JP3971908B2 - Ceramic structure - Google Patents

Ceramic structure Download PDF

Info

Publication number
JP3971908B2
JP3971908B2 JP2001286747A JP2001286747A JP3971908B2 JP 3971908 B2 JP3971908 B2 JP 3971908B2 JP 2001286747 A JP2001286747 A JP 2001286747A JP 2001286747 A JP2001286747 A JP 2001286747A JP 3971908 B2 JP3971908 B2 JP 3971908B2
Authority
JP
Japan
Prior art keywords
female screw
sheath tube
ceramic structure
screw member
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001286747A
Other languages
Japanese (ja)
Other versions
JP2003095762A (en
Inventor
清文 荻田
憲 飯田
秀水 川口
義之 印南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2001286747A priority Critical patent/JP3971908B2/en
Publication of JP2003095762A publication Critical patent/JP2003095762A/en
Application granted granted Critical
Publication of JP3971908B2 publication Critical patent/JP3971908B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、セラミックスからなる雌ねじ体に係り、耐熱特性、耐腐食特性、電気的絶縁特性が要求される例えば土木、電気関係に好適な、強度を向上した雌ねじ部を備えるセラミックス構造体に関するものである。
【0002】
【従来の技術】
一般に、部材の耐熱特性、耐腐食特性、電気的腐食性の誘発などを改善するために、金属に代えてセラミックス化するなどの傾向がある。特に、土木関係では、コンクリート構造物の耐久性を向上するために、金属からセラミックスに移行する傾向にある。例えば、コンクリート型枠保持装置の端止体(継ぎ手)としては、各種のものが知られている。例えば、特開平8−135187においては、金属製雌ねじ部をセラミックスで覆ったものが示され、特開平9−324537においては、金属製雌ねじ部を分割セラミックス筒体で保持したものが示されている。又、特開2000−345716や特開2000−345704においては、金属製雌ねじ部をモルタルで覆ったものが示され、特開平11−2025においては、金属製雌ねじ部を合成樹脂で覆ったものが示されている。
【0003】
又、特開平6−279131、同10−272614などにおいては、セラミックス部材同士を焼成収縮率の差を利用して嵌着結合することにより、気密性、接合強度に優れたものを得る技術が示されている。
【0004】
しかし、本発明のように、圧縮力を付与することにより強度を高めるセラミックス構造体の思想は開示されていない。
【0005】
【発明が解決しようとする課題】
上記した従来の端止体においては、金属製雌ねじ部を合成樹脂で覆ったものは、合成樹脂部が経年により劣化して金属製雌ねじ部が腐食し、金属製セパレータへ腐食が波及することとなった。又、金属製雌ねじ部を無機質(モルタル、セラミックス)で覆ったものは、覆った部分の劣化はないものの、内部の金属製雌ねじ部が腐食し、金属製セパレータへ腐食が波及することとなった。従って、端止体で腐食が始まると、コンクリート構造体の表面部にクラックが発生するなどの劣化が始まり、コンクリート構造体の耐久性を損なうこととなった。
【0006】
一方、発明者らは、図11(a)に示すように、隔壁1aを介して雌ねじ部1b,1cを備えた雌ねじ体1をアルミナセラミックス(アルミナ96重量%)の焼結体で形成し、図11(b)に示すように各雌ねじ部1b,1cにそれぞれボルト2,3を螺合し、一方のボルト3を固定して他方のボルト2を矢印のように引っ張って引っ張り試験を行った所、ボルト2の先端部を起点にして雌ねじ体1の外周面方向に発生した破断面1dにより破断した。せん断強度は2.60〜2.90KNであった。なお、試験に使用した雌ねじ体1の焼結後の寸法関係は図12に示す通りである。すなわち、最大径27mm、両端部の径19mm、全長35mm、雌ねじ部1b,1cは共にねじ径がW3/8でねじ山の数は7〜8山であり、雌ねじ部1bの長さは端部側に形成された径大部1eを含めて18.5mm、雌ねじ部1cの長さは13.5mm、隔壁1aの厚さは3.0mmである。
【0007】
この結果からも明らかなように、腐食を発生せず、コンクリート構造体の耐久性を損なうことがないセラミックスは圧縮力に強いが、靱性に欠け、引っ張り力に弱いことから、コンクリート内に埋設する以前の状態において引っ張り力が作用する構造体への使用普及には限界があった。
【0008】
この発明は上記のような課題を解決するために成されたものであり、雌ねじ部を有し、耐腐食性、耐電気腐食性に優れ、圧縮力、引っ張り力にも強いセラミックス構造体を得ることを目的とする。
【0009】
【課題を解決するための手段】
発明者らは、鋭意研究を重ねた結果、雌ねじ体に直接雌ねじ部を設けて構成した場合には、上記のような破断現象が生じるが、雌ねじ部材を鞘管で強く圧縮して雌ねじ体を構成することにより、両者間に存在する圧縮作用による雌ねじ部材の強度向上と密着面の存在により引っ張り強度の向上に著しく寄与して雌ねじ体の耐力を向上できることを見出した。
【0010】
この発明の請求項1に係るセラミックス構造体は、内部に雌ねじ部を備えた筒状のセラミックスからなる雌ねじ部材と、少なくとも一層のセラミックスからなる鞘管とから構成され、焼成することにより鞘管が雌ねじ部材を圧縮して両者を密着固定したものである。
【0011】
鞘管を一層以上とし、多層にすることにより、せん断強度を増す。又、雌ねじ部材と鞘管を同種のセラミックス(例えばアルミナセラミックス)で形成する場合、鞘管の圧縮力を大きくする手段として、鞘管の成形時の圧力を雌ねじ部材より低くすることにより、鞘管の収縮率を大きくできる。又は、鞘管の原料粉末の粒径を大きくすることによっても、焼成時の収縮率を大きくでき、これらの組み合わせでもよい。又、異種のセラミックスで雌ねじ部材及び鞘管を形成する場合には、焼結完了の温度、収縮率などを考慮して組み合わせることが重要である。
【0012】
請求項2に係るセラミックス構造体は、最外位置の鞘管の外形を円柱状、樽形状、多角形、外周面凹凸状のいずれかにしたものである。
【0013】
請求項3に係るセラミックス構造体は、セラミックスを、アルミナ、ジルコニア、炭化珪素、窒化珪素のいずれかを主成分としたものである。
【0014】
雌ねじ部材と鞘管を同種のセラミックスで組み合わせる、又は異種のセラミックスで組み合わせることは、必要に応じて行う。
【0015】
請求項4に係るセラミックス構造体は、鞘管が隔壁を介して一対の穴を備え、この穴内に各々雌ねじ部材を備えて構成したものである。
【0016】
隔壁の外周は、平面より曲面状が望ましい。又、雌ねじ部材は、貫通した雌ねじ部を有する。
【0017】
請求項5に係るセラミックス構造体は、鞘管が貫通した孔を備え、この孔内に雌ねじ部材を備えて構成したものである。
【0018】
雌ねじ部材は、一端が閉鎖されているもの、中間部に隔壁を有するもの、中間部の隔壁が別形成のもののいずれかである。
【0019】
【発明の実施の形態】
実施形態1
以下、この発明の実施の形態を図面とともに説明する。図1は発明の実施形態1によるセラミックス構造体の製造方法の説明図を示し、アルミナセラミックスの原料粉末を加圧成形して、内部に雌ねじ部4aを有する筒状の雌ねじ部材(未焼結体)4を形成するとともに、同じくアルミナセラミックスの原料粉末を加圧成形して、隔壁5aを介して一対の穴5b,5cを備えた外形が樽形状の鞘管(未焼結体)5を形成する。
【0020】
次に、鞘管5の穴5b,5c内に雌ねじ部材4を装着し、両者を焼成する。この際、雌ねじ部材4と鞘管5とでアルミナ量を変更することにより、焼結の完了に時間差が生じる(焼成温度に差が出る。)。例えば、雌ねじ部材4のアルミナ量を94重量%、鞘管5のアルミナ量を96重量%とすると、焼成温度を昇温する過程において、雌ねじ部材4は例えば1500℃で焼結して反応が停止する。又、外側の鞘管5は例えば1600℃で焼結して反応が停止する。一方、アルミナセラミックスの焼成時の線縮小率は14〜17%であるが、この縮小率は粒径や加圧成形圧力により異なってくる。例えば、加圧成形圧力を鞘管5より雌ねじ部材4を大きくすれば、焼成時の縮小率は雌ねじ部材4より鞘管5の方が大きくなる。従って、焼成時、まず雌ねじ部材4が焼結して縮小し、その後鞘管5がより大きな縮小率で焼結する。この結果、鞘管5が雌ねじ部材4を加圧圧縮し、両者は嵌合密着結合し、セラミックス構造体6が形成される。このとき、両者間に拡散結合は一部を除いて生じない。このように、両者間に締め付け圧縮力が作用することにより、セラミックス構造体6の強度が向上する。従って、全体的な拡散結合が生じると、雌ねじ部材4と鞘管5が同一体となってしまい、好ましくない。
【0021】
図2に示すように、上記したセラミックス構造体6の雌ねじ部4aにボルト2,3を螺合し、一方のボルト3を固定し、他方のボルト2を矢印のように引っ張って、引っ張り試験を行うと、従来より大きな耐力が得られることが判明した。即ち、引っ張り力は従来のように鞘管5に直接局部的に作用せず、引っ張り力により雌ねじ部材4に作用する応力は雌ねじ部材4と鞘管5との密着面Aを介して鞘管5に作用するので、引っ張り強度が著しく向上する。
【0022】
なお、若干形状が異なるが、図3(a)は焼成前の鞘管5の寸法を示し、最大径31.8mm、両端部の径22.4mm、穴5b,5cの径17.1mm、穴5b,5cの深さ21.8mm、15.9mm、全長41.2mm、隔壁5aの厚さ3.5mmである。又、図3(b)は1600℃で焼成後(収縮率15%)の鞘管5の寸法を示し、最大径27mm、両端部の径19mm、全長35mm、穴5b,5cの深さ18.5mm、13.5mm、隔壁5aの厚さ3.0mmである。図3(c)は1600℃で焼成後の雌ねじ部材4の寸法を示し、外径15mm、長さ13.5mm、雌ねじ部4aのねじ径はW3/8、ねじ山数は7〜8であり、雌ねじ部材4の成形は静水圧成形機(通称CIP)により5MPaの圧力で成形する。なお、鞘管5の穴5b,5cの焼成後の自然状態における径は14.5mmとなり、雌ねじ部材4の焼成後の外径は15mmであるから、14.5−15mmの差分で鞘管5の穴5b,5cが雌ねじ部材4を締め付けることになる。セラミックス構造体6のせん断強度は11.5〜13KNであった。
【0023】
実施形態1においては、隔壁5aを介して一対の穴5b,5cを有するセラミックス製の鞘管5の穴5b,5c内にセラミックス製で雌ねじ部4aを有する筒状の雌ねじ部材4を装着し、焼成することにより、セラミックス構造体6を形成しており、焼成の際に縮小した鞘管5が雌ねじ部材4を加圧圧縮することにより両者は嵌合密着結合し、両者間に締め付け圧縮力が作用することにより、セラミックス構造体6の引っ張り強度が向上する。
【0024】
図4は上記したセラミックス構造体6を用いた端子体の構成を示し、端子体7はセラミックス構造体6とセラミックスからなる筒状のスリーブ体8とから主に構成され、その他にセラミックス構造体6の一端とスリーブ体8の一端を接続する樹脂製の接続体9と、スリーブ体8の他端に設けられたゴムパッキン10を備えている。
【0025】
図5は端子体7を用いたコンクリート型枠保持装置の構成図を示し、11はセパレータであり、その両端は端子体7のセラミックス構造体6の雌ねじ部4aに螺合され、一端が型枠12を挿通して端子体7のセラミックス構造体6の雌ねじ部4aに螺合されたボルト13の他端にナット14を螺合し、これによって当接体15及びパイプ16を介して型枠12と一体の桟木17を端子体7側に押圧し、型枠12を端子体7のゴムパッキン10に当接させて固定する。この状態で型枠12間にコンクリートを打設し、コンクリートが固化してコンクリート構造物18になった後、ナット14、当接体15、パイプ16、桟木17及び型枠12を除去する。
【0026】
その後、ゴムパッキン10も除去する。ゴムパッキン10はコンクリート打設時にコンクリートが端子体7内に侵入するのを防止するなどのために設けてあり、スリーブ体8の一端に一成分形の瞬間接着剤により貼着される。瞬間接着剤としては例えばシアノアクリレート系のものが用いられ、具体的には、アロンアルファ(東亜合成株式会社製)、セメダイン3000シリーズ(セメダイン株式会社製)などが用いられる。瞬間接着剤は、接着作業を迅速に行うことができ、除去する際にも剥離を容易に行うことができる利点がある。ただし、スリーブ体8が上記したようにセラミックス製あるいはモルタル製の場合には、接着剤はゼリー状である必要がある。接着剤が液状であると、塗布したものがスリーブ体8内にしみこみ、拡散して接着層を形成できないからである。
【0027】
スリーブ体8はかぶり寸法を確保するために設けてあり、セラミックス(アルミナ、ムライトなど)、コンクリート、モルタルなどの無機質体により形成される。スリーブ体8とセラミックス構造体6との接続は、接続体を介して接続し、または接着剤により接着する。セラミックス構造体6とスリーブ体8を接着剤により接着する場合には、接着剤として常温硬化形のエポキシ樹脂を使用した。例えば、エポキシ樹脂系二液形の接着剤であり、主成分のエポキシ樹脂(ビスフェノールA型エポキシ樹脂中間体)と充填剤、染料とからなる主剤と、主成分のポリチオールと充填剤とからなる硬化剤の二液から構成される。具体的には商品名EP−330(セメダイン株式会社製)を使用した。この場合、主剤と硬化剤の二液を50:50で混合し、塗布後スリーブ体8とセラミックス構造体6と合わせて静止状態とし、自然硬化により接合した。
【0028】
