出部283で算出された吸入空気の質量流量と前記吸気温度検出部284で検出された吸気温度とから吸入空気の質量流量を補正する質量流量補正部285とを備えて構成されている。つまり、前記質量流量マップは、例えば吸気温度20℃のときの質量流量で作成されているため、実際の吸気温度(絶対温度比)でこれを補正して吸入空気量を算出する。
本実施形態では、圧縮行程における下死点から吸気バルブ閉じタイミング間の吸気圧力値を用いて吸入空気量を算出する。即ち、吸気バルブ開放時は吸気圧力と気筒内圧力とがほぼ同等となるため、吸気圧力と気筒内容積及び吸気温度が分かれば気筒内空気質量を求めることができる。しかしながら、吸気バルブは圧縮行程開始後もしばらく開いているため、この間に気筒内と吸気管との間で空気が出入りして、下死点以前の吸気圧力から求めた吸入空気量は、実際に気筒内に吸入された空気量と異なる可能性がある。そのため、同じ吸気バルブ開放時でも、気筒内と吸気管との間で空気の出入りがない圧縮行程の吸気圧力を用いて吸入空気量を算出する。なお、更に厳密を期すために、既燃ガス分圧の影響を考慮して、それと相関の高いエンジン回転数を用いて、実験で求めたエンジン回転数に応じた補正を施してもよい。
また、独立吸気系である本実施形態では、吸入空気量算出のための質量流量マップは、図6に示すように、吸気圧力と比較的リニアな関係のものを用いている。これは、求める空気質量がボイルシャルルの法則(PV=nRT)に基づいているためである。これに対して、吸気管が全ての気筒で連結されている場合には、他の気筒の圧力の影響により、吸気圧力≒気筒内圧力という前提が成り立たないため、図に破線で示すようなマップを用いなければならない。
前記燃料噴射量設定部29は、図3に示すように、前記エンジン回転数算出部26で算出されたエンジン回転数26及び前記吸気圧力信号に基づいて定常時目標空燃比を算出する定常時目標空燃比算出部33と、この定常時目標空燃比算出部33で算出された定常時目標空燃比及び前記吸入空気量算出部28で算出された吸入空気量に基づいて定常時燃料噴射量及び燃料噴射時期を算出する定常時燃料噴射量算出部34と、この定常時燃料噴射量算出部34で定常時燃料噴射量及び燃料噴射時期を算出するのに用いられる燃料挙動モデル35と、前記クランク角度信号及び吸気圧力信号及びクランクタイミング検出部27で検出されたクランクタイミング情報に基づいて加速状態を検出する加速状態検出手段41と、この加速状態検出手段41で検出された加速状態に応じて、前記エンジン回転数算出部26で算出されたエンジン回転数に応じた加速時燃料噴射量及び燃料噴射時期を算出する加速時燃料噴射量算出部42とを備えている。前記燃料挙動モデル35は、実質的に、前記定常時燃料噴射量算出部34と一体のものである。即ち、燃料挙動モデル35がなければ、吸気管内噴射を行う本実施形態では、正確な燃料噴射量や燃料噴射時期の算出設定ができないのである。なお、燃料挙動モデル35は、前記吸気温度信号及びエンジン回転数及び冷却水温度信号を必要とする。
前記定常時燃料噴射量算出部34と燃料挙動モデル35とは、例えば図7のブロック図のように構成されている。ここでは、前記インジェクタ13から吸気管6内に噴射される燃料噴射量をMF−INJ、そのうち吸気管6壁に付着する燃料付着率をXとすると、前記燃料噴射量MF−INJのうち、気筒内に直接噴射される直接流入量は((1−X)×MF−INJ)となり、吸気管壁に付着する付着量は(X×MF−INJ)となる。この付着した燃料のうちの幾らかは吸気管壁に沿って気筒内に流れ込む。その残量を燃料残留量MF−BUFとすると、この燃料残留量MF−BUFのうち、吸気流れによって持ち去られる持ち去り率をτとすると、持ち去られて気筒内に流入量は(τ×MF−BUF)となる。
そこで、この定常時燃料噴射量算出部34では、まず前記冷却水温度Tから冷却水温補正係数テーブルを用いて冷却水温補正係数Kを算出する。一方、前記吸入空気量MA−MANに対し、例えばスロットル開度が零であるときに燃料をカットする燃料カットルーチンを行い、次に吸入空気温度Tを用いて温度補正された空気流入量Mを算出し、これに前記目標空燃比AFの逆比を乗じ、更に前記冷却水温補正係数Kを乗じて要求燃料流入量Mを算出する。これに対して、前記エンジン回転数N及び吸気管内圧力PA−MANから燃料付着率マップを用いて前記燃料付着率Xを求めると共に、同じくエンジン回転数N及び吸気管内圧力PA−MANから持ち去り率マップを用いて前記持ち去り率τを算出する。そして、前回の演算時に求めた燃料残留量MF−BUFに前記持ち去り率τを乗じて燃料持ち去り量MF−TAを算出し、これを前記要求燃料流入量Mから減じて前記燃料直接流入量MF−DIRを算出する。前述のように、この燃料直接流入量MF−DIRは、前記燃料噴射量MF−INJの(1−X)倍であるから、ここでは(1−X)で除した定常時燃料噴射量MF−INJを算出する。また、前回までに吸気管に残留した燃料残留量MF−BUFのうち、((1−τ)×MF−BUF)が今回も残留するため、これに前記燃料付着量(X×MF−INJ)を和して、今回の燃料残留量MF−BUFとする。
