JP2003095761A - Method for manufacturing ceramic structure - Google Patents

Method for manufacturing ceramic structure

Info

Publication number
JP2003095761A
JP2003095761A JP2001286745A JP2001286745A JP2003095761A JP 2003095761 A JP2003095761 A JP 2003095761A JP 2001286745 A JP2001286745 A JP 2001286745A JP 2001286745 A JP2001286745 A JP 2001286745A JP 2003095761 A JP2003095761 A JP 2003095761A
Authority
JP
Japan
Prior art keywords
female screw
ceramic structure
screw member
ceramic
sheath tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001286745A
Other languages
Japanese (ja)
Inventor
Kiyobumi Ogita
清文 荻田
Ken Iida
憲 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Meiden Ceramics Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Meiden Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd, Meiden Ceramics Co Ltd filed Critical Meidensha Corp
Priority to JP2001286745A priority Critical patent/JP2003095761A/en
Publication of JP2003095761A publication Critical patent/JP2003095761A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To manufacture a ceramic structure having high tensile strength with high working efficiency. SOLUTION: The source powder is press formed by using female screw die tools 11, 12 and press dies 7 to 10 to form a female screw member 13. After the press dies 7 to 10 are removed, the ceramic source powder is press formed around the female screw member 13 by using the female screw die tools 11, 12 and press dies 14 to 17 as attached to form a sheath tube 18. After the female screw die tools 11, 12 and the press dies 14, 17 are removed, the female screw members 13 and the sheath tube 18 are calcined so that the sheath tube 18 presses the female screw member 7 to tightly fix to each other.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、セラミックスか
らなる雌ねじ体に係り、耐熱特性、耐腐食特性、電気的
絶縁特性が要求される例えば土木、電気関係に好適な、
強度を向上した雌ねじ部を備えるセラミックス構造体の
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a female screw body made of ceramics, and is suitable for, for example, civil engineering and electrical relations, which require heat resistance, corrosion resistance, and electrical insulation characteristics.
The present invention relates to a method for manufacturing a ceramic structure having a female screw portion with improved strength.

【0002】[0002]

【従来の技術】一般に、部材の耐熱特性、耐腐食特性、
電気的腐食性の誘発などを改善するために、金属に代え
てセラミックス化するなどの傾向がある。特に、土木関
係では、コンクリート構造物の耐久性を向上するため
に、金属からセラミックスに移行する傾向にある。例え
ば、コンクリート型枠保持装置の端止体(継ぎ手)とし
ては、各種のものが知られている。例えば、特開平8−
135187においては、金属製雌ねじ部をセラミック
スで覆ったものが示され、特開平9−324537にお
いては、金属製雌ねじ部を分割セラミックス筒体で保持
したものが示されている。又、特開2000−3457
16や特開2000−345704においては、金属製
雌ねじ部をモルタルで覆ったものが示され、特開平11
−2025においては、金属製雌ねじ部を合成樹脂で覆
ったものが示されている。
2. Description of the Related Art Generally, heat resistance and corrosion resistance of members,
In order to improve the induction of electrical corrosiveness, there is a tendency to use ceramics instead of metal. Especially in civil engineering, there is a tendency to shift from metal to ceramics in order to improve the durability of concrete structures. For example, various types are known as end stoppers (joints) of concrete formwork holding devices. For example, Japanese Patent Laid-Open No. 8-
In 135187, a metallic female screw portion is covered with ceramics, and in Japanese Patent Laid-Open No. 9-324537, a metallic female screw portion is held with a divided ceramic cylinder. Also, Japanese Patent Laid-Open No. 2000-3457
16 and Japanese Unexamined Patent Publication No. 2000-345704, a metallic female screw portion covered with mortar is disclosed.
-2025 shows a metallic female screw portion covered with a synthetic resin.

【0003】又、特開平6−279131、同10−2
72614などにおいては、セラミックス部材同士を焼
成収縮率の差を利用して嵌着結合することにより、気密
性、接合強度に優れたものを得る技術が示されている。
Further, JP-A-6-279131 and 10-2.
In 72614 and the like, there is disclosed a technique in which ceramic members are fitted and joined together by utilizing the difference in firing shrinkage ratio to obtain a material having excellent airtightness and bonding strength.

【0004】しかし、本発明のように、圧縮力を付与す
ることにより強度を高めるセラミックス構造体の製造方
法の思想は開示されていない。
However, the idea of a method of manufacturing a ceramic structure which increases the strength by applying a compressive force like the present invention is not disclosed.

【0005】[0005]

【発明が解決しようとする課題】上記した従来の端止体
においては、金属製雌ねじ部を合成樹脂で覆ったもの
は、合成樹脂部が経年により劣化して金属製雌ねじ部が
腐食し、金属製セパレータへ腐食が波及することとなっ
た。又、金属製雌ねじ部を無機質(モルタル、セラミッ
クス)で覆ったものは、覆った部分の劣化はないもの
の、内部の金属製雌ねじ部が腐食し、金属製セパレータ
へ腐食が波及することとなった。従って、端止体で腐食
が始まると、コンクリート構造体の表面部にクラックが
発生するなどの劣化が始まり、コンクリート構造体の耐
久性を損なうこととなった。
In the above-mentioned conventional end stopper, in which the metallic female screw portion is covered with the synthetic resin, the synthetic resin portion is deteriorated with age and the metallic female screw portion is corroded. Corrosion spread to the manufactured separator. Also, in the case where the metallic female screw portion was covered with an inorganic substance (mortar, ceramics), although the covered portion was not deteriorated, the internal metallic female screw portion was corroded and the corrosion spread to the metallic separator. . Therefore, when corrosion starts at the end stopper, deterioration such as cracking on the surface of the concrete structure begins, and the durability of the concrete structure is impaired.

【0006】一方、発明者らは、図6(a)に示すよう
に、隔壁1aを介して雌ねじ部1b,1cを備えた雌ね
じ体1をアルミナセラミックス(アルミナ96重量%)
の焼結体で形成し、図6(b)に示すように各雌ねじ部
1b,1cにそれぞれボルト2,3を螺合し、一方のボ
ルト3を固定して他方のボルト2を矢印のように引っ張
って引っ張り試験を行った所、ボルト2の先端部を起点
にして雌ねじ体1の外周面方向に発生した破断面1dに
より破断した。せん断強度は、2.60〜2.90KN
であった。なお、試験に使用した雌ねじ体1の焼結後の
寸法関係は図7に示す通りである。すわなち、最大径2
7mm、両端部の径19mm、全長35mm、雌ねじ部
1b,1cは共にねじ径がW3/8でねじ山の数は7〜
8山であり、雌ねじ部1bの長さは端部側に形成された
径大部1eを含めて18.5mm、雌ねじ部1cの長さ
は13.5mm、隔壁1aの厚さは3.0mmである。
On the other hand, as shown in FIG. 6 (a), the inventors of the present invention have prepared a female screw body 1 having female screw portions 1b and 1c via a partition wall 1a as alumina ceramics (96% by weight of alumina).
6B, the bolts 2 and 3 are screwed into the female screw portions 1b and 1c, respectively, as shown in FIG. 6B, one bolt 3 is fixed, and the other bolt 2 is indicated by an arrow. When the tensile test was conducted by pulling the bolt, the fractured surface 1d was generated in the direction of the outer peripheral surface of the female screw body 1 with the tip of the bolt 2 as the starting point. Shear strength is 2.60-2.90KN
Met. The dimensional relationship after sintering of the female screw body 1 used in the test is as shown in FIG. 7. That is, maximum diameter 2
7 mm, both ends have a diameter of 19 mm, a total length of 35 mm, and the female screw portions 1b and 1c each have a screw diameter of W3 / 8 and the number of threads is 7 to 7.
There are eight peaks, the length of the female screw portion 1b is 18.5 mm including the large diameter portion 1e formed on the end side, the length of the female screw portion 1c is 13.5 mm, and the thickness of the partition wall 1a is 3.0 mm. Is.

