JP3966867B2 - Polyketone treatment cord and method for producing the same - Google Patents

Polyketone treatment cord and method for producing the same Download PDF

Info

Publication number
JP3966867B2
JP3966867B2 JP2004133251A JP2004133251A JP3966867B2 JP 3966867 B2 JP3966867 B2 JP 3966867B2 JP 2004133251 A JP2004133251 A JP 2004133251A JP 2004133251 A JP2004133251 A JP 2004133251A JP 3966867 B2 JP3966867 B2 JP 3966867B2
Authority
JP
Japan
Prior art keywords
polyketone
cord
heat shrinkage
fiber
dtex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004133251A
Other languages
Japanese (ja)
Other versions
JP2004218189A (en
Inventor
龍 谷口
仁一郎 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Fibers Corp
Original Assignee
Asahi Kasei Fibers Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Fibers Corp filed Critical Asahi Kasei Fibers Corp
Priority to JP2004133251A priority Critical patent/JP3966867B2/en
Publication of JP2004218189A publication Critical patent/JP2004218189A/en
Application granted granted Critical
Publication of JP3966867B2 publication Critical patent/JP3966867B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、優れた力学特性と高い熱収縮特性を有するポリケトン繊維を用いたポリケトン理コード及びそれらの製造方法に関する。
さらに詳しくは、本発明は、高強度・高弾性率の優れた力学特性を有し、かつ、極めて高い熱収縮性を有するポリケトン繊維を用いたポリケトン理コード及びそれらの製造方法に関する。
本発明のポリケトン繊維は衣料用途や産業用資材用途など幅広く適用可能であり、とりわけ加工時や使用時に熱収縮および熱収縮力を発現することが要求される産業用資材分野、特にベルトやタイヤコード等の補強用繊維材料に適用できるポリケトン処理コードとして有用である。
The present invention relates to polyketone processing codes and methods for their production using the polyketone fibers having excellent mechanical properties and high thermal shrinkage characteristics.
More particularly, the present invention has excellent mechanical properties of high strength and high modulus of elasticity, and relates to polyketone processing codes and methods for their production using the polyketone fibers having a very high heat shrink.
Polyketone fiber of the present invention is widely applicable, such as clothing use or industrial materials applications, especially during processing and industrial materials Field of expressing a heat-shrinkable and heat shrinkage force is required at the time of use, in particular a belt or tire cord It is useful as a polyketone treatment cord applicable to reinforcing fiber materials such as

近年、一酸化炭素とエチレン、プロペンのようなオレフィンをパラジウムやニッケルを触媒として重合させることにより、一酸化炭素とオレフィンが実質完全に交互共重合した脂肪族ポリケトンポリマーが得られることが見出され(非特許文献1)、以後ポリケトンポリマーの繊維化の検討が行われている。
ポリケトン繊維は、従来のポリオレフィン繊維に比べて融点が高く、また高強度・高弾性率の繊維が得られることが知られており、この優れた物性を活かして産業用資材、土木用資材、生活資材、衣料用途など幅広い用途への展開が検討されている。中でも高強度、高弾性率の優れた機械的特性と高融点の熱的特性を活かして産業用資材用途、特にタイヤコード用途への展開が期待されている。
タイヤコードにおいても用途や使用部位によっては要求される性能が全く異なり、例えばタイヤのカーカス部の心材として用いられるカーカスプライ等のコード用途では高強度でかつ熱収縮力の小さい特性が要求され、一方カーカスやベルトの形態維持等の目的で用いられるキャッププライやエッジプライ等のコード用途では高強度でかつ熱収縮力の大きい特性が要求される。
In recent years, it has been found that by polymerizing carbon monoxide and olefins such as ethylene and propene using palladium or nickel as a catalyst, an aliphatic polyketone polymer in which carbon monoxide and olefin are almost completely alternately copolymerized can be obtained. (Non-Patent Document 1), and then, fiberization of polyketone polymers has been studied.
Polyketone fibers are known to have high melting points and high strength and high modulus fibers compared to conventional polyolefin fibers. Utilizing these excellent physical properties, industrial materials, civil engineering materials, and daily life Expansion to a wide range of uses such as materials and clothing is being considered. In particular, it is expected to be used for industrial materials, particularly tire cords, by utilizing its excellent mechanical properties such as high strength and high elastic modulus and thermal properties with a high melting point.
In tire cords, the required performance is completely different depending on the application and use site. For example, cord applications such as carcass ply used as the core material of the carcass part of a tire require high strength and low heat shrinkage characteristics, For cord applications such as a cap ply and an edge ply used for the purpose of maintaining the shape of a carcass or a belt, a characteristic having high strength and large heat shrinkage is required.

ポリケトン繊維においては高強度・高弾性率繊維でありながら熱収縮率が小さく、高物性で安定した熱収縮特性を有する繊維が得られるようになっており(例えば、特許文献1、2、3)、カーカスプライ等の用途への展開が期待されている。しかしながら、その一方では、キャッププライやエッジプライに適したポリケトン繊維についてはこれまで一切知られておらず、高強度・高弾性率でありながら高い熱収縮力を有するポリケトン繊維の開発が望まれている。
これまで高強度、高弾性率のポリケトン繊維については、いくつかの技術が開示されており、例えば、特許文献4、非特許文献2では溶融紡糸を行う方法が、また、特許文献5〜12では溶剤を用いて湿式紡糸を行う方法が開示されている。
これらの文献では、溶融紡糸や湿式紡糸によって得られたポリケトン未延伸糸を加熱下で高度に延伸することで高強度・高弾性率のポリケトン繊維を得る技術が開示されている。しかしながら、これらの文献に記載されている方法で紡糸・延伸したポリケトン繊維は強度10cN/dtex以上、弾性率200cN/dtex以上の高強度・高弾性率の性能は得られるものの、熱時に強い収縮力を示すポリケトン繊維及びその製造技術については一切開示されていない。
The polyketone fiber is a high-strength and high-modulus fiber, but has a low heat shrinkage rate, and has high physical properties and stable heat shrinkage properties (for example, Patent Documents 1, 2, and 3). Development to applications such as carcass ply is expected. However, on the other hand, polyketone fibers suitable for cap plies and edge plies have not been known at all, and development of polyketone fibers having high heat shrinkage while having high strength and high elastic modulus is desired. Yes.
So far, several techniques have been disclosed for high-strength, high-modulus polyketone fibers. For example, Patent Document 4 and Non-Patent Document 2 disclose melt spinning, and Patent Documents 5 to 12 disclose A method of performing wet spinning using a solvent is disclosed.
These documents disclose a technique for obtaining a polyketone fiber having a high strength and a high elastic modulus by highly drawing a polyketone undrawn yarn obtained by melt spinning or wet spinning under heating. However, polyketone fibers spun and stretched by the methods described in these documents can have high strength and high elastic modulus with a strength of 10 cN / dtex or higher and an elastic modulus of 200 cN / dtex or higher, but a strong shrinkage force when heated. There is no disclosure of polyketone fibers exhibiting the above and their production techniques.

また、特許文献13などにはポリケトン繊維からなるタイヤコードに関する技術が示されており、その中ではポリケトン繊維をタイヤコードに加工する際に緊張熱処理をすることが開示されている。
しかしながら、たとえ高い熱収縮応力や熱収縮率を有するポリケトン繊維を用いても、加工工程の熱処理によってポリケトン繊維の熱収縮応力や熱収縮率は低下してしまい、ポリケトン処理コードの熱収縮力は不十分なものになってしまう。
さらには、特許文献14ではラジアルタイヤのカーカス層にポリケトン繊維からなる処理コードを用いる技術が開示されている。しかしながら、この文献においても、キャッププライやエッジプライにポリケトン繊維を適用すること、キャッププライやエッジプライに適用可能な高い熱収縮応力を有するポリケトン処理コードに関する技術ついては一切開示されていない。
以上のように、高強度、高弾性率の優れた力学特性を有しながら極めて高い熱収縮応力を有するポリケトン繊維やポリケトン繊維処理コードおよびそれらを製造する技術についてはこれまで一切知られていない。
In addition, Patent Document 13 discloses a technique related to a tire cord made of polyketone fiber, and discloses that a tension heat treatment is performed when the polyketone fiber is processed into a tire cord.
However, even if a polyketone fiber having a high heat shrinkage stress or heat shrinkage rate is used, the heat shrinkage stress or heat shrinkage rate of the polyketone fiber is reduced by the heat treatment in the processing step, and the heat shrinkage force of the polyketone treated cord is not good. It will be enough.
Furthermore, Patent Document 14 discloses a technique of using a processing cord made of polyketone fiber for a carcass layer of a radial tire. However, even in this document, there is no disclosure of a technique relating to a polyketone treatment cord having a high heat shrinkage stress that can be applied to a cap ply or an edge ply, or applying a polyketone fiber to a cap ply or an edge ply.
As described above, polyketone fibers and polyketone fiber treatment cords having extremely high heat shrinkage stress while having excellent mechanical properties such as high strength and high elastic modulus and techniques for producing them have not been known at all.

特願平11−77220号Japanese Patent Application No.11-77220 特願平11−227035号Japanese Patent Application No. 11-227035 特願平11−330939号Japanese Patent Application No. 11-330939 特開平1−124617号公報JP-A-1-124617 特開平2−112413号公報JP-A-2-112413 特表平4−505344号公報Japanese National Patent Publication No. 4-505344 特開平2−112413号公報JP-A-2-112413 特開平4−228613号公報JP-A-4-228613 特表平7−508317号公報Japanese National Patent Publication No. 7-508317 特表平8−507328号公報Japanese National Patent Publication No. 8-507328 米国特許5955019号明細書US Pat. No. 5,955,019 WO9918143号公開パンフレットWO9918143 pamphlet 特開平9−324377号公報Japanese Patent Laid-Open No. 9-324377 特開平11−334313号公報JP-A-11-334313 1997年発行「工業材料」12月号、5頁"Industrial Materials" December issue, 1997, 5 pages Polym.Prepr.(Am.Chem.Soc.,Div.Polym.Chem.),36,1,291−292、Prog.Polym.Sci.,Vol.22,8,1547−1605(1997)Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 36, 1, 291-292, Prog. Polym. Sci. , Vol. 22, 8, 1547-1605 (1997)

本発明が解決しようとする課題は、原特許出願である高強度・高弾性率のポリケトン繊維において、熱時に高い収縮力を有するポリケトン繊維及びその製造方法を提供したが、本発明では、キャッププライやエッジプライ等のタイヤ補強材として使用した際にタイヤ形態の緩みや弛みを抑制するタガ性能を有するポリケトン処理コード及びその製造方法を提供することにある。 An object of the present invention is to provide, in the polyketone fibers of the original patent application der Ru high strength and high modulus of elasticity, but provides polyketone fibers and a method of manufacturing the same having high shrinkage force while hot, in the present invention, the cap An object of the present invention is to provide a polyketone-treated cord having a tagging performance for suppressing looseness and slackness of a tire form when used as a tire reinforcing material such as a ply and an edge ply, and a method for producing the same.

本発明者らは上記の課題を達成するために、先の出願において、ポリケトン繊維の製造条件を鋭意検討して、ポリケトン繊維を高度に熱延伸した後に特定条件の温度・張力下で処理して得られた特定のポリケトン繊維を提供したが、本発明ではその特定のポリケトン繊維を用いて優れたポリケトン繊維処理コードおよびそれの製造方法を提供できることを見出し、さらに検討した結果、本発明に達した。
即ち、本発明は;
(1) ポリケトン繊維がレゾルシン−ホルマリン−ラテックス樹脂により処理された処理コードであるポリケトン繊維処理コードであって、最大熱収縮応力が0.2〜0.4cN/dtex150℃における乾熱収縮率が0.5〜6%であるポリケトン処理コードを提供する。また、
(2) 最大熱収縮応力が0.3〜0.4cN/dtex150℃における熱収縮率が1〜4%である点にも特徴を有する。また、
(3) 最大熱収縮力が500〜1079cN/コードある点にも特徴を有する。ま
(4) ポリケトン撚糸コードをレゾルシン−ホルマリン−ラテックス液に浸漬後、熱処理するポリケトン処理コードの製造方法において、
撚糸コードの熱処理温度をT(℃)、熱処理時に印可する張力をσD(cN/dtex)とした時に、σDおよびTが下記式範囲内である工程を含むポリケトン処理コードの製造方法を提供する。また、
1.01×σT ≦σD(cN/dtex)≦10×σT
100≦T(℃)≦270
(ここで、σTはポリケトン撚糸コードの温度Tにおける熱収縮応力である。)
In order to achieve the above-mentioned problems, the present inventors diligently studied the production conditions of the polyketone fiber in the previous application, and after the polyketone fiber was highly hot-drawn, the polyketone fiber was treated under a specific condition of temperature and tension. Although the obtained specific polyketone fiber was provided, in the present invention, it was found that an excellent polyketone fiber treatment cord and a method for producing the same can be provided by using the specific polyketone fiber . .
That is, the present invention provides:
(1) A polyketone fiber treated cord in which the polyketone fiber is treated with a resorcin-formalin-latex resin, and the maximum heat shrinkage stress is 0.2 to 0.4 cN / dtex , dry heat shrinkage at 150 ° C. A polyketone treatment cord having a rate of 0.5-6% is provided. Also,
(2) It is also characterized in that the maximum heat shrinkage stress is 0.3 to 0.4 cN / dtex and the heat shrinkage rate at 150 ° C. is 1 to 4%. Also,
(3) It is also characterized in that the maximum heat shrinkage force is 500 to 1079 cN / cord. Also,
(4) In the method for producing a polyketone-treated cord, the polyketone twisted cord is immersed in a resorcin-formalin-latex solution and then heat-treated.
A method for producing a polyketone-treated cord comprising a step in which σ D and T are within the range of the following formula when the heat treatment temperature of the twisted cord is T (° C.) and the tension applied during the heat treatment is σ D (cN / dtex): provide. Also,
1.01 × σ T ≦ σ D (cN / dtex) ≦ 10 × σ T
100 ≦ T (° C.) ≦ 270
(Here, σ T is the heat shrinkage stress at the temperature T of the polyketone twisted cord.)