なお、前記吸入空気量算出部28で算出される吸入空気量が、これから爆発(膨張)行程に入る吸気行程の一つ前のサイクルの吸気行程の終盤又はそれに続く圧縮行程の初期で検出されたものであるため、この定常時燃料噴射量算出部34で算出設定される定常時燃料噴射量及び燃料噴射時期も、その吸入空気量に応じた、一つ前のサイクルの結果である。
また、前記加速状態検出部41は、加速状態閾値テーブルを有している。これは、後述するように、前記吸気圧力信号のうち、現在と同じ行程で且つ同じクランク角度での吸気圧力と現在の吸気圧力との差分値を求め、その値を所定の値と比較して加速状態であることを検出するための閾値であり、具体的には各クランク角度毎に異なる。従って、加速状態の検出には、前記吸気圧力の前回値との差分値を、各クランク角度で異なる所定値と比較して行う。
この加速状態検出部41と前記加速時燃料噴射量算出部42とは、実質的に図8の演算処理で一括に行われる。この演算処理は、前記クランクパルスが入力される毎に実行される。なお、この演算処理では、特に通信のためのステップを設けていないが、演算処理で得られた情報は随時記憶装置に記憶され、また演算処理に必要な情報は随時記憶装置から読込まれる。
この演算処理では、まずステップS1前記吸気圧力信号から吸気圧力PA−MANを読込む。
次にステップS2に移行して、前記クランク角度信号からクランク角度ACSを読込む。
次にステップS3に移行して、前記エンジン回転数算出部26からのエンジン回転数Nを読込む。
次にステップS4に移行して、前記クランクタイミング検出部27から出力されているクランクタイミング情報から行程状態を検出する。
次にステップS5に移行して、現在の行程が排気行程か又は吸気行程か否かを判定し、現在の行程が排気行程か又は吸気行程である場合にはステップS6に移行し、そうでない場合にはステップS7に移行する。
前記ステップS6では、加速時燃料噴射禁止カウンタnが、加速時燃料噴射を許可する所定値n以上であるか否かを判定し、当該加速時燃料噴射禁止カウンタnが所定値n以上である場合にはステップS8に移行し、そうでない場合にはステップS9に移行する。
前記ステップS8では、クランクシャフト2回転前、つまり前回の同じ行程における同じクランク角度ACSの吸気圧力(以下、吸気圧力前回値とも記す)PA−MAN−Lを読込んでからステップS10に移行する。
前記ステップS10では、前記ステップS1で読込んだ現在の吸気圧力PA−MANから前記吸気圧力前回値PA−MAN−Lを減じて吸気圧力差ΔPA−MANを算出してからステップS11に移行する。
前記ステップS11では、前記加速状態閾値テーブルから同クランク角度ACSの加速状態吸気圧力差閾値ΔPA−MAN0を読込んでからステップS12に移行する。
前記ステップS12では、前記加速時燃料噴射禁止カウンタnをクリアしてからステップS13に移行する。
前記ステップS13では、前記ステップS10で算出した吸気圧力差ΔPA−MANが、前記ステップS11で読込んだ同クランク角度ACSの加速状態吸気圧力差閾値ΔPA−MAN0以上であるか否かを判定し、当該吸気圧力差ΔPA−MANが加速状態吸気圧力差閾値ΔPA−MAN0以上である場合にはステップS14に移行し、そうでない場合には前記ステップS7に移行する。
一方、前記ステップS9では、前記加速時燃料噴射禁止カウンタnをインクリメントしてから前記ステップS7に移行する。
前記ステップS14では、前記ステップS10で算出した吸気圧力差ΔPA−MAN
及びステップS3で読込んだエンジン回転数Nに応じた加速時燃料噴射量MF−ACCを三次元マップから算出してからステップS15に移行する。
また、前記ステップS7では、前記加速時燃料噴射量MF−ACCを“0”に設定してから前記ステップS15に移行する。