【0007】この結果からも明らかなように、腐食を発
生せず、コンクリート構造体の耐久性を損なうことがな
いセラミックスは圧縮力に強いが、靱性に欠け、引っ張
り力に弱いことから、コンクリート内に埋設する以前の
状態において引っ張り力が作用する構造体への使用普及
には限界があった。
As is clear from these results, ceramics that do not corrode and do not impair the durability of the concrete structure are strong in compressive force, but lack in toughness and weak in tensile force. There was a limit to the widespread use of the structure in which tensile force acts before it was buried in the structure.

【0008】そこで、発明者らは研究を重ね、図8に示
すようなセラミックス構造体を考案した。図において、
5は隔壁5aを介して一対の穴5b,5cを設けたアル
ミナセラミックスの未焼結体からなる鞘管、4はアルミ
ナセラミックスの焼結体からなる筒状の雌ねじ部材であ
り、その内周には貫通した雌ねじ部4aが設けてある。
そして、鞘管5の穴5b,5c内にそれぞれ雌ねじ部材
4を装着し、これらを焼成して鞘管5を焼結する。この
焼結の際に鞘管5は収縮し、鞘管5は雌ねじ部材4を加
圧圧縮し、両者は嵌合密着結合し、セラミックス構造体
6が形成される。このとき、両者間に拡散結合は一部を
除いて生じない。このように、鞘管5と雌ねじ部材4と
の間に締め付け圧縮力が作用することにより、セラミッ
クス構造体6の引っ張り強度は向上する。従って、全体
的な拡散結合が生じると、雌ねじ部材4と鞘管5が同一
体となってしまい、好ましくない。
Therefore, the inventors have conducted extensive research and devised a ceramic structure as shown in FIG. In the figure,
Reference numeral 5 denotes a sheath tube made of a non-sintered body of alumina ceramics having a pair of holes 5b and 5c through a partition wall 5a, and 4 a cylindrical female screw member made of a sintered body of alumina ceramics. Is provided with a penetrating female screw portion 4a.
Then, the female screw members 4 are mounted in the holes 5b and 5c of the sheath tube 5, respectively, and these are fired to sinter the sheath tube 5. During this sintering, the sheath tube 5 contracts, the sheath tube 5 pressurizes and compresses the female screw member 4, and the two are fitted and tightly coupled to each other to form the ceramic structure 6. At this time, diffusion coupling does not occur between the two except a part. As described above, the tightening compression force acts between the sheath tube 5 and the female screw member 4, so that the tensile strength of the ceramic structure 6 is improved. Therefore, if overall diffusion coupling occurs, the female screw member 4 and the sheath tube 5 will be the same body, which is not preferable.

【0009】ここで、図9に示すように、一対の雌ねじ
部材4の雌ねじ部4aにボルト2,3を螺合し、一方の
ボルト3を固定し、他方のボルト2を引っ張って引っ張
り試験を行うと、従来より大きな耐力を有することが判
明した。即ち、引っ張り力は従来のように鞘管5に直接
局部的に作用せず、引っ張り力により雌ねじ部材4に作
用する応力は雌ねじ部材4と鞘管5との密着面Aを介し
て鞘管5に分散して作用するので、引っ張り強度が著し
く向上する。
Here, as shown in FIG. 9, bolts 2 and 3 are screwed into female screw portions 4a of a pair of female screw members 4, one bolt 3 is fixed, and the other bolt 2 is pulled to perform a pull test. When it was carried out, it was found to have a greater yield strength than before. That is, the pulling force does not locally act directly on the sheath tube 5 as in the conventional case, and the stress acting on the female screw member 4 by the pulling force is exerted on the sheath tube 5 via the contact surface A between the female screw member 4 and the sheath tube 5. The tensile strength is remarkably improved because it acts in a dispersed manner.

【0010】なお、アルミナセラミックスの焼成時の線
収縮率は14〜17%であるが、粒径や加圧成形圧力な
どの条件によって異なる。上記の場合、焼結済の雌ねじ
部材4の外径より若干径が大きい穴5b,5cを有する
鞘管5を用意し、この鞘管5を焼成することにより、鞘
管5が雌ねじ部材4を締め付け、圧縮力が作用するよう
にする。若干形状が異なるが、図10(a)は焼成前の
鞘管5の寸法を示し、最大径31.8mm、両端部の径
22.4mm、穴5b,5cの径17.1mm、穴5
b,5cの深さ21.8mm、15.9mm、全長4
1.2mm、隔壁5aの厚さ3.5mmである。又、図
10(b)は1600℃で焼成後(収縮率15%)の鞘
管5の寸法を示し、最大径27mm、両端部の径19m
m、全長35mm、穴5b,5cの深さ18.5mm、
13.5mm、隔壁5aの厚さ3.0mmである。図1
0(c)は1600℃で焼成後の雌ねじ部材4の寸法を
示し、外径15mm、長さ13.5mm、雌ねじ部4a
のねじ径はW3/8、ねじ山数は7〜8である。雌ねじ
部材4のアルミナ量は96重量%であり、その成形は静
水圧成形機(通称CIP)により5MPaの圧力で成形
する。又、鞘管5の穴5b,5cの焼成後の自然状態に
おける径は14.5mmとなり、雌ねじ部材4の焼成後
の外径は15mmであるから、14.5−15mmの差
分で鞘管5の穴5b,5cが雌ねじ部材4を締め付ける
ことになる。セラミックス構造体6のせん断強度は1
1.5〜13KNであった。
The linear shrinkage rate of the alumina ceramics during firing is 14 to 17%, but it varies depending on the conditions such as the particle size and the pressure molding pressure. In the above case, a sheath pipe 5 having holes 5b and 5c having a diameter slightly larger than the outer diameter of the sintered female screw member 4 is prepared, and the sheath pipe 5 is fired, so that the sheath pipe 5 can hold the female screw member 4 in place. Tighten so that compressive force acts. Although the shape is slightly different, FIG. 10 (a) shows the dimensions of the sheath tube 5 before firing, and the maximum diameter is 31.8 mm, the diameters of both ends are 22.4 mm, the diameters of the holes 5b and 5c are 17.1 mm, and the hole 5 is 5 mm.
b, 5c depth 21.8mm, 15.9mm, total length 4
The thickness is 1.2 mm and the partition wall 5a has a thickness of 3.5 mm. Further, FIG. 10B shows the dimensions of the sheath tube 5 after firing at 1600 ° C. (shrinkage rate 15%), the maximum diameter is 27 mm, and the diameters of both ends are 19 m.
m, total length 35 mm, depth of holes 5b and 5c 18.5 mm,
It is 13.5 mm and the thickness of the partition wall 5a is 3.0 mm. Figure 1
0 (c) shows the dimensions of the female screw member 4 after firing at 1600 ° C., the outer diameter is 15 mm, the length is 13.5 mm, and the female screw portion 4 a.
Has a diameter of W3 / 8, and the number of threads is 7-8. The amount of alumina of the female screw member 4 is 96% by weight, and its molding is carried out by a hydrostatic molding machine (commonly called CIP) at a pressure of 5 MPa. The diameter of the holes 5b and 5c of the sheath tube 5 in the natural state after firing is 14.5 mm, and the outer diameter of the female screw member 4 after firing is 15 mm. Therefore, the sheath tube 5 has a difference of 14.5-15 mm. The holes 5b and 5c of 5 will tighten the female screw member 4. The shear strength of the ceramic structure 6 is 1
It was 1.5 to 13 KN.