本発明のポリケトン繊維処理コードの原料であるポリケトン繊維は高強度・高弾性率の優れた力学物性を有するのみでなく、熱収縮応力および乾熱収縮率が高く、熱時に強い収縮性を発揮する。
また、該ポリケトン繊維を撚糸した撚糸コード、接着剤を付与した処理コードは、加工時や使用時に熱を受けた際に材料を締め付ける性能が要求される用途、例えばタイヤやベルト、ホースのゴム補強材料において製品の外周部、表面部に用いられるコード材料やFRP等の産業用資材用途に極めて有用である。
特に、本発明のポリケトン繊維を用いたポリケトン処理コードは従来の熱可塑性繊維からなるコードを超える優れた熱収縮力を示すため、使用する繊維の本数を減らすことも可能であり、キャッププライやベルトプライに適用した場合にはタイヤやベルトの更なる軽量化も可能となる。
The polyketone fiber that is the raw material of the polyketone fiber treatment cord of the present invention not only has excellent mechanical properties such as high strength and high elastic modulus, but also exhibits high heat shrinkage stress and dry heat shrinkage, and exhibits strong shrinkage when heated. .
In addition, twisted cords made by twisting the polyketone fiber and treated cords with adhesives are used for applications that require the ability to tighten materials when subjected to heat during processing or use, such as rubber reinforcement for tires, belts, hoses, etc. The material is extremely useful for industrial materials such as cord materials and FRP used for the outer peripheral portion and surface portion of products.
In particular, the polyketone-treated cord using the polyketone fiber of the present invention exhibits an excellent heat shrinkage force exceeding that of a cord made of a conventional thermoplastic fiber, so that the number of fibers to be used can be reduced. When applied to a ply, the tires and belts can be further reduced in weight.

以下、本発明を詳細に説明する。
本発明に用いるポリケトンポリマーは、繰返単位の97モル%以上が1−オキソトリメチレンから構成されたポリケトンポリマーである。
なお、1−オキソトリメチレンから構成される繰返単位とは下記構造式(1)で表される基である。

Figure 0003966867

繰返単位中の1−オキソトリメチレンの割合が高いほど高強度・高弾性率、高耐熱性の繊維が得られることから、97モル%以上、好ましくは99モル%以上、最も好ましくは100モル%が1−オキソトリメチレンであることが望ましい。 Hereinafter, the present invention will be described in detail.
The polyketone polymer used in the present invention is a polyketone polymer in which 97 mol% or more of repeating units are composed of 1-oxotrimethylene.
The repeating unit composed of 1-oxotrimethylene is a group represented by the following structural formula (1).
Figure 0003966867

The higher the proportion of 1-oxotrimethylene in the repeating unit, the higher the strength, the high elastic modulus, and the high heat resistance of the fiber, so 97 mol% or more, preferably 99 mol% or more, most preferably 100 mol. % Is preferably 1-oxotrimethylene.

オレフィンと一酸化炭素が結合した繰返単位同士は、部分的にケトン基同士、オレフィン同士がつながっていてもよいが、90重量%以上がオレフィンと一酸化炭素が交互に配列したポリケトンポリマーであることが望ましい。
耐光性、耐熱性、高温時の物性の低下の観点からオレフィンと一酸化炭素が交互に配列した部分の含有率は多ければ多いほどよく、好ましくは97重量%以上、最も好ましくは100重量%である。
また、必要に応じてプロペン、ブテン、ヘキセン、シクロヘキセン、ペンテン、シクロペンテン、オクテン、ノネン等のエチレン以外のオレフィンやメチルメタクリレート、酢酸ビニル、アクリルアミド、ヒドロキシエチルメタクリレート、スチレン、スチレンスルホン酸ナトリウム、アリルスルホン酸ナトリウム、ビニルピロリドン、塩化ビニル等の不飽和炭化水素を有する化合物を共重合してもよい。
The repeating units in which the olefin and carbon monoxide are bonded may be partially linked to each other, and the olefin and carbon monoxide may be partially linked to each other, but 90% by weight or more is a polyketone polymer in which olefins and carbon monoxide are alternately arranged. It is desirable.
From the viewpoint of light resistance, heat resistance, and reduction in physical properties at high temperatures, the content of the portion in which olefins and carbon monoxide are alternately arranged is preferably as large as possible, preferably 97% by weight or more, most preferably 100% by weight. is there.
If necessary, olefins other than ethylene such as propene, butene, hexene, cyclohexene, pentene, cyclopentene, octene, nonene, methyl methacrylate, vinyl acetate, acrylamide, hydroxyethyl methacrylate, styrene, sodium styrenesulfonate, allylsulfonic acid A compound having an unsaturated hydrocarbon such as sodium, vinyl pyrrolidone or vinyl chloride may be copolymerized.

ポリケトンポリマーの重合度としては、本発明の実施例に記載した方法で測定される極限粘度で1〜20であることが望まれる。
極限粘度が1未満では分子量が低すぎて高強度のポリケトン繊維を得ることが困難となるばかりか、凝固糸の物性(強度・伸度)が低くなるため紡糸時や乾燥時、延伸時に毛羽や糸切れ等の工程上のトラブルが多発する。一方、極限粘度が20を超えるとポリマーの重合に時間、コストがかかるばかりか、均一な溶解が困難となり紡糸性や繊維物性にも悪影響が出る。
このため、本発明に用いるポリケトンポリマーの極限粘度としては、好ましくは1〜20、より好ましくは2〜10、特に好ましくは3〜8であることが望ましい。
The degree of polymerization of the polyketone polymer is desirably 1 to 20 in terms of intrinsic viscosity measured by the method described in the examples of the present invention.
If the intrinsic viscosity is less than 1, the molecular weight is too low to obtain a high-strength polyketone fiber, and the physical properties (strength / elongation) of the coagulated yarn are lowered, so that fluff or Troubles in processes such as thread breakage occur frequently. On the other hand, if the intrinsic viscosity exceeds 20, polymerization of the polymer takes time and cost, and uniform dissolution becomes difficult, and the spinnability and fiber properties are adversely affected.
For this reason, the intrinsic viscosity of the polyketone polymer used in the present invention is preferably 1 to 20, more preferably 2 to 10, and particularly preferably 3 to 8.

本発明のポリケトン繊維処理コードの原料であるポリケトン繊維は結晶化度が50〜90%、結晶配向度が95%以上の結晶構造を有することが必要である。 結晶化度が50%未満の場合、繊維の構造形成が不十分であり十分な強度が得られないばかりか熱時の収縮特性、寸法安定性も不安定となる。
このため、結晶化度としては50〜90%、好ましくは60〜85%であることが望ましい。
また、結晶配向度は95%未満の場合、分子鎖の配向が不十分で十分な弾性率を有する繊維が得られないため、結晶配向度としては95%以上、好ましくは97%以上であることが望ましい。
また、リケトン繊維は引張強度が10cN/dtex以上、引張弾性率が200cN/dtex以上であることが必要である。
引張強度は高いほど、強度の要求される分野での使用が可能となったり、使用する繊維の重量を少なくすることが出来るようになるため、15cN/dtex以上であることが望ましい。
また、引張弾性率は高いほど同一荷重下での寸法変化が小さく形態安定性に優れることから、00cN/dtex以上であることがより望ましい。
リケトン繊維は最大熱収縮応力が0.8cN/dtex以上であることが特に必要である。

熱収縮応力が0.8cN/dtex未満である場合、撚りコードや処理コードとした際の熱収縮力は原糸の値より1割以上も低下するため、成型品をしっかりと効率的に締め付ける力が不足し、形態保持のタガ材としての機能が十分に果たせなくなる。
このため、ポリケトン繊維の最大熱収縮応力としては0.8cN/dtex以上、好ましくは0.9cN/dtex以上であることが望ましい。最大熱収縮応力が1.0cN/dtex以上であることが特に望ましく、この場合従来の繊維素材(例えばナイロン6・6やポリエチレンテレフタレート)に比べて2倍近い熱収縮応力となり、使用する繊維の量を大幅に減らし軽量化が可能となる。
The polyketone fiber which is a raw material for the polyketone fiber treatment cord of the present invention needs to have a crystal structure with a crystallinity of 50 to 90% and a crystal orientation of 95% or more. When the degree of crystallinity is less than 50%, the fiber structure is not sufficiently formed and sufficient strength cannot be obtained, and the thermal shrinkage characteristics and dimensional stability become unstable.
For this reason, it is desirable that the degree of crystallinity is 50 to 90%, preferably 60 to 85%.
In addition, when the degree of crystal orientation is less than 95%, fibers having a sufficient elastic modulus cannot be obtained due to insufficient orientation of molecular chains, and therefore the degree of crystal orientation is 95% or more, preferably 97% or more. Is desirable.
Moreover, positive Riketon fiber tensile strength of 10 cN / dtex or more, a tensile modulus of elasticity is required to be 200 cN / dtex or more.
The higher the tensile strength is, the more it can be used in a field where strength is required, and the weight of the fiber to be used can be reduced. Therefore, the tensile strength is preferably 15 cN / dtex or more.
The tensile elastic modulus is excellent in dimensional change is small form stability under the same load higher, more desirably at 3 00cN / dtex or more.
Po Riketon fibers it is particularly necessary maximum thermal shrinkage stress is 0.8cN / dtex or more.

When the heat shrinkage stress is less than 0.8 cN / dtex, the heat shrinkage force of the twisted cord or treated cord is more than 10% lower than the value of the raw yarn, so the force to tighten the molded product firmly and efficiently Is insufficient, and the function as a shape-maintaining tag material cannot be sufficiently achieved.
For this reason, the maximum heat shrinkage stress of the polyketone fiber is 0.8 cN / dtex or more, preferably 0.9 cN / dtex or more. It is particularly desirable that the maximum heat shrinkage stress is 1.0 cN / dtex or more. In this case, the heat shrinkage stress is nearly twice that of conventional fiber materials (for example, nylon 6.6 and polyethylene terephthalate), and the amount of fiber used. The weight can be significantly reduced.

リケトン繊維の高い熱収縮特性を最も効果的に活用するには、加工時の処理温度や使用時の成型品の温度が、最大熱収縮応力を示す温度(以下最大熱収縮温度という)と近い温度であることが望ましい。
タイヤコードやベルト等のゴム補強用繊維材料として用いられる場合、RFL処理温度や加硫温度等の加工温度が100〜250℃であること、また、繰返し使用や高速回転によってタイヤやベルト等の材料が発熱した際の温度は100〜200℃にもなること等から最大熱収縮温度は100〜250℃の範囲であることが望ましい。
最大熱収縮温度が100℃未満の場合、パッケージに巻取る際や製品を通常の条件で使用する際でも比較的高い収縮応力が発生してしまい、巻きしまりや製品の歪み等の問題が起こり易くなる。更に、処理コードへ加工する際に行うRFL処理によって最大熱収縮応力が大きく低下してしまい、十分な熱収縮応力を有するタイヤコードを得ることが困難になる。
また、最大熱収縮温度が250℃を超えると、熱処理時に繊維の変性が起こり易く熱応力特性を有効に活用することが困難となる。
このため、最大熱収縮温度としては好ましくは100〜250℃、より好ましくは150〜240℃であることが望ましい。
To most effectively utilize the high heat shrinkage characteristics of Po Riketon fibers, the temperature of the processing time of the processing temperature and operating time of the molded article, close to the temperature (hereinafter referred to as maximum heat shrinkage temperature) showing a maximum heat shrinkage stress It is desirable to be temperature.
When used as a fiber material for reinforcing rubber such as tire cords and belts, the processing temperature such as the RFL treatment temperature and vulcanization temperature is 100 to 250 ° C, and the materials such as tires and belts are repeatedly used and rotated at high speed. The maximum heat shrinkage temperature is desirably in the range of 100 to 250 ° C. because the temperature at which the heat is generated is as high as 100 to 200 ° C.
When the maximum heat shrinkage temperature is less than 100 ° C, relatively high shrinkage stress is generated even when the product is wound on a package or when the product is used under normal conditions, and problems such as winding and product distortion are likely to occur. Become. Furthermore, the maximum heat shrinkage stress is greatly reduced by the RFL process performed when processing the processed cord, and it becomes difficult to obtain a tire cord having a sufficient heat shrinkage stress.
On the other hand, if the maximum heat shrinkage temperature exceeds 250 ° C., the fiber is likely to be denatured during the heat treatment, making it difficult to effectively utilize the thermal stress characteristics.
For this reason, the maximum heat shrinkage temperature is preferably 100 to 250 ° C, more preferably 150 to 240 ° C.

また、リケトン繊維は高い熱収縮応力を有するとともに、乾熱処理時の収縮率も従来のポリケトン繊維に比較して高いという特性を有する。
乾熱収縮率は加工条件や用途によって要求される性能が異なるため、一概に定義することは困難であるが、150℃、30分の乾熱処理における収縮率として1%以上であることが望ましい。
より好ましい性能としては2%以上、さらに好ましくは3%以上、特に好ましくは4%以上の収縮率を有することが望ましい。
一方で、乾熱収縮率が大きすぎる場合、パッケージに巻取った際の巻きしまりが顕著になる問題が生じるため、好ましくは7%以下、より好ましくは6%以下であることが望ましい。
Moreover, positive Riketon fibers has high thermal shrinkage stress, has a characteristic of high compared shrinkage during dry heat treatment in a conventional polyketone fibers.
The dry heat shrinkage rate differs depending on the processing conditions and applications, so it is difficult to define it in general. However, the shrinkage rate in a dry heat treatment at 150 ° C. for 30 minutes is preferably 1% or more.
More preferable performance is 2% or more, more preferably 3% or more, and particularly preferably 4% or more.
On the other hand, when the dry heat shrinkage rate is too large, there arises a problem that the winding becomes remarkable when wound on the package. Therefore, it is preferably 7% or less, more preferably 6% or less.