前記ステップS15では、前記ステップS14又はステップS7で設定された加速時燃料噴射量MF−ACCを出力してからメインプログラムに復帰する。
なお、この実施形態では加速時燃料噴射時期を、前記加速状態検出部41で加速状態が検出されたとき、つまり前記図8の演算処理のステップS13で、吸気圧力差ΔPA−MANが加速状態吸気圧力差閾値ΔPA−MAN0以上であると判定されたら、即座に燃料噴射する、換言すれば加速状態であると判定されたときに加速時燃料を噴射するものとする。
また、前記点火時期設定部31は、前記エンジン回転数算出部26で算出されたエンジン回転数及び目標空燃比算出部33で算出された目標空燃比に基づいて基本点火時期を算出する基本点火時期算出部36と、前記加速時燃料噴射量算出部42で算出された加速時燃料噴射量に基づいて前記基本点火時期算出部36で算出された基本点火時期を補正する点火時期補正部38とを備えて構成される。
前記基本点火時期算出部36は、現在のエンジン回転数と、そのときの目標空燃比で、最も発生トルクが大きくなる点火時期をマップ検索などにより求め、基本点火時期として算出する。つまり、この基本点火時期算出部36で算出される基本点火時期は、前記定常時燃料噴射量算出部34と同様に、一つ前のサイクルの吸気行程の結果に基づいている。また、前記点火時期補正部38では、前記加速時燃料噴射量算出部42で算出された加速時燃料噴射量に応じ、この加速時燃料噴射量が前記定常時燃料噴射量に加算されたときの気筒内空燃比を求め、その気筒内空燃比が前記定常時目標空燃比算出部33で設定された目標空燃比と大きく異なるときに、当該気筒内空燃比、エンジン回転数、吸気圧力を用いて新たな点火時期を設定することで点火時期を補正するものである。
次に、前記図8の演算処理の作用を図9のタイミングチャートに従って説明する。このタイミングチャートでは、時刻t06までスロットル一定であり、その時刻t06から時刻t15まで比較的短い時間にスロットルがリニアに開かれ、その後、再びスロットル一定となった。この実施形態では、排気上死点より少し前から圧縮下死点より少し後まで、吸気バルブが解放されるように設定されている。図中に示す菱形のプロットを伴う曲線が吸気圧力であり、図の下端部に示されるパルス上の波形が燃料噴射量である。前述したように、吸気圧力が急速に減少する行程が吸気行程であり、それに続いて圧縮行程、膨張(爆発)行程、排気行程の順でサイクルが繰り返される。
この吸気圧力曲線の菱形のプロットは、前記30°毎のクランクパルスを示しており、そのうちの○で囲んだクランク角度位置(240°)で、エンジン回転数に応じた目標空燃比を設定すると共に、そのときに検出した吸気圧力を用いて前記定常時燃料噴射量及び燃料噴射時期を設定する。このタイミングチャートでは、時刻t02で設定した定常時燃料噴射量の燃料を時刻t03で噴射、以下同様に、時刻t05で設定し、時刻t07で噴射、時刻t09で設定し、時刻t10で噴射、時刻t11で設定し、時刻t12で噴射、時刻t13で設定し、時刻t14で噴射、時刻t17で設定し、時刻t18で噴射している。このうち、例えば時刻t09で設定され且つ時刻t10で噴射される定常時燃料噴射量は、それ以前の定常時燃料噴射量に比して、既に吸気圧力が高く、その結果、大きな吸入空気量が算出されているために、多く設定されているが、定常時燃料噴射量を設定するのは凡そ圧縮行程、定常時燃料噴射時期は排気行程であるため、定常時燃料噴射量には、そのときの運転者の加速意思がリアルタイムに反映されているわけではない。即ち、前記時刻t06でスロットルが開け始められているが、その後の時刻t07で噴射される定常時燃料噴射量は、時刻t06より早い前記時刻t05で設定されているため、加速意志に反して少量しか噴射されていない。
一方、本実施形態では、前記図8の演算処理によって、前記排気行程から吸気行程、図9に示す白抜きの菱形のクランク角度で、前のサイクルにおける同クランク角度の吸気圧力PA−MANを比較し、その差分値を吸気圧力差ΔPA−MANとして算出し、それを閾値ΔPA−MAN0と比較する。例えば、スロットル開度が一定である時刻t01と時刻t04、或いは時刻t16と時刻t19におけるクランク角度300°の吸気圧力PA−MAN(300deg)同士を比較すると、夫々殆ど同じで、前回値との差分値、つまり吸気圧力差ΔPA−MANは小さい。ところが、スロットル開度が大きくなる時刻t08のクランク角度300°の吸気圧力PA−MAN(300deg)は、その前のサイクル、つまり未だスロットル開度が小さいときの前記時刻t04のクランク角度300°の吸気圧力PA−MAN(300deg)に対して、大きくなっている。従って、この時刻t08のクランク角度300°の吸気圧力PA−MAN(300deg)から前記時刻t04のクランク角度300°の吸気圧力PA−MAN(300deg)を減じた吸気圧力差ΔPA−MAN(300deg)を閾値ΔPA−MAN0(300deg)と比較し、当該吸気圧力差ΔPA−MAN(300deg)が閾値ΔPA−MAN0(300deg)より大きければ、加速状態にあると検出できる。