図5に示したコンクリート型枠保持装置においては、雌ねじ体としてセラミックス構造体6を用いており、セラミックス構造体6はすべてセラミックスからなり、金属製ではないので腐食の心配がなく、またセラミックス構造体6は隔壁5aを介して一対の雌ねじ部4aを有しており、内部のセパレータ11が外部に露出しないので、両水の浸入によるセパレータ11の腐食の発生もない。従って、端子体7で腐食が発生することはなく、コンクリート構造物18の表面部にクラックが発生するなどの劣化現象はなく、コンクリート構造物18の耐久性は損なわれず、耐久性の高いコンクリート構造物18が得られる。
【0029】
実施形態2
図6(a),(b)は実施形態2によるセラミックス構造体の断面図及び雌ねじ部材の断面図を示し、鞘管19はセラミックスにより外形が樽形状に形成され、中心には貫通した孔19aが設けられる。雌ねじ部材20はセラミックスにより筒状に形成され、内部に一端が閉塞された雌ねじ部20aが形成される。この雌ねじ部材20を焼成したものを一対備え、鞘管19の貫通孔19a内に一対の雌ねじ部材20を閉塞端側を合わせてセットし、鞘管19を焼成する。
【0030】
実施形態2においても、鞘管19は焼成により縮小し、鞘管19と雌ねじ部材20は嵌合密着結合し、セラミックス構造体21が形成される。このとき、鞘管19と雌ねじ部材20との間に締め付け圧縮力が作用し、セラミックス構造体21の引っ張り強度が向上する。
【0031】
実施形態3
図7(a),(b)は実施形態3によるセラミックス構造体の断面図及び雌ねじ部材の断面図を示し、雌ねじ部材22はセラミックスにより筒状に形成され、内部に隔壁22aを介して一対の雌ねじ部22b,22cが形成される。この雌ねじ部材22を焼成して鞘管19の貫通孔19aにセットし、鞘管19を焼成する。
【0032】
実施形態3においても、鞘管19は焼成により縮小し、鞘管19と雌ねじ部材22は嵌合密着結合し、セラミックス構造体23が形成される。このとき、鞘管19と雌ねじ部材22との間に締め付け圧縮力が作用し、セラミックス構造体23の引っ張り強度が向上する。
【0033】
実施形態4
図8(a),(b)は実施形態4によるセラミックス構造体の断面図と雌ねじ部材の断面図及び隔壁の正面図を示し、焼成済の一対の雌ねじ部材4とその間に介在させた未焼成のセラミックス製の隔壁24を鞘管19の貫通孔19a内にセットし、これらを焼成する。
【0034】
実施形態4においても、鞘管19は焼成により縮小し、鞘管19と雌ねじ部材4と隔壁24は嵌合密着結合し、セラミックス構造体25が形成される。このとき、鞘管19と雌ねじ部材4及び隔壁24との間に締め付け圧縮力が作用し、セラミックス構造体25の引っ張り強度が向上する。
【0035】
実施形態5
図9(a),(b)は実施形態5によるセラミックス構造体の断面図と雌ねじ部材の断面図及び隔壁の正面図を示し、セラミックス製の隔壁26が両側に凸部26aを有する点のみが実施形態4と異なり、セラミックス構造体27が形成される。凸部26aは雌ねじ部材4の雌ねじ部4aと係合し、一対の雌ねじ部材4と隔壁26の芯を揃えるようにするために設けてある。
【0036】
実施形態6
図10(a)は実施形態6によるセラミックス構造体の横断面図を示し、上記各実施形態においては図10(b)に示すように一層からなる鞘管5が焼成時に縮小することにより雌ねじ部材4を圧縮していたが、この実施形態においては鞘管5の外側にさらに鞘管28を設け、焼成時セラミックスからなる鞘管28により鞘管5を圧縮し、鞘管5により雌ねじ部材4を圧縮してセラミックス構造体29を形成している。
【0037】
実施形態6においては、上記したように、二層の鞘管5,28によって雌ねじ部材4を圧縮することにより、セラミックス構造体29を形成しており、セラミックス構造体29の引っ張り強度を高めることができるとともに、せん断強度を高めることができる。なお、三層以上の鞘管によって雌ねじ部材を圧縮するようにすれば、さらにこれらの強度を高めることができる。
【0038】
なお、上記各実施形態においては、最外位置の鞘管の外形を樽形状としたが、円柱状、多角形、外周面凹凸状などとしてもよい。又、鞘管、雌ねじ部材(別体の隔壁を含む。)をアルミナセラミックスにより形成したが、ジルコニア、炭化珪素、窒化珪素などのセラミックスにより形成してもよい。
【0039】
【実施例】
(1)雌ねじ部材4の製造方法
まず、主成分となる酸化アルミニウム原料(粒径1μm以下、純度99.8%、含有量94重量%)に焼結を助けるための副成分(焼結助材、残りの成分)を添加し、さらに純水を加え、ボールミルにより10時間混合破砕を行う。得られた原料スラリーにポリビニールアルコールなどの有機バインダーと分散剤としてのポリカルボン酸アンモニウム塩を添加し、スプレードライヤーで150℃の温度で乾燥し、噴霧造粒する。得られた顆粒を静水圧成形機(通称CIP)により5MPaの圧力で成形する。寸法は実施形態1で説明した通りである。
【0040】
(2)鞘管5の製造方法
まず、主成分となる酸化アルミニウム原料(粒径1μm以下、純度99.8%、含有量96重量%)に焼結を助けるための副成分(焼結助材、残りの成分)を添加し、さらに純水を加え、ボールミルにより10時間混合破砕を行う。得られた原料スラリーにポリビニールアルコールなどの有機バインダーと分散剤としてのポリカルボン酸アンモニウム塩を添加し、スプレードライヤーで150℃の温度で乾燥し、噴霧造粒する。得られた顆粒を静水圧成形機により4.5MPaの圧力で成形する。寸法は実施形態1で説明した通りである。
【0041】
(3)セラミックス構造体6の製造方法
鞘管5の穴5b,5c内に雌ねじ部材4をセットし、ガス炉により1600℃で2時間焼成し、100℃/時間の降温速度で冷却し、セラミックス焼結体からなるセラミックス構造体6を得る。セラミックス構造体6の焼成においては、雌ねじ部材4はアルミナ量を94重量%とすることにより、約1500℃で焼結が完了する。一方、鞘管5はアルミナ量を96重量%とすることにより、約1600℃で焼結が完了し、しかも加圧成形圧力を雌ねじ部材4の5MPaに対してこれより低い4.5MPaとすることにより収縮率を大きくすることができ、雌ねじ部材4を鞘管5で締め付け圧縮することができる。
【0042】
(4)成分について(各部材共通、以下同じ)
主成分の酸化アルミニウムの含有量は約90〜98重量%とする。90重量%以下の場合には、接続継手としての強度が不足し、特に内部のねじ山が破損する。98重量%以上の場合には、焼結温度を高くする必要があり、経済的に好ましくない。焼結助材としては、MgO,SiO2,CaOが好ましく、焼成温度を低下させる効果がある。
【0043】
(5)粒径について
噴霧造粒された顆粒は、その粒径が約30〜200μmの範囲に分布する粒子が80%以上占めるものが好ましい。この範囲を下回る場合(小径)には、流動性が悪化して成形型への充填が困難となり、空洞が発生する。この範囲を上回る場合(大径)には、ねじ山の形成が確実に行われない。いずれにしても、所望の端子体を得ることが困難である。
【0044】
(6)圧力について
成形圧力は、3〜10MPaの範囲であればよい。これ以下では、圧力不足により欠けやクラックを発生する。これ以上では、圧力解除までの時間がかかり、生産性が低下し、しかも離型性が悪く、型割れが発生しやすくなる。
【0045】
(7)焼成条件について
雰囲気は大気中でもよい。焼成保持温度は1500〜1700℃、焼成時間は2時間以上、降温速度は、焼成保持温度から400℃までを50〜200℃/時間の冷却速度で行えばよい。理由は、90重量%以上の酸化アルミニウムと焼結助材(MgO,SiO2,CaO)を含む組成では、約1500〜1700℃で焼結しないと焼結が完了せず、また50〜200℃/時間の降温速度でないと、焼成後の強度が低下して好ましくないからである。
【0046】
【発明の効果】
以上のように、この発明によれば、セラミックスからなる雌ねじ部材をセラミックスからなる鞘管によりその焼成時の収縮力を利用して圧縮し、セラミックス構造体を形成しており、雌ねじ部材には圧縮力が作用し、しかも雌ねじ部材と鞘管との間には密着面が存在することから、セラミックス構造体の引っ張り強度を著しく向上することができる。又、セラミックス構造体は腐食しないので、耐食性、耐電気絶縁性などが要求される各種用途に適用され、例えばコンクリート構造物内に埋設した場合には、耐久性が高いコンクリート構造物が得られる。
【図面の簡単な説明】
【図1】この発明の実施形態1によるセラミックス構造体の製造方法の説明図である。
【図2】実施形態1によるセラミックス構造体の引っ張り強度試験の説明図である。
【図3】実施形態1によるセラミックス構造体の鞘管の焼成前後の寸法及び焼成後の雌ねじ部材の寸法を示す図である。
【図4】実施形態1によるセラミックス構造体を用いた端子体の構成図である。
【図5】実施形態1によるセラミックス構造体を用いたコンクリート型枠保持装置の構成図である。
【図6】実施形態2によるセラミックス構造体の断面図及び雌ねじ部材の断面図である。
【図7】実施形態3によるセラミックス構造体の断面図及び雌ねじ部材の断面図である。
【図8】実施形態4によるセラミックス構造体の断面図と雌ねじ部材の断面図及び隔壁の正面図である。
【図9】実施形態5によるセラミックス構造体の断面図と雌ねじ部材の断面図及び隔壁の正面図である。
【図10】実施形態6によるセラミックス構造体の横断面図及び他の実施形態によるセラミックス構造体の横断面図である。
【図11】従来の雌ねじ体の断面図及びその引っ張り強度試験の説明図である。
【図12】従来の雌ねじ体の寸法を示す図である。
【符号の説明】
4,20,22…雌ねじ部材
4a,22b,22c…雌ねじ部
5,19,28…鞘管
5a,22a,24,26…隔壁
5b,5c…穴
6,21,23,25,27,29…セラミックス構造体
18…コンクリート構造物
19a…貫通孔
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a female screw body made of ceramics, and more particularly to a ceramic structure including a female screw portion with improved strength, which is suitable for civil engineering and electrical relations where heat resistance, corrosion resistance, and electrical insulation characteristics are required. is there.
[0002]
[Prior art]
In general, in order to improve the heat resistance characteristics, corrosion resistance characteristics, induction of electrical corrosion properties, etc. of members, there is a tendency to use ceramics instead of metals. Especially in civil engineering, there is a tendency to shift from metal to ceramics in order to improve the durability of concrete structures. For example, various types of end stops (joints) of a concrete formwork holding device are known. For example, in Japanese Patent Laid-Open No. 8-135187, a metal female screw portion covered with ceramics is shown, and in Japanese Patent Laid-Open No. 9-324537, a metal female screw portion held by divided ceramic cylinders is shown. . Japanese Patent Application Laid-Open No. 2000-345716 and Japanese Patent Application Laid-Open No. 2000-345704 show a metal female screw part covered with mortar, and Japanese Patent Application Laid-Open No. 11-2025 shows a metal female screw part covered with a synthetic resin. It is shown.
[0003]
JP-A-6-279131, 10-272614, etc. show a technique for obtaining a material having excellent airtightness and bonding strength by fitting and bonding ceramic members using a difference in firing shrinkage rate. Has been.
[0004]
However, the idea of a ceramic structure that increases the strength by applying a compressive force as in the present invention is not disclosed.
[0005]
[Problems to be solved by the invention]