【0011】この発明は上記のような課題を解決するた
めに成されたものであり、耐腐食性、耐電気腐食性に優
れ、圧縮力、引っ張り力にも強く、かつ作業性に優れた
セラミックス構造体の製造方法を得ることを目的とす
る。
The present invention was made in order to solve the above problems, and is a ceramic excellent in corrosion resistance, electric corrosion resistance, compressive force, tensile force, and workability. The purpose is to obtain a method for manufacturing a structure.

【0012】[0012]

【課題を解決するための手段】発明者らは上記のように
鋭意研究を重ねた結果、雌ねじ体に直接雌ねじ部を設け
て構成した場合には、上記のように破断現象が生じる
が、雌ねじ部材を鞘管で強く圧縮して雌ねじ体を構成す
ることにより、両者間に存在する圧縮作用による雌ねじ
部材の強度向上と密着面の存在により、引っ張り強度の
向上に著しく寄与して雌ねじ体の耐力を向上できること
を見出した。
As a result of intensive studies as described above, the inventors of the present invention have found that when a female screw body is directly provided with a female screw portion, the fracture phenomenon occurs as described above. By forming a female screw body by compressing the member strongly with a sheath tube, the strength of the female screw member due to the compression action existing between the two members and the presence of the contact surface contribute significantly to the improvement of the tensile strength and the yield strength of the female screw member. It has been found that can improve.

【0013】この発明の請求項1に係るセラミックス構
造体の製造方法は、セラミックス原料粉末を加圧成形し
て雌ねじ部材を形成し、この雌ねじ部材の外周にセラミ
ックス原料粉末を加圧成形して少なくとも一層の鞘管を
形成し、両者を焼成することにより、鞘管が雌ねじ部材
を圧縮して両者を密着固定させるものである。
In the method for manufacturing a ceramic structure according to claim 1 of the present invention, the ceramic raw material powder is pressure-molded to form the female screw member, and the ceramic raw material powder is pressure-molded on the outer periphery of the female screw member. By forming one layer of the sheath tube and firing both, the sheath tube compresses the female screw member to tightly fix both.

【0014】鞘管は一層以上の複数層とすることによ
り、強度が増す。この場合、加圧成形を繰り返すことに
より多層にする。雌ねじ部材を加圧成形後、雌ねじ部材
の周囲に直接鞘管を加圧成形することから、作業性に優
れ、しかも雌ねじ部材の外形形状を任意のものとして、
嵌着結合を強化できる。例えば、雌ねじ部材の外形を樽
形状、両側円弧錐状、多角形、外周面凹凸状とすること
ができる。
The strength of the sheath tube is increased by forming one or more layers. In this case, pressure molding is repeated to form multiple layers. After the female screw member is pressure-molded, since the sheath pipe is directly pressure-molded around the female screw member, the workability is excellent, and the external shape of the female screw member is arbitrary.
The fitting connection can be strengthened. For example, the external shape of the female screw member may be barrel-shaped, both-sided arc pyramid-shaped, polygonal, and irregular shape on the outer peripheral surface.

【0015】請求項2に係るセラミックス構造体の製造
方法は、雌ねじ型治具を用いてセラミックス原料粉末を
加圧成形して雌ねじ部材を形成し、雌ねじ型治具を装着
した状態において雌ねじ部材の外周にセラミックス原料
粉末を加圧成形して少なくとも一層の鞘管を形成し、雌
ねじ型治具を除去した後、雌ねじ部材と鞘管を焼成する
ことにより、鞘管が雌ねじ部材を圧縮して両者を密着固
定させるものである。
According to a second aspect of the present invention, there is provided a method for manufacturing a ceramic structure in which a ceramic raw material powder is pressure-molded by using an internal thread type jig to form an internal thread member, and the internal thread member is attached to the internal thread member. The ceramic raw material powder is pressure-molded on the outer circumference to form at least one layer of the sheath tube, the female screw type jig is removed, and then the female screw member and the sheath pipe are fired so that the sheath pipe compresses the female screw member. Is to be closely fixed.

【0016】請求項3に係るセラミックス構造体の製造
方法は、焼成における焼結順序が雌ねじ部材の焼結後に
鞘管が焼結するようにしたものである。
In the method for manufacturing a ceramic structure according to a third aspect of the present invention, the sintering order in firing is such that the sheath tube is sintered after the female screw member is sintered.

【0017】雌ねじ部材と鞘管を同種のセラミックス
(例えばアルミナセラミックス)で形成する場合、鞘管
の圧縮力を大きくする手段として、鞘管の成形時の圧力
を雌ねじ部材より低くすることにより、焼成時の収縮率
を大きくできる。又は、鞘管の原料粉末の粒径を大きく
することによっても、焼成時の収縮率を大きくでき、こ
れらの組み合わせでもよい。又、異種のセラミックスで
雌ねじ部材及び鞘管を形成する場合には、焼結完了の温
度、収縮率などを考慮して組み合わせることが重要であ
る。
When the female screw member and the sheath pipe are formed of the same kind of ceramics (for example, alumina ceramics), as a means for increasing the compressive force of the sheath pipe, the pressure at the time of molding the sheath pipe is made lower than that of the female screw member to perform firing. The shrinkage rate can be increased. Alternatively, the shrinkage rate during firing can be increased by increasing the particle size of the raw material powder for the sheath tube, and a combination thereof may be used. Further, when forming the female screw member and the sheath pipe from different kinds of ceramics, it is important to combine them in consideration of the temperature of completion of sintering, the shrinkage ratio and the like.

【0018】請求項4に係るセラミックス構造体の製造
方法は、最外位置の鞘管の外形を、円柱状、樽形状、両
側円弧錐状、多角形、外周面凹凸状のいずれかにするも
のである。
In the method for manufacturing a ceramic structure according to a fourth aspect of the present invention, the outermost sheath tube has an outer shape of any of a column shape, a barrel shape, a circular arc pyramid shape on both sides, a polygonal shape, and an uneven outer peripheral surface. Is.

【0019】請求項5に係るセラミックス構造体の製造
方法は、セラミックスを、アルミナ、ジルコニア、炭化
珪素、窒化珪素のいずれかを主成分とするものである。
In the method for manufacturing a ceramic structure according to a fifth aspect of the present invention, the ceramic is mainly composed of any one of alumina, zirconia, silicon carbide and silicon nitride.

【0020】雌ねじ部材と鞘管とを同種のセラミックス
で組み合わせる、又は異種のセラミックスで組み合わせ
ることは、必要に応じて行う。
The combination of the female screw member and the sheath tube with the same kind of ceramics or the combination of different kinds of ceramics is performed as necessary.

【0021】請求項6に係るセラミックス構造体の製造
方法は、雌ねじ部材が隔壁を介して一対の雌ねじ部を有
するものである。
In the method for manufacturing a ceramic structure according to the sixth aspect, the female screw member has a pair of female screw portions with the partition wall interposed therebetween.

【0022】隔壁の外周は、平面より曲面状が望まし
い。
The outer circumference of the partition wall is preferably curved rather than flat.

【0023】[0023]

【発明の実施の形態】実施形態1 以下、この発明の実施の形態を図面とともに説明する。
図1(a)〜(c)及び図2(a)〜(c)はこの発明
の実施形態1によるセラミックス構造体の製造方法の説
明図を示し、まず図1(a)に示すように、一対の雌ね
じ型治具11,12を対向配置してプレス型7〜10に
装着し、プレス型7などに設けた孔から内部の空間にア
ルミナセラミックスを主成分としたセラミックス粉末を
充填し、加圧成形して、樽形状の雌ねじ部材13を形成
する。雌ねじ部材13は隔壁13aを介して一対の雌ね
じ部13b,13cが設けられる。アルミナ含有量は9
4重量%であり、残りは結合助材である。加圧力は、静
水圧成形機(通称CIP)により5MPaで成形する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1 Embodiments of the present invention will be described below with reference to the drawings.
1 (a) to 1 (c) and 2 (a) to 2 (c) are explanatory views of a method for manufacturing a ceramic structure according to Embodiment 1 of the present invention. First, as shown in FIG. 1 (a), A pair of female screw type jigs 11 and 12 are arranged so as to face each other and mounted on the press dies 7 to 10, and a space provided inside the press dies 7 is filled with ceramic powder containing alumina ceramics as a main component and added. The barrel-shaped female screw member 13 is formed by pressure forming. The female screw member 13 is provided with a pair of female screw portions 13b and 13c via a partition wall 13a. Alumina content is 9
4% by weight, the rest being binding aids. The pressing force is 5 MPa with an isostatic press (commonly called CIP).

【0024】次に、図1(b)に示すようにプレス型7
〜10を外し、図1(c)に示すように雌ねじ型治具1
1,12を装着した状態で雌ねじ部材13の外周に空間
が生じるようにプレス型14〜17を装着し、プレス型
14などに設けた孔から上記空間にアルミナセラミック
スを主成分とするセラミックス粉末を充填し、加圧成形
して、雌ねじ部材13の外周に鞘管18を形成する。鞘
管18のアルミナ含有量は96重量%とし、残りは結合
助材である。鞘管18が雌ねじ部材13より高温で焼結
するように(雌ねじ部材13より遅く焼結するよう
に)、鞘管18のアルミナ量を雌ねじ部材13より多く
する。加圧力は、静水圧成形機により4.5MPaの圧
力で成形する。このように、鞘管18の成形時の圧力を
雌ねじ部材13より小さくすることにより、焼成時の収
縮率を大きくすることができる。収縮率を大きくする手
段としては、セラミックス粉末の粒径を大きくしてもよ
い。アルミナセラミックスの焼成時の線収縮率は14〜
17%であるが、上記したようにセラミックス粉末の粒
径や加圧成形圧力により異なる。
Next, as shown in FIG. 1 (b), a press die 7 is used.
10 is removed, and as shown in FIG.
Press dies 14 to 17 are attached so that a space is formed on the outer circumference of the female screw member 13 in a state in which the screws 1 and 12 are attached, and ceramic powder containing alumina ceramics as a main component is introduced into the space through holes provided in the press die 14 or the like. After filling and pressure molding, the sheath tube 18 is formed on the outer circumference of the female screw member 13. The alumina content of the sheath tube 18 is 96% by weight, and the rest is a binding aid. The alumina amount of the sheath pipe 18 is set to be larger than that of the female screw member 13 so that the sheath pipe 18 sinters at a temperature higher than that of the female screw member 13 (so as to sinter later than the female screw member 13). The pressing force is 4.5 MPa with a hydrostatic molding machine. In this way, by making the pressure at the time of molding the sheath tube 18 smaller than that at the female screw member 13, the shrinkage rate at the time of firing can be increased. As a means for increasing the shrinkage rate, the particle size of the ceramic powder may be increased. The linear shrinkage rate of alumina ceramics during firing is 14-
Although it is 17%, it varies depending on the particle diameter of the ceramic powder and the pressure molding pressure as described above.

【0025】又、上記したように、雌ねじ部材13のア
ルミナ量を、例えば94重量%とし、鞘管18のアルミ
ナ量を例えば96重量%としたことにより、焼結完了時
間に差が生じる(焼成温度に差が生じる。)。即ち、焼
成温度を昇温する過程において、雌ねじ部材13は例え
ば1500℃で焼結して反応を停止し、鞘管18はさら
に高温の例えば1600℃で焼成して反応を停止する。
Further, as described above, by setting the amount of alumina of the female screw member 13 to, for example, 94% by weight and the amount of alumina of the sheath tube 18 to, for example, 96% by weight, a difference occurs in the sintering completion time (calcination). There will be a difference in temperature.). That is, in the process of raising the firing temperature, the female screw member 13 is sintered at 1500 ° C. to stop the reaction, and the sheath tube 18 is further fired at a higher temperature of 1600 ° C. to stop the reaction.

【0026】次に、図2(a)に示すように、プレス型
型14〜17及び雌ねじ型治具11,12を除去し、焼
成炉で焼成する。まず、図2(b)に示すように約15
00℃で雌ねじ部材13が焼結して縮小し、次に図2
(c)に示すように約1600℃で鞘管18が焼結して
縮小する。この結果、鞘管18が雌ねじ部材13を加圧
圧縮し、両者は嵌合密着結合し、セラミックス構造体1
9が形成される。このように、両者間に締め付け圧縮力
が作用することにより、セラミックス構造体19の強度
が向上する。
Next, as shown in FIG. 2A, the press dies 14 to 17 and the female screw type jigs 11 and 12 are removed, and firing is performed in a firing furnace. First, as shown in FIG.
The internal thread member 13 sinters and shrinks at 00 ° C.
As shown in (c), the sheath tube 18 sinters and shrinks at about 1600 ° C. As a result, the sheath tube 18 pressurizes and compresses the female screw member 13, and the two are fitted and tightly joined to each other, whereby the ceramic structure 1
9 is formed. Thus, the strength of the ceramic structure 19 is improved by the tightening compressive force acting between them.

【0027】実施形態1においては、セラミックス原料
粉末を加圧成形して雌ねじ部材13を形成し、この雌ね
じ部材13の外周にセラミックス原料粉末を加圧成形し
て鞘管18を形成し、両者を焼成することにより、セラ
ミックス構造体19を形成しており、焼成の際に縮小し
た鞘管18が雌ねじ部材13を加圧圧縮することにより
両者は嵌合密着結合し、両者間に締め付け圧縮力が作用
することにより、セラミックス構造体19の引っ張り強
度が向上する。又、セラミックス構造体19は従来のよ
うな金属材料を使用していないので、耐腐食性、耐電気
腐食性などで課題の多い部門にも適用することができ
る。さらに、未焼結体である雌ねじ部材13と鞘管18
を一括焼成するので、生産コストの削減に寄与し、安価
なセラミックス構造体19が得られる。又、雌ねじ部材
13を加圧成形後、雌ねじ部材13の周囲に直接鞘管1
8を加圧成形するので、作業性に優れ、しかも成形段階
で雌ねじ部材13と鞘管18を密着して形成できるので
焼成時の両者の嵌合密着度を高めることができる。
In the first embodiment, the ceramic raw material powder is pressure-molded to form the female screw member 13, and the ceramic raw material powder is pressure-molded on the outer periphery of the female screw member 13 to form the sheath tube 18. The ceramic structure 19 is formed by firing, and the sheath tube 18 that is reduced in size during firing pressurizes and compresses the female screw member 13 so that they fit tightly together, and a tightening compression force is exerted between them. By acting, the tensile strength of the ceramic structure 19 is improved. Further, since the ceramic structure 19 does not use a conventional metal material, it can be applied to a department having many problems in corrosion resistance and electric corrosion resistance. Furthermore, the female screw member 13 and the sheath pipe 18 which are unsintered bodies
Is collectively fired, which contributes to a reduction in production cost and an inexpensive ceramic structure 19 can be obtained. Further, after the female screw member 13 is pressure-molded, the sheath pipe 1 is directly attached to the periphery of the female screw member 13.
Since 8 is pressure-molded, the workability is excellent, and since the female screw member 13 and the sheath pipe 18 can be formed in close contact with each other during the forming step, the degree of fitting close contact between them during firing can be increased.

【0028】図3は上記したセラミックス構造体19を
用いた端子体の構成を示し、端子体20はセラミックス
構造体19とセラミックスからなる筒状のスリーブ体2
1とから主に構成され、その他にセラミックス構造体1
9の一端とスリーブ体21の一端を嵌合構造により接続
する樹脂製の接続体9と、スリーブ体21の他端に設け
られたゴムパッキン23を備えている。
FIG. 3 shows the structure of a terminal body using the above-mentioned ceramic structure 19, and the terminal body 20 is a cylindrical sleeve body 2 made of the ceramic structure 19 and ceramics.
1 and the ceramic structure 1
A resin connecting body 9 for connecting one end of the sleeve body 21 and one end of the sleeve body 21 by a fitting structure, and a rubber packing 23 provided at the other end of the sleeve body 21 are provided.

【0029】図4は端子体20を用いたコンクリート型
枠保持装置の構成図を示し、24はセパレータであり、
その両端は端子体20のセラミックス構造体19の雌ね
じ部13cに螺合され、一端が型枠25を挿通し、端子
体20のスリーブ体21等を挿通してセラミックス構造
体19の雌ねじ部13bに螺合されたボルト26の他端
にナット27を螺合し、これによって当接体28及びパ
イプ29を介して型枠25と一体の桟木30を端子体2
0側に押圧し、型枠25を端子体20のゴムパッキン2
3に当接させて固定する。この状態で型枠25間にコン
クリートを打設し、コンクリートが固化してコンクリー
ト構造物31になった後、ナット27、当接体28、パ
イプ29、ボルト26、桟木30及び型枠25を除去す
る。
FIG. 4 is a block diagram of a concrete formwork holding device using the terminal body 20, and 24 is a separator,
Both ends thereof are screwed into the female screw portion 13c of the ceramic structure 19 of the terminal body 20, one end of which is inserted through the form 25, and the sleeve body 21 of the terminal body 20 is inserted through the female screw portion 13b of the ceramic structure 19. A nut 27 is screwed to the other end of the screwed bolt 26, whereby a pier 30 integrated with the formwork 25 through the contact body 28 and the pipe 29 is connected to the terminal body 2.
It is pressed to the 0 side and the mold 25 is attached to the rubber packing 2 of the terminal body 20.
Abut on 3 and fix. In this state, concrete is cast between the formwork 25, and after the concrete is solidified to become the concrete structure 31, the nut 27, the contact body 28, the pipe 29, the bolt 26, the splint 30 and the formwork 25 are removed. To do.

【0030】その後、ゴムパッキン23も除去する。ゴ
ムパッキン23はコンクリート打設時にコンクリートが
端子体20内に侵入するのを防止するなどのために設け
てあり、スリーブ体21の一端に一成分形の瞬間接着剤
により貼着される。瞬間接着剤としては例えばシアノア
クリレート系のものが用いられ、具体的には、アロンア
ルファ(東亜合成株式会社製)、セメダイン3000シ
リーズ(セメダイン株式会社製)などが用いられる。瞬
間接着剤は、接着作業を迅速に行うことができ、除去す
る際にも剥離を容易に行うことができる利点がある。た
だし、スリーブ体21が上記したようにセラミックス製
あるいはモルタル製の場合には、接着剤はゼリー状であ
る必要がある。接着剤が液状であると、塗布したものが
スリーブ体21内にしみこみ、拡散して接着層を形成で
きないからである。
After that, the rubber packing 23 is also removed. The rubber packing 23 is provided to prevent concrete from entering the terminal body 20 when pouring concrete, and is attached to one end of the sleeve body 21 by a one-component instant adhesive. As the instant adhesive, for example, a cyanoacrylate-based adhesive is used, and specifically, Aron Alpha (manufactured by Toagosei Co., Ltd.), Cemedine 3000 series (manufactured by Cemedine Co., Ltd.) and the like are used. The instant adhesive has an advantage that the bonding work can be performed quickly and the peeling can be easily performed even when the adhesive is removed. However, when the sleeve body 21 is made of ceramics or mortar as described above, the adhesive needs to be jelly-like. This is because when the adhesive is in a liquid state, the applied substance soaks into the sleeve body 21 and diffuses to form an adhesive layer.

【0031】スリーブ体21はかぶり寸法を確保するた
めに設けてあり、セラミックス(アルミナ、ムライトな
ど)、コンクリート、モルタルなどの無機質体により形
成される。スリーブ体21とセラミックス構造体19と
の接続は、接続体22を介して接続し、または接着剤に
より接着する。セラミックス構造体19とスリーブ体2
1を接着剤により接着する場合には、接着剤として常温
硬化形のエポキシ樹脂を使用した。例えば、エポキシ樹
脂系二液形の接着剤であり、主成分のエポキシ樹脂(ビ
スフェノールA型エポキシ樹脂中間体)と充填剤、染料
とからなる主剤と、主成分のポリチオールと充填剤とか
らなる硬化剤の二液から構成される。具体的には商品名
EP−330(セメダイン株式会社製)を使用した。こ
の場合、主剤と硬化剤の二液を50:50で混合し、塗
布後スリーブ体21とセラミックス構造体19とを合わ
せて静止状態とし、自然硬化により接合した。
The sleeve body 21 is provided in order to secure the cover size, and is made of an inorganic material such as ceramics (alumina, mullite, etc.), concrete, mortar and the like. The sleeve body 21 and the ceramic structure 19 are connected to each other via the connection body 22 or are bonded by an adhesive. Ceramic structure 19 and sleeve body 2
When 1 was bonded with an adhesive, a room temperature curing type epoxy resin was used as the adhesive. For example, it is an epoxy resin-based two-component type adhesive, which is a main component composed of an epoxy resin (bisphenol A type epoxy resin intermediate) as a main component, a filler, and a dye, and a curing component composed of polythiol and a filler as the main components. Composed of two parts of the agent. Specifically, the trade name EP-330 (manufactured by Cemedine Co., Ltd.) was used. In this case, the two liquids of the main agent and the curing agent were mixed at 50:50, and after coating, the sleeve body 21 and the ceramic structure 19 were put together in a stationary state, and they were bonded by natural curing.

【0032】図4に示したコンクリート型枠保持装置に
おいては、雌ねじ体としてセラミックス構造体19を用
いており、セラミックス構造体19はすべてセラミック
スからなり、金属製ではないので腐食の心配がなく、ま
たセラミックス構造体19は隔壁13aを介して一対の
雌ねじ部13b,13cを有しており、内部のセパレー
タ24が外部に露出しないので、両水の浸入によるセパ
レータ24の腐食の発生もない。従って、端子体20で
腐食が発生することはなく、コンクリート構造物31の
表面部にクラックが発生するなどの劣化現象はなく、コ
ンクリート構造物31の耐久性は損なわれず、耐久性の
高いコンクリート構造物31が得られる。
In the concrete form holding device shown in FIG. 4, the ceramic structure 19 is used as the female screw body, and since the ceramic structure 19 is entirely made of ceramics and is not made of metal, there is no fear of corrosion, and The ceramic structure 19 has a pair of internal threaded portions 13b and 13c via the partition wall 13a, and since the separator 24 inside is not exposed to the outside, corrosion of the separator 24 due to intrusion of both waters does not occur. Therefore, the terminal body 20 does not corrode, there is no deterioration phenomenon such as cracking on the surface of the concrete structure 31, the durability of the concrete structure 31 is not impaired, and the concrete structure 31 has high durability. The object 31 is obtained.

【0033】実施形態2 図5(a)は実施形態2によるセラミックス構造体の横
断面図を示し、実施形態1においては図5(b)に示す
ように、一層からなる鞘管18が焼成時に縮小すること
により雌ねじ部材13を圧縮していたが、実施形態2に
おいては鞘管18の外側にさらにセラミックス製の鞘管
32を形成し、焼成時鞘管32により鞘管18を圧縮
し、鞘管18により雌ねじ部材13を圧縮してセラミッ
クス構造体33を形成している。
Embodiment 2 FIG. 5 (a) is a cross-sectional view of a ceramic structure according to Embodiment 2. In Embodiment 1, as shown in FIG. 5 (b), a sheath tube 18 consisting of one layer is formed during firing. Although the internal thread member 13 is compressed by contraction, in the second embodiment, the ceramic sheath tube 32 is further formed outside the sheath tube 18, and the sheath tube 18 is compressed by the sheath tube 32 during firing to The female screw member 13 is compressed by the pipe 18 to form the ceramic structure 33.

【0034】実施形態2においては、上記したように、
二層の鞘管18,32によって雌ねじ部材13を圧縮す
ることにより、セラミックス構造体33を形成してお
り、セラミックス構造体33の引っ張り強度を高めるこ
とができるとともに、せん断強度を高めることができ
る。なお、三層以上の鞘管によって雌ねじ部材を圧縮す
るようにすれば、さらにこれらの強度を高めることがで
きる。又、コンクリート型枠保持装置に用いれば、コン
クリート構造物31の耐久性を損なわない。
In the second embodiment, as described above,
The ceramic structure 33 is formed by compressing the female screw member 13 with the two-layered sheath tubes 18 and 32. Therefore, the tensile strength of the ceramic structure 33 can be enhanced and the shear strength can be enhanced. In addition, if the female screw member is compressed by three or more layers of the sheath pipe, the strength thereof can be further increased. If it is used for a concrete form holding device, the durability of the concrete structure 31 is not impaired.

【0035】なお、上記各実施形態においては、鞘管の
外形を樽形状としたが、円柱状、両側円弧錐状、多角
形、外周面凹凸状などとしてもよい。又、鞘管、雌ねじ
部材をアルミナセラミックスにより形成したが、ジルコ
ニア、炭化珪素、窒化珪素などのセラミックスにより形
成してもよい。
In each of the above embodiments, the outer shape of the sheath tube is barrel-shaped, but it may be cylindrical, both-sided arc-pyramidal, polygonal, or irregular on the outer peripheral surface. Further, although the sheath tube and the female screw member are made of alumina ceramics, they may be made of ceramics such as zirconia, silicon carbide and silicon nitride.

【0036】[0036]

【実施例】(1)雌ねじ部材13の製造方法 まず、主成分となる酸化アルミニウム原料(粒径1μm
以下、純度99.8%、含有量94重量%)に焼結を助
けるための副成分(焼結助材、残りの成分)を添加し、
さらに純水を加え、ボールミルにより10時間混合破砕
を行う。得られた原料スラリーにポリビニールアルコー
ルなどの有機バインダーと分散剤としてのポリカルボン
酸アンモニウム塩を添加し、スプレードライヤーで15
0℃の温度で乾燥し、噴霧造粒する。得られた顆粒をプ
レス型7〜10及び雌ねじ型治具11,12を用いて、
静水圧成形機(通称CIP)により5MPaの圧力で成
形する。
Examples (1) Method for manufacturing female screw member 13 First, the aluminum oxide raw material (particle size 1 μm) as the main component.
Hereinafter, a secondary component (sintering aid, remaining component) for assisting sintering is added to a purity of 99.8% and a content of 94% by weight,
Further, pure water is added and mixed and crushed by a ball mill for 10 hours. To the obtained raw material slurry, an organic binder such as polyvinyl alcohol and a polycarboxylic acid ammonium salt as a dispersant were added, and the mixture was sprayed with a drier 15
Dry at a temperature of 0 ° C. and spray granulate. Using the press dies 7 to 10 and the internal thread type jigs 11 and 12, the obtained granules are
Molding is performed at a pressure of 5 MPa with an isostatic molding machine (commonly called CIP).

【0037】(2)鞘管18の製造方法 まず、主成分となる酸化アルミニウム原料(粒径1μm
以下、純度99.8%、含有量96重量%)に焼結を助
けるための副成分(焼結助材、残りの成分)を添加し、
さらに純水を加え、ボールミルにより10時間混合破砕
を行う。得られた原料スラリーにポリビニールアルコー
ルなどの有機バインダーと分散剤としてのポリカルボン
酸アンモニウム塩を添加し、スプレードライヤーで15
0℃の温度で乾燥し、噴霧造粒する。得られた顆粒を雌
ねじ型治具11,12を装着した状態の雌ねじ部材13
の外周でプレス型14〜17を用いて静水圧成形機によ
り4.5MPaの圧力で成形する。
(2) Method for manufacturing sheath 18 First, the aluminum oxide raw material (particle size 1 μm) as the main component is prepared.
Hereinafter, a secondary component (sintering aid, remaining components) for assisting sintering is added to a purity of 99.8% and a content of 96% by weight,
Further, pure water is added and mixed and crushed by a ball mill for 10 hours. To the obtained raw material slurry, an organic binder such as polyvinyl alcohol and a polycarboxylic acid ammonium salt as a dispersant were added, and the mixture was sprayed with a drier 15
Dry at a temperature of 0 ° C. and spray granulate. Female thread member 13 with the obtained granules fitted with female thread type jigs 11 and 12
Molding is performed on the outer periphery of the mold using a press mold 14 to 17 with a hydrostatic molding machine at a pressure of 4.5 MPa.

【0038】(3)セラミックス構造体19の製造方法 プレス型14〜17及び雌ねじ型治具11,12を除去
し、未焼成のセラミックス構造体19をガス炉により1
600℃で2時間焼成し、100℃/時間の降温速度で
冷却し、セラミックス焼結体からなるセラミックス構造
体19を得る。セラミックス構造体19の焼成において
は、雌ねじ部材13はアルミナ量を94重量%とするこ
とにより、約1500℃で焼結が完了する。一方、鞘管
18はアルミナ量を96重量%とすることにより、約1
600℃で焼結が完了し、しかも加圧成形圧力を雌ねじ
部材13の5MPaに対してこれより低い4.5MPa
とすることにより収縮率を大きくすることができ、雌ね
じ部材13を鞘管18で締め付け圧縮することができ
る。
(3) Manufacturing Method of Ceramic Structure 19 The press dies 14 to 17 and the female screw type jigs 11 and 12 are removed, and the unfired ceramic structure 19 is set to 1 by a gas furnace.
It is fired at 600 ° C. for 2 hours and cooled at a temperature lowering rate of 100 ° C./hour to obtain a ceramic structure 19 made of a ceramic sintered body. When the ceramic structure 19 is fired, the internal thread member 13 is sintered at about 1500 ° C. by setting the amount of alumina to 94% by weight. On the other hand, the sheath tube 18 has an alumina content of 96% by weight, and
Sintering is completed at 600 ° C, and the pressure forming pressure is 4.5 MPa lower than 5 MPa of the female screw member 13.
With this, the shrinkage rate can be increased, and the female screw member 13 can be tightened and compressed by the sheath pipe 18.

【0039】(4)成分について(各部材共通、以下同
じ) 主成分の酸化アルミニウムの含有量は約90〜98重量
%とする。90重量%以下の場合には、強度が不足し、
特に内部のねじ山が破損する。98重量%以上の場合に
は、焼結温度を高くする必要があり、経済的に好ましく
ない。焼結助材としては、MgO,SiO2,CaOが
好ましく、焼成温度を低下させる効果がある。
Component (4) (common to all members, the same applies hereinafter) The content of aluminum oxide as a main component is about 90 to 98% by weight. If it is less than 90% by weight, the strength is insufficient,
Especially the internal threads are damaged. When it is 98% by weight or more, it is necessary to raise the sintering temperature, which is not economically preferable. As the sintering aid, MgO, SiO 2 , or CaO is preferable, and it has the effect of lowering the firing temperature.

【0040】(5)粒径について 噴霧造粒された顆粒は、その粒径が約30〜200μm
の範囲に分布する粒子が80%以上占めるものが好まし
い。この範囲を下回る場合(小径)には、流動性が悪化
して成形型への充填が困難となり、空洞が発生する。こ
の範囲を上回る場合(大径)には、ねじ山の形成が確実
に行われない。いずれにしても、所望の端子体を得るこ
とが困難である。
(5) Particle size The spray-granulated granule has a particle size of about 30 to 200 μm.
It is preferable that the particles distributed in the above range occupy 80% or more. If it is less than this range (small diameter), the fluidity deteriorates and it becomes difficult to fill the molding die, resulting in cavities. If it exceeds this range (large diameter), the thread is not reliably formed. In any case, it is difficult to obtain a desired terminal body.

【0041】(6)圧力について 成形圧力は、3〜10MPaの範囲であればよい。これ
以下では、圧力不足により欠けやクラックを発生する。
これ以上では、圧力解除までの時間がかかり、生産性が
低下し、しかも離型性が悪く、型割れが発生しやすくな
る。
(6) Pressure The molding pressure may be in the range of 3 to 10 MPa. Below this, cracks and cracks occur due to insufficient pressure.
If it is higher than this, it takes time to release the pressure, productivity is lowered, mold release property is poor, and mold cracking is likely to occur.

【0042】(7)焼成条件について 雰囲気は大気中でもよい。焼成保持温度は1500〜1
700℃、焼成時間は2時間以上、降温速度は、焼成保
持温度から400℃までを50〜200℃/時間の冷却
速度で行えばよい。理由は、90重量%以上の酸化アル
ミニウムと焼結助材(MgO,SiO2,CaO)を含
む組成では、約1500〜1700℃で焼結しないと焼
結が完了せず、また50〜200℃/時間の降温速度で
ないと焼成後の強度が低下して好ましくないからであ
る。
(7) About firing conditions The atmosphere may be air. Baking holding temperature is 1500-1
The temperature may be 700 ° C., the firing time may be 2 hours or more, and the temperature lowering rate may be from the firing holding temperature to 400 ° C. at a cooling rate of 50 to 200 ° C./hour. The reason is that with a composition containing 90% by weight or more of aluminum oxide and a sintering aid (MgO, SiO 2 , CaO), the sintering cannot be completed unless it is sintered at about 1500 to 1700 ° C., and 50 to 200 ° C. This is because the strength after firing is reduced unless the temperature lowering rate is / hour, which is not preferable.

【0043】[0043]

【発明の効果】以上のように、この発明によれば、セラ
ミックスからなる雌ねじ部材をセラミックスからなる鞘
管によりその焼成時の収縮力を利用して圧縮し、セラミ
ックス構造体を形成しており、雌ねじ部材には圧縮力が
作用し、しかも雌ねじ部材と鞘管との間には密着面が存
在することから、セラミックス構造体の引っ張り強度を
著しく向上することができる。又、セラミックス構造体
は腐食しないので、耐食性、耐電気絶縁性などが要求さ
れる各種用途に適用され、例えばコンクリート構造物内
に埋設した場合には、耐久性が高いコンクリート構造物
が得られる。さらに、雌ねじ部材と鞘管を一括焼成した
ので、生産コストの削減に寄与し、安価なセラミックス
構造体が得られる。又、雌ねじ部材を加圧成形後、雌ね
じ部材の周囲に鞘管を直接加圧成形するので、作業性に
優れ、しかも成形段階で雌ねじ部材と鞘管を密着して形
成できるので、焼成時の両者の嵌合密着度を高めること
ができ、引っ張り強度を高めることができる。
As described above, according to the present invention, the female screw member made of ceramics is compressed by the sheath tube made of ceramics by utilizing the contracting force at the time of firing to form the ceramics structure. A compressive force acts on the female screw member, and since there is a close contact surface between the female screw member and the sheath pipe, the tensile strength of the ceramic structure can be significantly improved. Further, since the ceramic structure does not corrode, it is applied to various applications in which corrosion resistance, electrical insulation resistance, etc. are required. For example, when embedded in a concrete structure, a concrete structure having high durability can be obtained. Furthermore, since the female screw member and the sheath pipe are fired together, the production cost can be reduced and an inexpensive ceramic structure can be obtained. Further, since the sheath pipe is directly pressure-molded around the female screw member after pressure-molding the female screw member, the workability is excellent, and the female screw member and the sheath pipe can be formed in close contact at the molding stage. It is possible to increase the degree of fitting and fitting of the two and to increase the tensile strength.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施形態1によるセラミックス構造
体の製造方法の説明図である。
FIG. 1 is an explanatory diagram of a method for manufacturing a ceramic structure according to a first embodiment of the present invention.

【図2】実施形態1によるセラミックス構造体の製造方
法の説明図である。
FIG. 2 is an explanatory view of the method for manufacturing the ceramic structure according to the first embodiment.

【図3】実施形態1によるセラミックス構造体を用いた
端子体の構成図である。
FIG. 3 is a configuration diagram of a terminal body using the ceramic structure according to the first embodiment.

【図4】実施形態1によるセラミックス構造体を用いた
コンクリート型枠保持装置の構成図である。
FIG. 4 is a configuration diagram of a concrete form holding device using the ceramic structure according to the first embodiment.

【図5】実施形態2及び1によるセラミックス構造体の
横断面図である。
5 is a cross-sectional view of a ceramic structure according to Embodiments 2 and 1. FIG.

【図6】従来の雌ねじ体の断面図及びその引っ張り強度
試験の説明図である。
FIG. 6 is a cross-sectional view of a conventional internal thread body and an explanatory view of a tensile strength test thereof.

【図7】従来の雌ねじ体の焼成後の寸法を示す図であ
る。
FIG. 7 is a diagram showing dimensions of a conventional female screw body after firing.

【図8】本発明者らが考案したセラミックス構造体の製
造方法の説明図である。
FIG. 8 is an explanatory diagram of a method for manufacturing a ceramic structure devised by the present inventors.

【図9】本発明者らが考案したセラミックス構造体の引
っ張り強度試験の説明図である。
FIG. 9 is an explanatory diagram of a tensile strength test of a ceramic structure devised by the present inventors.

【図10】本発明者らが考案したセラミックス構造体の
鞘管の焼成前後の寸法及び焼成後の雌ねじ部材の寸法を
示す図である。
FIG. 10 is a diagram showing dimensions before and after firing of a sheath tube of a ceramic structure devised by the present inventors and dimensions of an internal thread member after firing.

