JP2003095759A - Ceramic structure and method for manufacturing the same - Google Patents

Ceramic structure and method for manufacturing the same

Info

Publication number
JP2003095759A
JP2003095759A JP2001286743A JP2001286743A JP2003095759A JP 2003095759 A JP2003095759 A JP 2003095759A JP 2001286743 A JP2001286743 A JP 2001286743A JP 2001286743 A JP2001286743 A JP 2001286743A JP 2003095759 A JP2003095759 A JP 2003095759A
Authority
JP
Japan
Prior art keywords
female screw
screw member
sheath tube
ceramic structure
sheath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001286743A
Other languages
Japanese (ja)
Inventor
Kiyobumi Ogita
清文 荻田
Ken Iida
憲 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Meiden Ceramics Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Meiden Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd, Meiden Ceramics Co Ltd filed Critical Meidensha Corp
Priority to JP2001286743A priority Critical patent/JP2003095759A/en
Publication of JP2003095759A publication Critical patent/JP2003095759A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To manufacture a ceramic structure having high tensile strength. SOLUTION: The ceramic source powder is pressed to obtain a female screw member 7 having a rugged part 7a on an outer face and a female screw part 7b on the inner face and a sheath tube 8. The female screw member 7 is attached with a bonding assistant to the inside of the sheath tube 8 and both the members are calcined so that the sheath tube 8 presses the female screw member 7 to tightly fix to each other.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、セラミックスか
らなる雌ねじ体に係り、耐熱特性、耐腐食特性、電気的
絶縁特性が要求される例えば土木、電気関係に好適な、
強度を向上した雌ねじ部を備えるセラミックス構造体及
びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a female screw body made of ceramics, and is suitable for, for example, civil engineering and electrical relations, which require heat resistance, corrosion resistance, and electrical insulation characteristics.
The present invention relates to a ceramic structure including a female screw portion having improved strength and a method for manufacturing the same.

【0002】[0002]

【従来の技術】一般に、部材の耐熱特性、耐腐食特性、
電気的腐食性の誘発などを改善するために、金属に代え
てセラミックス化するなどの傾向がある。特に、土木関
係では、コンクリート構造物の耐久性を向上するため
に、金属からセラミックスに移行する傾向にある。例え
ば、コンクリート型枠保持装置の端止体(継ぎ手)とし
ては、各種のものが知られている。例えば、特開平8−
135187においては、金属製雌ねじ部をセラミック
スで覆ったものが示され、特開平9−324537にお
いては、金属製雌ねじ部を分割セラミックス筒体で保持
したものが示されている。又、特開2000−3457
16や特開2000−345704においては、金属製
雌ねじ部をモルタルで覆ったものが示され、特開平11
−2025においては、金属製雌ねじ部を合成樹脂で覆
ったものが示されている。
2. Description of the Related Art Generally, heat resistance and corrosion resistance of members,
In order to improve the induction of electrical corrosiveness, there is a tendency to use ceramics instead of metal. Especially in civil engineering, there is a tendency to shift from metal to ceramics in order to improve the durability of concrete structures. For example, various types are known as end stoppers (joints) of concrete formwork holding devices. For example, Japanese Patent Laid-Open No. 8-
In 135187, a metallic female screw portion is covered with ceramics, and in Japanese Patent Laid-Open No. 9-324537, a metallic female screw portion is held with a divided ceramic cylinder. Also, Japanese Patent Laid-Open No. 2000-3457
16 and Japanese Unexamined Patent Publication No. 2000-345704, a metallic female screw portion covered with mortar is disclosed.
-2025 shows a metallic female screw portion covered with a synthetic resin.

【0003】又、特開平6−279131、同10−2
72614などにおいては、セラミックス部材同士を焼
成収縮率の差を利用して嵌着結合することにより、気密
性、接合強度に優れたものを得る技術が示されている。
Further, JP-A-6-279131 and 10-2.
In 72614 and the like, there is disclosed a technique in which ceramic members are fitted and joined together by utilizing the difference in firing shrinkage ratio to obtain a material having excellent airtightness and bonding strength.

【0004】しかし、本発明のように、圧縮力を付与す
ることにより強度を高めるセラミックス構造体の製造方
法の思想は開示されていない。
However, the idea of a method of manufacturing a ceramic structure which increases the strength by applying a compressive force like the present invention is not disclosed.

【0005】[0005]

【発明が解決しようとする課題】上記した従来の端止体
においては、金属製雌ねじ部を合成樹脂で覆ったもの
は、合成樹脂部が経年により劣化して金属製雌ねじ部が
腐食し、金属製セパレータへ腐食が波及することとなっ
た。又、金属製雌ねじ部を無機質(モルタル、セラミッ
クス)で覆ったものは、覆った部分の劣化はないもの
の、内部の金属製雌ねじ部が腐食し、金属性セパレータ
へ腐食が波及することとなった。従って、端止体で腐食
が始まると、コンクリート構造体の表面部にクラックが
発生するなどの劣化が始まり、コンクリート構造体の耐
久性を損なうこととなった。
In the above-mentioned conventional end stopper, in which the metallic female screw portion is covered with the synthetic resin, the synthetic resin portion is deteriorated with age and the metallic female screw portion is corroded. Corrosion spread to the manufactured separator. Also, in the case where the metallic female screw portion is covered with an inorganic substance (mortar, ceramics), although the covered portion is not deteriorated, the internal metallic female screw portion is corroded and the corrosion spreads to the metallic separator. . Therefore, when corrosion starts at the end stopper, deterioration such as cracking on the surface of the concrete structure begins, and the durability of the concrete structure is impaired.

【0006】一方、発明者らは、図9(a)に示すよう
に、隔壁1aを介して雌ねじ部1b,1cを備えた雌ね
じ体1をアルミナセラミックス(アルミナ96重量%)
の焼結体で形成し、図9(b)に示すように各雌ねじ部
1b,1cにそれぞれボルト2,3を螺合し、一方のボ
ルト3を固定して他方のボルト2を矢印のように引っ張
って引っ張り試験を行った所、ボルト2の先端部を起点
にして雌ねじ体1の外周面方向に発生した破断面1dに
より破断した。せん断強度は、2.60〜2.90KN
であった。なお、試験に使用した雌ねじ体1の焼結後の
寸法関係は図10に示す通りである。すなわち、最大径
27mm、両端部の径19mm、全長35mm、雌ねじ
部1b,1cは共にねじ径がW3/8でねじ山の数は7
〜8山であり、雌ねじ部1bの長さは端部側に形成され
た径大部1eを含めて18.5mm、雌ねじ部1eの長
さは13.5mm、隔壁1aの厚さは3.0mmであ
る。
On the other hand, as shown in FIG. 9 (a), the present inventors have prepared a female screw body 1 having female screw portions 1b and 1c through a partition wall 1a as alumina ceramics (96% by weight of alumina).
9B, the bolts 2 and 3 are screwed into the female screw portions 1b and 1c, respectively, and one bolt 3 is fixed and the other bolt 2 is attached as shown by an arrow. When the tensile test was conducted by pulling the bolt, the fractured surface 1d was generated in the direction of the outer peripheral surface of the female screw body 1 with the tip of the bolt 2 as the starting point. Shear strength is 2.60-2.90KN
Met. The dimensional relationship after sintering of the female screw body 1 used in the test is as shown in FIG. That is, the maximum diameter is 27 mm, the diameters of both ends are 19 mm, the total length is 35 mm, and the female screw portions 1b and 1c each have a screw diameter of W3 / 8 and seven screw threads.
The length of the internal threaded portion 1b is 18.5 mm including the large diameter portion 1e formed on the end side, the internal threaded portion 1e has a length of 13.5 mm, and the partition wall 1a has a thickness of 3. It is 0 mm.

【0007】この結果からも明らかなように、腐食を発
生せず、コンクリート構造体の耐久性を損うことがない
セラミックスは圧縮力に強いが、靭性に欠け、引っ張り
力に弱いことから、コンクリートに埋設する以前の状態
において引っ張り力が作用する構造体への使用普及には
限界があった。
As is clear from these results, ceramics that do not corrode and do not impair the durability of concrete structures are strong in compressive force, but lack in toughness and weak in tensile force. There was a limit to the widespread use of the structure in which tensile force acts before it was buried in the structure.

【0008】そこで、発明者らは研究を重ね、図11に
示すようなセラミックス構造体を考案した。図におい
て、5は隔壁5aを介して一対の穴5b,5cを設けた
アルミナセラミックスの未焼結体からなる鞘管、4はア
ルミナセラミックスの焼結体からなる筒状の雌ねじ部材
であり、その内周には貫通した雌ねじ部4aが設けてあ
る。そして、鞘管5の穴5b,5c内にそれぞれ雌ねじ
部材4を装着し、これらを焼成して鞘管5を焼結する。
この焼結の際に鞘管5は収縮し、鞘管5は雌ねじ部材4
を加圧圧縮し、両者は嵌合密着結合し、セラミックス構
造体6が形成される。このとき、両者間に拡散結合は一
部を除いて生じない。このように、鞘管5と雌ねじ部材
4との間に締め付け圧縮力が作用することにより、セラ
ミックス構造体6の引っ張り強度は向上する。従って、
全体的な拡散結合が生じると、雌ねじ部材4と鞘管5が
同一体となってしまい、好ましくない。
Therefore, the inventors have conducted extensive research and devised a ceramic structure as shown in FIG. In the figure, 5 is a sheath tube made of a non-sintered body of alumina ceramics having a pair of holes 5b, 5c through a partition wall 5a, and 4 is a cylindrical female screw member made of a sintered body of alumina ceramics. A female screw portion 4a that penetrates the inner circumference is provided. Then, the female screw members 4 are mounted in the holes 5b and 5c of the sheath tube 5, respectively, and these are fired to sinter the sheath tube 5.
During this sintering, the sheath tube 5 contracts, and the sheath tube 5 is inserted into the female screw member 4
Are pressed and compressed, and the two are fitted and tightly bonded to each other to form the ceramic structure 6. At this time, diffusion coupling does not occur between the two except a part. As described above, the tightening compression force acts between the sheath tube 5 and the female screw member 4, so that the tensile strength of the ceramic structure 6 is improved. Therefore,
If overall diffusion bonding occurs, the female screw member 4 and the sheath pipe 5 will be the same body, which is not preferable.