In the above-described conventional end stoppers, when the female female screw part is covered with a synthetic resin, the synthetic resin part deteriorates over time, the metallic female screw part corrodes, and the corrosion spreads to the metallic separator. became. In addition, when the female female screw part was covered with an inorganic material (mortar, ceramics), the covered part was not deteriorated, but the internal metal female screw part was corroded, and the corrosion was spread to the metallic separator. . Therefore, when corrosion starts on the end stop, deterioration starts, such as cracking in the surface portion of the concrete structure, which impairs the durability of the concrete structure.
[0006]
On the other hand, as shown in FIG. 11 (a), the inventors formed a female screw body 1 having female screw portions 1b and 1c through a partition wall 1a with a sintered body of alumina ceramics (alumina 96 wt%), As shown in FIG. 11 (b), bolts 2 and 3 were screwed into the respective female thread portions 1b and 1c, one bolt 3 was fixed, and the other bolt 2 was pulled as shown by an arrow to perform a tensile test. On the other hand, the fracture was caused by the fracture surface 1d generated in the direction of the outer peripheral surface of the female screw body 1 starting from the tip of the bolt 2. The shear strength was 2.60-2.90 KN. In addition, the dimension relationship after sintering of the internal thread body 1 used for the test is as shown in FIG. That is, the maximum diameter is 27 mm, the diameter of both ends is 19 mm, the total length is 35 mm, the female threaded portions 1b and 1c have a thread diameter of W3 / 8 and the number of threads is 7 to 8 threads. Including the large diameter portion 1e formed on the side, the length of the female screw portion 1c is 13.5 mm, and the thickness of the partition wall 1a is 3.0 mm.
[0007]
As is clear from this result, ceramics that do not cause corrosion and do not impair the durability of the concrete structure are strong in compressive force but lack toughness and weak in tensile force, so they are embedded in concrete. In the previous state, there has been a limit to the widespread use of the structure to which a tensile force acts.
[0008]
The present invention has been made to solve the above-described problems, and provides a ceramic structure having an internal thread portion, excellent in corrosion resistance and electric corrosion resistance, and strong in compressive force and tensile force. For the purpose.
[0009]
[Means for Solving the Problems]
As a result of intensive research, the inventors of the present invention, when the female screw body is directly provided with the female screw portion, the above-described breaking phenomenon occurs, but the female screw member is strongly compressed by the sheath tube to form the female screw body. It has been found that, by configuring, the strength of the female screw member can be significantly improved by improving the strength of the female screw member by the compression action existing between them and the presence of the contact surface, thereby improving the yield strength of the female screw body.
[0010]
According to a first aspect of the present invention, a ceramic structure includes an internal thread member made of cylindrical ceramics having an internal thread portion therein and a sheath pipe made of at least one layer of ceramic, and the sheath pipe is formed by firing. The female screw member is compressed and both are closely fixed.
[0011]
By making the sheath tube into one or more layers and making it into multiple layers, the shear strength is increased. Further, when the female screw member and the sheath tube are formed of the same kind of ceramics (for example, alumina ceramics), as a means for increasing the compressive force of the sheath tube, the pressure at the time of forming the sheath tube is made lower than that of the female screw member, The shrinkage rate can be increased. Alternatively, the shrinkage rate at the time of firing can be increased by increasing the particle diameter of the raw material powder of the sheath tube, and a combination thereof may be used. Further, when forming the female screw member and the sheath tube with different kinds of ceramics, it is important to combine them in consideration of the temperature at which the sintering is completed, the shrinkage rate, and the like.
[0012]
In the ceramic structure according to the second aspect, the outermost sheath tube has an outer shape of any one of a columnar shape, a barrel shape, a polygonal shape, and an outer circumferential surface uneven shape.
[0013]
The ceramic structure according to claim 3 is made of ceramics whose main component is any one of alumina, zirconia, silicon carbide, and silicon nitride.
[0014]
Combining the female screw member and the sheath tube with the same kind of ceramics or different kinds of ceramics is performed as necessary.
[0015]
In the ceramic structure according to the fourth aspect, the sheath tube is provided with a pair of holes through a partition wall, and each of them is provided with a female screw member.
[0016]
The outer periphery of the partition wall is preferably curved rather than flat. The female screw member has a penetrating female screw portion.
[0017]
The ceramic structure according to the fifth aspect includes a hole through which the sheath tube passes, and a female screw member is provided in the hole.
[0018]
The female screw member is either one in which one end is closed, one having a partition wall in the middle portion, or one having a partition wall in the middle portion formed separately.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory view of a method for manufacturing a ceramic structure according to Embodiment 1 of the present invention. A cylindrical female screw member (unsintered body) having a female screw part 4a formed by press-molding a raw material powder of alumina ceramics. ) 4 and also press-molding the raw material powder of alumina ceramic to form a barrel-shaped sheath tube (unsintered body) 5 having a pair of holes 5b and 5c through a partition wall 5a. To do.
[0020]