リケトン繊維の単糸繊度および単糸数については特に制限はなく、単繊維、長繊維のいずれでもよい。
単糸繊度としては好ましくは0.01〜100dtex、単糸数1〜10000f、総繊度30〜100000dtexの範囲であり、より好ましい範囲としては単糸繊度0.1〜10dtex、単糸数10〜5000、総繊度100〜10000である。
マルチフィラメントの場合には必要に応じて撚糸されていても良い。撚数は単糸繊度、総繊度、用途等に応じて変化するため一概には定義できないが、通常は繊維長さ1m当たりに2〜1000回程度である。
また、ポリケトン繊維中には、目的に応じて、油剤、酸化防止剤、クエンチング剤、ラジカル捕捉剤、重金属不活性化剤、ゲル化抑制剤、艶消剤、紫外線吸収剤、顔料等の添加剤、他のポリマー等を含んでいてもよい。
No particular limitation is imposed on the single fiber fineness and single yarn number of ports Riketon fibers, filaments, may be any of long fiber.
The single yarn fineness is preferably 0.01 to 100 dtex, the number of single yarns 1 to 10,000 f, and the total fineness 30 to 100,000 dtex, and the more preferable ranges are single yarn fineness 0.1 to 10 dtex, single yarn number 10 to 5000, total The fineness is 100 to 10,000.
In the case of a multifilament, it may be twisted as necessary. The number of twists varies depending on the single yarn fineness, total fineness, use, etc., and thus cannot be defined unconditionally, but is usually about 2 to 1000 times per 1 m of fiber length.
Addition of oil agent, antioxidant, quenching agent, radical scavenger, heavy metal deactivator, gelation inhibitor, matting agent, UV absorber, pigment, etc. in polyketone fiber depending on purpose Agents, other polymers, etc. may be included.

以下、リケトン繊維を製造する方法を例示するが、これらの方法によってリケトン繊維は何ら限定されるものではない。
上述したポリケトンポリマーを用いてポリケトン未延伸糸の紡糸が行われるが、未延伸糸の製造方法については特に制限はなく、従来公知の紡糸方法をそのままあるいは必要に応じて改良して用いることが出来る。
例えば、湿式紡糸法を採用する場合、溶剤の安全性、取扱性の観点からハロゲン化亜鉛塩溶液を溶剤とする湿式紡糸方法が好適に用いられる。
ハロゲン化亜鉛を溶剤とする湿式紡糸法としては、例えば、ハロゲン化亜鉛を15〜80重量%含有する溶液にポリケトンポリマーを2〜30重量%溶解してドープとし、温度50〜130℃にて紡糸口金より凝固浴に吐出し、ドープを糸状物とし、得られた糸状物を必要に応じて洗浄して溶剤を除去した後に速度0.01〜100m/分にて引取ることでポリケトン凝固糸が得られる。さらに引き続き、この凝固糸を加熱乾燥することでポリケトン未延伸糸を得ることが出来る。
引取られた未延伸糸は一旦巻取機に巻取った後に、或いは巻取ることなく引き続き連続して延伸工程に供される。
Hereinafter is exemplified a method of manufacturing a port Riketon fibers, Po Riketon fibers is not intended to be limited in any way by these methods.
Polyketone undrawn yarn is spun using the polyketone polymer described above, but there is no particular limitation on the method for producing the undrawn yarn, and a conventionally known spinning method can be used as it is or after modification as necessary. .
For example, when the wet spinning method is employed, a wet spinning method using a zinc halide salt solution as a solvent is preferably used from the viewpoint of solvent safety and handling properties.
As a wet spinning method using zinc halide as a solvent, for example, a polyketone polymer is dissolved in a solution containing 15 to 80% by weight of zinc halide to form a dope and spinning at a temperature of 50 to 130 ° C. The polyketone coagulated yarn is discharged from the base into a coagulation bath, the dope is made into a thread, and the obtained thread is washed as necessary to remove the solvent and then taken up at a speed of 0.01 to 100 m / min. can get. Furthermore, the polyketone undrawn yarn can be obtained by heating and drying the coagulated yarn.
The undrawn yarn taken up is once taken up by a winder or continuously without being taken up, and continuously subjected to a drawing process.

ポリケトン繊維の延伸法としては、糸をガラス転移温度よりも高い温度に加熱して引き伸ばす熱延伸法が好適に用いられ、一段或いは二段以上の多段にて延伸する。加熱延伸方法としては、加熱したロール上やプレート上或いは加熱気体中を走行させる方法や、走行糸にレーザーやマイクロ波又は遠赤外線を照射する方法等従来公知の装置、方法をそのまま或いは改良して採用することが出来る。
伝熱効率及び糸温度の均一性の観点から、加熱ロール、加熱プレート上での延伸が好ましく、ロールとプレートを併用した延伸法であってもよい。また、ロールやプレートの周囲を密閉し、密閉空間内に加熱気体を充填するとより温度が均一な延伸が可能となり好ましい。
好ましい延伸温度範囲としては110℃〜融点、さらに好ましくは融点−50℃〜融点−5℃の範囲である。
未延伸糸から最終延伸糸までの総延伸倍率は好ましくは10倍以上、より好ましくは12倍以上、特に好ましくは15倍以上の倍率まで延伸することが望ましい。
As the polyketone fiber drawing method, a heat drawing method in which the yarn is drawn by heating to a temperature higher than the glass transition temperature is suitably used, and the drawing is carried out in one or more stages. As the heating and stretching method, a conventionally known apparatus or method such as a method of traveling on a heated roll or plate or in a heated gas, or a method of irradiating a traveling yarn with laser, microwave or far-infrared ray is used as it is or improved. It can be adopted.
From the viewpoint of heat transfer efficiency and yarn temperature uniformity, stretching on a heating roll and a heating plate is preferable, and a stretching method using both a roll and a plate may be used. Further, it is preferable that the periphery of the roll or plate is sealed and a heated gas is filled in the sealed space because the temperature can be stretched more uniformly.
A preferred stretching temperature range is 110 ° C. to melting point, more preferably melting point −50 ° C. to melting point −5 ° C.
The total draw ratio from the undrawn yarn to the final drawn yarn is preferably 10 times or more, more preferably 12 times or more, and particularly preferably 15 times or more.

以上のような従来公知の方法で10倍以上の高倍率で熱延伸されたポリケトン繊維の最大熱収縮応力は、通常はたかだか0.7〜0.8cN/dtexの範囲であり、これだけでは本発明の高い熱収縮特性を有するポリケトン繊維を得ることは出来ない。
本発明者らは、(i) 多段熱延伸工程において最後に特定の温度、倍率にて延伸すること、および/または(ii) 熱延伸が終了した直後に、繊維に高い張力をかけたまま急冷却することによって本発明の高い熱収縮特性を有するポリケトン繊維が得られるようになることを見出した。
The maximum heat shrinkage stress of the polyketone fiber that has been heat-drawn at a high magnification of 10 times or more by the conventionally known method as described above is usually in the range of 0.7 to 0.8 cN / dtex. It is not possible to obtain polyketone fibers having high heat shrinkage characteristics.
The inventors of the present invention (i) draws at a specific temperature and magnification at the end in the multi-stage heat drawing step, and / or (ii) immediately after the heat drawing is finished, with a high tension applied to the fiber. It has been found that polyketone fibers having high heat shrinkage characteristics of the present invention can be obtained by cooling.

(i)の多段熱延伸工程において最後の特定の温度及び倍率にて延伸する方法とは、最終熱延伸温度をTLとし、最終の1段前の延伸温度をTBとしたときに

110℃≦TL≦TB−3℃の温度にて1.01〜1.5倍の倍率で延伸するこ
とである。
多段熱延伸においてTLがTB −3℃を超えた温度にして延伸した場合、極めて高い熱収縮応力や乾熱収縮率を有する繊維を得ることは困難となる。
一方、TLが110℃より低温になると、巻取った糸が激しく収縮してパッケージが巻取機から取外せなくなる問題やパッケージの形態が著しく損なわれる問題が発生する。
このため、最終熱延伸温度TLとしては110℃〜TB−3℃、好ましくは1
50℃〜TB−5℃、さらに好ましくは200℃〜TB−10℃であることが望
ましい。
また、この際の最終延伸時の延伸倍率は1.01〜1.5倍であることが重要である。
延伸倍率が1.01倍未満の場合、非晶部に与える歪み量が不十分で高い熱収縮応力、熱収縮率を有するポリケトン繊維を得ることが出来ない。一方、延伸倍率が1.5倍を超える場合、非晶分子鎖に強い負荷がかかり毛羽や単糸切れ等の工程上のトラブルが多発するばかりか、延伸糸の強度低下を引き起こしてしまう。
このため、最終延伸倍率としては1.01〜1.5倍、好ましくは1.02〜1.3倍、より好ましくは1.03倍〜1.2倍であることが望ましい。
The method of stretching at the last specific temperature and magnification in the multi-stage thermal stretching step of (i) is that when the final thermal stretching temperature is T L and the final one-stage previous stretching temperature is T B ,
At 110 ℃ ≦ T L ≦ T B -3 ℃ temperature is to stretched 1.01 to 1.5 times magnification.
In the multi-stage heat drawing, when the drawing is performed at a temperature where T L exceeds T B −3 ° C., it becomes difficult to obtain fibers having extremely high heat shrinkage stress and dry heat shrinkage rate.
On the other hand, when TL is lower than 110 ° C., the wound yarn contracts violently and the package cannot be removed from the winder, and the package form is significantly impaired.
Therefore, the final heat stretching temperature T L is 110 ° C. to T B −3 ° C., preferably 1
50 ℃ ~T B -5 ℃, further preferably at 200 ℃ ~T B -10 ℃.
Moreover, it is important that the draw ratio at the time of final drawing at this time is 1.01 to 1.5 times.
When the draw ratio is less than 1.01, a polyketone fiber having a high heat shrinkage stress and a high heat shrinkage rate cannot be obtained due to insufficient strain applied to the amorphous part. On the other hand, when the draw ratio exceeds 1.5 times, a heavy load is applied to the amorphous molecular chain, and troubles such as fluff and single yarn breakage frequently occur, and the strength of the drawn yarn is reduced.
For this reason, the final draw ratio is 1.01 to 1.5 times, preferably 1.02 to 1.3 times, and more preferably 1.03 to 1.2 times.

(ii)の熱延伸が終了した直後に、繊維に高い張力をかけたまま急冷却する方法とは、熱延伸糸を行った直後に該熱延伸糸に0.5〜4cN/dtexの高い張力をかけたまま、冷却速度30℃/秒以上の速度で50℃以下の温度まで急冷却することである。
本発明者らは、熱延伸を行った直後の熱延伸で繊維に強い張力を印可したまま急冷却した場合、非晶部に歪みを残した高い熱収縮特性を有するポリケトン繊維が得られることを見出した。
この際に印可する張力は0.5cN/dtex以上であることが必要である。 張力0.5cN/dtex未満の場合、非晶部に残る歪みが小さく得られる繊維の熱収縮力が不十分である。一方、張力が4cN/dtexを超える場合には、繊維を安定して巻取ることが困難となる場合や毛羽・単糸切れ等の問題も起こり易くなる。
このため、印可する張力としては0.5〜4cN/dtex、好ましくは0.8〜3cN/dtex、より好ましくは1〜2cN/dtexの範囲である。
またこの際、延伸糸を30℃/秒以上の速度で50℃以下まで急冷却することが必要である。
冷却速度が30℃/秒未満の場合、繊維の熱収縮応力は不十分となる。また、冷却終了点の温度が50℃より高温の場合にも同様に得られる繊維の熱収縮応力は不十分となる。
このため、冷却速度としては30℃/秒以上、より好ましくは50℃/秒以上、さらに好ましくは100℃/秒以上であることが望ましい。
Immediately after the completion of the hot drawing in (ii), the method of rapid cooling while applying a high tension to the fiber is a high tension of 0.5 to 4 cN / dtex immediately after the hot drawing yarn is applied. In this case, the material is rapidly cooled to a temperature of 50 ° C. or less at a cooling rate of 30 ° C./second or more.
The present inventors have found that polyketone fibers having high heat shrinkage characteristics that leave distortion in the amorphous part can be obtained when the fibers are rapidly cooled while applying strong tension to the fibers immediately after the heat drawing. I found it.
The tension applied at this time needs to be 0.5 cN / dtex or more. When the tension is less than 0.5 cN / dtex, the heat shrinkage force of the fiber from which the strain remaining in the amorphous part can be obtained is insufficient. On the other hand, when the tension exceeds 4 cN / dtex, it becomes difficult to stably wind the fiber, and problems such as fluff and single yarn breakage tend to occur.
Therefore, the applied tension is in the range of 0.5 to 4 cN / dtex, preferably 0.8 to 3 cN / dtex, more preferably 1 to 2 cN / dtex.
At this time, it is necessary to rapidly cool the drawn yarn to 50 ° C. or less at a rate of 30 ° C./second or more.
When the cooling rate is less than 30 ° C./second, the heat shrinkage stress of the fiber is insufficient. Further, when the temperature at the end of cooling is higher than 50 ° C., the heat shrinkage stress of the fiber obtained in the same manner is insufficient.
For this reason, the cooling rate is preferably 30 ° C./second or more, more preferably 50 ° C./second or more, and further preferably 100 ° C./second or more.

また、急冷却終了点の温度は50℃以下、より好ましくは40℃以下、さらに好ましくは30℃以下であることが望ましい。
また、装置の取扱性、製造コストの点から急冷終了点の温度は、−40℃以上、より好ましくは0℃以上、さらに好ましくは10℃以上であることが望ましい。
延伸糸を急冷却する方法としては特に制限はなく、冷却されたロールやプレート等の固体、水や油等の液体、空気や窒素等の気体に接触せしめる等どのような方法を採用してもよく、これらの冷却媒体を併用してもよい。
伝熱効率、製造コストの点からロールを用いた冷却方法が好適に用いられる。ロールを用いて冷却する場合、回転速度が速い場合や延伸糸の総繊度が大きい場合には、延伸糸が持ち込む熱量によってロール表面の温度が高くなるため、ロール温度を一定に保つようにすることが肝要である。
具体的には、例えば、ロール内部に冷却水を流す、ロール表面に冷却風を吹き付ける、ロール表面に冷却水、冷却油剤を付与する等の方法が好適に用いられる。
また、ロール上での延伸糸の滑りは印可された張力の緩和につながり、得られるポリケトン繊維の熱収縮応力の低下が起こるため、ロール表面の材質を鏡面等の摩擦係数の高い材料にしてロール上の延伸糸の滑りを抑制することが重要である。
The temperature at the end of the rapid cooling is desirably 50 ° C. or lower, more preferably 40 ° C. or lower, and further preferably 30 ° C. or lower.
Further, the temperature at the end of quenching is preferably −40 ° C. or higher, more preferably 0 ° C. or higher, and even more preferably 10 ° C. or higher from the viewpoints of device handling and manufacturing costs.
There is no particular limitation on the method of rapidly cooling the drawn yarn, and any method such as contacting with a cooled solid such as a roll or plate, a liquid such as water or oil, or a gas such as air or nitrogen may be adopted. In addition, these cooling media may be used in combination.
A cooling method using a roll is preferably used in terms of heat transfer efficiency and manufacturing cost. When cooling using a roll, when the rotational speed is high or the total fineness of the drawn yarn is large, the temperature of the roll surface is increased by the amount of heat brought in by the drawn yarn, so the roll temperature should be kept constant. Is essential.
Specifically, for example, a method of flowing cooling water inside the roll, blowing cooling air to the roll surface, or applying cooling water or cooling oil to the roll surface is preferably used.
In addition, slipping of the drawn yarn on the roll leads to relaxation of the applied tension, and the heat shrinkage stress of the resulting polyketone fiber is lowered. Therefore, the roll surface is made of a material having a high friction coefficient such as a mirror surface. It is important to suppress slippage of the above drawn yarn.

以上のような方法で高い熱収縮応力、熱収縮率を有するポリケトン繊維が得られるようになるが、このような繊維には弾性歪みの残留が多く、パッケージに多量の繊維を巻き付けた場合、巻き付けられた繊維の収縮力によって巻きしまりが起こりパッケージが巻き取り機から取り外せない問題、パッケージの形態が崩れる問題、スムースにパッケージから繊維を解除出来ない問題が起こり易く、多量の糸を巻付けたパッケージが得られなくなる欠点がある。
本発明者らは高熱収縮応力を有するポリケトン繊維を50〜100℃の温度下で緩和熱処理をすることで、高い熱収縮応力及び熱収縮率を殆ど損なうことなく上述の巻きしまりやパッケージ形態の問題を大幅に改善出来ることを見出した。 熱処理温度が100℃を超える場合、上述の結晶相転移によって繊維構造が安定化され熱収縮応力が低下してしまう。また、処理温度が50℃未満の場合、繊維が受けた弾性歪みの緩和が殆ど起こらず巻きしまりやパッケージ形態は改善されない。
Polyketone fibers having high heat shrinkage stress and heat shrinkage rate can be obtained by the above method. However, such fibers have a lot of residual elastic strain. A package in which a large amount of yarn is wound easily due to the problem that the package cannot be removed from the winder due to the shrinkage of the applied fiber, the package shape is broken, and the fiber cannot be released smoothly from the package. There is a disadvantage that cannot be obtained.
The present inventors perform relaxation heat treatment on polyketone fibers having a high heat shrinkage stress at a temperature of 50 to 100 ° C., so that the problems of the above-described winding and package form are hardly impaired without substantially impairing the high heat shrinkage stress and the heat shrinkage rate. It was found that can be greatly improved. When the heat treatment temperature exceeds 100 ° C., the fiber structure is stabilized by the crystal phase transition described above, and the heat shrinkage stress is reduced. Further, when the treatment temperature is less than 50 ° C., the elastic strain received by the fiber is hardly relaxed and the winding and the package form are not improved.

本発明において緩和熱処理とは、熱処理前の繊維長をL0 が熱処理後の繊維長L1 として緩和倍率=L0 /L1 が1未満であることを意味する。
緩和倍率としては0.980〜0.999倍、好ましくは0.990〜0.998倍、より好ましくは0.995〜0.997倍が望ましい。
このような50〜100℃の温度で緩和熱処理を行うことで、歪みを熱緩和されたポリケトン繊維を、速度規制ロールを介して或いは直接巻取機にて巻取ってパッケージとする。
巻取りの際の張力は、高すぎるとポリケトン繊維の弾性歪みによる巻きしまりが発生する。また、巻取り張力が低すぎるとパッケージの巻取形態の崩れが発生し易くなるため、好ましくは0.001〜0.8cN/dtex、より好ましくは0.01〜0.3cN/dtexの範囲で巻き取ることが望ましい。
また、パッケージの形態については特に制限はなく、チーズ状、コーン状、ケーク状、パーン状等どのような形態であってもよい。
総繊度が300dtex以上のような太繊度のフィラメントを巻取る場合には、チーズ状、パーン状のパッケージ形態が好適に用いられる。
In the present invention, relaxation heat treatment means that the fiber length before heat treatment is L 0 being the fiber length L 1 after heat treatment, and the relaxation ratio = L 0 / L 1 is less than 1.
The relaxation magnification is 0.980 to 0.999 times, preferably 0.990 to 0.998 times, more preferably 0.995 to 0.997 times.
By performing the relaxation heat treatment at such a temperature of 50 to 100 ° C., the polyketone fiber whose strain has been thermally relaxed is wound into a package through a speed regulating roll or directly with a winder.
If the tension at the time of winding is too high, winding due to elastic strain of the polyketone fiber occurs. Further, if the winding tension is too low, the winding form of the package is liable to be broken. Therefore, preferably in the range of 0.001 to 0.8 cN / dtex, more preferably 0.01 to 0.3 cN / dtex. It is desirable to wind up.
Moreover, there is no restriction | limiting in particular about the form of a package, What kind of forms, such as cheese shape, corn shape, cake shape, and a pan shape, may be sufficient.
In the case of winding a filament having a large fineness such as a total fineness of 300 dtex or more, a cheese-like or pan-like package form is preferably used.

また、ポリケトン繊維は短繊維として用いてもよく、上述の延伸・熱処理方法にて得られた本発明のポリケトンフィラメントを糸長方向にカットすることで得られる。
短繊維の長さについては特に制限はなく、使用環境、使用目的に応じて任意の長さにカットすればよいが、通常は短繊維の平均長で0.1〜100mmの長さのものが好適に用いられる。
平均長が0.1mm未満の場合、紡績が困難となる等、加工性、取扱性に問題が生じる。
一方、平均長が100mmを超える場合には、紡績の工程通過性に問題が生じ易い。
なお、本発明において短繊維の平均長L(mm)は、1本の短繊維の長手方向(繊維軸方向)の長さを繊維長Liとして、任意に選ばれた100本の短繊維の平均の長さとして以下の式(3)で算出される。
このような短繊維は、コンクリートなどの補強材料として或いは紡績糸として編物やロープなどの用途に有用である。

Figure 0003966867
The polyketone fiber may be used as a short fiber, and is obtained by cutting the polyketone filament of the present invention obtained by the above-described stretching / heat treatment method in the yarn length direction.
The length of the short fiber is not particularly limited, and may be cut to an arbitrary length according to the use environment and the purpose of use. Usually, the short fiber has an average length of 0.1 to 100 mm. Preferably used.
When the average length is less than 0.1 mm, there are problems in workability and handleability such as difficulty in spinning.
On the other hand, when the average length exceeds 100 mm, a problem is likely to occur in the spinning processability.
The average length of the short fibers in the present invention L (mm) is the length of one longitudinal direction of the short fibers (fiber axis direction) as the fiber length L i, of the 100 chosen in any short fibers The average length is calculated by the following formula (3).
Such a short fiber is useful for applications such as knitting and rope as a reinforcing material such as concrete or as a spun yarn.
Figure 0003966867

以上のようにして得れらたポリケトン繊維は、そのまま或いは必要に応じて撚糸、仮撚、嵩高加工、捲縮加工、捲回加工などの加工を施した加工糸とし、更に、織物や編物或いは不織布に加工した繊維製品として用いることが出来る。
本発明のポリケトン繊維を撚糸した撚糸物(撚糸コード)は、本発明のポリケトン繊維と同様に高い熱収縮応力、熱収縮率を示す。
撚糸の種類、方法、合撚本数については特に制限はなく、本発明のポリケトン繊維の撚糸の種類としては例えば、片撚糸、もろ撚糸、ピッコもろ撚糸、強撚糸などが挙げられる。
合撚する本数も特に制限はなく1本撚り、2本撚り、3本撚り、4本撚り、5本撚りのいずれでもよく6本以上の合撚であってもよい。
また、撚糸数についても単糸繊度や総繊度によって変化するため特に制限はなく、加工条件、使用環境に応じて任意に撚糸数を選定すればよい。例えば、単糸繊度が0.01〜10dtex、総繊度が30〜100000dtexであるポリケトンマルチフィラメントからなる撚糸コードの場合には、下式(4) で表される撚り係数Kが1000〜30000の範囲で撚糸されたものが好適に用いられる。
Kが1000未満の場合、コードの耐疲労性の低下が起こり易い。一方、Kが30000を超える場合、コードの強度が低下する。
このため、撚係数には1000〜30000、好ましくは5000〜25000であることが望ましい。
K=Y×D0.5 ・・・(4)
〔ここで、Yは1m当たりの撚数(T/m・dtex0.5 )、Dはポリケトンマルチフィラメントの総繊度(dtex)である。〕
撚り係数Kが上述の範囲内にあるポリケトン撚糸コードの最大熱収縮応力は0.6cN/dtex以上であることが望ましい。
撚糸コードの最大熱収縮応力が0.6cN/dtex未満の場合、原糸の熱収縮力が十分に活かされないばかりか、処理コードに加工する際や成型品に加工する際に熱収縮力が大幅に低下してしまい、成型品となった際の締め付け力が不足するようになる。
撚糸コードの最大熱収縮応力は、撚り構造や撚数により異なるが、原糸の最大熱収縮応力の75%以上、より好ましくは80%以上の熱収縮応力を有することが望ましく、具体的な値としては0.6〜0.7cN/dtexより好ましくは上限値が0.8cN/dtex最大熱収縮応力を有することが望ましい。
The polyketone fibers obtained as described above are processed yarns subjected to processing such as twisting, false twisting, bulky processing, crimping processing, and winding processing as they are or as necessary, and further, woven fabrics, knitted fabrics or It can be used as a textile product processed into a nonwoven fabric.
A twisted yarn (twisted yarn cord) obtained by twisting the polyketone fiber of the present invention exhibits high heat shrinkage stress and heat shrinkage rate as with the polyketone fiber of the present invention.
There is no restriction | limiting in particular about the kind of twisted yarn, a method, and the number of combined twists, As a kind of twisted yarn of the polyketone fiber of this invention, a piece twisted yarn, a cocoon twisted yarn, a picco cocoon twisted yarn, a strong twisted yarn etc. are mentioned, for example.
There are no particular restrictions on the number of twisted yarns, and there may be one twist, two twists, three twists, four twists, five twists, or six or more twists.
Further, the number of twisted yarns is not particularly limited because it varies depending on the single yarn fineness and the total fineness, and the number of twisted yarns may be arbitrarily selected according to processing conditions and use environment. For example, in the case of a twisted cord made of polyketone multifilament having a single yarn fineness of 0.01 to 10 dtex and a total fineness of 30 to 100,000 dtex, the twist coefficient K represented by the following formula (4) is in the range of 1000 to 30000. What was twisted with is preferably used.
When K is less than 1000, the fatigue resistance of the cord tends to decrease. On the other hand, when K exceeds 30000, the strength of the cord decreases.
For this reason, it is desirable that the twist coefficient is 1000 to 30000, preferably 5000 to 25000.
K = Y × D 0.5 (4)
[Where Y is the number of twists per meter (T / m · dtex 0.5 ), and D is the total fineness (dtex) of the polyketone multifilament. ]
The maximum heat shrinkage stress of a polyketone twisted cord having a twist coefficient K within the above range is desirably 0.6 cN / dtex or more.
When the maximum heat shrinkage stress of the twisted yarn cord is less than 0.6 cN / dtex, the heat shrinkage force of the raw yarn is not fully utilized, and the heat shrinkage force is greatly increased when processing into a processed cord or processing into a molded product. The tightening force at the time of becoming a molded product becomes insufficient.
Although the maximum heat shrinkage stress of the twisted yarn cord varies depending on the twist structure and the number of twists, it is desirable to have a heat shrinkage stress of 75% or more, more preferably 80% or more of the maximum heat shrinkage stress of the original yarn. It is desirable to have a maximum heat shrinkage stress of 0.6 to 0.7 cN / dtex , more preferably an upper limit value of 0.8 cN / dtex.

以上のような特性を具備するポリケトン繊維、ポリケトン繊維コードは、そのまま或いは繊維製品に加工され、衣料用、産業用、生活資材等の広い用途に適用可能である。
なお、本発明に係る繊維製品とは、本発明に係るポリケトン繊維のみから構成される糸、中空糸、多孔糸、綿、紐、編物、織物、不織布及びこれらを使用した衣類、医療用器具、生活資材、タイヤコード、ベルト、コンクリート補強材料等はもちろんのこと、該ポリケトン繊維を少なくとも一部に使用した繊維が含まれる。
該繊維製品においては、ナイロン6、ナイロン6・6等のポリアミド繊維;ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート等のポリエステル繊維;ポリエチレン、ポリプロピレン等のポリオレフィン繊維;ポリビニルアルコール繊維、アラミド繊維、羊毛、ポリアクリロニトリル繊維、木綿、ビスコースレーヨン等のセルロース繊維などの従来公知の繊維と複合して用いてもよい。
また、同一種の繊維であっても熱的・機械的特性の異なる繊維或いは繊度やフィラメント数の異なる繊維、または長繊維や短繊維、紡績糸等を複合して用いてもよい。
本発明のポリケトン繊維は、タイヤコードやホース、ベルト等のゴム補強材料、コンクリート補強材料、フィルターやハウスラップ等の不織布、更にはエアバッグやシート等の織物、魚網等の編物、釣り糸、縫い糸、ロープなどの産業用資材や生活用資材などに幅広く使用することが可能である。
The polyketone fibers and polyketone fiber cords having the above-described characteristics can be applied to a wide range of uses such as clothing, industrial use, and daily life materials as they are or processed into fiber products.
The textile product according to the present invention is a yarn composed only of the polyketone fiber according to the present invention, a hollow fiber, a porous thread, cotton, a string, a knitted fabric, a woven fabric, a non-woven fabric, and a garment, a medical instrument using these, This includes not only living materials, tire cords, belts, concrete reinforcing materials, but also fibers using the polyketone fibers at least in part.
In the textile products, polyamide fibers such as nylon 6 and nylon 6/6; polyester fibers such as polyethylene terephthalate, polypropylene terephthalate and polybutylene terephthalate; polyolefin fibers such as polyethylene and polypropylene; polyvinyl alcohol fibers, aramid fibers, wool, poly You may use in combination with conventionally well-known fibers, such as cellulose fibers, such as an acrylonitrile fiber, cotton, and a viscose rayon.
Moreover, even if it is the same kind of fiber, fibers having different thermal and mechanical characteristics, fibers having different fineness and number of filaments, or long fibers, short fibers, spun yarn, and the like may be used in combination.
The polyketone fiber of the present invention is a rubber reinforcing material such as a tire cord, a hose, or a belt, a concrete reinforcing material, a nonwoven fabric such as a filter or a house wrap, a woven fabric such as an airbag or a sheet, a knitted fabric such as a fish net, a fishing line, a sewing thread, It can be used widely for industrial materials such as ropes and daily life materials.

本発明のポリケトン処理コードは、ポリケトン撚糸コードを引き続き濃度10〜30重量%のレゾルシン−ホルマリン−ラテックス(RFL)液を付着させ、少なくとも100℃の熱をかけて固着させる工程(いわゆるDip処理)を通すことでられる。
本発明のポリケトン処理コードはゴムなどの材料中に埋め込まれた際に強い収縮を発現する能力を有する。
具体的には、最大熱収縮応力が0.2〜0.4cN/dtex150℃における乾熱収縮率が0.5〜6あることが必要である。
処理コードの最大熱収縮応力が0.2〜0.4cN/dtexあれば従来素材(ナイロン6・6など)と同等の収縮力であり、キャッププライ、エッジプライ等のタガ材としての機能を果たすのに十分となる。
処理コードの最大熱収縮応力は高ければ高いほど使用繊維量を減らしタイヤの軽量化が可能となるため、好ましくは0.3cN/dtex以上最大熱収縮応力を有することが望まれる。
また、特にキャッププライ、エッジプラのタイヤコードとして用いる場合はコード1本あたりの熱収縮力が高いことが要求され、用いる原糸の繊度および撚糸数を適正にして、コードあたりの最大熱収縮力を500〜1079cN特に好ましくは600cN以上とすることが望ましい。
The polyketone-treated cord of the present invention comprises a step (so-called Dip treatment) in which a polyketone twisted cord is subsequently attached with a resorcin-formalin-latex (RFL) solution having a concentration of 10 to 30% by weight and heated at least at 100 ° C. It is obtained by passing.
The polyketone-treated cord of the present invention has the ability to develop strong shrinkage when embedded in a material such as rubber.
Specifically, the dry heat shrinkage maximum thermal shrinkage stress at 0.2 ~0.4 cN / dtex, 150 ℃ is required to be from 0.5 to 6%.
If the maximum heat shrinkage stress of the treated cord is 0.2 to 0.4 cN / dtex , it has the same shrinkage force as that of conventional materials (nylon 6, 6 etc.) and functions as a tag material such as cap ply and edge ply. Enough to fulfill.
For maximum thermal shrinkage stress of handling code that enables weight reduction of the tire to reduce the use amount of fibers higher, preferably desired to have a maximum thermal shrinkage stress above 0.3 cN / dtex.
In particular, when used as a tire cord for cap ply and edge plastic, it is required that the heat shrinkage force per cord is high, and the maximum heat shrinkage force per cord is set by making the fineness and the number of twisted yarns appropriate. 500 to 1079 cN , particularly preferably 600 cN or more.

また、本発明の処理コードには高熱収縮力と併せて高い熱収縮率を有することが求められる。
高熱収縮力でありながら熱収縮率が低いと、成型時の僅かな寸法変化によって処理コードの収縮率が損なわれる問題や同一寸法に安定して成形することが困難となる問題などが生じる。
一方、熱収縮率が大きすぎるとタイヤに成形する際の寸法変化が大きく、設計通りの安定した成形が困難となる。このため、150℃における乾熱収縮率として0.5%〜5%、好ましくは1〜4%、より好ましくは2〜3%の熱収縮率を有することが望ましい。
このような高い熱収縮特性を有するポリケトン処理コードを得るためには、撚糸コードにRFL液を付着せしめて乾燥、熱処理を行う際に、該コードに印可する張力を特定の範囲に制御することが極めて重要である。
即ち、撚糸コードの熱処理温度をT(℃)、熱処理時に印可する張力をσD(cN/dtex)とした時に、σDを下式範囲内とすることである。
1.01×σT≦σD≦10×σT (cN/dtex)
T=100〜270℃
(ここで、σTはポリケトン撚糸コードの温度Tにおける熱収縮応力である。)
In addition, the processing cord of the present invention is required to have a high heat shrinkage rate together with a high heat shrinkage force.
If the heat shrinkage rate is low even though it has a high heat shrinkage force, there arises a problem that the shrinkage rate of the treated cord is impaired due to a slight dimensional change at the time of molding, and that it is difficult to stably mold to the same size.
On the other hand, if the heat shrinkage rate is too large, the dimensional change during molding into a tire is large, and stable molding as designed becomes difficult. For this reason, it is desirable that the dry heat shrinkage at 150 ° C. has a heat shrinkage of 0.5% to 5%, preferably 1 to 4%, more preferably 2 to 3%.
In order to obtain a polyketone-treated cord having such a high heat shrinkage characteristic, the tension applied to the cord can be controlled within a specific range when the RFL liquid is adhered to the twisted cord and dried and heat-treated. Very important.
That is, when the heat treatment temperature of the twisted cord is T (° C.) and the tension applied during the heat treatment is σ D (cN / dtex), σ D is within the range of the following formula.
1.01 × σ T ≦ σ D ≦ 10 × σ T (cN / dtex)
T = 100-270 ° C.
(Here, σ T is the heat shrinkage stress at the temperature T of the polyketone twisted cord.)

本発明のポリケトン撚糸コードの熱処理温度T(℃)に対する熱収縮応力σTの関係の一例を図1に示す。
処理コードを熱処理する際には熱運動による非晶分子鎖の緩和が起こるが、処理時に張力を印可することでこの緩和を抑制することが出来る。
σDがσTの1.01倍未満である場合、熱処理時に非晶分子鎖の緩和が支配
的に起こり、処理コードの最大熱収縮応力の低下度合いが大きくなって処理コードの最大熱収縮応力が不十分となる。一方、σDがσTの10倍を超えると撚り
構造が不安定になり処理コードの撚り縮みが大きくなったり、場合によっては処理時にコードの破断が起こる問題が生じる。
このため、処理コードに印可する張力(σD)は、好ましくはσTの1.01
〜10倍、より好ましくは1.03〜5倍、さらに好ましくは1.05〜2倍であることが望ましい。
An example of the relationship between the heat shrinkage stress σT and the heat treatment temperature T (° C.) of the polyketone twisted cord of the present invention is shown in FIG.
When the treatment code is heat-treated, amorphous molecular chains are relaxed due to thermal motion, but this relaxation can be suppressed by applying tension during the treatment.
When σ D is less than 1.01 times σ T , the relaxation of the amorphous molecular chain occurs predominantly during the heat treatment, and the degree of decrease in the maximum heat shrinkage stress of the treatment code increases, and the maximum heat shrinkage stress of the treatment cord Is insufficient. On the other hand, when σ D exceeds 10 times σ T, the twisted structure becomes unstable, and the twisted shrinkage of the processed cord increases, and in some cases, the cord breaks during processing.
For this reason, the tension (σ D ) applied to the treatment code is preferably 1.01 of σ T.
10 times, more preferably 1.03 to 5 times, and still more preferably 1.05 to 2 times.

RFL樹脂の付着量は、繊維重量に対して2〜7重量%が好ましい。
RFL液の組成は特に限定されず、従来公知の組成をそのまま或いは手を加えて使用することが出来る。
RFL液の好ましい組成としては、レゾルシンを0.1〜10重量%、ホルマリンを0.1〜10重量%、ラテックスを1〜28重量%であり、より好ましい組成としてはレゾルシン0.5〜3重量%、ホルマリン0.5〜3重量%、ラテックス10〜25重量%が望ましい。
また、RFL液の乾燥温度としては好ましくは100〜250℃、より好ましくは140〜200℃であり、少なくとも10秒、好ましくは20〜120秒間乾燥熱処理することが望ましい。
The adhesion amount of the RFL resin is preferably 2 to 7% by weight with respect to the fiber weight.
The composition of the RFL solution is not particularly limited, and a conventionally known composition can be used as it is or after modification.
The preferred composition of the RFL solution is 0.1 to 10% by weight of resorcin, 0.1 to 10% by weight of formalin and 1 to 28% by weight of latex, and more preferably 0.5 to 3% by weight of resorcin. %, Formalin 0.5 to 3% by weight and latex 10 to 25% by weight are desirable.
The drying temperature of the RFL solution is preferably 100 to 250 ° C., more preferably 140 to 200 ° C., and it is desirable to perform a drying heat treatment for at least 10 seconds, preferably 20 to 120 seconds.

また、乾燥後のRFL付着コードは、引き続き熱処理を行うことが望ましい。 乾燥後の熱処理温度として好ましくはポリケトン撚糸コードの最大熱収縮温度±50℃、より好ましくは最大熱収縮温度±10℃、最も好ましくは最大熱収縮温度±5℃であり、熱処理時間は好ましくは10〜300秒、より好ましくは30〜120秒が望ましい。
本発明の高い熱収縮力を有するポリケトン処理コードはキャッププライやエッジプライなどのタイヤ補強材、ベルト補強材として極めて有用である。
Further, it is desirable that the RFL adhesion cord after drying is subsequently subjected to heat treatment. The heat treatment temperature after drying is preferably the maximum heat shrink temperature ± 50 ° C. of the polyketone twisted cord, more preferably the maximum heat shrink temperature ± 10 ° C., most preferably the maximum heat shrink temperature ± 5 ° C., and the heat treatment time is preferably 10 ~ 300 seconds, more preferably 30-120 seconds are desirable.
The polyketone-treated cord having a high heat shrinkage force according to the present invention is extremely useful as a tire reinforcing material such as a cap ply or an edge ply and a belt reinforcing material.

本発明を下記の実施例などにより更に詳しく説明するが、それらは本発明の範囲を限定するものではない。
実施例の説明中に用いられる各測定値の測定方法は次の通りである。
(1)極限粘度
極限粘度[η](dl/g)は次の定義式に基づいて求められる値である。
[η]=lim(T−t)/(t・C)
C→0
(式中のt及びTは、純度98%以上のヘキサフルオロイソプロパノール及び該ヘキサフルオロイソプロパノールに溶解したポリケトンの希釈溶液の25℃での粘度管の流過時間である。また、Cは上記100ml中のグラム単位による溶質重量値である。)
(2) 繊度、引張強度、引張伸度、引張弾性率
JIS−L−1013に準じて測定した。
引張弾性率は伸度0.1%における荷重と伸度0.2%における荷重から算出した初期弾性率の値を採用した。
(3) 撚りコードおよび処理コードの繊度
コード10m当たりの重量W1(g)を計量し、W1×1000を撚りコード
の繊度(dtex)とした。
(4) RFL樹脂付着率
コード10m当たりの重量W2(g)を計量する。次いで、処理コードを1mm長に細断して1.00gを精秤し、200mlのヘキサフルオロイソプロパノールにて攪拌下で60℃、2時間溶解する。
溶解後の濾過残渣重量W3(g)を精秤し、下式(6) からRFL樹脂付着率(%)及び処理コードの繊度を用いた。
RFL樹脂付着率(%)=W3×10/W2×100 ・・・(6)
The present invention will be described in more detail with reference to the following examples, but they are not intended to limit the scope of the present invention.
The measurement method of each measurement value used in the description of the examples is as follows.
(1) Intrinsic viscosity Intrinsic viscosity [η] (dl / g) is a value determined based on the following defining formula.
[Η] = lim (T−t) / (t · C)
C → 0
(T and T in the formula are the flow time of a viscosity tube at 25 ° C. of a diluted solution of hexafluoroisopropanol having a purity of 98% or more and a polyketone dissolved in the hexafluoroisopropanol. The solute weight value in grams.)
(2) Fineness, tensile strength, tensile elongation, tensile modulus Measured according to JIS-L-1013.
As the tensile elastic modulus, an initial elastic modulus value calculated from a load at an elongation of 0.1% and a load at an elongation of 0.2% was adopted.
(3) Fineness of twisted cord and treated cord Weight W 1 (g) per 10 m of cord was weighed, and W 1 × 1000 was defined as the fineness (dtex) of the twisted cord.
(4) RFL resin adhesion rate Weigh W 2 (g) per 10 m cord. Next, the treatment cord is chopped into 1 mm lengths, 1.00 g is precisely weighed, and dissolved in 200 ml of hexafluoroisopropanol at 60 ° C. for 2 hours with stirring.
The filtered residue weight W 3 (g) after dissolution was precisely weighed, and the RFL resin adhesion rate (%) and the fineness of the treatment cord were used from the following equation (6).
RFL resin adhesion rate (%) = W 3 × 10 / W 2 × 100 (6)

(5) 熱収縮応力、最大熱収縮応力、最大熱収縮温度
東洋精機製作所(株)社製CORD−TESTER(Goodrich Type)を用いて、下記の条件で一定変位下における繊維およびコードの熱収縮力特性を測定した。
温度プログラム(Temperature Program) : EXPモード
ΘM : 250℃
1 : 3分
初荷重 : 1/80(g/dtex)
初期試料長 : 250mm
計測された温度−収縮力カーブから温度Tにおける収縮力FT(cN)を読みとり、FTを試料の繊度(dtex)で除して温度Tにおける熱収縮応力σT
cN/dtex)を求めた。
また、最大の収縮力Fmax(cN)および最大の収縮力を示す温度Tmax(℃
)を読みとりTmaxを最大熱収縮温度とした。
さらに、Fmaxを試料の繊度(dtex)で除した値を最大熱収縮応力σmax(cN/dtex)を求めた。
また、処理コードについてはFmaxをコードの最大熱収縮力(cN/コード)とした。
(6) 乾熱収縮率
オーブン中で150℃、30分の乾熱処理を行い、熱処理前後の繊維長を、1/30(cN/dtex)の荷重をかけて計測して下式(7) により求めた。
乾熱収縮率(%)=(Lb−La)/Lb×100 ・・・(7)
(ただし、Lbは熱処理前の繊維長、Laは熱処理後の繊維長である。)
(5) Thermal contraction stress, maximum thermal contraction stress, maximum thermal contraction temperature Using a CORD-TESTER (Goodrich Type) manufactured by Toyo Seiki Seisakusho Co., Ltd., the thermal contraction force of fibers and cords under constant displacement under the following conditions Characteristics were measured.
Temperature program (Temperature Program): EXP mode
Θ M : 250 ° C
T 1 : 3 minutes
Initial load: 1/80 (g / dtex)
Initial sample length: 250 mm
The shrinkage force F T (cN) at temperature T is read from the measured temperature-shrink force curve, and F T is divided by the fineness (dtex) of the sample to obtain heat shrinkage stress σ T (
cN / dtex).
In addition, the maximum contraction force F max (cN) and the temperature T max (° C.) indicating the maximum contraction force
) And T max was taken as the maximum heat shrinkage temperature.
Further, the maximum heat shrinkage stress σ max (cN / dtex) was determined by dividing F max by the fineness (dtex) of the sample.
In addition, for the processing cord, F max was the maximum heat shrinkage force (cN / cord) of the cord.
(6) Dry heat shrinkage rate Dry heat treatment is performed at 150 ° C. for 30 minutes in an oven, and the fiber length before and after the heat treatment is measured with a load of 1/30 (cN / dtex). Asked.
Dry heat shrinkage (%) = (L b −L a ) / L b × 100 (7)
(However, L b is the fiber length before heat treatment, L a is the fiber length after the heat treatment.)

(7) 結晶化度
パーキンエルマー社製示差熱測定装置「ピリスル(Pyrisl) 」を用いて下記条件で測定を行った。
測定温度 : 30℃ → 300℃
昇温速度 : 20℃/分
雰囲気 : 窒素、流量=200mL/分
得られた吸発熱曲線において200℃〜300℃の範囲で得られる最大の吸熱ピークの面積から計算される熱量ΔH(J/g)より下記式(8) により算出した。
結晶化度(%)=ΔH/225×100 ・・・(8)
(8) 結晶配向度
株式会社リガク製イメージングプレートX線回折装置「リント(RINT) 」2000を用いて下記の条件で繊維の回折像を取り込んだ。
X線源 : CuKα線
出力 : 40KV 152mA
カメラ長 : 94.5mm
測定時間 : 3分
得られた画像の2θ=21°付近に観察される(110)面を円周方向にスキャンして得られる強度分布の半値幅Hから下記式(9) により算出した。
結晶配向度(%)=(180−H)/180×100 ・・・(9)
(7) Crystallinity Measurement was carried out under the following conditions using a differential thermal measuring device “Pyrisl” manufactured by PerkinElmer.
Measurement temperature: 30 ° C → 300 ° C
Heating rate: 20 ° C./min Atmosphere: Nitrogen, flow rate = 200 mL / min Heat quantity ΔH (J / g) calculated from the area of the maximum endothermic peak obtained in the range of 200 ° C. to 300 ° C. in the obtained endothermic curve ) From the following formula (8).
Crystallinity (%) = ΔH / 225 × 100 (8)
(8) Degree of crystal orientation Using a Rigaku Imaging Plate X-ray diffractometer "RINT" 2000, a fiber diffraction image was captured under the following conditions.
X-ray source: CuKα ray
Output: 40KV 152mA
Camera length: 94.5mm
Measurement time: 3 minutes It was calculated by the following formula (9) from the half width H of the intensity distribution obtained by scanning the (110) plane observed in the vicinity of 2θ = 21 ° of the obtained image in the circumferential direction.
Crystal orientation (%) = (180−H) / 180 × 100 (9)

製造例1)
常法により調製したエチレンと一酸化炭素が完全交互共重合した極限粘度5.3のポリケトンポリマーを、塩化亜鉛65重量%/塩化ナトリウム10重量%含有する水溶液に添加し、80℃で2時間攪拌溶解しポリマー濃度8重量%のドープを得た。このドープを80℃に加温し、20μm焼結フィルターでろ過した後に、80℃に保温した紡口径0.10mmφ、50ホールの紡口より10mmのエアーギャップを通した後に5重量%の塩化亜鉛を含有する18℃の水中に吐出量2.5cc/分の速度で押出し、速度3.2m/分で引きながら凝固糸条とした。
引き続き凝固糸条を濃度2重量%、温度25℃の硫酸水溶液で洗浄し、さらに30℃の水で洗浄した後に、速度3.2m/分で凝固糸を巻取った。この凝固糸にIRGANOX1098(Ciba Specialty Chemicals社製)、IRGANOX1076(Ciba Specialty Chemicals社製)をそれぞれ0.05重量%ずつ(対ポリケトンポリマー)含浸せしめた後に、該凝固糸を240℃にて乾燥後、仕上剤を付与して未延伸糸を得た。
仕上剤は以下の組成のものを用いた。
オレイン酸ラウリルエステル/ビスオキシエチルビスフェノールA/ポリエーテル(プロピレンオキシド/エチレンオキシド=35/65:分子量20000)/ポリエチレンオキシド10モル付加オレイルエーテル/ポリエチレンオキシド10モル付加ひまし油エーテル/ステアリルスルホン酸ナトリウム/ジオクチルリン酸ナトリウム=30/30/10/5/23/1/1(重量%比)。
得られた未延伸糸を1段目を240℃で、引き続き258℃で2段目、268℃で3段目、272℃で4段目の延伸を行った後に、引き続き5段目に200℃で1.08倍(延伸張力1.8cN/dtex)の5段延伸を行い、巻取機にて巻取った。未延伸糸から5段延伸糸までの全延伸倍率は17.1倍であった。
この繊維は強度15.6cN/dtex、伸度4.2%、弾性率347cN/dtexと高物性を有しており、乾熱収縮率が4.3%、最大熱収縮応力0.92cN/dtexと高い熱収縮特性を具備していた。
本発明の実施例のポリケトン繊維および撚糸コードの繊維特性および熱処理条件を下記の製造例2〜製造例15の結果と併せて表1にまとめて示す。
( Production Example 1)
A polyketone polymer with an intrinsic viscosity of 5.3, which is a completely alternating copolymer of ethylene and carbon monoxide, prepared by a conventional method is added to an aqueous solution containing 65% by weight of zinc chloride / 10% by weight of sodium chloride, and stirred at 80 ° C. for 2 hours. A dope having a polymer concentration of 8% by weight was obtained by dissolution. This dope is heated to 80 ° C., filtered through a 20 μm sintered filter, passed through a 10 mm air gap from a 50-hole nozzle with a diameter of 0.10 mmφ kept at 80 ° C., and 5% by weight of zinc chloride. Was extruded at a rate of discharge of 2.5 cc / min into water at 18 ° C. containing a coagulated yarn while being drawn at a speed of 3.2 m / min.
Subsequently, the coagulated yarn was washed with an aqueous sulfuric acid solution having a concentration of 2% by weight and a temperature of 25 ° C., and further washed with water at 30 ° C., and then the coagulated yarn was wound at a speed of 3.2 m / min. The coagulated yarn was impregnated with IRGANOX 1098 (manufactured by Ciba Specialty Chemicals) and IRGANOX 1076 (manufactured by Ciba Specialty Chemicals) in an amount of 0.05% by weight (based on polyketone polymer), and the coagulated yarn was dried at 240 ° C. A finishing agent was applied to obtain an undrawn yarn.
A finishing agent having the following composition was used.
Oleic acid lauryl ester / bisoxyethyl bisphenol A / polyether (propylene oxide / ethylene oxide = 35/65: molecular weight 20000) / polyethylene oxide 10 mol addition oleyl ether / polyethylene oxide 10 mol addition castor oil ether / sodium stearylsulfonate / dioctyllin Sodium acid = 30/30/10/5/23/1/1 (weight% ratio).
The obtained undrawn yarn was drawn at 240 ° C. in the first stage, followed by the second stage at 258 ° C., the third stage at 268 ° C., the fourth stage at 272 ° C., and then the second stage at 200 ° C. The film was stretched five times at 1.08 times (stretching tension 1.8 cN / dtex) and wound with a winder. The total draw ratio from the undrawn yarn to the five-stage drawn yarn was 17.1 times.
This fiber has high physical properties of strength 15.6 cN / dtex, elongation 4.2%, elastic modulus 347 cN / dtex, dry heat shrinkage 4.3%, maximum heat shrinkage stress 0.92 cN / dtex. And had high heat shrinkage characteristics.
The fiber properties and the heat treatment conditions of polyketone fibers and twisted cord embodiment of the present invention together with the results of preparation 2 Preparation 15 below are summarized in Table 1.

製造例2)
製造例1において5段目を150℃で1.05倍の延伸として巻き取った。
製造例3)
製造例1において5段目を250℃で1.10倍の延伸として巻き取った。
製造例4)
製造例1において5段目を265℃で1.14倍の延伸として巻き取った。
製造例5)
製造例1において4段目を263℃で1.17倍の延伸として巻き取った。
製造例6)
製造例1において2.3cN/dtexの張力で272℃で4段延伸を行い、引き続き2.3cN/dtexの張力を掛けたまま、風速2m/秒の冷却風により表面を15℃に冷却した鏡面ロール上を7周通して急冷却した後に巻き取り機にて巻き取った。
( Production Example 2)
In Production Example 1, the fifth stage was wound up at 150 ° C. as 1.05 times stretching.
( Production Example 3)
In Production Example 1, the fifth stage was wound up at 250 ° C. as 1.10 times stretching.
( Production Example 4)
In Production Example 1, the fifth stage was wound up at 265 ° C. as 1.14 times stretching.
( Production Example 5)
In Production Example 1, the fourth stage was wound at 263 ° C. as 1.17 times stretching.
( Production Example 6)
Mirror surface in which the surface was cooled to 15 ° C. by cooling air with a wind speed of 2 m / sec while applying a tension of 2.3 cN / dtex and continuously stretching at 272 ° C. with a tension of 2.3 cN / dtex in Production Example 1. The roll was passed through the roll 7 times for rapid cooling, and then wound on a winder.

製造例7)
製造例1において得られたドープを用い、紡口径0.10mm、L/D=1、250ホールの紡口より12.5cc/分の速度で押出し、凝固させた。凝固糸を引き続き濃度2重量%の硫酸水溶液で洗浄し、さらに30℃の水で洗浄した後、巻取速度2.5m/分で巻取り、さらに得られた糸状物を240℃にて乾燥して未延伸糸を得た。
この未延伸糸を240℃で1段目の延伸を行った後に、260℃で2段目、270℃で3段目、265℃で1.20倍の延伸を行い、トータルで16.3倍の延伸を行った。
製造例8)
常法により調製したエチレンと一酸化炭素が完全交互共重合した極限粘度2.8のポリケトンポリマーを、塩化亜鉛65重量%/塩化ナトリウム10重量%含有する水溶液に添加し、80℃で2時間攪拌溶解しポリマー濃度18重量%のドープを得た。このドープを製造例1と同様の温度、処方で紡糸、乾燥を行った。 この未延伸糸を1段目240℃、2段目255℃、3段目268℃の延伸を行い、さらに4段目を263℃で1.22倍、全延伸倍率17.3倍の4段延伸を行った。
( Production Example 7)
Using the dope obtained in Production Example 1, it was extruded from a nozzle with a nozzle diameter of 0.10 mm and L / D = 1,250 holes at a rate of 12.5 cc / min and solidified. The coagulated yarn was subsequently washed with an aqueous sulfuric acid solution having a concentration of 2% by weight, further washed with water at 30 ° C., wound up at a winding speed of 2.5 m / min, and the obtained filament was dried at 240 ° C. Thus, an undrawn yarn was obtained.
This undrawn yarn was drawn at 240 ° C for the first stage, then at 260 ° C, at the second stage, at 270 ° C, at the third stage, and at 265 ° C, 1.20 times, for a total of 16.3 times. Was stretched.
( Production Example 8)
A polyketone polymer having an intrinsic viscosity of 2.8 obtained by completely copolymerizing ethylene and carbon monoxide prepared by a conventional method is added to an aqueous solution containing 65% by weight of zinc chloride / 10% by weight of sodium chloride and stirred at 80 ° C. for 2 hours. A dope having a polymer concentration of 18% by weight was obtained by dissolution. The dope was spun and dried at the same temperature and formulation as in Production Example 1. The undrawn yarn was drawn at the first stage of 240 ° C., the second stage of 255 ° C., the third stage of 268 ° C., and the fourth stage at 263 ° C. at 1.22 times and the total draw ratio of 17.3 times, four stages. Stretching was performed.

製造例9)
常法により調製したエチレンと一酸化炭素が完全交互共重合した極限粘度9.8のポリケトンポリマーを、塩化亜鉛65重量%/塩化ナトリウム10重量%含有する水溶液に添加し、80℃で2時間攪拌溶解しポリマー濃度5.5重量%のドープを得た。このドープを製造例1と同様の温度、処方で紡糸、乾燥を行った。
この未延伸糸を1段目240℃、2段目255℃、3段目268℃の延伸を行い、さらに4段目を263℃で1.11倍、全延伸倍率14.2倍の4段延伸を行った。
製造例10)
製造例1において溶剤に塩化亜鉛40重量%/塩化カルシウム30重量%含有する水溶液を用いる他は同様の紡糸条件で紡糸、乾燥を行った。
この未延伸糸を1段目240℃、2段目255℃、3段目270℃の延伸を行い、さらに4段目を265℃で1.20倍、全延伸倍率16.3倍の4段延伸を行った。
( Production Example 9)
A polyketone polymer having an intrinsic viscosity of 9.8, which is a completely alternating copolymer of ethylene and carbon monoxide, prepared by a conventional method is added to an aqueous solution containing 65% by weight of zinc chloride / 10% by weight of sodium chloride and stirred at 80 ° C. for 2 hours. A dope having a polymer concentration of 5.5% by weight was obtained by dissolution. The dope was spun and dried at the same temperature and formulation as in Production Example 1.
This undrawn yarn was drawn at 240 ° C. for the first stage, 255 ° C. for the second stage, and 268 ° C. for the third stage, and then the fourth stage was 4.11 times at 263 ° C. and the total draw ratio was 14.2 times. Stretching was performed.
( Production Example 10)
Spinning and drying were carried out under the same spinning conditions except that an aqueous solution containing 40% by weight of zinc chloride / 30% by weight of calcium chloride was used as the solvent in Production Example 1.
The undrawn yarn was drawn at the first stage of 240 ° C., the second stage of 255 ° C., the third stage of 270 ° C., and the fourth stage at 265 ° C. at 1.20 times and a total drawing ratio of 16.3 times, four stages. Stretching was performed.

製造例11)
製造例1の処方で得られた乾燥糸を19本合糸し、製造例1で用いた仕上げ剤を付与した後に、1段目を240℃で、引き続き258℃で2段目、270℃で3段目の延伸を行い、引き続き4段目に265℃で1.14倍(延伸張力1.5cN/dtex)、全延伸倍率16.1倍の4段延伸を行った後に巻き取り機にて巻き取った。
製造例12)
製造例11の4段延伸糸を、1.5cN/dtexの延伸張力を掛けたまま、表面を15℃に冷却した鏡面ロール上を7周通した後に、引き続き75℃に加熱した梨地ロール上で0.995倍の緩和熱処理を行ってから巻取機にてチーズ状パッケージ形態で巻取り、巻取重量1.5kgのチーズ状パッケージを得た。
このパッケージでは巻きしまりは小さく、容易に巻取機より取り外せ、パッケージからの糸の解除も容易に出来た。
( Production Example 11)
After 19 dry yarns obtained in the formulation of Production Example 1 were combined and the finishing agent used in Production Example 1 was applied, the first stage was 240 ° C, followed by 258 ° C, the second stage, and 270 ° C. The third stage was stretched, followed by the fourth stage at 1.265 times (stretch tension 1.5 cN / dtex) at 265 ° C. and a total stretch ratio of 16.1 times. Winded up.
( Production Example 12)
The four-stage drawn yarn of Production Example 11 was passed for 7 laps on a mirror roll whose surface was cooled to 15 ° C. while applying a drawing tension of 1.5 cN / dtex, and subsequently on a satin roll heated to 75 ° C. After performing a relaxation heat treatment of 0.995 times, it was wound up in the form of a cheese-like package by a winder to obtain a cheese-like package having a winding weight of 1.5 kg.
In this package, the winding was small, and it was easily removed from the winder, and the yarn was easily released from the package.

製造例13)
製造例12で得られたポリケトン延伸糸を双糸し、撚り数390回/mで下撚り(Z撚り)および上撚り(S撚り)を行い、撚り係数20000の撚糸コードを得た。この撚糸コードは高い熱収縮応力と熱収縮率を有していた。
製造例14)
撚り数を250回/mとする以外は製造例13と同様にして下撚りおよび上撚りを行い、撚り係数12800の撚糸コードを得た。
製造例15)
撚り数を100回/mとする以外は製造例13と同様にして下撚りおよび上撚りを行い、撚り係数の5100の撚糸コードを得た。
( Production Example 13)
The polyketone stretched yarn obtained in Production Example 12 was twisted and subjected to a lower twist (Z twist) and an upper twist (S twist) at a twist number of 390 times / m to obtain a twisted cord with a twist coefficient of 20000. This twisted cord had high heat shrinkage stress and heat shrinkage rate.
( Production Example 14)
Except for setting the number of twists to 250 times / m, the lower twist and the upper twist were performed in the same manner as in Production Example 13 to obtain a twisted cord having a twist coefficient of 12800.
( Production Example 15)
Except for setting the number of twists to 100 times / m, the lower twist and the upper twist were performed in the same manner as in Production Example 13 to obtain a twisted cord with a twist coefficient of 5100.

(実施例
製造例13で得られた撚糸コードを下記の液組成のレゾルシン−ホルマリン−ラテックス(RFL)接着剤に浸漬し、160℃で60秒熱処理後、引き続き215℃で60秒の乾燥、さらに215℃で60秒間の熱セットを行い、処理コードを得た。
(RFL液組成)
レゾルシン 22.0部
ホルマリン(30重量%) 30.0部
水酸化ナトリウム(10重量%) 14.0部
水 570.0部
ビニルピリジンラテックス(41重量%) 364.0部
得られた処理コードの性能およびDip処理条件を以下の実施例2〜4の結果と併せて表2にまとめて示す。
(Example 1 )
The twisted cord obtained in Production Example 13 is immersed in a resorcin-formalin-latex (RFL) adhesive having the following liquid composition, heat treated at 160 ° C. for 60 seconds, subsequently dried at 215 ° C. for 60 seconds, and further at 215 ° C. Heat treatment was performed for 60 seconds to obtain a treatment code.
(RFL solution composition)
Resorcin 22.0 parts
Formalin (30% by weight) 30.0 parts
Sodium hydroxide (10% by weight) 14.0 parts
570.0 parts of water
Vinylpyridine latex (41 wt%) 364.0 parts The performance of the obtained treatment cord and the Dip treatment conditions are shown in Table 2 together with the results of Examples 2 to 4 below.

(実施例2〜3
実施例と同様の処方で浸漬(Dip)処理条件を変えて処理コードを得た。 (実施例
造例15で得られた撚糸コードを用い、実施例と同様の処方で浸漬(Dip)処理を行い処理コードを得た。
製造16
製造例13で得られたポリケトンマルチフィラメントをステープラーにて平均糸長35mmの短繊維からなるスライバーとした。この短繊維を撚り係数60(メートル番手)にて単糸に精紡し紡績糸を得た。この紡績糸は高い熱収縮性を有していた。
(Examples 2-3 )
The treatment code was obtained by changing the immersion (Dip) treatment conditions according to the same formulation as in Example 1 . (Example 4 )
Using a twisted cord obtained by manufacturing Zorei 15, to obtain a treated cord subjected to immersion (Dip) treated in the same formulation as in Example 1.
( Production Example 16 )
The polyketone multifilament obtained in Production Example 13 was made into a sliver made of short fibers having an average yarn length of 35 mm with a stapler. This short fiber was spun into a single yarn with a twist coefficient of 60 (meter count) to obtain a spun yarn. This spun yarn had high heat shrinkability.

製造比較例1)
製造例1で得られた5段延伸前の4段延伸糸は強度15.4cN/dtex、弾性率331cN/dtexと繊維物性は優れていたが、最大熱収縮応力は0.79cN/dtexと収縮力が不十分であった。
比較例に用いたポリケトン繊維および撚糸コードの特性および熱処理条件を下記の製造比較例2〜製造比較例11の結果と併せて表3にまとめて示す。
製造比較例2)
製造例1で得られた未延伸糸は、強度・弾性率の繊維物性、最大熱収縮応力の全ての性能において全く不十分であった。
製造比較例3)
製造例1において、未延伸糸を240℃で6倍の1段延伸を行った延伸糸は、強度、弾性率等の力学物性および最大熱収縮応力ともに不十分であった。
( Production Comparative Example 1)
The four-stage drawn yarn obtained in Production Example 1 before the five-stage drawing had a strength of 15.4 cN / dtex and an elastic modulus of 331 cN / dtex and excellent fiber properties, but the maximum heat shrinkage stress was 0.79 cN / dtex. The power was insufficient.
The characteristics and heat treatment conditions of the polyketone fibers and twisted cords used in the comparative examples are shown in Table 3 together with the results of the following production comparative examples 2 to 11 and the results of production comparison examples 11.
( Production Comparative Example 2)
The undrawn yarn obtained in Production Example 1 was completely insufficient in all of the properties such as the fiber physical properties of strength and elastic modulus and the maximum heat shrinkage stress.
( Production Comparative Example 3)
In Production Example 1, the drawn yarn obtained by subjecting the undrawn yarn to one-stage drawing of 6 times at 240 ° C. was insufficient in mechanical properties such as strength and elastic modulus and maximum heat shrinkage stress.

製造比較例4)
製造例1において、未延伸糸を1段目240℃、2段目255℃、3段目265℃でトータル延伸倍率が12倍の3段延伸を行った。
この延伸糸は強度、弾性率等の繊維物性は良好であったが、最大熱収縮応力が不十分であった。
製造比較例5)
製造例1において5段目を270℃、1.05倍の5段延伸としたが、最大熱収縮応力は0.78cN/dtexと不十分であった。
製造比較例6)
製造例1において5段目を200℃、1.00倍の5段延伸としたが、最大熱収縮応力は不十分であった。
( Production Comparative Example 4)
In Production Example 1, the undrawn yarn was subjected to three-stage drawing at a first stage of 240 ° C., a second stage of 255 ° C., a third stage of 265 ° C. and a total draw ratio of 12 times.
This drawn yarn had good fiber properties such as strength and elastic modulus, but the maximum heat shrinkage stress was insufficient.
( Production Comparative Example 5)
In Production Example 1, the fifth stage was 270 ° C. and 5-stage stretching of 1.05 times, but the maximum heat shrinkage stress was insufficient, 0.78 cN / dtex.
( Production Comparative Example 6)
In Production Example 1, the fifth stage was stretched at 200 ° C. and 1.00 times, but the maximum heat shrinkage stress was insufficient.

製造比較例7)
製造例1において5段目を200℃、0.98倍の5段延伸としたが、最大熱収縮応力は全く不十分であった。
製造比較例8)
製造例1において5段目を80℃、1.03倍の5段延伸としたが、最大熱収縮応力は変化しなかった。
製造比較例9)
製造例1において、2.3cN/dtexの張力で272℃で4段延伸を行い、引き続き2.3cN/dtexの張力を掛けたまま、表面温度80℃の鏡面ロール上を7周通した後に巻取機にて巻取った。
( Production Comparative Example 7)
In Production Example 1, although the fifth stage was stretched at 200 ° C. and 0.98 times, the maximum heat shrinkage stress was quite insufficient.
( Production Comparative Example 8)
In Production Example 1, the fifth stage was stretched at 80 ° C. and 1.03 times, but the maximum heat shrinkage stress did not change.
( Production Comparative Example 9)
In Production Example 1, four-stage stretching was performed at 272 ° C. with a tension of 2.3 cN / dtex, and after passing through a mirror roll having a surface temperature of 80 ° C. for seven laps while applying a tension of 2.3 cN / dtex, the winding was performed. It was wound up with a take-up machine.

製造比較例10)
製造例1の処方で得られた乾燥糸を19本合糸し、製造例1で用いた仕上剤を付与した後に、1段目を240℃で、引き続き258℃で2段目、268℃で3段目、4段目で272℃の全延伸倍率16.6倍の延伸を行った後に、引き続き75℃に加熱した梨地ロール上で熱処理を行ってから巻取機にて巻き取った。
製造比較例11)
製造比較例10で得た延伸糸を用いて、製造例13と同様の処方で双糸し、撚り数390回/mで下撚りおよび上撚りを行い、撚り係数20000の撚糸コードを得た。この撚糸コードは熱収縮応力0.58cN/dtexであった。
( Production Comparative Example 10)
After 19 dry yarns obtained in the formulation of Production Example 1 were combined and the finish used in Production Example 1 was applied, the first stage was 240 ° C, followed by 258 ° C, the second stage, and 268 ° C. In the third stage and the fourth stage, the film was stretched at a total stretching ratio of 16.6 times at 272 ° C. and then heat-treated on a satin roll heated to 75 ° C. and then wound up by a winder.
( Production Comparative Example 11)
Using the drawn yarn obtained in Production Comparative Example 10, the yarn was twisted according to the same formulation as in Production Example 13, and was twisted and pre-twisted at a twist number of 390 times / m to obtain a twisted yarn cord having a twist coefficient of 20000. This twisted cord had a heat shrinkage stress of 0.58 cN / dtex.

(比較例
製造比較例11で得た撚糸コードを用いて実施例と同じ組成のRFL液を用いて熱処理を行いポリケトン処理コードを得たが、得られた処理コードの最大熱収縮応力は不十分であった。得られた処理コードの性能及び浸漬(Dip)処理条件を以下の比較例2〜7の結果と併せて表4にまとめて示した。
(比較例2、3
比較例と同様の処方で、浸漬(Dip)処理条件を変えて処理コードを得た。
(比較例4〜6
製造例13で得た撚糸コードを用いて、浸漬(Dip)処理条件を変える以外は実施例1と同様にして処理コードを得た。それら製造例1〜16、実施例1〜4及び製造比較例1〜11、比較例1〜6の結果を下記表1〜4にまとめた。
表1は、本発明の処理コードの原料であるポリケトン繊維(製造例1〜15)の延伸条件、繊維特性及び繊維構造を表すものである。
(Comparative Example 1 )
The twisted cord obtained in Production Comparative Example 11 was used for heat treatment using the RFL liquid having the same composition as in Example 1 to obtain a polyketone treated cord. However, the maximum heat shrinkage stress of the obtained treated cord was insufficient. It was. The performance of the obtained treatment cord and the immersion (Dip) treatment conditions are shown in Table 4 together with the results of Comparative Examples 2 to 7 below.
(Comparative Examples 2 and 3 )
With the same formulation as Comparative Example 1 , a treatment code was obtained by changing the dipping treatment conditions.
(Comparative Examples 4-6 )
Using the twisted cord obtained in Production Example 13, a treated cord was obtained in the same manner as in Example 1 except that the dipping treatment conditions were changed. The results of Production Examples 1 to 16 , Examples 1 to 4 and Production Comparative Examples 1 to 11 and Comparative Examples 1 to 6 are summarized in Tables 1 to 4 below.
Table 1 shows the drawing conditions, fiber characteristics, and fiber structure of polyketone fibers ( Production Examples 1 to 15), which are raw materials for the treatment cord of the present invention.

Figure 0003966867

(注)△T=(最終の1段前の延伸温度T0 )ー(最終延伸温度TL
Figure 0003966867

(Note) ΔT = (stretching temperature T 0 one step before the last) − (final stretching temperature T L )

表2は、本発明の浸漬(Dip)処理条件及びポリケトン処理コードの特性(実施例1〜4)を表すものである。

Figure 0003966867

(注)(i)(σD /σT 1 =RFL 浸漬時の張力/ 撚糸コードのRFL 浸漬温度における熱収縮力
(ii)(σD /σT 2 =乾燥張力/ 撚糸コードの乾燥温度における熱収縮力
(iii)(σD /σT 3=セット張力/撚糸コードのセット温度における熱収縮力 Table 2 shows the immersion treatment (Dip) treatment conditions and the properties of the polyketone treatment cords (Examples 1 to 4 ) of the present invention.
Figure 0003966867

(Note) (i) (σ D / σ T ) 1 = Tension during RFL immersion / RF shrinkage of twisted yarn cord at RFL immersion temperature (ii) (σ D / σ T ) 2 = Drying tension / Drying of twisted cord Heat shrink force at temperature (iii) (σ D / σ T ) 3 = Set tension / heat shrink force at the set temperature of the twisted cord

表3は、製造比較例1〜11のポリケトン繊維延伸条件及び繊維条件を表すものである。

Figure 0003966867
(注)△T=(最終の1段前の延伸温度T0 )ー(最終延伸温度TL ) Table 3 shows the polyketone fiber drawing conditions and fiber conditions of Production Comparative Examples 1 to 11 .
Figure 0003966867
(Note) ΔT = (stretching temperature T 0 one step before the last) − (final stretching temperature T L )

表4は、比較例1〜6の浸漬(Dip)処理条件及びポリケトン処理コードの特性を表すものである。

Figure 0003966867

(注)(i)(σD /σT 1 =RFL 浸漬時の張力/ 撚糸コードのRFL 浸漬温度における熱収縮力
(ii)(σD /σT 2 =乾燥張力/ 撚糸コードの乾燥温度における熱収縮力
(iii)(σD /σT 3=セット張力/撚糸コードのセット温度における熱収縮力 Table 4 shows the characteristics of the immersion (Dip) treatment conditions and polyketone treatment cords of Comparative Examples 1 to 6 .
Figure 0003966867

(Note) (i) (σ D / σ T ) 1 = Tension during RFL immersion / RF shrinkage of twisted yarn cord at RFL immersion temperature (ii) (σ D / σ T ) 2 = Drying tension / Drying of twisted cord Heat shrink force at temperature (iii) (σ D / σ T ) 3 = Set tension / heat shrink force at the set temperature of the twisted cord

図1は、本発明のポリケトン撚糸コードの熱収縮応力の温度に対する関係を表すグラフである。FIG. 1 is a graph showing the relationship of the heat shrinkage stress to the temperature of the polyketone twisted cord of the present invention.

Claims (4)

ポリケトン繊維がレゾルシン−ホルマリン−ラテックス樹脂により処理された処理コードであるポリケトン繊維処理コードであって、最大熱収縮応力が0.2〜0.4cN/dtex150℃における乾熱収縮率が0.5〜6%であることを特徴とするポリケトン処理コード。 A polyketone fiber treatment cord in which the polyketone fiber is treated with a resorcin-formalin-latex resin, wherein the maximum heat shrinkage stress is 0.2 to 0.4 cN / dtex , and the dry heat shrinkage rate at 150 ° C. is 0. A polyketone treatment cord characterized by being 5 to 6%. 最大熱収縮応力が0.3〜0.4cN/dtex150℃における熱収縮率が1〜4%であることを特徴とする請求項記載のポリケトン処理コード。 Maximum thermal shrinkage stress 0.3 ~0.4 cN / dtex, 150 polyketone processing code according to claim 1, wherein the thermal shrinkage rate is characterized by a 1-4% at ° C.. 最大熱収縮力が500〜1079cN/コードあることを特徴とする、請求項又は記載のポリケトン処理コード。 Wherein the maximum heat shrinkage force is 500 ~1079 cN / cord, according to claim 1 or 2 polyketone processing code according. ポリケトン撚糸コードをレゾルシン−ホルマリン−ラテックス液に浸漬後、熱処理するポリケトン処理コードの製造方法において、
撚糸コードの熱処理温度をT(℃)、熱処理時に印可する張力をσD(cN/dtex)とした時に、σDおよびTが下記式範囲内であることを特徴とする工程を含むポリケトン処理コードの製造方法。
1.01×σT ≦σD(cN/dtex)≦10×σT
100≦T(℃)≦270
(ここで、σTはポリケトン撚糸コードの温度Tにおける熱収縮応力である。)
In the method for producing a polyketone-treated cord in which a polyketone twisted cord is immersed in a resorcin-formalin-latex solution and then heat-treated,
Polyketone treatment including a process characterized in that σ D and T are within the range of the following formula when the heat treatment temperature of the twisted cord is T (° C.) and the tension applied during the heat treatment is σ D (cN / dtex) Code manufacturing method.
1.01 × σ T ≦ σ D (cN / dtex) ≦ 10 × σ T
100 ≦ T (° C.) ≦ 270
(Here, σ T is the heat shrinkage stress at the temperature T of the polyketone twisted cord.)
JP2004133251A 2004-04-28 2004-04-28 Polyketone treatment cord and method for producing the same Expired - Lifetime JP3966867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004133251A JP3966867B2 (en) 2004-04-28 2004-04-28 Polyketone treatment cord and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004133251A JP3966867B2 (en) 2004-04-28 2004-04-28 Polyketone treatment cord and method for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000110498A Division JP3595846B2 (en) 2000-04-12 2000-04-12 Polyketone fiber and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004218189A JP2004218189A (en) 2004-08-05
JP3966867B2 true JP3966867B2 (en) 2007-08-29

Family

ID=32906397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004133251A Expired - Lifetime JP3966867B2 (en) 2004-04-28 2004-04-28 Polyketone treatment cord and method for producing the same

Country Status (1)

Country Link
JP (1) JP3966867B2 (en)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006070161A (en) * 2004-09-02 2006-03-16 Asahi Kasei Fibers Corp Joint sheet
JP2007191155A (en) * 2005-01-21 2007-08-02 Bridgestone Corp Pneumatic tire
EP1839907B1 (en) 2005-01-21 2010-12-22 Bridgestone Corporation Pneumatic radial tire
JP2007191154A (en) * 2005-01-21 2007-08-02 Bridgestone Corp Pneumatic tire
JP4953640B2 (en) * 2005-01-21 2012-06-13 株式会社ブリヂストン Heavy duty pneumatic radial tire
WO2006077973A1 (en) * 2005-01-21 2006-07-27 Bridgestone Corporation Run-flat tire
JP4683934B2 (en) * 2005-01-21 2011-05-18 株式会社ブリヂストン Pneumatic safety tire
JP4953639B2 (en) * 2005-01-24 2012-06-13 株式会社ブリヂストン High performance pneumatic tire
JP4953641B2 (en) * 2005-01-24 2012-06-13 株式会社ブリヂストン Pneumatic radial tire for aircraft
EP1867495B1 (en) 2005-01-31 2010-11-10 Bridgestone Corporation Pneumatic radial tire for car
JP2006264667A (en) * 2005-02-28 2006-10-05 Yokohama Rubber Co Ltd:The Pneumatic radial tire
JP4734028B2 (en) * 2005-05-17 2011-07-27 株式会社ブリヂストン Pneumatic tire
JP2006322483A (en) * 2005-05-17 2006-11-30 Bando Chem Ind Ltd Power transmission belt
JP4734027B2 (en) * 2005-05-17 2011-07-27 株式会社ブリヂストン Pneumatic tire
JP4784250B2 (en) * 2005-07-15 2011-10-05 株式会社ブリヂストン Manufacturing method of rubber product, wrapped body for lapping vulcanization, and fastening cloth for lapping vulcanization
JP4665648B2 (en) * 2005-07-27 2011-04-06 株式会社ブリヂストン Manufacturing method of hose and laminate for plastic mold vulcanization
EP1955873B1 (en) * 2005-11-29 2012-01-18 Bridgestone Corporation Pneumatic tire for motorcycle
JP4766602B2 (en) * 2005-12-26 2011-09-07 株式会社ブリヂストン Pneumatic radial tire
JP4953632B2 (en) * 2006-01-04 2012-06-13 株式会社ブリヂストン Aircraft radial tire
JP4953633B2 (en) * 2006-01-04 2012-06-13 株式会社ブリヂストン Aircraft radial tire
JP4953636B2 (en) * 2006-01-17 2012-06-13 株式会社ブリヂストン Pneumatic radial tire for aircraft and manufacturing method thereof
JP2007203753A (en) * 2006-01-30 2007-08-16 Bridgestone Corp Pneumatic radial tire
JP4832133B2 (en) 2006-03-23 2011-12-07 株式会社ブリヂストン Pneumatic safety tire
JP2007283896A (en) 2006-04-17 2007-11-01 Bridgestone Corp Pneumatic tire
JP4817948B2 (en) * 2006-04-17 2011-11-16 株式会社ブリヂストン Pneumatic tire
JP4963874B2 (en) 2006-05-23 2012-06-27 株式会社ブリヂストン Pneumatic tire
JP5052040B2 (en) 2006-05-23 2012-10-17 株式会社ブリヂストン Pneumatic tire
JP4963878B2 (en) 2006-06-06 2012-06-27 株式会社ブリヂストン Pneumatic run-flat radial tire
JP5093874B2 (en) * 2006-07-05 2012-12-12 株式会社ブリヂストン Pneumatic tire
JP4849983B2 (en) 2006-07-19 2012-01-11 株式会社ブリヂストン Run flat tire
JP2008024094A (en) * 2006-07-19 2008-02-07 Bridgestone Corp Tire for high-speed and high-load
JP5216587B2 (en) 2006-07-19 2013-06-19 株式会社ブリヂストン Pneumatic tire
JP5156205B2 (en) * 2006-07-21 2013-03-06 株式会社ブリヂストン Pneumatic radial tire for aircraft
JP5035952B2 (en) * 2006-07-21 2012-09-26 株式会社ブリヂストン Run flat tire
JP5028896B2 (en) * 2006-07-26 2012-09-19 横浜ゴム株式会社 Pneumatic tire
JP5060784B2 (en) * 2006-12-28 2012-10-31 株式会社ブリヂストン Aircraft pneumatic tire
JP5066371B2 (en) * 2007-02-07 2012-11-07 株式会社ブリヂストン Aircraft pneumatic bias tire and manufacturing method thereof
JP5184521B2 (en) 2007-05-16 2013-04-17 株式会社ブリヂストン Aircraft radial tire
WO2009091066A1 (en) * 2008-01-18 2009-07-23 Bridgestone Corporation Pneumatic radial tire
JP5102064B2 (en) * 2008-02-26 2012-12-19 株式会社ブリヂストン Aircraft pneumatic tire
WO2013146795A1 (en) * 2012-03-26 2013-10-03 三菱レイヨン株式会社 Manufacturing device and manufacturing method for porous hollow fiber membrane
CN103397526B (en) * 2013-08-02 2015-08-19 泰山体育产业集团有限公司 One the airport artificial turf fiber of resistance to TRANSIENT HIGH TEMPERATURE and preparation technology thereof
JP6948635B2 (en) * 2015-11-24 2021-10-13 株式会社サンライン Thread and its manufacturing method
WO2019049590A1 (en) * 2017-09-11 2019-03-14 東レ株式会社 Fiber cord for reinforcing rubber

Also Published As

Publication number Publication date
JP2004218189A (en) 2004-08-05

Similar Documents

Publication Publication Date Title
JP3966867B2 (en) Polyketone treatment cord and method for producing the same
JP3595846B2 (en) Polyketone fiber and method for producing the same
JP4771612B2 (en) Polyketone cord and method for producing the same
JP4584503B2 (en) Weave fabric
JP2007283896A (en) Pneumatic tire
JP3708030B2 (en) Polyketone fiber, polyketone fiber twisted product and molded article thereof
JP3704015B2 (en) Polyketone fiber and method for producing the same
JP4950516B2 (en) Heavy duty pneumatic radial tire
KR20090132115A (en) Drawn poly(ethyleneterephthalate) fiber, tire-cord and tire comprising the same
JP4570273B2 (en) Polyketone fiber, cord and method for producing the same
JP4563624B2 (en) Polyketone twisted cord
JP4172888B2 (en) Monofilament and method for producing the same
JP2004091969A (en) Method for producing polyketone cord
JP4950517B2 (en) Pneumatic radial tire
JPS6141320A (en) Polyester fiber
CN101652255A (en) Run-flat tire
JP4974572B2 (en) Pneumatic tire
KR102400110B1 (en) Yarn for tire cord and tire cord
JP7356522B2 (en) Yarn for tire cord and tire cord
JP4817948B2 (en) Pneumatic tire
JP2007203753A (en) Pneumatic radial tire
JPH09132817A (en) Polyester fiber for rubber hose reinforcement and its production
JP5542084B2 (en) Polyester fiber for rubber reinforcement
KR930010802B1 (en) Method for preparation of polyester tyre cord or tyre cord yarn
KR102361350B1 (en) Manufacturing method of Nylon 66 fiber having high tenacity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070529

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3966867

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140608

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term