【符号の説明】[Explanation of symbols]

7〜10,14〜17…プレス型 11,12…雌ねじ型治具 13…雌ねじ部材 13a…隔壁 13b,13c…雌ねじ部 18,32…鞘管 19,33…セラミックス構造体 7-10, 14-17 ... Press type 11, 12 ... Female screw type jig 13 ... Female screw member 13a ... Partition wall 13b, 13c ... Female screw portion 18, 32 ... Sheath tube 19, 33 ... Ceramic structure

───────────────────────────────────────────────────── フロントページの続き (72)発明者 飯田 憲 静岡県沼津市東間門字上中溝515番地 明 電セラミックス株式会社内 Fターム(参考) 4G026 BA03 BA05 BA14 BA17 BB03 BB05 BB14 BB17 BF57 BG05 BG08 BH01 4G055 AA08 AB01 AC09 BA14    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Ken Iida             515 Kaminakamizo, Azuma Gate, Numazu City, Shizuoka Prefecture             Electroceramics Co., Ltd. F-term (reference) 4G026 BA03 BA05 BA14 BA17 BB03                       BB05 BB14 BB17 BF57 BG05                       BG08 BH01                 4G055 AA08 AB01 AC09 BA14

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 セラミックス原料粉末を加圧成形して雌
ねじ部材を形成し、この雌ねじ部材の外周にセラミック
ス原料粉末を加圧成形して少なくとも一層の鞘管を形成
し、両者を焼成することにより、鞘管が雌ねじ部材を圧
縮して両者を密着固定させることを特徴とするセラミッ
クス構造体の製造方法。
1. A ceramic raw material powder is pressure-molded to form an internal thread member, and the ceramic raw material powder is pressure-formed on the outer periphery of the internal thread member to form at least one sheath tube, and both are fired. A method for manufacturing a ceramic structure, characterized in that the sheath tube compresses the female screw member to tightly fix them.
【請求項2】 雌ねじ型治具を用いてセラミックス原料
粉末を加圧成形して雌ねじ部材を形成し、雌ねじ型治具
を装着した状態において雌ねじ部材の外周にセラミック
ス原料粉末を加圧成形して少なくとも一層の鞘管を形成
し、雌ねじ型治具を除去した後、雌ねじ部材と鞘管を焼
成することにより、鞘管が雌ねじ部材を圧縮して両者を
密着固定させることを特徴とするセラミックス構造体の
製造方法。
2. A ceramic raw material powder is pressure-formed by using an internal thread type jig to form an internal thread member, and the ceramic raw material powder is pressed under pressure on the outer circumference of the internal thread member with the internal thread type jig attached. A ceramic structure characterized in that at least one layer of the sheath pipe is formed, the female screw type jig is removed, and then the female screw member and the sheath pipe are fired so that the sheath pipe compresses the female screw member and tightly fixes them. Body manufacturing method.
【請求項3】 焼成における焼結順序は、雌ねじ部材の
焼結後に鞘管が焼結するようにしたことを特徴とする請
求項1又は2記載のセラミックス構造体の製造方法。
3. The method for producing a ceramic structure according to claim 1, wherein the sintering order in firing is such that the sheath tube is sintered after the internal thread member is sintered.
【請求項4】 最外位置の鞘管は、外形を円柱状、樽形
状、両側円弧錐状、多角形、外周面凹凸状のいずれかに
することを特徴とする請求項1〜3のいずれかに記載の
セラミックス構造体の製造方法。
4. The outermost sheath tube has an outer shape of any one of a columnar shape, a barrel shape, a both-sided arc pyramid shape, a polygonal shape, and an outer peripheral surface irregularity shape. A method for producing a ceramic structure according to claim 1.
【請求項5】 セラミックスは、アルミナ、ジルコニ
ア、炭化珪素、窒化珪素のいずれかを主成分とすること
を特徴とする請求項1〜4のいずれかに記載のセラミッ
クス構造体の製造方法。
5. The method for producing a ceramic structure according to claim 1, wherein the ceramic contains at least one of alumina, zirconia, silicon carbide and silicon nitride as a main component.
【請求項6】 雌ねじ部材は、隔壁を介して一対の雌ね
じ部を有することを特徴とする請求項1〜5のいずれか
に記載のセラミックス構造体の製造方法。
6. The method for manufacturing a ceramic structure according to claim 1, wherein the female screw member has a pair of female screw portions via a partition wall.
JP2001286745A 2001-09-20 2001-09-20 Method for manufacturing ceramic structure Pending JP2003095761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001286745A JP2003095761A (en) 2001-09-20 2001-09-20 Method for manufacturing ceramic structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001286745A JP2003095761A (en) 2001-09-20 2001-09-20 Method for manufacturing ceramic structure

Publications (1)

Publication Number Publication Date
JP2003095761A true JP2003095761A (en) 2003-04-03

Family

ID=19109667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001286745A Pending JP2003095761A (en) 2001-09-20 2001-09-20 Method for manufacturing ceramic structure

Country Status (1)

Country Link
JP (1) JP2003095761A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017106620A (en) * 2015-10-21 2017-06-15 ザ・ボーイング・カンパニーThe Boeing Company Whisker reinforced high fracture toughness ceramic threaded fasteners
CN114263664A (en) * 2021-10-19 2022-04-01 大连理工大学 High-efficient coupling mechanism who compromises to bear and thermal-insulated demand

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017106620A (en) * 2015-10-21 2017-06-15 ザ・ボーイング・カンパニーThe Boeing Company Whisker reinforced high fracture toughness ceramic threaded fasteners
US11268560B2 (en) 2015-10-21 2022-03-08 The Boeing Company Method of making whisker reinforced high fracture toughness ceramic threaded fasteners
CN114263664A (en) * 2021-10-19 2022-04-01 大连理工大学 High-efficient coupling mechanism who compromises to bear and thermal-insulated demand
CN114263664B (en) * 2021-10-19 2022-09-13 大连理工大学 High-efficient coupling mechanism who compromises to bear and thermal-insulated demand

Similar Documents

Publication Publication Date Title
CN110306726B (en) Composite structure and manufacturing method thereof
CA2672637C (en) Production method and structural element
JP6284114B2 (en) Ceramic member and manufacturing method thereof
CN212802088U (en) Construction rock wool heat preservation wall body that plasters
TWI306360B (en) End-face seal for graphite electrodes
CN109838038B (en) Prestressed composite bar composite anchorage and forming method thereof
JP2003095761A (en) Method for manufacturing ceramic structure
JPH0832582B2 (en) Composite structure
JP2003095760A (en) Method for manufacturing ceramic structure
JP2003095759A (en) Ceramic structure and method for manufacturing the same
JP3971908B2 (en) Ceramic structure
JP2003094418A (en) Method for manufacturing ceramics structure
CN209891559U (en) Prestressed composite bar composite anchorage
JPH1064481A (en) Ceramic tube for discharge lamp and manufacture thereof
JP4596855B2 (en) Metal-ceramic composite structure and electrode member for plasma generation comprising the same
JP2003097534A (en) Ceramics nut and manufacturing method thereof
CN112573940B (en) Multi-temperature maintenance manufacturing method of combined structure and combined structure
JP7216611B2 (en) Manufacturing method of SiC sintered member
JP2003128474A (en) Insulating structure and its manufacturing method
JP3869667B2 (en) Concrete formwork holding device end stop and concrete structure
JP2002371709A (en) End stopper for concrete form retainer and concrete structure
JP2009227527A (en) Setter for firing electronic component, and method for producing the same
JP2003064778A (en) Insert device
JP2008184352A (en) Ceramic connector and its manufacturing method
JP3896254B2 (en) Reinforcing bar anchor