Next, the female screw member 4 is mounted in the holes 5b and 5c of the sheath tube 5, and both are fired. At this time, by changing the amount of alumina between the female screw member 4 and the sheath tube 5, a time difference occurs in the completion of the sintering (a difference occurs in the firing temperature). For example, when the amount of alumina in the female screw member 4 is 94% by weight and the amount of alumina in the sheath tube 5 is 96% by weight, the female screw member 4 is sintered at, for example, 1500 ° C. and the reaction stops in the process of raising the firing temperature. To do. Further, the outer sheath tube 5 is sintered at 1600 ° C., for example, and the reaction stops. On the other hand, the linear reduction rate at the time of firing alumina ceramics is 14 to 17%, but this reduction rate varies depending on the particle size and pressure forming pressure. For example, if the pressure forming pressure is made larger for the female screw member 4 than the sheath tube 5, the reduction rate during firing becomes larger for the sheath tube 5 than for the female screw member 4. Accordingly, at the time of firing, the female screw member 4 is first sintered and reduced, and then the sheath tube 5 is sintered at a larger reduction ratio. As a result, the sheath tube 5 pressurizes and compresses the female screw member 4, and both are fitted and tightly bonded to form a ceramic structure 6. At this time, diffusion coupling does not occur between them except for a part. Thus, the strength of the ceramic structure 6 is improved by the tightening compression force acting between them. Therefore, when the overall diffusion coupling occurs, the female screw member 4 and the sheath tube 5 become the same body, which is not preferable.
[0021]
As shown in FIG. 2, the bolts 2 and 3 are screwed into the female thread portion 4a of the ceramic structure 6 described above, one bolt 3 is fixed, and the other bolt 2 is pulled as shown by an arrow to perform a tensile test. When it did, it turned out that a proof stress larger than before was obtained. That is, the tensile force does not act directly on the sheath tube 5 as in the prior art, and the stress acting on the female screw member 4 due to the tensile force acts on the sheath tube 5 via the contact surface A between the female screw member 4 and the sheath tube 5. Therefore, the tensile strength is remarkably improved.
[0022]
3 (a) shows the dimensions of the sheath tube 5 before firing. The maximum diameter is 31.8mm, the diameters of both ends are 22.4mm, the diameters of the holes 5b and 5c are 17.1mm, The depths 5b and 5c are 21.8 mm, 15.9 mm, the total length is 41.2 mm, and the partition wall 5a has a thickness of 3.5 mm. FIG. 3 (b) shows the dimensions of the sheath tube 5 after firing at 1600 ° C. (shrinkage rate 15%). The maximum diameter is 27 mm, the diameter is 19 mm at both ends, the total length is 35 mm, and the depths of the holes 5 b and 5 c are 18. It is 5 mm, 13.5 mm, and the thickness of the partition wall 5a is 3.0 mm. FIG. 3 (c) shows the dimensions of the female screw member 4 after firing at 1600 ° C., the outer diameter is 15 mm, the length is 13.5 mm, the female screw portion 4 a has a screw diameter of W3 / 8, and the number of threads is 7-8. The female screw member 4 is molded with a hydrostatic pressure molding machine (commonly called CIP) at a pressure of 5 MPa. In addition, since the diameter in the natural state after firing of the holes 5b and 5c of the sheath tube 5 is 14.5 mm and the outer diameter after firing of the female screw member 4 is 15 mm, the sheath tube 5 has a difference of 14.5-15 mm. The holes 5b and 5c tighten the female screw member 4. The shear strength of the ceramic structure 6 was 11.5 to 13KN.
[0023]
In the first embodiment, a cylindrical female screw member 4 made of ceramic and having a female screw part 4a is mounted in the holes 5b and 5c of the ceramic sheath tube 5 having a pair of holes 5b and 5c through the partition wall 5a. The ceramic structure 6 is formed by firing, and the sheath tube 5 reduced during firing pressurizes and compresses the female screw member 4 so that the two are fitted and tightly coupled, and the compression force is tightened between the two. By acting, the tensile strength of the ceramic structure 6 is improved.
[0024]
FIG. 4 shows a configuration of a terminal body using the ceramic structure 6 described above. The terminal body 7 is mainly composed of a ceramic structure 6 and a cylindrical sleeve body 8 made of ceramics. A resin connection body 9 that connects one end of the sleeve body 8 to one end of the sleeve body 8, and a rubber packing 10 provided at the other end of the sleeve body 8.
[0025]
FIG. 5 is a block diagram of a concrete formwork holding device using the terminal body 7, 11 is a separator, and both ends thereof are screwed into the female screw portion 4 a of the ceramic structure 6 of the terminal body 7, and one end is a formwork. The nut 14 is screwed into the other end of the bolt 13 screwed into the female screw portion 4a of the ceramic structure 6 of the terminal body 7 through this, and thereby the formwork 12 via the contact body 15 and the pipe 16. The frame 17 integral with the terminal body 7 is pressed to the terminal body 7 side, and the mold 12 is brought into contact with the rubber packing 10 of the terminal body 7 and fixed. In this state, concrete is placed between the molds 12, and after the concrete is solidified into a concrete structure 18, the nut 14, the contact body 15, the pipe 16, the crosspiece 17 and the mold 12 are removed.
[0026]
Thereafter, the rubber packing 10 is also removed. The rubber packing 10 is provided to prevent the concrete from entering the terminal body 7 at the time of placing the concrete, and is attached to one end of the sleeve body 8 with a one-component instant adhesive. As the instantaneous adhesive, for example, a cyanoacrylate-based one is used, and specifically, Aron Alpha (manufactured by Toa Gosei Co., Ltd.), Cemedine 3000 series (made by Cemedine Co., Ltd.) and the like are used. The instantaneous adhesive has an advantage that the bonding operation can be performed quickly, and peeling can be easily performed even when the adhesive is removed. However, when the sleeve body 8 is made of ceramics or mortar as described above, the adhesive needs to be jelly-like. This is because, if the adhesive is liquid, the applied material soaks into the sleeve body 8 and cannot be diffused to form an adhesive layer.
[0027]