ちなみに、この吸気圧力差ΔPA−MANによる加速状態検出は、吸気行程の方が顕著である。例えば、吸気行程におけるクランク角度120°の吸気圧力差ΔPA−MAN(120deg)は明瞭に表れやすい。しかしながら、エンジンの特性によっては、例えば図9に二点鎖線で示すように、吸気圧力曲線が急峻な、所謂ピーキーな特性を示し、検出されるクランク角度と吸気圧力とにずれが生じ、その結果、算出する吸気圧力差にずれが生じる恐れがある。そのため、吸気圧力曲線が比較的緩やかな排気行程まで加速状態の検出範囲を伸ばし、両方の行程で吸気圧力差による加速状態検出を行う。勿論、エンジンの特性によっては、何れか一方の行程でのみ、加速状態検出を行うようにしてもよい。
なお、本実施形態のような4サイクルエンジンでは、排気行程も吸気行程も、クランクシャフト2回転に一度しか行われない。従って、単に前記クランク角度だけ検出しても、カムセンサを備えていない本実施形態のような二輪車用エンジンでは、それらの行程であることが分からない。そこで、前記クランクタイミング検出部27で検出されたクランクタイミング情報に基づく行程状態を読込み、それらの行程であることを判定してから、前記吸気圧力差ΔPA−MANによる加速状態検出を行う。これにより、より正確な加速状態検出が可能となる。
また、前述のクランク角度が300°の吸気圧力差ΔPA−MAN(300deg)と、クランク角度が120°の吸気圧力差ΔPA−MAN(120deg)とでははっきりしないが、例えば図9に示すクランク角度が360°の吸気圧力差ΔPA−MAN(360deg)と比較すれば明瞭なように、同等のスロットル開状態でも、各クランク角度で前回値との差分値である吸気圧力差ΔPA−MANは異なる。従って、前記加速状態吸気圧力差閾値ΔPA−MAN0は、各クランク角度ACS毎に変更しなければならない。そこで、本実施形態では、加速状態を検出するために、各クランク角度ACS毎に加速状態吸気圧力差閾値ΔPA−MAN0をテーブル化して記憶しておき、それを各クランク角度ACS毎に読込んで、前記吸気圧力差ΔPA−MANとの比較を行う。これにより、より正確な加速状態の検出が可能となる。
そして、本実施形態では、加速状態が検出された時刻t08で、エンジン回転数N及び前記吸気圧力差ΔPA−MANに応じた加速時燃料噴射量MF−ACCを、即座に噴射している。加速時燃料噴射量MF−ACCをエンジン回転数Nに応じて設定するのは極めて一般的であり、通常は、エンジン回転数が大きいほど燃料噴射量を小さく設定する。また、吸気圧力差ΔPA−MANは、スロットル開度の変化量と同等であることから、吸気圧力差が大きいほど燃料噴射量を大きく設定する。実質的に、これだけの燃料噴射量の燃料を噴射しても、既に吸気圧力は高く、次の吸気行程では、より多くの吸入空気量が吸入されるはずであるから、気筒内空燃比が小さくなりすぎて、ノッキングを起こすようなことはない。そして、本実施形態では、加速状態検出時に即座に加速時燃料を噴射するようにしているため、これから爆発行程に移行する気筒内空燃比を加速状態に適した空燃比に制御することができると共に、加速時燃料噴射量をエンジン回転数及び吸気圧力差に応じて設定することで、運転者の意図した加速感を得ることができる。
また、本実施形態では、加速状態を検出し、且つ加速時燃料噴射量が燃料噴射装置から噴射された後、前記加速時燃料噴射禁止カウンタnが、加速時燃料噴射を許可する所定値n以上となるまでは、加速状態が検出されても加速時燃料噴射を行わない構成としたため、加速時燃料噴射が繰り返されて、気筒内空燃比がオーバリッチな状態になるのを抑制防止することができる。
また、クランクシャフトの位相から行程状態を検出することにより、高価で大がかりなカムセンサをなくすことができる。
このように吸気圧力から加速状態、つまりエンジン負荷を検出する本実施形態では、例えば前記図3に示すような、行程に応じた滑らかな吸気圧力変化が必要となる。また、前述のように吸気圧力から吸入空気量、これもエンジン負荷を意味しているが、この吸入空気量を算出する場合には、或る程度、行程に応じたリアルな吸気圧力変化が必要となる。
図10は、一般に1気筒毎の排気量と称されるシリンダ行程容積に対するスロットルバルブから吸気ポートまでの容積(以下、スロットル下流容積とも記す)の比(以下、容積比とも記す)を変えて、吸気圧力に対する前記吸入空気量の変化を計測したものである。同図から明らかなように、容積比が小さいほど、吸気圧力の変化に対する吸入空気量の変化が小さい。換言すれば、容積比が小さいほど、吸気圧力に対する吸入空気量の変化率が小さいことになる。これは、吸気圧力の検出精度、即ち分解能に対して吸入空気量の変化が小さいほど、吸入空気量の検出精度が向上することを意味するから、前記シリンダ行程容積に対するスロットル下流容積の容積比は小さいほど良好であることになる。これは、シリンダ行程容積に対するスロットル下流容積の容積比が大きいほど、スロットルバルブから吸気ポートまでの空間がダンパ効果を発揮し、吸気行程における吸気圧力変化の応答性が悪化するためである。これと同様のことは、前記加速状態の検出にも当てはまる。
実質的に、シリンダ行程容積に対するスロットル下流容積の容積比が“1”を超える領域では、吸気圧力から、エンジンの運転制御に足る吸入空気量の算出は困難である。そこで、本実施形態では、シリンダ行程容積に対するスロットル下流容積の容積比を“1”以下とする、即ちスロットル下流容積をシリンダ行程容積以下とすることにより、エンジンの運転制御に足る吸入空気量を算出できるようにした。また、これによりより正確な加速状態の検出も可能となる。
また、前述のように、一般的な二輪車両では、スロットルバルブ12とエンジン本体、即ちシリンダ2とは別体である。スロットルバルブ12は、図11に示すようにスロットルボディ12aとバルブ本体12bとで構成されており、一般に、スロットルバルブ12がエンジン本体の振動の影響をあまり受けないように、シリンダ2とスロットルボディ12aとの間には緩衝材等を介装する。こうした構成上の制約からスロットルバルブ12とシリンダ2とは別体であり、ボルトやバンド等の個別の連結具を用いて両者を連結する。そして、本実施形態では、スロットルバルブ12側のスロットルボディ12aに導圧管14を取付け、この導圧管の先端に前記吸気管圧力センサ24を取付けている。これは、吸気管圧力センサ24に燃料が直接かかったりしないようにするためである。
前述のようにカムセンサを用いない本実施形態では、吸気管圧力とクランク角度だけが実質的な制御入力である。従って、万が一、スロットルバルブ12がシリンダ2から外れたときには、吸気管圧力の検出異常からフェイルセーフを行う必要がある。図12aは、時刻tでスロットルバルブ12がシリンダ2から外れたときの検出吸気管圧力である。スロットルバルブ12がシリンダ2から外れると、前記吸気管圧力24は大気開放され、大気圧を検出するのみであるから、前記時刻t以降は大気圧一定である。従って、前記クランクパルスからエンジンが回転し続けており、にもかかわらず検出される吸気管圧力が大気圧一定であるときには、スロットルバルブが外れていると判定し、それに応じた適切なフェイルセーフを施すことができる。
これに対し、図12bは、前記吸気管圧力センサをシリンダ側に取付け、同じく時刻tでスロットルバルブが外れたときの検出吸気管圧力を示している。同図から明らかなように、スロットルバルブが外れたことにより、シリンダ側の吸気管も大気開放されているはずであるが、実質的にはそれまでと同じような吸気管圧力の脈動が検出されてしまうので、前述した手法では、スロットルバルブの外れを検出できず、従って確実なフェイルセーフを行うことができない。
なお、前記実施形態では、吸気管内噴射型エンジンについて詳述したが、本発明のエンジン制御装置は、直噴型エンジンにも同様に展開できる。但し、直噴型エンジンでは、吸気管に燃料が付着することはないから、それを考慮する必要はなく、空燃比の算出には噴射される燃料量総量を代入すればよい。
また、前記実施形態では、単気筒エンジンについて詳述したが、本発明のエンジン制御装置は、気筒数が2気筒以上の、所謂マルチシリンダ型エンジンについても同様に展開できる。
また、エンジンコントロールユニットは、マイクロコンピュータに代えて各種の演算回路で代用することも可能である。
産業上の利用の可能性