【0009】ここで、図12に示すように、一対の雌ね
じ部材4の雌ねじ部4aにボルト2,3を螺合し、一方
のボルト3を固定し、他方のボルト2を引っ張って引っ
張り試験を行うと、従来より大きな耐力が得られること
が判明した。即ち、引っ張り力は従来のように鞘管5に
直接局部的に作用せず、引っ張り力により雌ねじ部材4
に作用する応力は雌ねじ部材4と鞘管5との密着面Aを
介して鞘管5に分散して作用するので、引っ張り強度が
著しく向上する。
Here, as shown in FIG. 12, bolts 2 and 3 are screwed into female screw portions 4a of a pair of female screw members 4, one bolt 3 is fixed, and the other bolt 2 is pulled to perform a pull test. It has been found that a higher yield strength than before can be obtained by carrying out the test. That is, the pulling force does not act locally on the sheath tube 5 as in the conventional case, but the pulling force causes the internal thread member 4 to move.
Since the stress that acts on the sheath pipe 5 is dispersed and acts on the sheath pipe 5 through the contact surface A between the female screw member 4 and the sheath pipe 5, the tensile strength is significantly improved.

【0010】なお、アルミナセラミックスの焼成時の線
収縮率は14〜17%であるが、粒径や加圧成形圧力な
どの条件によって異なる。上記の場合、焼結済の雌ねじ
部材4の外径より若干径が大きい穴5b,5cを有する
鞘管5を用意し、この鞘管5を焼成することにより、鞘
管5が雌ねじ部材4を締め付け、圧縮力が作用するよう
にする。若干形状が異なるが、図13(a)は焼成前の
鞘管5の寸法を示し、最大径31.8mm、両端部の径
22.4mm、穴5b,5cの径17.1mm、穴5
b,5cの深さ21.8mm、15.9mm、全長4
1.2mm、隔壁5aの厚さ3.5mmである。又、図
10(b)は1600℃で焼成後(収縮率15%)の鞘
管5の寸法を示し、最大径27mm、両端部の径19m
m、全長35mm、穴5b,5cの深さ18.5mm、
13.5mm、隔壁5aの厚さ3.0mmである。図1
0(c)は1600℃で焼成後の雌ねじ部材4の寸法を
示し、外形15mm、長さ13.5mm、雌ねじ部4a
のねじ径はW3/8、ねじ山数は7〜8である。雌ねじ
部材4のアルミナ量は96重量%であり、その成形は静
水圧成型機(通称CIP)により5MPaの圧力で成形
する。又、鞘管5の穴5b,5cの焼成後の自然状態に
おける径は14.5mmとなり、雌ねじ部材4の焼成後
の外形は15mmであるから、14.5〜15mmの差
分で鞘管5の穴5b,5cが雌ねじ部材4を締め付ける
ことになる。セラミックス構造体6のせん断強度は1
1.5〜13KNであった。
The linear shrinkage rate of the alumina ceramics during firing is 14 to 17%, but it varies depending on the conditions such as the particle size and the pressure molding pressure. In the above case, a sheath pipe 5 having holes 5b and 5c having a diameter slightly larger than the outer diameter of the sintered female screw member 4 is prepared, and the sheath pipe 5 is fired, so that the sheath pipe 5 can hold the female screw member 4 in place. Tighten so that compressive force acts. Although the shape is slightly different, FIG. 13 (a) shows the dimensions of the sheath tube 5 before firing. The maximum diameter is 31.8 mm, the diameters of both ends are 22.4 mm, the diameters of the holes 5b and 5c are 17.1 mm, and the hole 5 is
b, 5c depth 21.8mm, 15.9mm, total length 4
The thickness is 1.2 mm and the partition wall 5a has a thickness of 3.5 mm. Further, FIG. 10B shows the dimensions of the sheath tube 5 after firing at 1600 ° C. (shrinkage rate 15%), the maximum diameter is 27 mm, and the diameters of both ends are 19 m.
m, total length 35 mm, depth of holes 5b and 5c 18.5 mm,
It is 13.5 mm and the thickness of the partition wall 5a is 3.0 mm. Figure 1
0 (c) shows the dimensions of the female screw member 4 after firing at 1600 ° C., the outer diameter is 15 mm, the length is 13.5 mm, and the female screw portion 4 a.
Has a diameter of W3 / 8, and the number of threads is 7-8. The amount of alumina of the female screw member 4 is 96% by weight, and the molding is performed by a hydrostatic pressure molding machine (commonly called CIP) at a pressure of 5 MPa. The diameter of the holes 5b and 5c of the sheath tube 5 in the natural state after firing is 14.5 mm, and the outer diameter of the female screw member 4 after firing is 15 mm. Therefore, the sheath tube 5 has a difference of 14.5 to 15 mm. The holes 5b and 5c tighten the female screw member 4. The shear strength of the ceramic structure 6 is 1
It was 1.5 to 13 KN.

【0011】この発明は上記のような課題を解決するた
めに成されたものであり、耐腐食性、耐電気腐食性に優
れ、圧縮力、引っ張り力にも強いセラミックス構造体及
びその製造方法を得ることを目的とする。
The present invention has been made to solve the above problems, and provides a ceramic structure excellent in corrosion resistance and electric corrosion resistance, and also strong in compressive force and tensile force, and a method for manufacturing the same. The purpose is to get.

【0012】[0012]

【課題を解決するための手段】発明者らは、上記のよう
に鋭意研究を重ねた結果、雌ねじ体に直接雌ねじ部を設
けて構成した場合には、上記のように破断現象が生じる
が、雌ねじ部材を鞘管で強く圧縮して雌ねじ体(セラミ
ックス構造体)を構成することにより、両者間に存在す
る圧縮作用による雌ねじ部材の強度向上と、密着面の存
在により、引っ張り強度の向上に著しく寄与して雌ねじ
体の耐力を向上できることを見出した。
As a result of intensive studies as described above, the inventors have found that when an internal thread portion is directly provided on an internal thread body, the breaking phenomenon occurs as described above. By forming a female screw body (ceramic structure) by strongly compressing the female screw member with a sheath tube, the strength of the female screw member is improved by the compression action existing between them and the tensile strength is remarkably improved due to the existence of the contact surface. It has been found that the contribution can be made to improve the yield strength of the female screw body.

【0013】この発明の請求項1に係るセラミックス構
造体の製造方法は、外周に凹凸部を有するとともに内周
に雌ねじ部を有する筒状のセラミックスからなる雌ねじ
部材と、少なくとも一層のセラミックスからなる鞘管と
から構成され、雌ねじ部材を鞘管内に装着し、両者を焼
成することにより、鞘管が雌ねじ部材を圧縮して、両者
を密着固定させたものである。
In the method for manufacturing a ceramic structure according to claim 1 of the present invention, a female thread member made of a cylindrical ceramic having an uneven portion on the outer circumference and an inner thread portion on the inner circumference, and a sheath made of at least one layer of the ceramic. It is composed of a tube and a female screw member is mounted in the sheath pipe and the both are fired to compress the female screw member by the sheath pipe to tightly fix both.

【0014】請求項2に係るセラミックス構造体の製造
方法は、セラミックス原料粉末を加圧成形して、外周に
凹凸部を有するとともに内周に雌ねじ部を有する筒状の
雌ねじ部材と、少なくとも一層の鞘管を得、鞘管内に結
合助剤を介して雌ねじ部材を装着し、両者を焼成するこ
とにより、鞘管が雌ねじ部材を圧縮して、両者を密着固
定させるものである。
According to a second aspect of the present invention, there is provided a method for producing a ceramic structure, wherein a ceramic raw material powder is pressure-molded to form a cylindrical female screw member having an uneven portion on the outer circumference and a female screw portion on the inner circumference, and at least one layer. A sheath tube is obtained, an internal thread member is mounted in the sheath tube via a bonding aid, and both are fired, so that the sheath tube compresses the internal thread member and tightly fixes them.