The sleeve body 8 is provided in order to ensure the cover size, and is formed of an inorganic body such as ceramics (alumina, mullite, etc.), concrete, mortar and the like. The sleeve body 8 and the ceramic structure 6 are connected through a connection body or bonded with an adhesive. When the ceramic structure 6 and the sleeve body 8 are bonded with an adhesive, a room temperature curing type epoxy resin was used as the adhesive. For example, an epoxy resin-based two-component adhesive, a curing agent composed of a main component epoxy resin (bisphenol A type epoxy resin intermediate), a filler and a dye, and a main component polythiol and a filler. It consists of two liquids. Specifically, trade name EP-330 (made by Cemedine Co., Ltd.) was used. In this case, two liquids of the main agent and the curing agent were mixed at 50:50, and after application, the sleeve body 8 and the ceramic structure 6 were combined to be in a stationary state and joined by natural curing.
[0028]
In the concrete formwork holding apparatus shown in FIG. 5, the ceramic structure 6 is used as the female screw body. Since the ceramic structure 6 is entirely made of ceramics and is not made of metal, there is no concern about corrosion. 6 has a pair of female screw portions 4a through a partition wall 5a. Since the internal separator 11 is not exposed to the outside, the separator 11 does not corrode due to the penetration of both water. Accordingly, the terminal body 7 is not corroded, there is no deterioration phenomenon such as a crack on the surface of the concrete structure 18, the durability of the concrete structure 18 is not impaired, and the highly durable concrete structure Product 18 is obtained.
[0029]
Embodiment 2
6 (a) and 6 (b) show a cross-sectional view of the ceramic structure according to the second embodiment and a cross-sectional view of the female screw member. The sheath 19 has a barrel shape formed of ceramic and has a hole 19a penetrating in the center. Is provided. The female screw member 20 is formed in a cylindrical shape from ceramics, and a female screw portion 20a with one end closed inside is formed. A pair of fired female screw members 20 are provided, and the pair of female screw members 20 are set in the through hole 19a of the sheath tube 19 together with the closed end sides, and the sheath tube 19 is fired.
[0030]
Also in the second embodiment, the sheath tube 19 is reduced by firing, and the sheath tube 19 and the female screw member 20 are fitted and bonded together to form the ceramic structure 21. At this time, a tightening compression force acts between the sheath tube 19 and the female screw member 20, and the tensile strength of the ceramic structure 21 is improved.
[0031]
Embodiment 3
7A and 7B show a cross-sectional view of the ceramic structure according to the third embodiment and a cross-sectional view of the female screw member. The female screw member 22 is formed of a ceramic in a cylindrical shape, and a pair of them are interposed inside through a partition wall 22a. Female thread portions 22b and 22c are formed. The female screw member 22 is fired and set in the through hole 19a of the sheath tube 19, and the sheath tube 19 is fired.
[0032]
Also in the third embodiment, the sheath tube 19 is reduced by firing, and the sheath tube 19 and the female screw member 22 are fitted and tightly bonded to form a ceramic structure 23. At this time, a tightening compressive force acts between the sheath tube 19 and the female screw member 22, and the tensile strength of the ceramic structure 23 is improved.
[0033]
Embodiment 4
8A and 8B are a sectional view of a ceramic structure according to Embodiment 4, a sectional view of a female screw member, and a front view of a partition wall, and a pair of fired female screw members 4 and an unfired interposed therebetween. The ceramic partition walls 24 are set in the through holes 19a of the sheath tube 19, and these are fired.
[0034]
Also in the fourth embodiment, the sheath tube 19 is reduced by firing, and the sheath tube 19, the female screw member 4, and the partition wall 24 are fitted and bonded to form a ceramic structure 25. At this time, a tightening compression force acts between the sheath tube 19 and the female screw member 4 and the partition wall 24, and the tensile strength of the ceramic structure 25 is improved.
[0035]
Embodiment 5
FIGS. 9A and 9B show a sectional view of the ceramic structure according to the fifth embodiment, a sectional view of the female screw member, and a front view of the partition wall, only that the ceramic partition wall 26 has convex portions 26a on both sides. Unlike the fourth embodiment, a ceramic structure 27 is formed. The convex portion 26 a is provided to engage with the female screw portion 4 a of the female screw member 4 so that the cores of the pair of female screw members 4 and the partition wall 26 are aligned.
[0036]
Embodiment 6
FIG. 10A shows a cross-sectional view of the ceramic structure according to the sixth embodiment. In each of the above-described embodiments, as shown in FIG. In this embodiment, a sheath tube 28 is further provided outside the sheath tube 5. The sheath tube 5 is compressed by the sheath tube 28 made of ceramics during firing, and the female screw member 4 is compressed by the sheath tube 5. The ceramic structure 29 is formed by compression.
[0037]
In the sixth embodiment, as described above, the ceramic structure 29 is formed by compressing the female screw member 4 with the two-layer sheath pipes 5 and 28, and the tensile strength of the ceramic structure 29 can be increased. In addition, the shear strength can be increased. In addition, if the female screw member is compressed by three or more sheath tubes, these strengths can be further increased.
[0038]
In each of the above embodiments, the outermost casing tube has a barrel shape, but may have a cylindrical shape, a polygonal shape, or an outer circumferential surface uneven shape. Further, the sheath tube and the female screw member (including a separate partition wall) are formed of alumina ceramics, but may be formed of ceramics such as zirconia, silicon carbide, and silicon nitride.
[0039]
【Example】
(1) Manufacturing method of female screw member 4 First, an auxiliary component (sintering aid) for assisting in sintering the aluminum oxide raw material (particle size of 1 μm or less, purity 99.8%, content 94% by weight) as a main component. The remaining components) are added, pure water is further added, and the mixture is crushed by a ball mill for 10 hours. To the obtained raw material slurry, an organic binder such as polyvinyl alcohol and a polycarboxylic acid ammonium salt as a dispersant are added, dried at a temperature of 150 ° C. with a spray dryer, and spray granulated. The obtained granule is shape | molded by the pressure of 5 Mpa by a hydrostatic pressure molding machine (common name CIP). The dimensions are as described in the first embodiment.