以上説明したように、本発明のエンジン制御装置によれば、検出されたクランクシャフトの位相及び吸気圧力に基づいてエンジンの負荷を検出し、この検出されたエンジン負荷に基づいて当該エンジンの運転状態を制御する構成としたため、例えば前回の同じ行程の同じクランクシャフト位相のときの吸気圧力と現在の吸気圧力との差分値が所定値以上であるときに加速状態であると検出し、加速状態が検出されたときに、例えば即座に燃料を噴射するなどすれば、運転者の意志に応じた十分な加速考えられると共に、前記スロットルバルブからエンジンの吸気ポートまでの容積をシリンダ行程容積以下としたことにより、前記吸入空気量の算出や吸気圧力の比較による加速状態の検出といった負荷の検出をより一層正確なものとすることができる。
【図面の簡単な説明】
図1は、モータサイクル用のエンジン及びその制御装置の概略構成図である。
図2は、図1のエンジンでクランクパルスを送出する原理の説明図である。
図3は、本発明のエンジン制御装置の一実施形態を示すブロック図である。
図4は、クランクシャフトの位相と吸気圧力から行程状態を検出する説明図である。
図5は、吸入空気量算出部のブロック図である。
図6は、吸気圧力から吸入空気の質量流量を求める制御マップである。
図7は、燃料噴射量算出部及び燃料挙動モデルのブロック図である。
図8は、加速状態検出及び加速時燃料噴射量算出のための演算処理を示すフローチャートである。
図9は、図11の演算処理の作用を示すタイミングチャートである。
図10は。シリンダ行程容積に対するスロットル下流容積の容積比を変化させたときの吸気圧力に対する吸入空気量の説明図である。
図11スロットルバルブ、シリンダ、吸気管圧力センサの説明図である。
図12は、スロットルバルブがシリンダから外れたときに吸気管圧力センサで検出される吸気管圧力の説明図である。

Claims (1)

  1. 4サイクルエンジンのクランクシャフトの位相を検出する位相検出手段と、スロットルバルブの下流側で前記エンジンの吸気通路内の吸気圧力を検出する吸気圧力検出手段と、前記位相検出手段で検出されたクランクシャフトの位相及び前記吸気圧力検出手段で検出された吸気圧力に基づいて前記エンジンの負荷を検出し、この検出されたエンジン負荷に基づいて当該エンジンの運転状態を制御するエンジン制御手段とを備え、前記スロットルバルブからエンジンの吸気ポートまでの容積をシリンダ行程容積以下としたことを特徴とするエンジン制御装置。
JP2003540508A 2001-10-29 2002-10-22 エンジン制御装置 Expired - Lifetime JP3976322B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2001331529 2001-10-29
JP2001331529 2001-10-29
JP2001335479 2001-10-31
JP2001335479 2001-10-31
PCT/JP2002/010945 WO2003038261A1 (fr) 2001-10-29 2002-10-22 Dispositif de commande de moteur

Publications (2)

Publication Number Publication Date
JPWO2003038261A1 JPWO2003038261A1 (ja) 2005-02-24
JP3976322B2 true JP3976322B2 (ja) 2007-09-19

Family

ID=26624176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003540508A Expired - Lifetime JP3976322B2 (ja) 2001-10-29 2002-10-22 エンジン制御装置

Country Status (9)

Country Link
US (1) US6983738B2 (ja)
EP (1) EP1447550B1 (ja)
JP (1) JP3976322B2 (ja)
CN (1) CN100334341C (ja)
AT (1) ATE508269T1 (ja)
BR (1) BRPI0211218B1 (ja)
DE (1) DE60239954D1 (ja)
TW (1) TWI221881B (ja)
WO (1) WO2003038261A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10316900B4 (de) * 2003-04-12 2009-01-15 Audi Ag Verfahren zur Überprüfung der Funktionstüchtigkeit einer Vorrichtung zum Einstellen des Hubes der Gaswechselventile einer fremdgezündeteten Brennkraftmaschine
US20070163243A1 (en) * 2006-01-17 2007-07-19 Arvin Technologies, Inc. Exhaust system with cam-operated valve assembly and associated method
JP4650321B2 (ja) * 2006-03-28 2011-03-16 トヨタ自動車株式会社 制御装置
EP2481907B1 (en) * 2009-09-24 2015-01-21 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
CN102235258A (zh) * 2010-04-29 2011-11-09 光阳工业股份有限公司 双缸喷射引擎的行程判定方法
DE102010063380A1 (de) * 2010-12-17 2012-06-21 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
CN103133165A (zh) * 2011-11-25 2013-06-05 上海汽车集团股份有限公司 基于线性氧传感器判断发动机故障的方法和装置
JP2013209945A (ja) * 2012-03-30 2013-10-10 Honda Motor Co Ltd 内燃機関の燃料噴射制御装置
US9959738B2 (en) * 2013-04-08 2018-05-01 Centega Services, Llc Reciprocating machinery monitoring system and method
JP6354524B2 (ja) 2014-11-06 2018-07-11 スズキ株式会社 燃料噴射装置
US9528445B2 (en) * 2015-02-04 2016-12-27 General Electric Company System and method for model based and map based throttle position derivation and monitoring
JP2018053834A (ja) 2016-09-30 2018-04-05 本田技研工業株式会社 内燃機関
EP3477090B1 (en) * 2017-10-25 2021-02-24 Honda Motor Co., Ltd. Internal combustion engine
JP6856504B2 (ja) * 2017-11-29 2021-04-07 本田技研工業株式会社 吸気圧検知装置および電子制御式燃料供給装置
CN114127400B (zh) * 2019-07-18 2023-09-12 三菱电机株式会社 内燃发动机的控制装置以及控制方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060223A (ja) * 1983-09-12 1985-04-06 Nissan Motor Co Ltd 自動車用エンジン
US4658787A (en) * 1984-02-01 1987-04-21 Nissan Motor Company, Limited Method and apparatus for engine control
JPH04128527A (ja) * 1990-09-19 1992-04-30 Nissan Motor Co Ltd 内燃機関の燃料供給装置
DE4325902C2 (de) * 1993-08-02 1999-12-02 Bosch Gmbh Robert Verfahren zur Berechnung der Luftfüllung für eine Brennkraftmaschine mit variabler Gaswechselsteuerung
JP3421731B2 (ja) * 1994-05-31 2003-06-30 ヤマハ発動機株式会社 エンジンの吸気制御装置
JP3728844B2 (ja) 1996-12-25 2005-12-21 日産自動車株式会社 エンジンの空気量検出装置
JPH10212980A (ja) * 1997-01-31 1998-08-11 Yamaha Motor Co Ltd 4サイクルエンジン
US6202626B1 (en) * 1997-01-31 2001-03-20 Yamaha Hatsudoki Kabushiki Kaisha Engine having combustion control system
JP3839119B2 (ja) * 1997-02-13 2006-11-01 本田技研工業株式会社 4サイクルエンジンの行程判別装置
JP3726432B2 (ja) 1997-07-18 2005-12-14 日産自動車株式会社 内燃機関の空気量検出装置
JPH11200918A (ja) * 1997-11-17 1999-07-27 Denso Corp 内燃機関の燃料噴射制御装置
JP2002188536A (ja) 2000-12-22 2002-07-05 Mitsubishi Motors Corp 過給機付き内燃機関

Also Published As

Publication number Publication date
US6983738B2 (en) 2006-01-10
ATE508269T1 (de) 2011-05-15
WO2003038261A1 (fr) 2003-05-08
CN1541303A (zh) 2004-10-27
CN100334341C (zh) 2007-08-29
EP1447550A4 (en) 2009-07-29
BRPI0211218B1 (pt) 2021-07-06
US20040244773A1 (en) 2004-12-09
EP1447550B1 (en) 2011-05-04
EP1447550A1 (en) 2004-08-18
JPWO2003038261A1 (ja) 2005-02-24
TWI221881B (en) 2004-10-11
DE60239954D1 (de) 2011-06-16
BR0211218A (pt) 2004-07-13

Similar Documents

Publication Publication Date Title
JP4163114B2 (ja) エンジン制御装置
JP3976322B2 (ja) エンジン制御装置
JP3978679B2 (ja) エンジン制御装置
JPH0270960A (ja) 内燃機関の制御装置
JP4073914B2 (ja) エンジン制御装置
JP4027892B2 (ja) エンジン制御装置
JP2003286890A (ja) エンジンの制御装置
JP2002147269A (ja) エンジン制御装置
JPWO2003038262A1 (ja) 4ストロークエンジンの大気圧検出装置及び方法
JP4027893B2 (ja) エンジン制御装置
JP4115677B2 (ja) 内燃機関の大気圧検出装置
JP2003056378A (ja) クランクシャフト回転センサ
JP2002155844A (ja) エンジン制御装置
JP2002147280A (ja) エンジン制御装置
WO2004013477A1 (ja) エンジン制御装置
JP2008088983A (ja) エンジン制御装置
JPH07229442A (ja) エンジンの吸入空気流量検出装置
JPH0711251B2 (ja) 電子制御燃料噴射エンジンの加速時燃料制御方法
JPS6035156A (ja) 内燃機関用燃料噴射装置
JP2002122040A (ja) 独立吸気型4サイクル内燃機関における電子制御燃料噴射装置
WO2004013478A1 (ja) エンジン制御装置
JP2001153013A (ja) 内燃機関の点火時期制御方法
JP2008057547A (ja) エンジン制御装置
JP2008064113A (ja) エンジン制御装置
JPH0441943A (ja) 2サイクル内燃機関用燃料噴射制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3976322

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term