【0015】結合助剤は、雌ねじ部材又は鞘管の材料と
同等成分の材料とするが、特に鞘管と同等の材料とする
ことが望ましい。結合助剤は、鞘管と拡散結合して鞘管
内に凹凸面を形成し、雌ねじ部材の凹凸面と嵌着結合す
るからである。又、雌ねじ部材と鞘管を同種のセラミッ
クス(例えばアルミナセラミックス)で形成する場合、
鞘管の圧縮力を大きくする手段として、鞘管の成形時の
圧力を雌ねじ部材より低くすることにより、焼成時の収
縮率を大きくできる。又は、鞘管の原料粉末の粒径を大
きくすることによっても、焼成時の収縮率を大きくで
き、これらの組み合わせでもよい。又、異種のセラミッ
クスで雌ねじ部材と鞘管を形成する場合には、焼結完了
の温度、収縮率などを考慮して組み合せることが重要で
ある。
The binding aid is a material having the same components as the material of the female screw member or the sheath tube, but it is particularly preferable to use the same material as the sheath tube. This is because the binding aid forms a concavo-convex surface inside the sheath tube by diffusion-coupling with the sheath tube, and is fitted and bonded to the concavo-convex surface of the female screw member. When the female screw member and the sheath tube are made of the same type of ceramics (for example, alumina ceramics),
As a means for increasing the compressive force of the sheath tube, the pressure during molding of the sheath tube is set lower than that of the female screw member, whereby the shrinkage rate during firing can be increased. Alternatively, the shrinkage rate during firing can be increased by increasing the particle size of the raw material powder for the sheath tube, and a combination thereof may be used. Further, when forming the female screw member and the sheath pipe with different kinds of ceramics, it is important to combine them in consideration of the temperature of completion of sintering, the shrinkage ratio and the like.

【0016】請求項3に係るセラミックス構造体の製造
方法は、セラミックス原料粉末を加圧成形して、外周に
凹凸部を有するとともに内周に雌ねじ部を有する筒状の
雌ねじ部材と、少なくとも一層の鞘管を得、鞘管内に結
合助剤を介して雌ねじ部材を装着し、両者を焼成するこ
とにより、まず、雌ねじ部材を焼結させた後に鞘管を焼
結させ、鞘管が雌ねじ部材を圧縮して両者を密着固定さ
せるものである。
According to a third aspect of the present invention, there is provided a method of manufacturing a ceramic structure, wherein a ceramic raw material powder is pressure-molded to form a cylindrical female screw member having an uneven portion on the outer circumference and a female screw portion on the inner circumference, and at least one layer. Obtaining the sheath tube, mounting the internal thread member in the sheath tube through the bonding aid, and firing both of them, first, the internal thread member is sintered and then the sheath tube is sintered. It compresses and fixes both closely.

【0017】結合助剤は、雌ねじ部材又は鞘管の材料と
同等成分の材料とするが、特に鞘管と同等の材料とする
ことが望ましい。結合助剤は、鞘管と拡散結合して鞘管
内に凹凸面を形成し、雌ねじ部材の凹凸面と嵌着結合す
るからである。又、雌ねじ部材と鞘管を同種のセラミッ
クス(例えばアルミナセラミックス)で形成する場合、
鞘管の圧縮力を大きくする手段として、鞘管の成形時の
圧力を雌ねじ部材より低くすることにより、焼成時の収
縮率を大きくできる。又は、鞘管の原料粉末の粒径を大
きくすることによっても、焼成時の収縮率を大きくで
き、これらの組み合わせでもよい。又、異種のセラミッ
クスで雌ねじ部材と鞘管を形成する場合には、焼結完了
の温度、収縮率などを考慮して組み合せることが重要で
ある。
The binding aid is a material having the same components as the material of the female screw member or the sheath tube, but it is particularly preferable to use the same material as the sheath tube. This is because the binding aid forms a concavo-convex surface inside the sheath tube by diffusion-coupling with the sheath tube, and is fitted and bonded to the concavo-convex surface of the female screw member. When the female screw member and the sheath tube are made of the same type of ceramics (for example, alumina ceramics),
As a means for increasing the compressive force of the sheath tube, the pressure during molding of the sheath tube is set lower than that of the female screw member, whereby the shrinkage rate during firing can be increased. Alternatively, the shrinkage rate during firing can be increased by increasing the particle size of the raw material powder for the sheath tube, and a combination thereof may be used. Further, when forming the female screw member and the sheath pipe with different kinds of ceramics, it is important to combine them in consideration of the temperature of completion of sintering, the shrinkage ratio and the like.

【0018】請求項4に係るセラミックス構造体の製造
方法は、セラミックス原料粉末を加圧成形して、外周に
凹凸部を有するとともに内周に雌ねじ部を有する筒状の
雌ねじ部材と、少なくとも一層の鞘管を得、雌ねじ部材
を焼成し、焼結した雌ねじ部材を鞘管内に結合助剤を介
して装着し、鞘管を焼成することにより、鞘管が雌ねじ
部材を圧縮して両者を密着固定させるものである。
According to a fourth aspect of the present invention, there is provided a method for producing a ceramic structure, wherein a ceramic raw material powder is pressure-molded to form a cylindrical female screw member having an uneven portion on the outer periphery and a female screw portion on the inner periphery, and at least one layer. Obtaining a sheath tube, firing the female screw member, mounting the sintered female screw member in the sheath pipe through a bonding aid, and firing the sheath pipe, the sheath pipe compresses the female screw member and firmly fixes both. It is what makes me.

【0019】結合助剤は、雌ねじ部材又は鞘管の材料と
同等成分の材料とするが、特に鞘管と同等の材料とする
ことが望ましい。結合助剤は、鞘管と拡散結合して鞘管
内に凹凸面を形成し、雌ねじ部材の凹凸面と嵌着結合す
るからである。雌ねじ部材は焼結済であることから、同
質の材料であっても、異質の材料であってもよい。
The binding aid is a material having the same components as the material of the female screw member or the sheath tube, but it is particularly preferable to use the same material as the sheath tube. This is because the binding aid forms a concavo-convex surface inside the sheath tube by diffusion-coupling with the sheath tube, and is fitted and bonded to the concavo-convex surface of the female screw member. Since the female screw member has been sintered, it may be made of the same material or different materials.

【0020】請求項5に係るセラミックス構造体の製造
方法は、最外位置の鞘管の外形を円柱状、樽形状、両側
円弧錐状、多角形、外周面凹凸状のいずれかにするもの
である。
In the method for manufacturing a ceramic structure according to a fifth aspect of the present invention, the outermost sheath tube has a cylindrical shape, a barrel shape, a double-sided arc pyramid shape, a polygonal shape, or an uneven outer peripheral surface. is there.

【0021】請求項6に係るセラミックス構造体の製造
方法は、セラミックスを、アルミナ、ジルコニア、炭化
珪素、窒化珪素のいずれかを主成分とするものである。
In the method for manufacturing a ceramic structure according to a sixth aspect of the present invention, the ceramic is mainly composed of any one of alumina, zirconia, silicon carbide and silicon nitride.

【0022】雌ねじ部材と鞘管とを同種のセラミックス
で組み合せるか、異種のセラミックスで組み合せるか
は、必要に応じて行う。
Whether to combine the female screw member and the sheath tube with the same kind of ceramics or with different kinds of ceramics is carried out as required.

【0023】請求項7に係るセラミックス構造体の製造
方法は、鞘管が、隔壁を介して一対の穴を備え、この穴
内に各々雌ねじ部材を装着するものである。
In the method of manufacturing a ceramic structure according to a seventh aspect of the present invention, the sheath tube has a pair of holes through the partition wall, and female screw members are mounted in the holes.

【0024】隔壁は、平面より曲面状が望ましい。コン
クリートパネルの端子体継手やコンクリート内鉄筋の継
手に好適である。雌ねじ部材は、貫通した雌ねじ部を有
する。
The partition wall is preferably curved rather than flat. It is suitable for terminal body joints of concrete panels and joints of reinforcing bars in concrete. The female screw member has a penetrating female screw portion.

【0025】請求項8に係るセラミックス構造体の製造
方法は、鞘管が貫通孔を備え、この貫通孔内に雌ねじ部
材を装着するものである。
In the ceramic structure manufacturing method according to the eighth aspect, the sheath tube has a through hole, and the female screw member is mounted in the through hole.

【0026】雌ねじ部材は、一端が閉塞されているも
の、中間部に隔壁を有するもの、中間部の隔壁が別形成
のもののいずれかである。
The female screw member is either one whose one end is closed, one which has a partition wall in the middle portion, or one in which the partition wall in the middle portion is formed separately.

【0027】[0027]

【発明の実施の形態】実施形態1 以下、発明の実施の形態を図面とともに説明する。図1
は実施形態1によるセラミックス構造体の製造方法の説
明図を示し、アルミナセラミックスの原料粉末を加圧成
形して、外周に螺旋状の凹凸部7aを有するとともに内
周に貫通した雌ねじ部7bを有する筒状の雌ねじ部材7
を形成するとともに、同じくアルミナセラミックスの原
料粉末を加圧成形して、隔壁8aを介して一対の穴8
b,8cを有する外形が樽形状の鞘管8を形成する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1 Embodiments of the present invention will be described below with reference to the drawings. Figure 1
FIG. 3 is an explanatory diagram of a method for manufacturing a ceramic structure according to Embodiment 1, in which a raw material powder of alumina ceramics is pressure-molded to have a spiral uneven portion 7a on the outer circumference and a female screw portion 7b penetrating the inner circumference. Cylindrical female screw member 7
In addition, the raw material powder of alumina ceramics is also pressure-molded to form a pair of holes 8 through the partition wall 8a.
An outer shape having b and 8c forms a barrel-shaped sheath tube 8.

【0028】次に、鞘管8の穴8b,8c内に未焼結又
は焼結済の雌ねじ部材7を結合助剤を介して装着し、両
者又は雌ねじ部材7が焼結済の場合には鞘管8のみを焼
成する。両者が未焼成の場合、雌ねじ部材7と鞘管8と
でアルミナ量を変更することにより、焼結の完了に時間
差が生じる(焼成温度に差が出る。)。例えば、雌ねじ
部材7のアルミナ量を94重量%、鞘管8のアルミナ量
を96重量%とすると、焼成温度を昇温する過程におい
て、雌ねじ部材7は例えば1500℃で焼結して反応が
停止する。又、鞘管8は例えば1600℃で焼結して反
応を停止する。一方、アルミナセラミックスの焼成時の
線収縮率は14〜17%であるが、この縮小率は粒径や
加圧成形圧力によって異なってくる。例えば、加圧成形
圧力を鞘管8より雌ねじ部材7を大きくすれば、焼成時
の縮小率は雌ねじ部材7より鞘管8の方が大きくなる。
従って、焼成時まず雌ねじ部材7が焼結して縮小し、そ
の後鞘管8がより大きな縮小率で焼結する。又、焼結助
剤は鞘管8と拡散結合して鞘管8の穴8b,8c内に凹
凸面を形成し、雌ねじ部材7の凹凸部7aと嵌着結合す
る。この結果、鞘管8が雌ねじ部材7を加圧圧縮し、両
者は嵌合密着結合し、セラミックス構造体9が形成され
る。このように、両者間に締め付け圧縮力が作用するこ
とにより、セラミックス構造体9の引っ張り強度が向上
する。
Next, the unsintered or sintered female screw member 7 is mounted in the holes 8b and 8c of the sheath tube 8 through a coupling aid, and when both or the female screw member 7 is sintered. Only the sheath tube 8 is fired. When both are not fired, by changing the amount of alumina between the female screw member 7 and the sheath tube 8, there is a time difference in the completion of sintering (a firing temperature is different). For example, if the amount of alumina in the internal thread member 7 is 94% by weight and the amount of alumina in the sheath tube 8 is 96% by weight, the internal thread member 7 sinters at 1500 ° C. to stop the reaction in the process of raising the firing temperature. To do. The sheath tube 8 is sintered at 1600 ° C. to stop the reaction. On the other hand, the linear shrinkage rate of the alumina ceramics at the time of firing is 14 to 17%, but this reduction rate varies depending on the particle size and the pressure molding pressure. For example, if the pressure forming pressure of the female screw member 7 is larger than that of the sheath pipe 8, the reduction rate during firing is larger in the sheath pipe 8 than in the female screw member 7.
Therefore, at the time of firing, the internal thread member 7 is first sintered and reduced in size, and then the sheath tube 8 is sintered at a greater reduction rate. Further, the sintering aid is diffusion-bonded to the sheath tube 8 to form an uneven surface in the holes 8b and 8c of the sheath tube 8, and is fitted and bonded to the uneven portion 7a of the female screw member 7. As a result, the sheath tube 8 pressurizes and compresses the female screw member 7, and the two are fitted and tightly coupled to each other to form the ceramic structure 9. Thus, the tensile strength of the ceramic structure 9 is improved by the tightening compression force acting between them.

【0029】実施形態1においては、隔壁8aを介して
一対の穴8b,8cを有するセラミックス製の鞘管8の
穴8b,8c内にセラミックス製で雌ねじ部7bを有し
外周に凹凸部7aを有する未焼成又は焼成済の雌ねじ部
材7を装着し、焼成することにより、セラミックス構造
体9を形成しており、焼成の際に縮小した鞘管8が雌ね
じ部材7を加圧圧縮することにより両者が嵌合密着結合
し、両者間に締め付け圧縮力が作用することにより、セ
ラミックス構造体9の引っ張り強度が向上する。又、セ
ラミックス構造体9は従来のような金属材料を使用して
いないので、耐腐食性、耐電気腐食性などで課題の多い
部門にも適用することができる。さらに、雌ねじ部材7
と鞘管8を一括焼成する場合には、生産コストの削減に
寄与し、安価なセラミックス構造体9が得られる。又、
雌ねじ部材7の外周に凹凸部7aを設けたので、雌ねじ
部材7と鞘管8の密着面積が大きく確保され、引っ張り
強度が一層向上する。
In the first embodiment, the ceramic sheath tube 8 having the pair of holes 8b and 8c through the partition wall 8a has ceramic female threads 7b in the holes 8b and 8c, and an uneven portion 7a on the outer periphery. The ceramic structure 9 is formed by mounting and firing the unsintered or sintered female screw member 7 that has been produced, and the sheath tube 8 that has been shrunk during firing pressurizes and compresses the female screw member 7. Are fitted and tightly connected to each other, and a tightening compression force acts between them, so that the tensile strength of the ceramic structure 9 is improved. Further, since the ceramic structure 9 does not use a conventional metal material, it can be applied to a department having many problems in corrosion resistance and electric corrosion resistance. Further, the female screw member 7
When the sheath tube 8 and the sheath tube 8 are collectively fired, the production cost can be reduced and an inexpensive ceramic structure 9 can be obtained. or,
Since the concavo-convex portion 7a is provided on the outer circumference of the female screw member 7, a large contact area between the female screw member 7 and the sheath pipe 8 is secured, and the tensile strength is further improved.

【0030】図2は上記したセラミックス構造体9を用
いた端子体の構造を示し、端子体10はセラミックス構
造体9とセラミックスからなる筒状のスリーブ体11と
から主に構成され、その他にセラミックス構造体9の一
端とスリーブ体11の一端を接続する樹脂製の接続体1
2と、スリーブ体11の他端に設けられたゴムパッキン
13を備えている。
FIG. 2 shows the structure of a terminal body using the ceramic structure 9 described above. The terminal body 10 is mainly composed of the ceramic structure 9 and a cylindrical sleeve body 11 made of ceramics. A resin connection body 1 for connecting one end of the structure body 9 and one end of the sleeve body 11
2 and a rubber packing 13 provided at the other end of the sleeve body 11.

【0031】図3は端子体10を用いたコンクリート型
枠保持装置の構成図を示し、14はセパレータであり、
その両端は端子体10のセラミックス構造体9の雌ねじ
部7bに螺合され、一端が型枠15を挿通して端子体1
0のセラミックス構造体9の雌ねじ部7bに螺合された
ボルト16の他端にナット17を螺合し、これによって
当接体18及びパイプ19を介して型枠15と一体の桟
木20を端子体10側に押圧し、型枠15を端子体10
のゴムパッキン13に当接させて固定する。この状態で
型枠15間にコンクリートを打設し、コンクリートが固
化してコンクリート構造物21になった後、ナット1
7、当接体18、パイプ19、桟木20及び型枠15を
除去する。
FIG. 3 is a block diagram of a concrete formwork holding device using the terminal body 10, and 14 is a separator,
Both ends thereof are screwed into the female screw portion 7b of the ceramic structure 9 of the terminal body 10, and one end of the terminal body 1 is inserted through the mold 15.
Nut 17 is screwed to the other end of bolt 16 screwed to female screw portion 7b of ceramic structure 9 of No. 0, thereby connecting pier 20 integrated with formwork 15 via contact body 18 and pipe 19 to a terminal. It is pressed to the side of the body 10 and the mold 15 is pushed to the terminal body 10.
The rubber packing 13 is brought into contact with and fixed. In this state, concrete is placed between the molds 15, and after the concrete is solidified to form the concrete structure 21, the nut 1
7, the contact body 18, the pipe 19, the splint 20, and the form 15 are removed.

【0032】その後、ゴムパッキン13も除去する。ゴ
ムパッキン13はコンクリート打設時にコンクリートが
端子体10内に侵入するのを防止するなどのために設け
てあり、スリーブ体11の一端に一成分形の瞬間接着剤
により貼着される。瞬間接着剤としては例えばシアノア
クリレート系のものが用いられ、具体的にはアロンアル
ファ(東亜合成株式会社製)、セメダイン3000シリ
ーズ(セメダイン株式会社製)などが用いられる。瞬間
接着剤は、接着作業を迅速に行うことができ、除去する
際にも剥離を容易に行うことができる利点がある。ただ
し、スリーブ体11が上記したようにセラミックス製あ
るいはモルタル製の場合には、接着剤はゼリー状である
必要がある。接着剤が液状であると、塗布したものがス
リーブ体11内にしみこみ、拡散して接着層を形成でき
ないからである。
After that, the rubber packing 13 is also removed. The rubber packing 13 is provided to prevent concrete from entering the terminal body 10 when pouring concrete, and is attached to one end of the sleeve body 11 with a one-component instant adhesive. As the instant adhesive, for example, a cyanoacrylate-based adhesive is used, and specifically, Aron Alpha (manufactured by Toagosei Co., Ltd.), Cemedine 3000 series (manufactured by Cemedine Co., Ltd.) and the like are used. The instant adhesive has an advantage that the bonding work can be performed quickly and the peeling can be easily performed even when the adhesive is removed. However, when the sleeve body 11 is made of ceramics or mortar as described above, the adhesive needs to be jelly-like. This is because when the adhesive is in a liquid state, the applied substance soaks into the sleeve body 11 and diffuses to form an adhesive layer.

【0033】スリーブ体11はかぶり寸法を確保するた
めに設けてあり、セラミックス(アルミナ、ムライトな
ど)、コンクリート、モルタルなどの無機質体により形
成される。又スリーブ体11とセラミックス構造物9と
の接続は、接続体12を介して接続し、または接着剤に
より接着する。セラミックス構造体9とスリーブ体11
を接着剤により接着する場合には、接着剤として常温硬
化形のエポキシ樹脂を使用した。例えば、エポキシ樹脂
系二液形の接着剤であり、主成分のエポキシ樹脂(ビス
フェノールA型エポキシ樹脂中間体)と充填剤、染料と
からなる主剤と、主成分のポリチオールと充填剤とから
なる硬化剤の二液から構成される。具体的には商品各E
P−330(セメダイン株式会社製)を使用した。この
場合、主剤と硬化剤の二液を50:50で混合し、塗布
後スリーブ体11とセラミックス構造体9と合わせて静
止状態とし、自然硬化により接合した。
The sleeve body 11 is provided in order to secure a cover size, and is made of an inorganic material such as ceramics (alumina, mullite, etc.), concrete, mortar and the like. Further, the sleeve body 11 and the ceramic structure 9 are connected to each other via the connection body 12 or are bonded by an adhesive. Ceramic structure 9 and sleeve body 11
In the case of bonding with an adhesive, a room temperature curing type epoxy resin was used as the adhesive. For example, it is an epoxy resin-based two-component type adhesive, which is a main component composed of an epoxy resin (bisphenol A type epoxy resin intermediate) as a main component, a filler, and a dye, and a curing component composed of polythiol and a filler as the main components. Composed of two parts of the agent. Specifically, each product E
P-330 (made by Cemedine Co., Ltd.) was used. In this case, the two liquids of the main agent and the curing agent were mixed at 50:50, and after coating, the sleeve body 11 and the ceramic structure 9 were put in a stationary state and joined by natural curing.

【0034】図3に示したコンクリート型枠保持装置に
おいては、雌ねじ体としてセラミックス構造体9を用い
ており、セラミックス構造体9はすべてセラミックスか
らなり、金属製ではないので腐食の心配がなく、またセ
ラミックス構造体9は隔壁8aを介して一対の雌ねじ部
7bを有しており、内部のセパレータ14が外部に露出
しないので、両水の浸入によるセパレータ14の腐食の
発生もない。従って、端子体10で腐食が発生すること
はなく、コンクリート構造物21の表面部にクラックが
発生するなどの劣化現象はなく、コンクリート構造物2
1の耐久性は損われず、耐久性の高いコンクリート構造
物21が得られる。 実施形態2 図4(a),(b)は実施形態2によるセラミックス構
造体の焼成前の断面図及び雌ねじ部材の断面図を示し、
鞘管22はセラミックスにより外形が樽形状に形成さ
れ、中心には貫通した孔22aが設けられる。雌ねじ部
材23はセラミックスにより筒状に形成され、外周に凹
凸部23aが形成されるとともに内周に一端が閉塞され
た雌ねじ部23bが形成される。鞘管22の貫通孔22
a内に結合助剤を介して一対の焼成済の雌ねじ部材23
を閉塞端側を合せてセットし、図4(a)の状態とし、
鞘管22を焼成すると、鞘管22が縮小して実施形態1
と同様に鞘管22の貫通孔22aの内面に凹凸面が形成
され、鞘管22と雌ねじ部材23は凹凸面で嵌合密着結
合し、セラミックス構造体が形成される。このとき、鞘
管22と雌ねじ部材23との間に締め付け圧縮力が作用
し、セラミックス構造体の引っ張り強度が向上する。 実施形態3 図5(a),(b)は実施形態3によるセラミックス構
造体の焼成前の断面図及び雌ねじ部材の断面図を示し、
雌ねじ部材24はセラミックスにより筒状に形成され、
外周に凹凸部24aが形成されるとともに、内周に隔壁
24bを介して一対の雌ねじ部24c,24dが形成さ
れる。鞘管22の貫通孔22a内に結合助剤を介して焼
成済の雌ねじ部材24をセットし、図5(a)の状態と
し、鞘管22を焼成すると、鞘管22が縮小して鞘管2
2と雌ねじ部材24が凹凸面で嵌合密着結合し、引っ張
り強度が強いセラミックス構造体が形成される。 実施形態4 図6(a),(b)は実施形態4によるセラミックス構
造体の焼成前の断面図と雌ねじ部材及び隔壁の断面図を
示し、焼成済の一対の雌ねじ部材7とその間に介在させ
た未焼成のセラミックス製の隔壁25を鞘管22の貫通
孔22a内に結合助剤を介してセットし、図6(a)の
状態とし、これらを焼成する。鞘管22が縮小し、鞘管
22と雌ねじ部材7とが凹凸面で嵌合密着結合し、引っ
張り強度が強いセラミックス構造体が形成される。 実施形態5 図7(a),(b)は実施形態5によるセラミックス構
造体の焼成前の断面図と雌ねじ部材の断面図及び隔壁の
正面図を示し、焼成済の一対の雌ねじ部材7とその間に
介在させた未焼成のセラミックス製の隔壁26を鞘管2
2の貫通孔22a内に結合助剤を介してセットし、図7
(a)の状態とし、これらを焼成する。鞘管22が縮小
し、鞘管22と雌ねじ部材7とが凹凸面で嵌合密着結合
し、引っ張り強度が強いセラミックス構造体が形成され
る。隔壁26は両側に凸部26aを有し、凸部26aは
雌ねじ部材7の雌ねじ部7aと係合し、一対の雌ねじ部
材7と隔壁26の芯を揃えるようにするために設けてあ
る。 実施形態6 図8(a)は実施形態6によるセラミックス構造体の横
断面図を示し、上記実施形態においては図8(b)に示
すように一層からなる鞘管8が縮小することにより雌ね
じ部材7を圧縮していたが、実施形態6においては鞘管
8の外側にさらに樽形状の鞘管27を設け、焼成時セラ
ミックスからなる鞘管27により鞘管8を圧縮し、鞘管
8により雌ねじ部材7を圧縮してセラミックス構造体2
8を形成している。
In the concrete form holding device shown in FIG. 3, the ceramic structure 9 is used as the female screw body. Since the ceramic structure 9 is entirely made of ceramics and is not made of metal, there is no fear of corrosion, and The ceramic structure 9 has a pair of female screw portions 7b via the partition wall 8a, and since the internal separator 14 is not exposed to the outside, corrosion of the separator 14 due to the intrusion of both waters does not occur. Therefore, the terminal body 10 is not corroded, and there is no deterioration phenomenon such as cracks on the surface of the concrete structure 21.
The durability of No. 1 is not impaired, and the concrete structure 21 having high durability is obtained. Embodiment 2 FIGS. 4A and 4B are sectional views of a ceramic structure according to Embodiment 2 before firing and a female screw member.
The outer shape of the sheath tube 22 is formed into a barrel shape with ceramics, and a through hole 22a is provided in the center. The female screw member 23 is made of ceramics in a cylindrical shape, and an uneven portion 23a is formed on the outer circumference and a female screw portion 23b with one end closed is formed on the inner circumference. Through hole 22 of sheath tube 22
a pair of baked female screw members 23 through a bonding aid in a.
Set the closed end side together to bring it to the state of FIG. 4 (a),
When the sheath tube 22 is fired, the sheath tube 22 shrinks and the first embodiment
Similarly, a concavo-convex surface is formed on the inner surface of the through hole 22a of the sheath tube 22, and the sheath tube 22 and the female screw member 23 are fitted and tightly coupled to each other at the concavo-convex surface to form a ceramic structure. At this time, a tightening compression force acts between the sheath tube 22 and the female screw member 23, and the tensile strength of the ceramic structure is improved. Embodiment 3 FIGS. 5 (a) and 5 (b) are sectional views of a ceramic structure according to Embodiment 3 before firing and a female screw member.
The female screw member 24 is made of ceramics in a cylindrical shape,
The uneven portion 24a is formed on the outer circumference, and the pair of female screw portions 24c, 24d is formed on the inner circumference via the partition wall 24b. When the fired female screw member 24 is set in the through-hole 22a of the sheath tube 22 via a binding aid and brought into the state of FIG. 5 (a) and the sheath tube 22 is fired, the sheath tube 22 shrinks and the sheath tube 22 is shrunk. Two
2 and the female screw member 24 are fitted and tightly bonded to each other on the uneven surface, so that a ceramic structure having high tensile strength is formed. Embodiment 4 FIGS. 6 (a) and 6 (b) show a sectional view of a ceramic structure according to Embodiment 4 before firing, and a sectional view of a female screw member and a partition wall, and a pair of fired female screw members 7 and an intervening member therebetween. The unfired ceramic partition wall 25 is set in the through hole 22a of the sheath tube 22 through a bonding aid to obtain the state of FIG. 6A, and these are fired. The sheath tube 22 is reduced in size, and the sheath tube 22 and the female screw member 7 are fitted and tightly coupled to each other on the uneven surface, so that a ceramic structure having high tensile strength is formed. Embodiment 5 FIGS. 7 (a) and 7 (b) show a sectional view of a ceramic structure according to Embodiment 5 before firing, a sectional view of a female screw member and a front view of a partition wall. The unfired ceramic partition wall 26 interposed in the sheath tube 2
2 is set in the through-hole 22a of FIG.
In the state of (a), these are fired. The sheath tube 22 is reduced in size, and the sheath tube 22 and the female screw member 7 are fitted and tightly coupled to each other on the uneven surface, so that a ceramic structure having high tensile strength is formed. The partition wall 26 has convex portions 26a on both sides, and the convex portion 26a is provided for engaging the female screw portion 7a of the female screw member 7 and aligning the cores of the pair of female screw members 7 with the partition wall 26. Sixth Embodiment FIG. 8 (a) is a cross-sectional view of a ceramic structure according to a sixth embodiment. In the above-described embodiment, as shown in FIG. 7 is compressed, in the sixth embodiment, a barrel-shaped sheath pipe 27 is further provided on the outside of the sheath pipe 8, and the sheath pipe 8 made of ceramics is compressed during firing to compress the sheath pipe 8, and the sheath pipe 8 forms an internal thread. The ceramic structure 2 by compressing the member 7
8 forming.

【0035】実施形態6においては、上記したように、
二層の鞘管8,27によって雌ねじ部材7を圧縮するこ
とによりセラミックス構造体28を形成しており、セラ
ミックス構造体28の引っ張り強度を高めることができ
るとともに、せん断強度を高めることができる。なお、
三層以上の鞘管によって雌ねじ部材を圧縮するようにす
れば、さらにこれらの強度を高めることができる。
In the sixth embodiment, as described above,
By compressing the female screw member 7 by the two-layered sheath tubes 8 and 27, the ceramic structure 28 is formed, so that the tensile strength of the ceramic structure 28 and the shear strength can be increased. In addition,
By compressing the female screw member with three or more layers of sheath tubes, these strengths can be further increased.

【0036】なお、上記各実施形態においては、最外位
置の鞘管の外形を樽形状としたが、円柱状、両側円弧錐
状、多角形、外周面凹凸状などとしてもよい。又、鞘
管、雌ねじ部材(別体の隔壁を含む。)をアルミナセラ
ミックスにより形成したが、ジルコニア、炭化珪素、窒
化珪素などのセラミックスにより形成してもよい。
In each of the above-mentioned embodiments, the outermost sheath tube has a barrel shape, but it may have a cylindrical shape, a double-sided arc pyramid shape, a polygonal shape, an outer peripheral surface uneven shape, or the like. Further, although the sheath tube and the female screw member (including a separate partition wall) are made of alumina ceramics, they may be made of ceramics such as zirconia, silicon carbide and silicon nitride.

【0037】[0037]

【実施例】A.未焼成の雌ねじ部材と未焼成の鞘管によ
る場合 (1)雌ねじ部材7の製造方法 まず、主成分となる酸化アルミニウム原料(粒径1μm
以下、純度99.8%、含有量94重量%)に焼結を助
けるための副成分(焼結助材、残りの成分)を添加し、
さらに純水を加え、ボールミルにより10時間混合破砕
を行う。得られた原料スラリーにポリビニールアルコー
ルなどの有機バインダーと分散剤としてのポリカルボン
酸アンモニウム塩を添加し、スプレードライヤーで15
0℃の温度で乾燥し、噴霧造粒する。得られた顆粒を静
水圧成形機(通称CIP)により5MPaの圧力で成形
する。 (2)鞘管8の製造方法 まず、主成分となる酸化アルミニウム原料(粒径1μm
以下、純度99.8%、含有量96重量%)に焼結を助
けるための副成分(焼結助材、残りの成分)を添加し、
さらに純水を加え、ボールミルにより10時間混合破砕
を行う。得られた原料スラリーにポリビニールアルコー
ルなどの有機バインダーと分散剤としてのポリカルボン
酸アンモニウム塩を添加し、スプレードライヤーで15
0℃の温度で乾燥し、噴霧造粒する。得られた顆粒を静
水圧成形機により4.5MPaの圧力で成形する。 (3)セラミックス構造体9の製造方法 鞘管8の穴8b,8c内に結合助剤(鞘管8と同成分の
アルミナ)を介して雌ねじ部材7をセットし、ガス炉に
より1600℃で2時間焼成し、100℃/時間の降温
速度で冷却し、セラミックス焼結体からなるセラミック
ス構造体9を得る。セラミックス構造体9の焼成におい
ては、雌ねじ部材7のアルミナ量を94重量%とするこ
とにより、約1500℃で焼結が完了する。一方、鞘管
8はアルミナ量を96重量%とすることにより、約16
00℃で焼結が完了し、しかも加圧成形圧力を雌ねじ部
材7の5MPaに対してこれより低い4.5MPaとす
ることにより収縮率を大きくすることができ、雌ねじ部
材7を鞘管8により締め付け圧縮することができる。 B.焼成済の雌ねじ部材と未焼成の鞘管による場合 アルミナ量と温度が異る。 (1)雌ねじ部材7の製造方法 まず、主成分となる酸化アルミニウム原料(粒径1μm
以下、純度99.8%、含有量96重量%)に焼結を助
けるための副成分(焼結助材、残りの成分)を添加し、
さらに純水を加え、ボールミルにより10時間混合破砕
を行う。得られた原料スラリーにポリビニールアルコー
ルなどの有機バインダーと分散剤としてのポリカルボン
酸アンモニウム塩を添加し、スプレードライヤーで15
0℃の温度で乾燥し、噴霧造粒する。得られた顆粒を静
水圧成形機(通称CIP)により5MPaの圧力で成形
する。成形後ガス炉により1600℃で2時間焼成し、
100℃/時間の降温速度で冷却してセラミックス焼結
体の雌ねじ部材7を得る。 (2)鞘管8の製造方法 まず、主成分となる酸化アルミニウム原料(粒径1μm
以下、純度99.8%、含有量94重量%)に焼結を助
けるための副成分(焼結助材、残りの成分)を添加し、
さらに純水を加え、ボールミルにより10時間混合破砕
を行う。得られた原料スラリーにポリビニールアルコー
ルなどの有機バインダーと分散剤としてのポリカルボン
酸アンモニウム塩を添加し、スプレードライヤーで15
0℃の温度で乾燥し、噴霧造粒する。得られた顆粒を静
水圧成形機により5MPaの圧力で成形する。 (3)セラミックス構造体9の製造方法 鞘管8の穴8b,8c内に結合助剤を介して焼成済の雌
ねじ部材7をセットし、ガス炉により1500℃で2時
間焼成し、100℃/時間の降温速度で冷却してセラミ
ックス焼結体からなるセラミックス構造体9を得る。雌
ねじ部材7は二度焼きとなるので、鞘管8の焼成温度を
若干低くしたほうがよい。雌ねじ部材7のアルミナ量を
96重量%として焼成温度を1600℃とし、鞘管8の
アルミナ量を94重量%とし、焼成温度を1500℃と
し、アルミナ量を少なくすることで低い温度で焼成す
る。 (4)成分について(各部材共通、以下同じ) 主成分の酸化アルミニウムの含有量は約90〜98重量
%とする。90重量%以下の場合には、接続継手として
の強度が不足し、特に内部のねじ山が破損する。98重
量%以上の場合には、焼結温度を高くする必要があり、
経済的に好ましくない。焼結助材としては、MgO,S
iO2,CaOが好ましく、焼成温度を低下させる効果
がある。 (5)粒径について 噴霧造粒された顆粒は、その粒径が約30〜200μm
の範囲に分布する粒子が80%以上占めるものが好まし
い。この範囲を下回る場合(小径)には、流動性が悪化
して成形型への充填が困難となり、空洞が発生する。こ
の範囲を上回る場合(大径)には、ねじ山の形成が確実
に行われない。いずれにしても、所望の端子体を得るこ
とが困難である。 (6)圧力について 成形圧力は、3〜10MPaの範囲であればよい。これ
以下では、圧力不足により欠けやクラックを発生する。
これ以上では、圧力解除までの時間がかかり、生産性が
低下し、しかも離型性が悪く、型割れが発生しやすくな
る。 (7)焼成条件について 雰囲気は大気中でもよい。焼成保持温度は1500〜1
700℃、焼成時間は2時間、降温速度は、焼成保持温
度から400℃までを50〜200℃/時間の冷却速度
で行えばよい。理由は、90重量%以上の酸化アルミニ
ウムと焼結助材(MgO,SiO2,CaO)を含む組
成では、約1500〜1700℃で焼結しないと焼結が
完了せず、また50〜200℃/時間の降温速度でない
と焼成後の強度が低下して好ましくないからである。
EXAMPLES A. In the case of using an unsintered internal thread member and an unsintered sheath tube (1) Manufacturing method of the internal thread member 7 First, the aluminum oxide raw material (particle size 1 μm) as the main component.
Hereinafter, a secondary component (sintering aid, remaining component) for assisting sintering is added to a purity of 99.8% and a content of 94% by weight,
Further, pure water is added and mixed and crushed by a ball mill for 10 hours. To the obtained raw material slurry, an organic binder such as polyvinyl alcohol and a polycarboxylic acid ammonium salt as a dispersant were added, and the mixture was sprayed with a drier 15
Dry at a temperature of 0 ° C. and spray granulate. The obtained granules are molded at a pressure of 5 MPa with an isostatic press (commonly called CIP). (2) Method for manufacturing sheath tube 8 First, the aluminum oxide raw material (particle size: 1 μm) as the main component.
Hereinafter, a secondary component (sintering aid, remaining components) for assisting sintering is added to a purity of 99.8% and a content of 96% by weight,
Further, pure water is added and mixed and crushed by a ball mill for 10 hours. To the obtained raw material slurry, an organic binder such as polyvinyl alcohol and a polycarboxylic acid ammonium salt as a dispersant were added, and the mixture was sprayed with a drier 15
Dry at a temperature of 0 ° C. and spray granulate. The obtained granules are molded with a hydrostatic molding machine at a pressure of 4.5 MPa. (3) Method for manufacturing ceramic structure 9 The female screw member 7 is set in the holes 8b and 8c of the sheath tube 8 via a coupling aid (alumina having the same composition as the sheath tube 8), and the temperature is set to 2 at 1600 ° C by a gas furnace. Firing is performed for an hour and cooling is performed at a temperature lowering rate of 100 ° C./hour to obtain a ceramic structure 9 made of a ceramic sintered body. When firing the ceramic structure 9, the sintering is completed at about 1500 ° C. by setting the amount of alumina of the female screw member 7 to 94% by weight. On the other hand, the sheath tube 8 has an alumina content of 96% by weight, and
When the sintering is completed at 00 ° C. and the pressure forming pressure is 4.5 MPa lower than 5 MPa of the internal thread member 7, the shrinkage rate can be increased, and the internal thread member 7 is formed by the sheath tube 8. Can be tightened and compressed. B. In the case of using a female screw member that has been fired and a sheath pipe that is not fired, the amount of alumina and the temperature are different. (1) Method for manufacturing female screw member 7 First, the aluminum oxide raw material (particle size: 1 μm) as the main component.
Hereinafter, a secondary component (sintering aid, remaining components) for assisting sintering is added to a purity of 99.8% and a content of 96% by weight,
Further, pure water is added and mixed and crushed by a ball mill for 10 hours. To the obtained raw material slurry, an organic binder such as polyvinyl alcohol and a polycarboxylic acid ammonium salt as a dispersant were added, and the mixture was sprayed with a drier 15
Dry at a temperature of 0 ° C. and spray granulate. The obtained granules are molded at a pressure of 5 MPa with an isostatic press (commonly called CIP). After molding, fire in a gas furnace at 1600 ° C for 2 hours,
The internal thread member 7 of a ceramics sintered body is obtained by cooling at a temperature lowering rate of 100 ° C./hour. (2) Method for manufacturing sheath tube 8 First, the aluminum oxide raw material (particle size: 1 μm) as the main component.
Hereinafter, a secondary component (sintering aid, remaining component) for assisting sintering is added to a purity of 99.8% and a content of 94% by weight,
Further, pure water is added and mixed and crushed by a ball mill for 10 hours. To the obtained raw material slurry, an organic binder such as polyvinyl alcohol and a polycarboxylic acid ammonium salt as a dispersant were added, and the mixture was sprayed with a drier 15
Dry at a temperature of 0 ° C. and spray granulate. The obtained granules are molded with a hydrostatic molding machine at a pressure of 5 MPa. (3) Method for manufacturing ceramic structure 9 The female screw member 7 that has been fired is set in the holes 8b and 8c of the sheath tube 8 through the bonding aid, and fired at 1500 ° C for 2 hours in a gas furnace to obtain 100 ° C / The ceramic structure 9 made of a ceramic sintered body is obtained by cooling at a temperature decreasing rate of time. Since the female screw member 7 is fired twice, it is better to slightly lower the firing temperature of the sheath tube 8. The amount of alumina of the female screw member 7 is 96% by weight, the firing temperature is 1600 ° C., the amount of alumina of the sheath tube 8 is 94% by weight, the firing temperature is 1500 ° C., and the amount of alumina is reduced to perform firing at a low temperature. Component (4) (Common to all members, the same applies hereinafter) The content of aluminum oxide as a main component is about 90 to 98% by weight. When it is 90% by weight or less, the strength as a connection joint is insufficient, and especially the internal thread is damaged. If it is more than 98% by weight, it is necessary to raise the sintering temperature,
Not economically favorable. As a sintering aid, MgO, S
iO 2 and CaO are preferable and they have the effect of lowering the firing temperature. (5) Particle size The granules spray-granulated have a particle size of about 30 to 200 μm.
It is preferable that the particles distributed in the above range occupy 80% or more. If it is less than this range (small diameter), the fluidity deteriorates and it becomes difficult to fill the molding die, resulting in cavities. If it exceeds this range (large diameter), the thread is not reliably formed. In any case, it is difficult to obtain a desired terminal body. (6) Pressure The molding pressure may be in the range of 3 to 10 MPa. Below this, cracks and cracks occur due to insufficient pressure.
If it is higher than this, it takes time to release the pressure, productivity is lowered, mold release property is poor, and mold cracking is likely to occur. (7) About firing conditions The atmosphere may be in the air. Baking holding temperature is 1500-1
The temperature may be 700 ° C., the firing time may be 2 hours, and the temperature lowering rate may be from the firing holding temperature to 400 ° C. at a cooling rate of 50 to 200 ° C./hour. The reason is that with a composition containing 90% by weight or more of aluminum oxide and a sintering aid (MgO, SiO 2 , CaO), the sintering cannot be completed unless it is sintered at about 1500 to 1700 ° C., and 50 to 200 ° C. This is because the strength after firing is reduced unless the temperature lowering rate is / hour, which is not preferable.

【0038】[0038]

【発明の効果】以上のように、この発明によれば、セラ
ミックスからなるの雌ねじ部材をセラミックスからなる
鞘管によりその焼成時の収縮力を利用して圧縮し、セラ
ミックス構造体を形成しており、雌ねじ部材には圧縮力
が作用し、しかも雌ねじ部材と鞘管との間には密着面が
存在することから、セラミックス構造体の引っ張り強度
を著しく向上することができる。又、セラミックス構造
体は腐食しないので、耐食性、耐電気絶縁性などが要求
される各種用途に適用され、例えばコンクリート構造物
内に埋設した場合には、耐久性が高いコンクリート構造
物が得られる。さらに、雌ねじ部材と鞘管を一括焼成し
た場合には、生産コストの削減に寄与し、安価なセラミ
ックス構造体が得られる。又、雌ねじ部材の外周に凹凸
部を設けたので、雌ねじ部材と鞘管の密着面積が大きく
確保され、引っ張り強度が一層向上する。
As described above, according to the present invention, the female screw member made of ceramics is compressed by the sheath tube made of ceramics by utilizing the contracting force at the time of firing to form the ceramics structure. A compressive force acts on the female screw member, and since there is a close contact surface between the female screw member and the sheath pipe, the tensile strength of the ceramic structure can be remarkably improved. Further, since the ceramic structure does not corrode, it is applied to various applications in which corrosion resistance, electrical insulation resistance, etc. are required. For example, when embedded in a concrete structure, a concrete structure having high durability can be obtained. Furthermore, when the female screw member and the sheath tube are fired together, the production cost can be reduced, and an inexpensive ceramic structure can be obtained. Further, since the uneven portion is provided on the outer periphery of the female screw member, a large contact area between the female screw member and the sheath pipe is secured, and the tensile strength is further improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施形態1によるセラミックス構造
体の製造方法の説明図である。
FIG. 1 is an explanatory diagram of a method for manufacturing a ceramic structure according to a first embodiment of the present invention.

【図2】実施形態1によるセラミックス構造体を用いた
端子体の構成図である。
FIG. 2 is a configuration diagram of a terminal body using the ceramic structure according to the first embodiment.

【図3】実施形態1によるセラミックス構造体を用いた
コンクリート型枠保持装置の構成図である。
FIG. 3 is a configuration diagram of a concrete form holding device using the ceramic structure according to the first embodiment.

【図4】実施形態2によるセラミックス構造体の焼成前
の断面図及び雌ねじ部材の断面図である。
FIG. 4 is a cross-sectional view of a ceramic structure according to a second embodiment before firing and a cross-sectional view of a female screw member.

【図5】実施形態3によるセラミックス構造体の焼成前
の断面図及び雌ねじ部材の断面図である。
5A and 5B are a sectional view of a ceramic structure according to a third embodiment before firing and a sectional view of a female screw member.

【図6】実施形態4によるセラミックス構造体の焼成前
の断面図と雌ねじ部材の断面図及び隔壁の断面図であ
る。
6A and 6B are a cross-sectional view of a ceramic structure according to Embodiment 4 before firing, a cross-sectional view of a female screw member, and a cross-sectional view of a partition wall.

【図7】実施形態5によるセラミックス構造体の焼成前
の断面図と雌ねじ部材の断面図及び隔壁の正面図であ
る。
7A and 7B are a cross-sectional view of a ceramic structure according to a fifth embodiment before firing, a cross-sectional view of a female screw member, and a front view of a partition wall.

【図8】実施形態6によるセラミックス構造体の横断面
図及び他の実施形態によるセラミックス構造体の横断面
図である。
FIG. 8 is a cross-sectional view of a ceramic structure according to a sixth embodiment and a cross-sectional view of a ceramic structure according to another embodiment.

【図9】従来の雌ねじ体の断面図及びその引っ張り強度
試験の説明図である。
FIG. 9 is a cross-sectional view of a conventional female screw body and an explanatory diagram of its tensile strength test.

【図10】従来の雌ねじ体の寸法を示す図である。FIG. 10 is a diagram showing dimensions of a conventional female screw body.

【図11】本発明者らが考案したセラミックス構造体の
製造方法の説明図である。
FIG. 11 is an explanatory diagram of a method for manufacturing a ceramic structure devised by the present inventors.

【図12】本発明者らが考案したセラミックス構造体の
引っ張り強度試験の説明図である。
FIG. 12 is an explanatory diagram of a tensile strength test of a ceramic structure devised by the present inventors.

【図13】本発明者らが考案したセラミックス構造体の
鞘管の焼成前後の寸法及び焼成後の雌ねじ部材の寸法を
示す図である。
FIG. 13 is a diagram showing dimensions before and after firing of the sheath tube of the ceramic structure devised by the present inventors and dimensions of the female screw member after firing.

【符号の説明】[Explanation of symbols]

7,23,24…雌ねじ部材 7a,23a,24a…凹凸部 7b,23b,24c,24d…雌ねじ部 8,22,27…鞘管 8a,24a,25,26…隔壁 8b,8c…穴 9,28…セラミックス構造体 22a…貫通孔 7, 23, 24 ... Female screw member 7a, 23a, 24a ... Uneven portion 7b, 23b, 24c, 24d ... Female screw portion 8, 22, 27 ... Sheath tube 8a, 24a, 25, 26 ... Partition walls 8b, 8c ... holes 9, 28 ... Ceramic structure 22a ... through hole

───────────────────────────────────────────────────── フロントページの続き (72)発明者 飯田 憲 静岡県沼津市東間門字上中溝515番地 明 電セラミックス株式会社内 Fターム(参考) 2E177 KD03 4G026 BA03 BA05 BA14 BA17 BB03 BB05 BB14 BB17 BC01 BD11 BF04 BF06 BF07 BF57 BG05 BG08 BH01 4G055 AA08 BA01 BA22    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Ken Iida             515 Kaminakamizo, Azuma Gate, Numazu City, Shizuoka Prefecture             Electroceramics Co., Ltd. F-term (reference) 2E177 KD03                 4G026 BA03 BA05 BA14 BA17 BB03                       BB05 BB14 BB17 BC01 BD11                       BF04 BF06 BF07 BF57 BG05                       BG08 BH01                 4G055 AA08 BA01 BA22

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 外周に凹凸部を有するとともに内周に雌
ねじ部を有する筒状のセラミックスからなる雌ねじ部材
と、少なくとも一層のセラミックスからなる鞘管とから
構成され、雌ねじ部材を鞘管内に装着し、両者を焼成す
ることにより、鞘管が雌ねじ部材を圧縮して、両者を密
着固定させたことを特徴とするセラミックス構造体。
1. A female screw member made of a cylindrical ceramic having an uneven portion on the outer circumference and a female screw portion on the inner circumference, and a sheath pipe made of at least one layer of ceramics. The female screw member is mounted in the sheath pipe. The ceramic structure is characterized in that the sheath tube compresses the female screw member by firing both of them, so that they are closely fixed.
【請求項2】 セラミックス原料粉末を加圧成形して、
外周に凹凸部を有するとともに内周に雌ねじ部を有する
筒状の雌ねじ部材と、少なくとも一層の鞘管を得、鞘管
内に結合助剤を介して雌ねじ部材を装着し、両者を焼成
することにより、鞘管が雌ねじ部材を圧縮して、両者を
密着固定させることを特徴とするセラミックス構造体の
製造方法。
2. A ceramic raw material powder is pressure-molded,
By obtaining a cylindrical female screw member having an uneven portion on the outer periphery and an inner screw portion on the inner periphery, and at least one layer of a sheath pipe, mounting the female screw member in the sheath pipe via a coupling aid, and firing both. A method for manufacturing a ceramic structure, wherein the sheath tube compresses the female screw member to tightly fix them.
【請求項3】 セラミックス原料粉末を加圧成形して、
外周に凹凸部を有するとともに内周に雌ねじ部を有する
筒状の雌ねじ部材と、少なくとも一層の鞘管を得、鞘管
内に結合助剤を介して雌ねじ部材を装着し、両者を焼成
することにより、まず、雌ねじ部材を焼結させた後に鞘
管を焼結させ、鞘管が雌ねじ部材を圧縮して両者を密着
固定させることを特徴とするセラミックス構造体の製造
方法。
3. A ceramic raw material powder is pressure-molded,
By obtaining a cylindrical female screw member having an uneven portion on the outer periphery and an inner screw portion on the inner periphery, and at least one layer of a sheath pipe, mounting the female screw member in the sheath pipe via a coupling aid, and firing both. First, a method for producing a ceramic structure, comprising first sintering an internal thread member and then sintering the sheath tube, and compressing the internal thread member by the sheath tube to closely fix the both.
【請求項4】 セラミックス原料粉末を加圧成形して、
外周に凹凸部を有するとともに内周に雌ねじ部を有する
筒状の雌ねじ部材と、少なくとも一層の鞘管を得、雌ね
じ部材を焼成し、焼結した雌ねじ部材を鞘管内に結合助
剤を介して装着し、鞘管を焼成することにより、鞘管が
雌ねじ部材を圧縮して両者を密着固定させることを特徴
とするセラミックス構造体の製造方法。
4. A ceramic raw material powder is pressure-molded,
A tubular female screw member having a female screw portion on the inner periphery and a concavo-convex portion on the outer periphery and at least one layer of a sheath pipe are obtained, the female screw member is fired, and the sintered female screw member is inserted into the sheath pipe through a coupling aid. A method for manufacturing a ceramic structure, characterized in that the sheath tube compresses the female screw member to tightly fix the two by mounting and firing the sheath tube.
【請求項5】 最外位置の鞘管は、外形を円柱状、樽形
状、両側円弧錐状、多角形、外周面凹凸状のいずれかに
することを特徴とする請求項1〜4のいずれかに記載の
セラミックス構造体の製造方法。
5. The outermost sheath tube has an outer shape of any of a columnar shape, a barrel shape, a both-sided arc pyramid shape, a polygonal shape, and an outer peripheral surface concavo-convex shape. A method for producing a ceramic structure according to claim 1.
【請求項6】 セラミックスは、アルミナ、ジルコニ
ア、炭化珪素、窒化珪素のいずれかを主成分とすること
を特徴とする請求項1〜5のいずれかに記載のセラミッ
クス構造体の製造方法。
6. The method for producing a ceramic structure according to claim 1, wherein the ceramic contains alumina, zirconia, silicon carbide or silicon nitride as a main component.
【請求項7】 鞘管は、隔壁を介して一対の穴を備え、
この穴内に各々雌ねじ部材を装着することを特徴とする
請求項1〜6のいずれかに記載のセラミックス構造体の
製造方法。
7. The sheath tube comprises a pair of holes through a partition wall,
A method for manufacturing a ceramic structure according to any one of claims 1 to 6, wherein female screw members are mounted in the holes.
【請求項8】 鞘管は、貫通孔を備え、この貫通孔内に
雌ねじ部材を装着することを特徴とする請求項1〜6の
いずれかに記載のセラミックス構造体の製造方法。
8. The method for manufacturing a ceramic structure according to claim 1, wherein the sheath tube has a through hole, and a female screw member is mounted in the through hole.
JP2001286743A 2001-09-20 2001-09-20 Ceramic structure and method for manufacturing the same Pending JP2003095759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001286743A JP2003095759A (en) 2001-09-20 2001-09-20 Ceramic structure and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001286743A JP2003095759A (en) 2001-09-20 2001-09-20 Ceramic structure and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2003095759A true JP2003095759A (en) 2003-04-03

Family

ID=19109665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001286743A Pending JP2003095759A (en) 2001-09-20 2001-09-20 Ceramic structure and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2003095759A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012162859A (en) * 2011-02-03 2012-08-30 Daifuzi Co Ltd Separator for form support and construction method of concrete skeleton using the separator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012162859A (en) * 2011-02-03 2012-08-30 Daifuzi Co Ltd Separator for form support and construction method of concrete skeleton using the separator

Similar Documents

Publication Publication Date Title
US6082063A (en) Prestressing anchorage system for fiber reinforced plastic tendons
CN110306726B (en) Composite structure and manufacturing method thereof
CA2672637A1 (en) Production method and structural element
CN212802088U (en) Construction rock wool heat preservation wall body that plasters
CN109838038B (en) Prestressed composite bar composite anchorage and forming method thereof
JPH0832582B2 (en) Composite structure
CN107445579A (en) Fire proofing material and fire-proof plate and fire rated wall structure and construction method applied to tunnel
JP2003095759A (en) Ceramic structure and method for manufacturing the same
JP2003095760A (en) Method for manufacturing ceramic structure
JP2003095761A (en) Method for manufacturing ceramic structure
JP3971908B2 (en) Ceramic structure
JP2003094418A (en) Method for manufacturing ceramics structure
US8349111B2 (en) Method for joining ceramic components
CN209891559U (en) Prestressed composite bar composite anchorage
JP2003097534A (en) Ceramics nut and manufacturing method thereof
CN112573940B (en) Multi-temperature maintenance manufacturing method of combined structure and combined structure
US10800705B1 (en) Composition having plasma-treated recycled steel fibers
JP2003128474A (en) Insulating structure and its manufacturing method
CN107602019B (en) Building member of prefabricated dismounting-free formwork of ultra-light concrete
JP3869667B2 (en) Concrete formwork holding device end stop and concrete structure
JP3896254B2 (en) Reinforcing bar anchor
JP2002371709A (en) End stopper for concrete form retainer and concrete structure
JP4045169B2 (en) Explosion-resistant high-strength cementitious cured body and method for producing the same
JP2003064778A (en) Insert device
CN109356029B (en) CFRP rib pre-extrusion composite anchorage device