[0040]
(2) Manufacturing method of sheath tube 5 First, an auxiliary component (sintering aid) for assisting the sintering of the aluminum oxide raw material (particle size 1 μm or less, purity 99.8%, content 96% by weight) as a main component. The remaining components) are added, pure water is further added, and the mixture is crushed by a ball mill for 10 hours. To the obtained raw material slurry, an organic binder such as polyvinyl alcohol and a polycarboxylic acid ammonium salt as a dispersant are added, dried at a temperature of 150 ° C. with a spray dryer, and spray granulated. The obtained granule is shape | molded by the pressure of 4.5 Mpa by a hydrostatic pressure molding machine. The dimensions are as described in the first embodiment.
[0041]
(3) Manufacturing method of ceramic structure 6 The internal thread member 4 is set in the holes 5b and 5c of the sheath tube 5, fired at 1600 ° C. for 2 hours in a gas furnace, cooled at a temperature lowering rate of 100 ° C./hour, and ceramics. A ceramic structure 6 made of a sintered body is obtained. In firing the ceramic structure 6, the internal thread member 4 is sintered at about 1500 ° C. by setting the alumina amount to 94 wt%. On the other hand, the sheath tube 5 is sintered at about 1600 ° C. by setting the amount of alumina to 96% by weight, and the pressure forming pressure is set to 4.5 MPa lower than 5 MPa of the female screw member 4. Thus, the shrinkage rate can be increased, and the female screw member 4 can be tightened and compressed by the sheath tube 5.
[0042]
(4) About components (common to all members, the same applies hereinafter)
The content of the main component aluminum oxide is about 90 to 98% by weight. In the case of 90% by weight or less, the strength as a connection joint is insufficient, and particularly the internal thread is damaged. If it is 98% by weight or more, it is necessary to increase the sintering temperature, which is not economically preferable. As the sintering aid, MgO, SiO 2 and CaO are preferable, which has an effect of lowering the firing temperature.
[0043]
(5) Regarding the granulated particles, it is preferable that the granules granulated by spray granulation occupy 80% or more of the particles whose particle size is distributed in the range of about 30 to 200 μm. If it is below this range (small diameter), the fluidity is deteriorated, making it difficult to fill the mold, and cavities are generated. When exceeding this range (large diameter), the thread is not reliably formed. In any case, it is difficult to obtain a desired terminal body.
[0044]
(6) Pressure The molding pressure may be in the range of 3 to 10 MPa. Below this, chipping and cracking occur due to insufficient pressure. Above this, it takes time until the pressure is released, the productivity is lowered, the releasability is poor, and mold cracking is likely to occur.
[0045]
(7) Regarding the firing conditions, the atmosphere may be air. The firing holding temperature may be 1500 to 1700 ° C., the firing time may be 2 hours or more, and the cooling rate may be from the firing holding temperature to 400 ° C. at a cooling rate of 50 to 200 ° C./hour. The reason is that in the composition containing 90% by weight or more of aluminum oxide and a sintering aid (MgO, SiO 2 , CaO), sintering is not completed unless sintered at about 1500 to 1700 ° C., and 50 to 200 ° C. This is because the strength after firing is not preferable if the temperature lowering rate is not / hour.
[0046]
【The invention's effect】
As described above, according to the present invention, the female screw member made of ceramics is compressed by the shrinkage force at the time of firing with the sheath tube made of ceramics to form the ceramic structure, and the female screw member is compressed. Since a force acts and a close contact surface exists between the female screw member and the sheath tube, the tensile strength of the ceramic structure can be remarkably improved. Further, since the ceramic structure does not corrode, it is applied to various applications that require corrosion resistance, electrical insulation resistance, and the like. For example, when embedded in a concrete structure, a highly durable concrete structure can be obtained.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a method for producing a ceramic structure according to Embodiment 1 of the present invention.
2 is an explanatory view of a tensile strength test of a ceramic structure according to Embodiment 1. FIG.
FIG. 3 is a diagram showing dimensions before and after firing of a sheath tube of a ceramic structure according to Embodiment 1 and dimensions of a female screw member after firing.
4 is a configuration diagram of a terminal body using a ceramic structure according to Embodiment 1. FIG.
FIG. 5 is a configuration diagram of a concrete formwork holding apparatus using the ceramic structure according to the first embodiment.
6 is a cross-sectional view of a ceramic structure according to a second embodiment and a cross-sectional view of an internal thread member. FIG.
7 is a cross-sectional view of a ceramic structure and a cross-sectional view of a female screw member according to Embodiment 3. FIG.
FIG. 8 is a cross-sectional view of a ceramic structure according to Embodiment 4, a cross-sectional view of a female screw member, and a front view of a partition wall.
9 is a cross-sectional view of a ceramic structure according to Embodiment 5, a cross-sectional view of a female screw member, and a front view of a partition wall. FIG.
FIG. 10 is a cross-sectional view of a ceramic structure according to a sixth embodiment and a cross-sectional view of a ceramic structure according to another embodiment.
FIG. 11 is a cross-sectional view of a conventional female screw body and an explanatory view of its tensile strength test.
FIG. 12 is a diagram showing dimensions of a conventional female screw body.
[Explanation of symbols]
4, 20, 22 ... female screw members 4a, 22b, 22c ... female screw parts 5, 19, 28 ... sheath tubes 5a, 22a, 24, 26 ... partition walls 5b, 5c ... holes 6, 21, 23, 25, 27, 29 ... Ceramic structure 18 ... concrete structure 19a ... through hole

Claims (5)

内部に雌ねじ部を備えた筒状のセラミックスからなる雌ねじ部材と、少なくとも一層のセラミックスからなる鞘管とから構成され、焼成することにより鞘管が雌ねじ部材を圧縮して両者を密着固定させたことを特徴とするセラミックス構造体。  Consists of a female screw member made of cylindrical ceramics with a female thread inside, and a sheath tube made of at least one layer of ceramic, and the sheath tube compresses the female screw member and fixes them tightly by firing. A ceramic structure characterized by the above. 最外位置の鞘管は、外形を円柱状、樽形状、多角形、外周面凹凸状のいずれかにしたことを特徴とする請求項1記載のセラミックス構造体。The ceramic structure according to claim 1, wherein the outermost sheath tube has an outer shape of any one of a columnar shape, a barrel shape, a polygonal shape, and an outer peripheral surface unevenness shape. セラミックスは、アルミナ、ジルコニア、炭化珪素、窒化珪素のいずれかを主成分としたことを特徴とする請求項1又は2記載のセラミックス構造体。  3. The ceramic structure according to claim 1, wherein the ceramic is mainly composed of alumina, zirconia, silicon carbide, or silicon nitride. 鞘管は、隔壁を介して一対の穴を備え、この穴内に各々雌ねじ部材を備えて構成したことを特徴とする請求項1〜3のいずれかに記載のセラミックス構造体。  The ceramic structure according to any one of claims 1 to 3, wherein the sheath tube is provided with a pair of holes through a partition wall, each of which is provided with a female screw member. 鞘管は、貫通した孔を備え、この孔内に雌ねじ部材を備えて構成したことを特徴とする請求項1〜3のいずれかに記載のセラミックス構造体。  The ceramic structure according to any one of claims 1 to 3, wherein the sheath tube includes a through-hole and a female screw member in the hole.
JP2001286747A 2001-09-20 2001-09-20 Ceramic structure Expired - Fee Related JP3971908B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001286747A JP3971908B2 (en) 2001-09-20 2001-09-20 Ceramic structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001286747A JP3971908B2 (en) 2001-09-20 2001-09-20 Ceramic structure

Publications (2)

Publication Number Publication Date
JP2003095762A JP2003095762A (en) 2003-04-03
JP3971908B2 true JP3971908B2 (en) 2007-09-05

Family

ID=19109669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001286747A Expired - Fee Related JP3971908B2 (en) 2001-09-20 2001-09-20 Ceramic structure

Country Status (1)

Country Link
JP (1) JP3971908B2 (en)

Also Published As

Publication number Publication date
JP2003095762A (en) 2003-04-03

Similar Documents

Publication Publication Date Title
JP4768950B2 (en) Fire resistant ultra high performance concrete composition
US6082063A (en) Prestressing anchorage system for fiber reinforced plastic tendons
CN110306726B (en) Composite structure and manufacturing method thereof
EP3066684A1 (en) Semiconductor module with an encasing cement mass that covers a semiconductor component
CN212802088U (en) Construction rock wool heat preservation wall body that plasters
KR100859068B1 (en) Spark plug
JPH0832582B2 (en) Composite structure
CN109838038B (en) Prestressed composite bar composite anchorage and forming method thereof
JP3971908B2 (en) Ceramic structure
CN107445579A (en) Fire proofing material and fire-proof plate and fire rated wall structure and construction method applied to tunnel
KR20100076284A (en) Spalling prevention material composed of fiber and powder, and high strength refractory concrete using the same
JP2003095760A (en) Method for manufacturing ceramic structure
WO2006038225A2 (en) A reinforcing fiber for concrete, a flexible concrete and a method to prepare the concrete
JP2003095761A (en) Method for manufacturing ceramic structure
JP2003095759A (en) Ceramic structure and method for manufacturing the same
JP2003094418A (en) Method for manufacturing ceramics structure
CN209891559U (en) Prestressed composite bar composite anchorage
JP2003097534A (en) Ceramics nut and manufacturing method thereof
JP2002371709A (en) End stopper for concrete form retainer and concrete structure
JP3869667B2 (en) Concrete formwork holding device end stop and concrete structure
CN107602019B (en) Building member of prefabricated dismounting-free formwork of ultra-light concrete
JP2003128474A (en) Insulating structure and its manufacturing method
JP2002250128A (en) Colored end stopper body for concrete form supporting structure and concrete structure
JP4045169B2 (en) Explosion-resistant high-strength cementitious cured body and method for producing the same
CN109356029B (en) CFRP rib pre-extrusion composite anchorage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070611

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees