WO2013146795A1 - Manufacturing device and manufacturing method for porous hollow fiber membrane - Google Patents

Manufacturing device and manufacturing method for porous hollow fiber membrane Download PDF

Info

Publication number
WO2013146795A1
WO2013146795A1 PCT/JP2013/058822 JP2013058822W WO2013146795A1 WO 2013146795 A1 WO2013146795 A1 WO 2013146795A1 JP 2013058822 W JP2013058822 W JP 2013058822W WO 2013146795 A1 WO2013146795 A1 WO 2013146795A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
take
rollers
roller
cold drawing
Prior art date
Application number
PCT/JP2013/058822
Other languages
French (fr)
Japanese (ja)
Inventor
吉田 武史
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to KR1020147026094A priority Critical patent/KR101770017B1/en
Priority to CN201380026867.8A priority patent/CN104334262B/en
Priority to JP2013519674A priority patent/JP6108291B2/en
Publication of WO2013146795A1 publication Critical patent/WO2013146795A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/04Supporting filaments or the like during their treatment
    • D01D10/0436Supporting filaments or the like during their treatment while in continuous movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/261Polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/0025Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching
    • B01D67/0027Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching by stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0083Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/262Polypropylene
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/22Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/22Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch
    • D02J1/228Stretching in two or more steps, with or without intermediate steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • B01D2323/081Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • B01D2323/082Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/42Details of membrane preparation apparatus

Definitions

  • the present invention relates to a porous hollow fiber membrane manufacturing apparatus and method, and more particularly to a porous hollow fiber membrane manufacturing apparatus and method used in a cold drawing process.
  • polyolefin porous hollow fiber membranes produced by melt-spinning crystalline polyolefin and drawing are superior in chemical stability, strength characteristics, flexibility, etc. It is used in a wide range of fields such as the treatment of water, the production of ultrapure water, and the purification of air.
  • Such porous hollow fiber membranes are produced by a spinning step of melt spinning a polyolefin such as polyethylene or polypropylene to obtain hollow fibers, and a stretching step of stretching the hollow fibers obtained in the spinning step to make them porous.
  • the drawing step is a step of continuously heat treating, cold drawing, and heat drawing a hollow fiber.
  • the hollow fiber is heat treated at a temperature lower than the melting point of the polyolefin to control the crystal structure.
  • the hollow fiber is then cold drawn to break without relaxing the crystalline structure of the polyolefin, forming a number of microcrazes on the wall of the hollow fiber.
  • cold drawing is followed by heat drawing to expand the microcrazes formed on the wall surface, and the wall surface of the hollow fiber is made porous to obtain a porous hollow fiber membrane. Heat treatment is performed on the obtained porous hollow fiber membrane as needed to fix the porous structure.
  • the stretching step is usually performed by a stretching apparatus in which a heat roller for heat treatment, a cold stretching roller for cold stretching, a heat stretching roller for hot stretching and a heating furnace are continuously provided.
  • a cold stretching roller for performing cold stretching one configured of a plurality of feed rollers and the same number of take-up rollers is used.
  • the plurality of feed rollers all rotate in the same direction at the same circumferential speed
  • the plurality of take-up rollers all rotate in the same direction at the same circumferential speed.
  • the hollow fiber is tensioned between the feed roller and the take-up roller, and the hollow fiber is drawn. ing.
  • a large drawing tension is applied to the hollow fiber.
  • a bigger draw tension is needed.
  • Patent Document 1 can not sufficiently prevent the slip of the hollow fiber, and as a result, there is a problem that stretching unevenness of the hollow fiber occurs and a homogeneous hollow fiber membrane can not be formed.
  • the present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to make a homogeneous hollow fiber membrane by preventing a slip between the hollow fiber and the drawing roller during the drawing of the hollow fiber. It is an object of the present invention to provide a porous hollow fiber membrane manufacturing apparatus and method capable of
  • the present invention is a porous hollow fiber membrane manufacturing apparatus comprising a heat treatment section for heat treating a hollow fiber and a cold drawing section for cold drawing a heat treated hollow fiber, the cold drawing
  • the unit includes a cold drawing roller having a plurality of feed rollers and a plurality of take-up rollers disposed on the downstream side of the hollow fiber conveyance direction with respect to the plurality of feed rollers.
  • the coefficient of friction of the outer peripheral surface of the feed roller disposed at the most downstream side in the conveyance direction of the hollow fiber inside is higher than the coefficient of friction of the outer peripheral surface of the other feed rollers, and among the plurality of take-up rollers It is characterized in that it is higher than the coefficient of friction of the outer peripheral surface of the take-up roller other than the take-up roller disposed on the most upstream side in the conveying direction.
  • the take-up roller is set to have a higher circumferential speed than the feed roller on the upstream side, but according to the present invention configured as described above, the hollow of the plurality of feed rollers is hollow.
  • the coefficient of friction of the outer peripheral surface of the feed roller disposed at the most downstream in the conveyance direction of the yarn is higher than the coefficient of friction of the outer peripheral surface of the other feed rollers, and the conveyance direction of the hollow fiber among the plurality of take-up rollers
  • the coefficient of friction of the outer peripheral surface of the feed roller disposed at the most downstream side in the hollow fiber conveyance direction is the hollow fiber among the plurality of take-up rollers. It is higher than the coefficient of friction of the outer peripheral surface of the take-up roller disposed on the most upstream side in the transport direction.
  • the holding power of the hollow fiber by the feed roller and the take-up roller can be further improved at the location where the circumferential speed difference occurs.
  • the outer surface of the take-up roller disposed in the most upstream flow direction of the hollow fiber is plated with metal, and the outer surface of the feed roller disposed downstream of the hollow fiber in the conveyance direction is rubber It is preferable to be composed of
  • the present invention is a porous hollow fiber membrane manufacturing apparatus comprising a heat treatment section for heat treating a hollow fiber, and a cold drawing section for cold drawing a heat treated hollow fiber
  • the cold drawing section includes a cold drawing roller having a plurality of feed rollers and a plurality of take-up rollers disposed on the downstream side of the hollow fiber conveyance direction with respect to the plurality of feed rollers.
  • the coefficient of friction of the outer peripheral surface of the take-up roller disposed on the most upstream side in the conveyance direction of the hollow fiber is higher than the coefficient of friction of the outer peripheral surface of the other take-up rollers, and among the plurality of feed rollers.
  • the present invention is characterized in that the coefficient of friction of the outer peripheral surface of the feed roller other than the feed roller disposed at the most downstream side in the conveyance direction of the hollow fiber is higher.
  • the holding power of the hollow fiber by the feed roller and the take-up roller can be improved at the location where the circumferential velocity difference occurs, thereby cooling at the location where the circumferential velocity difference occurs. It is possible to prevent the occurrence of slip between the stretching roller and the hollow fiber.
  • the coefficient of friction of the outer peripheral surface of the feed roller disposed at the most downstream side in the hollow fiber conveyance direction is the hollow fiber among the plurality of take-up rollers. It is higher than the coefficient of friction of the outer peripheral surface of the take-up roller disposed on the most upstream side in the transport direction.
  • the holding power of the hollow fiber by the feed roller and the take-up roller can be further improved at the location where the circumferential speed difference occurs.
  • the outer surface of the take-up roller disposed in the most upstream flow direction of the hollow fiber is plated with metal, and the outer surface of the feed roller disposed downstream of the hollow fiber in the conveyance direction is rubber It is preferable to be composed of
  • the present invention is a method for producing a porous hollow fiber membrane, including a heat treatment step of heat treating the hollow fiber and a cold drawing step of cold drawing the heat treated hollow fiber.
  • the hollow drawing is carried out using a cold drawing roller having a plurality of feed rollers and a plurality of take-up rollers disposed on the downstream side of the hollow fiber conveyance direction with respect to the plurality of feed rollers.
  • the coefficient of friction of the outer peripheral surface of the feed roller which is arranged to cold-draw the yarn, and among the plurality of feed rollers, the feed roller disposed at the most downstream side in the hollow fiber conveyance direction is the friction on the outer peripheral surface of the other feed rollers.
  • the plurality of take-up rollers that are higher than the coefficient, the friction of the outer peripheral surface of the take-up roller other than the take-up roller disposed on the most upstream side in the hollow fiber conveyance direction It is characterized by higher than.
  • the present invention is a method for producing a porous hollow fiber membrane, including a heat treatment step of heat treating the hollow fiber and a cold drawing step of cold drawing the heat treated hollow fiber.
  • hollow yarn is formed using a cold drawing roller having a plurality of feed rollers and a plurality of take-up rollers disposed on the downstream side of the hollow fiber conveyance direction with respect to the plurality of feed rollers.
  • the coefficient of friction of the outer peripheral surface of the outer peripheral surface of the take-up roller disposed on the most upstream side of the hollow fiber conveyance direction among the plurality of feed rollers among the plurality of feed rollers is the other take-up roller.
  • the friction of the outer peripheral surface of the feed roller other than the feed roller disposed higher than the friction coefficient of the outer peripheral surface and located at the most downstream side of the hollow fiber conveyance direction among the plurality of feed rollers It is characterized by higher than a few.
  • the holding power of the hollow fiber by the feed roller or the take-up roller can be improved at the point where the circumferential speed difference occurs. This makes it possible to prevent slippage between the cold drawing roller and the hollow fiber at the point where the circumferential velocity difference occurs.
  • FIG. 1 It is a side view showing the manufacture device of the porous hollow fiber membrane by the embodiment of the present invention. It is a principal part enlarged view of FIG.
  • FIG. 1 is a side view showing an apparatus for manufacturing a porous hollow fiber membrane according to an embodiment of the present invention
  • FIG. 2 is an enlarged view of a main part of FIG.
  • the manufacturing apparatus includes a heat treatment unit 10, a cold drawing unit 20, and a heat drawing unit 30.
  • the heat treatment unit 10, the cold drawing unit 20, and the heat drawing unit 30 are arranged in this order from the upstream side to the downstream side in the transport direction of the hollow fiber 11.
  • the heat treatment section 10 is provided with seven heat rollers 12, and the hollow fiber 11 introduced to the heat treatment section 10 by the feed roller 13 disposed on the upstream side of the heat roller 12 is the outer circumferential surface of the heat roller 12. While being heated, it is sent to the cold stretching section 20 provided on the downstream side.
  • the diameter of the heat roller 12 is 50 to 600 mm, and the heat roller 12 is formed of, for example, a stainless steel roller plated with chromium or the like.
  • the cold stretching section 20 is composed of a cold stretching roller having eight feed rollers 21 (21a to 21c) and twelve take-up rollers 22 (22a).
  • the feed roller 21 constituting the cold drawing roller and the take-up roller 22 are all actively rotated in the same direction, that is, in the direction in which the hollow fiber is fed downstream.
  • the circumferential speed of the take-up roller 22 is set to be higher than the circumferential speed of the feed roller 21. Due to the difference in speed between the take-up roller 22 and the feed roller 21, the feed roller 21c located at the most downstream side among the eight feed rollers and the take-up roller 21a located at the uppermost stream among the twelve take-up rollers Tension is applied to the hollow fiber 11 in the section L between them (see FIG. 2).
  • the hollow fiber 11 is cold drawn in this section L.
  • the four feed rollers provided on the upstream side are the first feed rollers 21a, and the cooling water is allowed to flow through the inside, and the hollow fiber 11 is cooled. It is designed to extend downstream.
  • the diameter of the first feed roller 21a is 50 to 600 mm.
  • the four feed rollers provided on the downstream side are the second feed rollers 21b and 21c, which are maintained at 0 to 60 ° C., and the temperature of the hollow fiber 11 cooled by the first feed roller 21a is It is designed to feed downstream while maintaining or further cooling.
  • the diameter of the second feed rollers 21b and 21c is 20 to 200 mm.
  • the outer peripheral surface of the seven feed rollers except the feed roller 21c located at the most downstream side is made of a stainless steel material.
  • the outermost surface of the feed roller 21c at the most downstream side is a stainless steel material constituting seven feed rollers except the feed roller 21c at the most downstream side. A material with a higher coefficient of friction is used.
  • a material having a high coefficient of friction there are rubber rolls such as urethane rubber and silicone rubber, and it is particularly preferable to use a rubber roll having a Shore A hardness of 70 or more in view of durability.
  • first take-up rollers 22b and 22c having a diameter of 20 to 200 mm, and eight provided on the downstream side.
  • second take-up roller 22a having a diameter of 50 to 600 mm.
  • These take-up rollers 22 are configured to feed the hollow fiber 11 cold drawn in the cold drawing section L to the heat drawing section 30.
  • the outer peripheral surface of the eleven take-up rollers except for the take-up roller 22a at the uppermost stream is made of a stainless steel material.
  • the friction coefficient of the outer peripheral surface of the feed roller 21 at the most downstream side in the hollow fiber membrane conveyance direction is higher than the friction coefficient of the outer peripheral surfaces of the eleven take-up rollers excluding the take-up roller 22a at the uppermost flow. .
  • the take-up roller 22c located on the uppermost stream have an outer peripheral surface made of rubber, whereby the coefficient of friction is easily increased compared to metal materials such as stainless steel. Can.
  • the maximum coefficient of static friction of the rubber is appropriately determined, but is preferably 0.35 to 0.6 from the viewpoint of slip prevention.
  • rubber materials such as urethane rubber and silicon rubber can be exemplified.
  • the coefficient of friction of the outer peripheral surface of the feed roller 21c at the most downstream in the transport direction of the hollow fiber membrane is higher than the coefficient of friction of the outer peripheral surface of the other rollers (feed roller and take-up roller).
  • a roller made of the above-mentioned chrome-plated stainless steel material may be used as it is sufficient.
  • the hollow fiber 11 of polyolefin is introduced to the heat roller 12 by the feed roller 13. Do.
  • the hollow fiber 11 is heated while traveling on the seven heat rollers 12 to control the crystal structure of the polyolefin.
  • the temperature of the heat roller at this time that is, the heat treatment temperature, varies depending on the type of polyolefin, but is a temperature lower than the melting point of the polyolefin, and is usually 90 to 150.degree.
  • the heat treatment temperature is preferably 90 to 125 ° C.
  • the heat treatment temperature is preferably 120 to 150 ° C.
  • the time for which the hollow fiber 11 is heat-treated in the heat treatment step, that is, the residence time is usually 5 seconds or more.
  • the hollow fiber 11 whose crystal structure is controlled by the heat treatment unit 10 is sent to a cold drawing roller, and is first cooled while advancing on the first feed roller 21a. At this time, it is possible to effectively cool the heat-treated hollow fiber 11 by controlling the temperature of the cooling water flowing in the first feed roller 21a to about 0 to 60.degree. Next, the cooled hollow fiber 11 travels on the second feed rollers 21b and 21c, and cold-stretched in the cold drawing section L due to the difference in peripheral velocity between the second feed roller 21c and the first take-up roller 22c. Ru.
  • the outer peripheral surface of the second feed roller 21c and the first take-up roller 22c is formed of a rubber material having a relatively high frictional force, even if the second feed roller 21c and the first take-up roller 22c are exposed to the difference in peripheral velocity between them The sheet is conveyed downstream without slipping on the outer peripheral surface thereof. As a result, even when the hollow fiber 11 is subjected to a large tension in the cold drawing section L, the hollow fiber 11 does not slip on the outer peripheral surface of the roller, and the hollow fiber 11 can be uniformly drawn. Uneven stretching due to the formation of a stretched portion and yarn breakage can be made less likely to occur.
  • the tension applied to the hollow fiber 11 is not transmitted back to the heat treatment section 10, and the tension to the hollow fiber 11 in the heat treatment section 10 is applied. Does not cause thinning of the hollow fiber 11.
  • the hollow fiber 11 is on the outer peripheral surface of the roller. It is possible to obtain a homogeneous porous hollow fiber membrane without slipping.
  • the drawing point of the hollow fiber 11 can be fixed, and the drawing unevenness can be reduced.
  • the outer diameters of the second feed roller 21c and the first take-up roller 22c are preferably 20 mm to 150 mm. If the outer diameters of the second feed roller 21c and the first take-up roller 22c are less than 20 mm, the strength of these rollers may be insufficient.
  • the distance of the cold stretching section L can be set arbitrarily, but a shorter distance is preferable because the stretching point can be fixed, the occurrence of stretching unevenness can be suppressed, and uniform stretching can be performed.
  • the distance of the cold drawing section L is preferably 100 mm or less, more preferably 90 mm or less.
  • the distance of the cold stretching section L is 10 mm or more
  • it is 20 mm or more.
  • the cold draw ratio can be set arbitrarily.
  • the cold drawing ratio is no limitation on the cold drawing ratio, but if it is too high, deformation of the crystal part may occur, resulting in insufficient pore formation or a tendency to cause thread breakage in the cold drawing part. %, More preferably 50.degree. C. to 150%.
  • the cold drawing temperature of the hollow fiber is usually 0 ° C to 60 ° C, more preferably 20 ° C to 50 ° C. By cold drawing in this temperature range, it is possible to break without relaxing the crystal structure of the polyolefin, and as a result, a homogeneous porous hollow fiber membrane can be formed in the heat drawing step.
  • the heat drawing process performed subsequently to the cold drawing process is performed at a drawing ratio of about 100 ° C. to about 1000% while heating the hollow fiber 11 in a heating furnace generally heated to a temperature of 90 ° C. or higher.
  • the outer peripheral surfaces of both the most downstream feed roller and the most upstream take-up roller disposed so as to sandwich the cold drawing section L are formed of a rubber material. According to the invention, when at least one of the outer peripheral surfaces of the rollers sandwiching the cold drawing section L is made of a rubber material, it is possible to prevent the hollow fiber from slipping on the outer peripheral surface of the roller. This point can be understood from the following examples.
  • a chrome-plated mirror-finished roll was used as the other roller using the attached rubber roll.
  • the hollow fiber hardly slipped. And, in the drawing process, the hollow fiber did not break or pinholes were generated, and it was possible to manufacture a homogeneous hollow fiber membrane with few drawing spots.
  • a rubber roll was used as the feed roller at the most downstream, and a chromium-plated mirror-finished roll was used as the other roller. Also in this case, the hollow fiber hardly slipped. And, in the drawing process, the hollow fiber did not break or pinholes were generated, and it was possible to manufacture a homogeneous hollow fiber membrane with few drawing spots.
  • a chrome mirror-finished roll was used as all feed rollers and all take-up rollers.
  • the friction force between the hollow fiber and the outer peripheral surface of the roller is small, the occurrence rate of thread breakage and pin holes is high compared to the first embodiment and the second embodiment, and the stretching unevenness is large and uniform. It was not possible to produce hollow fiber membranes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

Provided are a porous hollow fiber membrane-manufacturing device and method that are capable of producing homogeneous hollow fiber membranes by preventing slippage between the hollow fiber and the drawing rollers during drawing of the hollow fiber. A device for manufacturing porous hollow fiber membranes, which is provided with a heat-processing unit (10) that heat-processes the hollow fiber and a cold-drawing unit (20) that cold-draws the heat-processed hollow fiber, wherein the cold-drawing unit (20) is provided with cold-drawing rollers comprising multiple feed rollers (21) and multiple take-up rollers (22), which are disposed on the downstream side of the multiple feed rollers (21) in the conveyance direction of the hollow fiber. The frictional coefficient of the outer circumferential surface of the feed roller (21c) disposed most downstream of the multiple feed rollers in the conveyance direction of the hollow fiber is higher than the frictional coefficient of the outer circumferential surfaces of the other feed rollers (21b) and is higher than the frictional coefficient of the outer circumferential surfaces of the take-up rollers (22b) other than the take-up roller (22c), which is disposed most upstream of the multiple take-up rollers in the conveyance direction of the hollow fiber.

Description

多孔質中空糸膜製造装置及び製造方法Porous hollow fiber membrane manufacturing apparatus and method
 本発明は、多孔質中空糸膜製造装置及び製造方法に関し、特に、冷延伸工程に用いる多孔質中空糸膜製造装置及び製造方法に関する。 The present invention relates to a porous hollow fiber membrane manufacturing apparatus and method, and more particularly to a porous hollow fiber membrane manufacturing apparatus and method used in a cold drawing process.
 従来から、結晶性ポリオレフィンを溶融紡糸した後、延伸して製造されたポリオレフィン製多孔質中空糸膜は、化学的安定性、強度特性、柔軟性等に優れていることから、上水・下排水の処理、超純水の製造、空気の浄化等の幅広い分野で利用されている。このような多孔質中空糸膜の製造は、ポリエチレン、ポリプロピレン等のポリオレフィンを溶融紡糸して中空糸を得る紡糸工程と、紡糸工程で得られた中空糸を延伸して多孔質化する延伸工程からなる。延伸工程は、中空糸を連続的に熱処理、冷延伸、熱延伸する工程である。最初に行う熱処理では、中空糸をポリオレフィンの融点よりも低い温度で加熱処理し、結晶構造を制御する。ついで、中空糸を冷延伸してポリオレフィンの結晶構造を緩和させることなく破壊し、中空糸の壁面に多数のミクロクレーズを形成する。そして冷延伸に続いて熱延伸を行い、壁面に形成されたミクロクレーズを拡大し、中空糸の壁面を多孔質化し、多孔質中空糸膜を得る。得られた多孔質中空糸膜には、必要に応じて熱処理を行い、多孔質構造を固定する。 Conventionally, polyolefin porous hollow fiber membranes produced by melt-spinning crystalline polyolefin and drawing are superior in chemical stability, strength characteristics, flexibility, etc. It is used in a wide range of fields such as the treatment of water, the production of ultrapure water, and the purification of air. Such porous hollow fiber membranes are produced by a spinning step of melt spinning a polyolefin such as polyethylene or polypropylene to obtain hollow fibers, and a stretching step of stretching the hollow fibers obtained in the spinning step to make them porous. Become. The drawing step is a step of continuously heat treating, cold drawing, and heat drawing a hollow fiber. In the first heat treatment, the hollow fiber is heat treated at a temperature lower than the melting point of the polyolefin to control the crystal structure. The hollow fiber is then cold drawn to break without relaxing the crystalline structure of the polyolefin, forming a number of microcrazes on the wall of the hollow fiber. Then, cold drawing is followed by heat drawing to expand the microcrazes formed on the wall surface, and the wall surface of the hollow fiber is made porous to obtain a porous hollow fiber membrane. Heat treatment is performed on the obtained porous hollow fiber membrane as needed to fix the porous structure.
 延伸工程は、通常、熱処理を行う熱ローラー、冷延伸を行う冷延伸ローラー、熱延伸を行う熱延伸ローラーと加熱炉が連続的に設けられた延伸装置で行われている。この延伸装置のうち冷延伸を行う冷延伸ローラーとしては、複数本のフィードローラーと、これと同数本のテークアップローラーから構成されるものが使用されている。この冷延伸ローラーのうち、複数本のフィードローラーはすべて同じ方向に同じ円周速度で回転し、複数本のテークアップローラーはすべて同じ方向に同じ円周速度で回転する。その際、テークアップローラーの円周速度をフィードローラーの円周速度よりも大きく設定することによって、フィードローラーとテークアップローラーの間で中空糸に張力がかかり、中空糸が延伸されるようになっている。このような延伸工程の、特に冷延伸時においては、中空糸に大きな延伸張力がかかる。そして、外径や膜厚が大きな中空糸を冷延伸するためには、より大きな延伸張力が必要となる。 The stretching step is usually performed by a stretching apparatus in which a heat roller for heat treatment, a cold stretching roller for cold stretching, a heat stretching roller for hot stretching and a heating furnace are continuously provided. Among the stretching devices, as a cold stretching roller for performing cold stretching, one configured of a plurality of feed rollers and the same number of take-up rollers is used. Among the cold drawing rollers, the plurality of feed rollers all rotate in the same direction at the same circumferential speed, and the plurality of take-up rollers all rotate in the same direction at the same circumferential speed. At this time, by setting the circumferential speed of the take-up roller to be larger than the circumferential speed of the feed roller, the hollow fiber is tensioned between the feed roller and the take-up roller, and the hollow fiber is drawn. ing. In such a drawing process, particularly during cold drawing, a large drawing tension is applied to the hollow fiber. And in order to cold-draw a hollow fiber with a large outer diameter and a film thickness, a bigger draw tension is needed.
 しかしながら、従来用いられていた装置では、外径や膜厚が大きな中空糸を大きな張力で冷延伸しようとすると、冷延伸ローラーの外周面上で中空糸がスリップするという問題があった。一般的に、テークアップローラーは、その上流側にあるフィードローラーよりも円周速度が速くなるように設定されているが、冷延伸ローラーと中空糸との間のスリップの主な原因は、この円周速度差にあると考えられている。そして冷延伸中に中空糸がスリップするのを防止するための装置及び方法としては、例えば特許文献1に記載されたものが知られている。 However, in the device conventionally used, when attempting to cold-draw a hollow fiber having a large outer diameter or film thickness with a large tension, there has been a problem that the hollow fiber slips on the outer peripheral surface of the cold drawing roller. Generally, the take-up roller is set to have a higher circumferential speed than the feed roller on the upstream side, but the main cause of the slip between the cold drawing roller and the hollow fiber is this It is believed that there is a circumferential velocity difference. As an apparatus and method for preventing the hollow fiber from slipping during cold drawing, for example, the one described in Patent Document 1 is known.
特開2001-200423号公報Japanese Patent Application Publication No. 2001-200423
 特許文献1では、冷延伸工程におけるフィードローラー又はテークアップローラーの外周面と、中空糸との接触角が720度以上となるように構成することにより、中空糸のスリップを防止することとしている。 In patent document 1, it is supposed that the slip of a hollow fiber is prevented by comprising so that the contact angle of the outer peripheral surface of a feed roller or a take-up roller in a cold-drawing process, and a hollow fiber may become 720 degree or more.
 しかしながら、特許文献1に記載された装置では、中空糸のスリップを十分に防止することができず、結果として中空糸の延伸斑が生じて均質な中空糸膜を作ることができないという問題があった。 However, the device described in Patent Document 1 can not sufficiently prevent the slip of the hollow fiber, and as a result, there is a problem that stretching unevenness of the hollow fiber occurs and a homogeneous hollow fiber membrane can not be formed. The
 そこで本発明は、上述した問題点を解決するためになされたものであり、中空糸の延伸時に、中空糸と延伸ローラーとの間のスリップを防止することにより、均質な中空糸膜を作ることができる多孔質中空糸膜製造装置及び方法を提供することを目的とする。 Therefore, the present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to make a homogeneous hollow fiber membrane by preventing a slip between the hollow fiber and the drawing roller during the drawing of the hollow fiber. It is an object of the present invention to provide a porous hollow fiber membrane manufacturing apparatus and method capable of
 上述した課題を解決するために、本発明は、中空糸を熱処理する熱処理部と、熱処理された中空糸を冷延伸する冷延伸部とを備える多孔質中空糸膜製造装置であって、冷延伸部は、複数本のフィードローラーと、この複数本のフィードローラーよりも中空糸の搬送方向下流側に配置された複数本のテークアップローラーとを有する冷延伸ローラーを備え、複数本のフィードローラーの内、中空糸の搬送方向最下流に配置されたフィードローラーの外周面の摩擦係数が、それ以外のフィードローラーの外周面の摩擦係数よりも高く、かつ複数本のテークアップローラーの内、中空糸の搬送方向最上流に配置されたテークアップローラー以外のテークアップローラーの外周面の摩擦係数よりも高いことを特徴としている。 In order to solve the problems described above, the present invention is a porous hollow fiber membrane manufacturing apparatus comprising a heat treatment section for heat treating a hollow fiber and a cold drawing section for cold drawing a heat treated hollow fiber, the cold drawing The unit includes a cold drawing roller having a plurality of feed rollers and a plurality of take-up rollers disposed on the downstream side of the hollow fiber conveyance direction with respect to the plurality of feed rollers. The coefficient of friction of the outer peripheral surface of the feed roller disposed at the most downstream side in the conveyance direction of the hollow fiber inside is higher than the coefficient of friction of the outer peripheral surface of the other feed rollers, and among the plurality of take-up rollers It is characterized in that it is higher than the coefficient of friction of the outer peripheral surface of the take-up roller other than the take-up roller disposed on the most upstream side in the conveying direction.
 一般的に、テークアップローラーは、その上流側にあるフィードローラーよりも円周速度が速く設定されているが、このように構成された本発明によれば、複数本のフィードローラーの内、中空糸の搬送方向最下流に配置されたフィードローラーの外周面の摩擦係数が、それ以外のフィードローラーの外周面の摩擦係数よりも高く、かつ複数本のテークアップローラーの内、中空糸の搬送方向最上流に配置されたテークアップローラー以外のテークアップローラーの外周面の摩擦係数よりも高くすることによって、円周速度差が生じる箇所においてフィードローラー及びテークアップローラーによる中空糸の保持力を向上させることができる。これにより、円周速度差が生じる箇所において冷延伸ローラーと中空糸との間でスリップが生じるのを防止することができる。 In general, the take-up roller is set to have a higher circumferential speed than the feed roller on the upstream side, but according to the present invention configured as described above, the hollow of the plurality of feed rollers is hollow. The coefficient of friction of the outer peripheral surface of the feed roller disposed at the most downstream in the conveyance direction of the yarn is higher than the coefficient of friction of the outer peripheral surface of the other feed rollers, and the conveyance direction of the hollow fiber among the plurality of take-up rollers By making it higher than the friction coefficient of the outer peripheral surface of the take-up roller other than the take-up roller disposed at the most upstream, the retention of hollow fibers by the feed roller and the take-up roller is improved at the location where the circumferential velocity difference occurs. be able to. This makes it possible to prevent slippage between the cold drawing roller and the hollow fiber at the point where the circumferential velocity difference occurs.
 また、本発明において、好ましくは、複数本のフィードローラーの内、中空糸の搬送方向最下流に配置されたフィードローラーの外周面の摩擦係数が、複数本のテークアップローラーの内、中空糸の搬送方向最上流に配置されたテークアップローラーの外周面の摩擦係数よりも高い。 In the present invention, preferably, among the plurality of feed rollers, the coefficient of friction of the outer peripheral surface of the feed roller disposed at the most downstream side in the hollow fiber conveyance direction is the hollow fiber among the plurality of take-up rollers. It is higher than the coefficient of friction of the outer peripheral surface of the take-up roller disposed on the most upstream side in the transport direction.
 このように構成された本発明によれば、円周速度差が生じる箇所においてフィードローラー及びテークアップローラーによる中空糸の保持力をさらに向上させることができる。 According to the present invention configured as described above, the holding power of the hollow fiber by the feed roller and the take-up roller can be further improved at the location where the circumferential speed difference occurs.
 この場合において、中空糸の搬送方向最上流に配置されたテークアップローラーの外表面は、金属メッキされており、また、中空糸の搬送方向最下流に配置されたフィードローラーの外表面は、ゴムで構成されていることが好ましい。 In this case, the outer surface of the take-up roller disposed in the most upstream flow direction of the hollow fiber is plated with metal, and the outer surface of the feed roller disposed downstream of the hollow fiber in the conveyance direction is rubber It is preferable to be composed of
 また、上述した課題を解決するために、本発明は、中空糸を熱処理する熱処理部と、熱処理された中空糸を冷延伸する冷延伸部とを備える多孔質中空糸膜製造装置であって、冷延伸部は、複数本のフィードローラーと、この複数本のフィードローラーよりも中空糸の搬送方向下流側に配置された複数本のテークアップローラーとを有する冷延伸ローラーを備え、複数本のフィードローラーの内、中空糸の搬送方向最上流に配置されたテークアップローラーの外周面の摩擦係数が、それ以外のテークアップローラーの外周面の摩擦係数よりも高く、かつ複数本のフィードローラーの内、中空糸の搬送方向最下流に配置されたフィードローラー以外のフィードローラーの外周面の摩擦係数よりも高いことを特徴としている。 In addition, in order to solve the problems described above, the present invention is a porous hollow fiber membrane manufacturing apparatus comprising a heat treatment section for heat treating a hollow fiber, and a cold drawing section for cold drawing a heat treated hollow fiber, The cold drawing section includes a cold drawing roller having a plurality of feed rollers and a plurality of take-up rollers disposed on the downstream side of the hollow fiber conveyance direction with respect to the plurality of feed rollers. Among the rollers, the coefficient of friction of the outer peripheral surface of the take-up roller disposed on the most upstream side in the conveyance direction of the hollow fiber is higher than the coefficient of friction of the outer peripheral surface of the other take-up rollers, and among the plurality of feed rollers. The present invention is characterized in that the coefficient of friction of the outer peripheral surface of the feed roller other than the feed roller disposed at the most downstream side in the conveyance direction of the hollow fiber is higher.
 このように構成された本発明によっても、円周速度差が生じる箇所においてフィードローラー及びテークアップローラーによる中空糸の保持力を向上させることができ、これにより、円周速度差が生じる箇所において冷延伸ローラーと中空糸との間でスリップが生じるのを防止することができる。 Also according to the present invention configured as described above, the holding power of the hollow fiber by the feed roller and the take-up roller can be improved at the location where the circumferential velocity difference occurs, thereby cooling at the location where the circumferential velocity difference occurs. It is possible to prevent the occurrence of slip between the stretching roller and the hollow fiber.
 また、本発明において、好ましくは、複数本のフィードローラーの内、中空糸の搬送方向最下流に配置されたフィードローラーの外周面の摩擦係数が、複数本のテークアップローラーの内、中空糸の搬送方向最上流に配置されたテークアップローラーの外周面の摩擦係数よりも高い。 In the present invention, preferably, among the plurality of feed rollers, the coefficient of friction of the outer peripheral surface of the feed roller disposed at the most downstream side in the hollow fiber conveyance direction is the hollow fiber among the plurality of take-up rollers. It is higher than the coefficient of friction of the outer peripheral surface of the take-up roller disposed on the most upstream side in the transport direction.
 このように構成された本発明によれば、円周速度差が生じる箇所においてフィードローラー及びテークアップローラーによる中空糸の保持力をさらに向上させることができる。 According to the present invention configured as described above, the holding power of the hollow fiber by the feed roller and the take-up roller can be further improved at the location where the circumferential speed difference occurs.
 この場合において、中空糸の搬送方向最上流に配置されたテークアップローラーの外表面は、金属メッキされており、また、中空糸の搬送方向最下流に配置されたフィードローラーの外表面は、ゴムで構成されていることが好ましい。 In this case, the outer surface of the take-up roller disposed in the most upstream flow direction of the hollow fiber is plated with metal, and the outer surface of the feed roller disposed downstream of the hollow fiber in the conveyance direction is rubber It is preferable to be composed of
 また、上述した課題を解決するために、本発明は、中空糸を熱処理する熱処理工程と、熱処理された中空糸を冷延伸する冷延伸工程とを含む、多孔質中空糸膜の製造方法であって、冷延伸工程では、複数本のフィードローラーと、この複数本のフィードローラーよりも中空糸の搬送方向下流側に配置された複数本のテークアップローラーとを有する冷延伸ローラーとを用いて中空糸を冷延伸するようになっており、複数本のフィードローラーの内、中空糸の搬送方向最下流に配置されたフィードローラーの外周面の摩擦係数が、それ以外のフィードローラーの外周面の摩擦係数よりも高く、かつ複数本のテークアップローラーの内、中空糸の搬送方向最上流に配置されたテークアップローラー以外のテークアップローラーの外周面の摩擦係数よりも高いことを特徴としている。 In addition, in order to solve the problems described above, the present invention is a method for producing a porous hollow fiber membrane, including a heat treatment step of heat treating the hollow fiber and a cold drawing step of cold drawing the heat treated hollow fiber. In the cold drawing step, the hollow drawing is carried out using a cold drawing roller having a plurality of feed rollers and a plurality of take-up rollers disposed on the downstream side of the hollow fiber conveyance direction with respect to the plurality of feed rollers. The coefficient of friction of the outer peripheral surface of the feed roller which is arranged to cold-draw the yarn, and among the plurality of feed rollers, the feed roller disposed at the most downstream side in the hollow fiber conveyance direction is the friction on the outer peripheral surface of the other feed rollers. Among the plurality of take-up rollers that are higher than the coefficient, the friction of the outer peripheral surface of the take-up roller other than the take-up roller disposed on the most upstream side in the hollow fiber conveyance direction It is characterized by higher than.
 また、上述した課題を解決するために、本発明は、中空糸を熱処理する熱処理工程と、熱処理された中空糸を冷延伸する冷延伸工程とを含む、多孔質中空糸膜の製造方法であって、冷延伸工程では、複数本のフィードローラーと、この複数本のフィードローラーよりも中空糸の搬送方向下流側に配置された複数本のテークアップローラーとを有する冷延伸ローラーを用いて中空糸を冷延伸するようになっており、複数本のフィードローラーの内、中空糸の搬送方向最上流に配置されたテークアップローラーの外周面の外周面の摩擦係数が、それ以外のテークアップローラーの外周面の摩擦係数よりも高く、かつ複数本のフィードローラーの内、中空糸の搬送方向最下流に配置されたフィードローラー以外のフィードローラーの外周面の摩擦係数よりも高いことを特徴としている。 In addition, in order to solve the problems described above, the present invention is a method for producing a porous hollow fiber membrane, including a heat treatment step of heat treating the hollow fiber and a cold drawing step of cold drawing the heat treated hollow fiber. In the cold drawing step, hollow yarn is formed using a cold drawing roller having a plurality of feed rollers and a plurality of take-up rollers disposed on the downstream side of the hollow fiber conveyance direction with respect to the plurality of feed rollers. The coefficient of friction of the outer peripheral surface of the outer peripheral surface of the take-up roller disposed on the most upstream side of the hollow fiber conveyance direction among the plurality of feed rollers among the plurality of feed rollers is the other take-up roller. The friction of the outer peripheral surface of the feed roller other than the feed roller disposed higher than the friction coefficient of the outer peripheral surface and located at the most downstream side of the hollow fiber conveyance direction among the plurality of feed rollers It is characterized by higher than a few.
 このように構成された本発明によっても、円周速度差が生じる箇所においてフィードローラー又はテークアップローラーによる中空糸の保持力を向上させることができる。これにより、円周速度差が生じる箇所において冷延伸ローラーと中空糸との間でスリップが生じるのを防止することができる。 Also according to the present invention configured as described above, the holding power of the hollow fiber by the feed roller or the take-up roller can be improved at the point where the circumferential speed difference occurs. This makes it possible to prevent slippage between the cold drawing roller and the hollow fiber at the point where the circumferential velocity difference occurs.
 以上のように本発明によれば、中空糸の延伸時に、中空糸と冷延伸ローラーとの間のスリップを防止することにより、均質な中空糸膜を作ることができる。 As described above, according to the present invention, it is possible to produce a homogeneous hollow fiber membrane by preventing the slip between the hollow fiber and the cold drawing roller at the time of drawing the hollow fiber.
本発明の実施形態による多孔質中空糸膜の製造装置を示す側面図である。It is a side view showing the manufacture device of the porous hollow fiber membrane by the embodiment of the present invention. 図1の要部拡大図である。It is a principal part enlarged view of FIG.
 以下、図面を参照して、本発明の実施形態による多孔質中空糸膜製造装置及び方法について説明する。 Hereinafter, a porous hollow fiber membrane manufacturing apparatus and method according to an embodiment of the present invention will be described with reference to the drawings.
 図1は、本発明の実施形態による多孔質中空糸膜の製造装置を示す側面図であり、図2は、図1の要部を拡大した図面である。 FIG. 1 is a side view showing an apparatus for manufacturing a porous hollow fiber membrane according to an embodiment of the present invention, and FIG. 2 is an enlarged view of a main part of FIG.
 製造装置は、熱処理部10と、冷延伸部20と、熱延伸部30とを備えている。熱処理部10、冷延伸部20、及び熱延伸部30は、この順番で中空糸11の搬送方向の上流側から下流側に向かって配列されている。熱処理部10は7本の熱ローラー12を備えており、熱ローラー12よりも上流側に配置されたフィードローラー13によって熱処理部10に導入された中空糸11を、熱ローラー12の外周面上で加熱しながら、下流側に設けられた冷延伸部20へ送るようになっている。この熱ローラー12の直径は50~600mmであり、表面に、例えばクロムメッキ等が施されたステンレス製のローラーによって構成されている。 The manufacturing apparatus includes a heat treatment unit 10, a cold drawing unit 20, and a heat drawing unit 30. The heat treatment unit 10, the cold drawing unit 20, and the heat drawing unit 30 are arranged in this order from the upstream side to the downstream side in the transport direction of the hollow fiber 11. The heat treatment section 10 is provided with seven heat rollers 12, and the hollow fiber 11 introduced to the heat treatment section 10 by the feed roller 13 disposed on the upstream side of the heat roller 12 is the outer circumferential surface of the heat roller 12. While being heated, it is sent to the cold stretching section 20 provided on the downstream side. The diameter of the heat roller 12 is 50 to 600 mm, and the heat roller 12 is formed of, for example, a stainless steel roller plated with chromium or the like.
 冷延伸部20は、8本のフィードローラー21(21a~21c)と、12本のテークアップローラー22(22a)を有する冷延伸ローラーから構成されている。この冷延伸ローラーを構成するフィードローラー21と、テークアップローラー22は、全て同じ方向、即ち中空糸を下流側に繰り出す方向に能動的に回転するようになっている。また、テークアップローラー22の円周速度は、フィードローラー21の円周速度よりも速くなるように設定されている。このテークアップローラー22とフィードローラー21との速度差により、8本のフィードローラーの内、最下流にあるフィードローラー21cと、12本のテークアップローラーの内、最上流にあるテークアップローラー21aとの間の区間Lにおいて中空糸11に張力がかかる(図2参照)。そして中空糸11は、この区間Lで冷延伸されるようになっている。 The cold stretching section 20 is composed of a cold stretching roller having eight feed rollers 21 (21a to 21c) and twelve take-up rollers 22 (22a). The feed roller 21 constituting the cold drawing roller and the take-up roller 22 are all actively rotated in the same direction, that is, in the direction in which the hollow fiber is fed downstream. Further, the circumferential speed of the take-up roller 22 is set to be higher than the circumferential speed of the feed roller 21. Due to the difference in speed between the take-up roller 22 and the feed roller 21, the feed roller 21c located at the most downstream side among the eight feed rollers and the take-up roller 21a located at the uppermost stream among the twelve take-up rollers Tension is applied to the hollow fiber 11 in the section L between them (see FIG. 2). The hollow fiber 11 is cold drawn in this section L.
 冷延伸部20の8本のフィードローラー21のうち、上流側に設けられた4本のフィードローラーは第1フィードローラー21aであり、その内部に冷却水を流通させ、中空糸11を冷却しながら下流側に繰り出すようになっている。第1フィードローラー21aの直径は50~600mmである。一方で、下流側に設けられた4本のフィードローラーは第2フィードローラー21b、21cであり、0~60℃に保たれていて、第1フィードローラー21aで冷却された中空糸11の温度を維持し、または、さらに冷却しながら下流側へと繰り出すようになっている。第2フィードローラー21b、21cの直径は、20~200mmである。また、冷延伸部20の8本のフィードローラー21の内、最下流にあるフィードローラー21cを除く7本のフィードローラーは、その外周面がステンレス製材料で構成されている。 Of the eight feed rollers 21 of the cold drawing section 20, the four feed rollers provided on the upstream side are the first feed rollers 21a, and the cooling water is allowed to flow through the inside, and the hollow fiber 11 is cooled. It is designed to extend downstream. The diameter of the first feed roller 21a is 50 to 600 mm. On the other hand, the four feed rollers provided on the downstream side are the second feed rollers 21b and 21c, which are maintained at 0 to 60 ° C., and the temperature of the hollow fiber 11 cooled by the first feed roller 21a is It is designed to feed downstream while maintaining or further cooling. The diameter of the second feed rollers 21b and 21c is 20 to 200 mm. Further, among the eight feed rollers 21 of the cold drawing portion 20, the outer peripheral surface of the seven feed rollers except the feed roller 21c located at the most downstream side is made of a stainless steel material.
 一方で、冷延伸部20の8本のフィードローラーのうち、最下流にあるフィードローラー21cは、その外周面が、最下流にあるフィードローラー21cを除く7本のフィードローラーを構成するステンレス製材料よりも摩擦係数が高い材料が用いられる。 On the other hand, among the eight feed rollers of the cold drawing portion 20, the outermost surface of the feed roller 21c at the most downstream side is a stainless steel material constituting seven feed rollers except the feed roller 21c at the most downstream side. A material with a higher coefficient of friction is used.
 このような、摩擦係数が高い材料としては、ウレタンゴムやシリコンゴムなどのゴムロールがあり、特にショアA硬度が70以上のゴムロールを用いると耐久性の面でも好ましい。 As such a material having a high coefficient of friction, there are rubber rolls such as urethane rubber and silicone rubber, and it is particularly preferable to use a rubber roll having a Shore A hardness of 70 or more in view of durability.
 また、12本のテークアップローラー22のうち、上流側に設けられた4本のテークアップローラーは、直径20~200mmの第1テークアップローラー22b、22cであり、下流側に設けられた8本のテークアップローラーは、直径50~600mmの第2テークアップローラー22aである。これらのテークアップローラー22は、冷延伸区間Lで冷延伸された中空糸11を熱延伸部30へと繰り出すようになっている。そして12本のテークアップローラーのうち、最上流にあるテークアップローラー22aを除く11本のテークアップローラーは、その外周面がステンレス製材料で構成されている。この場合、中空糸膜の搬送方向最下流にあるフィードローラー21の外周面の摩擦係数は、最上流にあるテークアップローラー22aを除く11本のテークアップローラーの外周面の摩擦係数よりも高くなる。 Of the twelve take-up rollers 22, four take-up rollers provided on the upstream side are first take-up rollers 22b and 22c having a diameter of 20 to 200 mm, and eight provided on the downstream side. Is a second take-up roller 22a having a diameter of 50 to 600 mm. These take-up rollers 22 are configured to feed the hollow fiber 11 cold drawn in the cold drawing section L to the heat drawing section 30. Of the twelve take-up rollers, the outer peripheral surface of the eleven take-up rollers except for the take-up roller 22a at the uppermost stream is made of a stainless steel material. In this case, the friction coefficient of the outer peripheral surface of the feed roller 21 at the most downstream side in the hollow fiber membrane conveyance direction is higher than the friction coefficient of the outer peripheral surfaces of the eleven take-up rollers excluding the take-up roller 22a at the uppermost flow. .
 一方で12本のテークアップローラーのうち、最上流にあるテークアップローラー22cは、その外周面をゴムで構成することが好ましく、これにより、ステンレス等の金属材料よりも摩擦係数を容易に高めることができる。当該ゴムの最大静止摩擦係数は、適宜定められるが、スリップ防止の観点から0.35~0.6であることが好ましい。このようなゴム材料としてはウレタンゴムやシリコンゴムなどのゴム材料が例示できる。ただし、本発明によれば、中空糸膜の搬送方向最下流にあるフィードローラー21cの外周面の摩擦係数が、他のローラー(フィードローラー及びテークアップローラー)の外周面の摩擦係数よりも高ければ足りるので、テークアップローラー22cとして、上述したクロムメッキが施されたステンレス製材料のローラーを用いてもよい。 On the other hand, of the 12 take-up rollers, it is preferable that the take-up roller 22c located on the uppermost stream have an outer peripheral surface made of rubber, whereby the coefficient of friction is easily increased compared to metal materials such as stainless steel. Can. The maximum coefficient of static friction of the rubber is appropriately determined, but is preferably 0.35 to 0.6 from the viewpoint of slip prevention. As such a rubber material, rubber materials such as urethane rubber and silicon rubber can be exemplified. However, according to the present invention, if the coefficient of friction of the outer peripheral surface of the feed roller 21c at the most downstream in the transport direction of the hollow fiber membrane is higher than the coefficient of friction of the outer peripheral surface of the other rollers (feed roller and take-up roller). As the take-up roller 22c, a roller made of the above-mentioned chrome-plated stainless steel material may be used as it is sufficient.
 このような製造装置を使用して、高配向結晶性ポリオレフィンの中空糸11から多孔質中空糸膜を製造する場合には、まず、ポリオレフィンの中空糸11をフィードローラー13で熱ローラー12へと導入する。中空糸11は7本の熱ローラー12上を進行しながら加熱され、ポリオレフィンの結晶構造が制御される。この際の熱ローラーの温度、すなわち熱処理温度は、ポリオレフィンの種類によっても異なるが、ポリオレフィンの融点より低い温度であり、通常90~150℃である。ポリオレフィンとしてポリエチレンが使用される場合には熱処理温度を90~125℃とし、ポリプロピレンが使用される場合には熱処理温度を120~150℃とすることが好ましい。また、中空糸11が熱処理工程において熱処理される時間、すなわち滞在時間は通常5秒以上である。 In the case of producing a porous hollow fiber membrane from the hollow fiber 11 of highly oriented crystalline polyolefin using such a production apparatus, first, the hollow fiber 11 of polyolefin is introduced to the heat roller 12 by the feed roller 13. Do. The hollow fiber 11 is heated while traveling on the seven heat rollers 12 to control the crystal structure of the polyolefin. The temperature of the heat roller at this time, that is, the heat treatment temperature, varies depending on the type of polyolefin, but is a temperature lower than the melting point of the polyolefin, and is usually 90 to 150.degree. When polyethylene is used as the polyolefin, the heat treatment temperature is preferably 90 to 125 ° C., and when polypropylene is used, the heat treatment temperature is preferably 120 to 150 ° C. Further, the time for which the hollow fiber 11 is heat-treated in the heat treatment step, that is, the residence time is usually 5 seconds or more.
 熱処理部10で結晶構造が制御された中空糸11は、冷延伸ローラーへと送られ、まず、第1フィードローラー21a上を進行しながら冷却される。この際、第1フィードローラー21a中を流通する冷却水の温度を0~60℃程度に制御することにより、熱処理された中空糸11を効果的に冷却できる。冷却された中空糸11は、次いで、第2フィードローラー21b、21c上を進行し、第2フィードローラー21cと第1テークアップローラー22cの間の周速度の差によって冷延伸区間Lで冷延伸される。 The hollow fiber 11 whose crystal structure is controlled by the heat treatment unit 10 is sent to a cold drawing roller, and is first cooled while advancing on the first feed roller 21a. At this time, it is possible to effectively cool the heat-treated hollow fiber 11 by controlling the temperature of the cooling water flowing in the first feed roller 21a to about 0 to 60.degree. Next, the cooled hollow fiber 11 travels on the second feed rollers 21b and 21c, and cold-stretched in the cold drawing section L due to the difference in peripheral velocity between the second feed roller 21c and the first take-up roller 22c. Ru.
 そして第2フィードローラー21c、及び第1テークアップローラー22cは、その外周面が比較的摩擦力の高いゴム材料で形成されているので、両者の間の周速度の差に曝されたとしてもローラーの外周面においてスリップすることなく下流側に搬送される。その結果、冷延伸区間Lで中空糸11に大きな張力がかかった場合にも、ローラーの外周面上で中空糸11がスリップすることがなく、中空糸11を均質に延伸することができ、未延伸部分が生じることによる延伸むらや、糸切れを起こりにくくすることができる。また、このように冷延伸部20で中空糸11をしっかりと保持することによって、中空糸11にかかる張力が熱処理部10にまで遡って伝わることがなく、熱処理部10にある中空糸11に張力がかかることにより起こる中空糸11の細化がおこらない。特に、冷延伸時に大きな張力を必要とする、断面積が0.06mm2以上の膜厚や外径が大きな中空糸11を延伸する場合であっても、ローラーの外周面上で中空糸11がスリップすることがなく、均質な多孔質中空糸膜とすることができる。 Since the outer peripheral surface of the second feed roller 21c and the first take-up roller 22c is formed of a rubber material having a relatively high frictional force, even if the second feed roller 21c and the first take-up roller 22c are exposed to the difference in peripheral velocity between them The sheet is conveyed downstream without slipping on the outer peripheral surface thereof. As a result, even when the hollow fiber 11 is subjected to a large tension in the cold drawing section L, the hollow fiber 11 does not slip on the outer peripheral surface of the roller, and the hollow fiber 11 can be uniformly drawn. Uneven stretching due to the formation of a stretched portion and yarn breakage can be made less likely to occur. Further, by firmly holding the hollow fiber 11 in the cold drawing section 20 in this manner, the tension applied to the hollow fiber 11 is not transmitted back to the heat treatment section 10, and the tension to the hollow fiber 11 in the heat treatment section 10 is applied. Does not cause thinning of the hollow fiber 11. In particular, even when a hollow fiber 11 having a cross-sectional area of 0.06 mm 2 or more and a large outer diameter is drawn, which requires a large tension during cold drawing, the hollow fiber 11 is on the outer peripheral surface of the roller. It is possible to obtain a homogeneous porous hollow fiber membrane without slipping.
 また、冷延伸区間Lの前後の第2フィードローラー21cと第1テークアップローラー22cの外径を小さくすることによって、中空糸11の延伸点を固定でき、延伸むらを低減することができる。この第2フィードローラー21cと第1テークアップローラー22cの外径を20mm~150mmとすることが好ましい。第2フィードローラー21cと第1テークアップローラー22cの外径を20mm未満とすると、これらのローラーの強度が不十分となる場合がある。 Further, by reducing the outer diameters of the second feed roller 21c and the first take-up roller 22c before and after the cold drawing section L, the drawing point of the hollow fiber 11 can be fixed, and the drawing unevenness can be reduced. The outer diameters of the second feed roller 21c and the first take-up roller 22c are preferably 20 mm to 150 mm. If the outer diameters of the second feed roller 21c and the first take-up roller 22c are less than 20 mm, the strength of these rollers may be insufficient.
 冷延伸区間Lの距離は任意に設定することができるが、距離が短い方が延伸点を固定でき、延伸むらの発生を抑制でき、均一に延伸できるため好ましい。具体的には、冷延伸区間Lの距離は、100mm以下であることが好ましく、より好ましくは90mm以下である。しかしながら、冷延伸区間Lの距離が10mm未満となると、十分な数及び直径を有するテークアップローラー22及びフィードローラーを配置することができなくなるので、冷延伸区間Lの距離は10mm以上であることが好ましく、より好ましくは20mm以上である。また、テークアップローラー22の円周速度とフィードローラー11の円周速度との比率を変化させることによって、冷延伸倍率を任意に設定できる。冷延伸倍率には制限はないが、高すぎると結晶部の変形が生じ、孔形成が不十分となったり、冷延伸部での糸切れが生じ易くなったりすることから、通常5℃~200%、より好ましくは50℃~150%である。また、中空糸の冷延伸温度は、通常0℃~60℃、より好ましくは20℃~50℃である。この温度範囲で冷延伸することによって、ポリオレフィンの結晶構造を緩和させることなく破壊することができ、その結果、熱延伸工程で、均質な多孔質中空糸膜を生成させることができる。冷延伸工程に引き続いて行われる熱延伸工程は、通常90℃以上の温度に加熱された加熱炉にて、中空糸11を加熱しながら延伸倍率100℃~1000%程度で行われる。 The distance of the cold stretching section L can be set arbitrarily, but a shorter distance is preferable because the stretching point can be fixed, the occurrence of stretching unevenness can be suppressed, and uniform stretching can be performed. Specifically, the distance of the cold drawing section L is preferably 100 mm or less, more preferably 90 mm or less. However, when the distance of the cold stretching section L is less than 10 mm, it is not possible to arrange the take-up roller 22 and the feed roller having a sufficient number and diameter, so the distance of the cold stretching section L is 10 mm or more Preferably, it is 20 mm or more. Also, by changing the ratio of the circumferential speed of the take-up roller 22 and the circumferential speed of the feed roller 11, the cold draw ratio can be set arbitrarily. There is no limitation on the cold drawing ratio, but if it is too high, deformation of the crystal part may occur, resulting in insufficient pore formation or a tendency to cause thread breakage in the cold drawing part. %, More preferably 50.degree. C. to 150%. The cold drawing temperature of the hollow fiber is usually 0 ° C to 60 ° C, more preferably 20 ° C to 50 ° C. By cold drawing in this temperature range, it is possible to break without relaxing the crystal structure of the polyolefin, and as a result, a homogeneous porous hollow fiber membrane can be formed in the heat drawing step. The heat drawing process performed subsequently to the cold drawing process is performed at a drawing ratio of about 100 ° C. to about 1000% while heating the hollow fiber 11 in a heating furnace generally heated to a temperature of 90 ° C. or higher.
 このような多孔質中空糸膜の製造装置を使用すると、冷延伸ローラーの外周面と中空糸11との摩擦が大きいため、中空糸11をしっかりと保持することができる。その結果、冷延伸区間Lで中空糸11に大きな張力がかかった場合にも、ローラーの外周面上で中空糸11がスリップすることがなく、中空糸11を均質に延伸することができ、未延伸部分が生じることによる延伸むらや、糸切れを起こりにくくすることができる。また、冷延伸部20で中空糸をしっかりと保持することができるため、中空糸11にかかる張力が熱処理部10にまで遡って伝わることがなく、中空糸11の細化がおこらない。特に、断面積が0.06mm2以上の膜厚や外径が大きな中空糸を延伸する場合においても、安定して均質な多孔質中空糸膜とすることができる。 When such a porous hollow fiber membrane manufacturing apparatus is used, since the friction between the outer peripheral surface of the cold drawing roller and the hollow fiber 11 is large, the hollow fiber 11 can be firmly held. As a result, even when the hollow fiber 11 is subjected to a large tension in the cold drawing section L, the hollow fiber 11 does not slip on the outer peripheral surface of the roller, and the hollow fiber 11 can be uniformly drawn. Uneven stretching due to the formation of a stretched portion and yarn breakage can be made less likely to occur. Further, since the hollow fiber can be firmly held by the cold drawing portion 20, the tension applied to the hollow fiber 11 is not transmitted back to the heat treatment portion 10, and the hollow fiber 11 is not thinned. In particular, even when a hollow fiber having a cross-sectional area of 0.06 mm 2 or more and a large outer diameter is drawn, a stable and homogeneous porous hollow fiber membrane can be obtained.
 尚、上述の実施形態では、冷延伸区間Lを挟むように配置された、最下流のフィードローラー、及び最上流のテークアップローラーの両方の外周面をゴム材料で形成することとしたが、本発明によれば、冷延伸区間Lを挟むローラーの内の少なくとも一方の外周面をゴム材料で形成すれば中空糸がローラーの外周面でスリップするのを防止することができる。この点は、以下の実施例から理解できる。 In the above embodiment, the outer peripheral surfaces of both the most downstream feed roller and the most upstream take-up roller disposed so as to sandwich the cold drawing section L are formed of a rubber material. According to the invention, when at least one of the outer peripheral surfaces of the rollers sandwiching the cold drawing section L is made of a rubber material, it is possible to prevent the hollow fiber from slipping on the outer peripheral surface of the roller. This point can be understood from the following examples.
 以下、本発明の実施例について詳述する。 Hereinafter, examples of the present invention will be described in detail.
 第一実施例として、最下流にあるフィードローラー、及び最上流にあるテークアップローラーとして、ウレタンゴム(東洋ゴム(株)製、商品名:ユニプレンK、ショアA高度=90)を外周面に貼り付けたゴムロールを用い、他のローラーとしてクロムメッキ鏡面仕上げのロールを用いた。この場合、中空糸は殆どスリップしなかった。そして、延伸工程において中空糸が糸切れしたり、ピンホールが発生したりすることなく、延伸斑が少ない均質な中空糸膜を製造することができた。 As a first embodiment, a urethane rubber (made by Toyo Rubber Co., Ltd., trade name: Uniprene K, Shore A height = 90) is attached to the outer peripheral surface as a feed roller at the most downstream and a take-up roller at the uppermost stream. A chrome-plated mirror-finished roll was used as the other roller using the attached rubber roll. In this case, the hollow fiber hardly slipped. And, in the drawing process, the hollow fiber did not break or pinholes were generated, and it was possible to manufacture a homogeneous hollow fiber membrane with few drawing spots.
 第二実施例として、最下流にあるフィードローラーとしてゴムロールを用い、他のローラーとしてクロムメッキ鏡面仕上げのロールを用いた。この場合も、中空糸は殆どスリップしなかった。そして、延伸工程において中空糸が糸切れしたり、ピンホールが発生したりすることなく、延伸斑が少ない均質な中空糸膜を製造することができた。 As a second example, a rubber roll was used as the feed roller at the most downstream, and a chromium-plated mirror-finished roll was used as the other roller. Also in this case, the hollow fiber hardly slipped. And, in the drawing process, the hollow fiber did not break or pinholes were generated, and it was possible to manufacture a homogeneous hollow fiber membrane with few drawing spots.
 比較例として、全てのフィードローラー及び全てのテークアップローラーとしてクロム鏡面仕上げのロールを用いた。この場合、中空糸とローラーの外周面との間の摩擦力が小さく、第一実施例及び第二実施例と比較して糸切れやピンホールの発生率が高く、また延伸斑が大きく均質な中空糸膜を製造することができなかった。 As a comparative example, a chrome mirror-finished roll was used as all feed rollers and all take-up rollers. In this case, the friction force between the hollow fiber and the outer peripheral surface of the roller is small, the occurrence rate of thread breakage and pin holes is high compared to the first embodiment and the second embodiment, and the stretching unevenness is large and uniform. It was not possible to produce hollow fiber membranes.
10  熱処理部
11  中空糸
20  冷延伸部
21  フィードローラー
22  テークアップローラー
30  熱延伸部
DESCRIPTION OF SYMBOLS 10 heat processing part 11 hollow fiber 20 cold drawing part 21 feed roller 22 take-up roller 30 heat drawing part

Claims (17)

  1.  中空糸を熱処理する熱処理部と、
     熱処理された中空糸を冷延伸する冷延伸部とを備える多孔質中空糸膜製造装置であって、
     前記冷延伸部は、複数本のフィードローラーと、この複数本のフィードローラーよりも中空糸の搬送方向下流側に配置された複数本のテークアップローラーとを有する冷延伸ローラーを備え、
     前記複数本のフィードローラーの内、中空糸の搬送方向最下流に配置されたフィードローラーの外周面の摩擦係数が、それ以外のフィードローラーの外周面の摩擦係数よりも高く、かつ前記複数本のテークアップローラーの内、中空糸の搬送方向最上流に配置されたテークアップローラー以外のテークアップローラーの外周面の摩擦係数よりも高い、多孔質中空糸膜製造装置。
    A heat treatment section for heat treating the hollow fiber,
    What is claimed is: 1. A porous hollow fiber membrane manufacturing apparatus comprising: a cold drawing section for cold drawing a heat treated hollow fiber;
    The cold drawing section includes a cold drawing roller having a plurality of feed rollers and a plurality of take-up rollers disposed on the downstream side of the hollow fiber conveyance direction with respect to the plurality of feed rollers.
    Among the plurality of feed rollers, the coefficient of friction of the outer peripheral surface of the feed roller disposed at the most downstream side of the hollow fiber in the conveying direction is higher than the coefficient of friction of the outer peripheral surface of the other feed rollers. A porous hollow fiber membrane manufacturing apparatus having a higher coefficient of friction than the outer circumferential surface of the take-up roller other than the take-up roller disposed among the take-up rollers in the transport direction of the hollow fiber in the uppermost stream.
  2.  前記複数本のフィードローラーの内、中空糸の搬送方向最下流に配置されたフィードローラーの外周面の摩擦係数が、前記複数本のテークアップローラーの内、中空糸の搬送方向最上流に配置されたテークアップローラーの外周面の摩擦係数よりも高い、請求項1に記載の多孔質中空糸膜製造装置。 Among the plurality of feed rollers, the friction coefficient of the outer peripheral surface of the feed roller disposed at the most downstream side of the hollow fiber conveyance direction is disposed at the most upstream of the hollow fiber conveyance direction among the plurality of take-up rollers. The porous hollow fiber membrane manufacturing apparatus according to claim 1, wherein the apparatus is higher than the friction coefficient of the outer peripheral surface of the take-up roller.
  3.  前記中空糸の搬送方向最上流に配置されたテークアップローラーの外表面は、金属メッキされている、請求項1又は2に記載の多孔質中空糸膜製造装置。 The porous hollow fiber membrane manufacturing apparatus according to claim 1 or 2, wherein the outer surface of the take-up roller disposed on the uppermost stream in the transport direction of the hollow fiber is plated with metal.
  4.  前記中空糸の搬送方向最下流に配置されたフィードローラーの外表面は、ゴムで構成されている、請求項1乃至3の何れか1項に記載の多孔質中空糸膜製造装置。 The porous hollow fiber membrane manufacturing apparatus according to any one of claims 1 to 3, wherein the outer surface of the feed roller disposed at the most downstream side in the conveyance direction of the hollow fiber is made of rubber.
  5.  中空糸を熱処理する熱処理部と、
     熱処理された中空糸を冷延伸する冷延伸部とを備える多孔質中空糸膜製造装置であって、
     前記冷延伸部は、複数本のフィードローラーと、この複数本のフィードローラーよりも中空糸の搬送方向下流側に配置された複数本のテークアップローラーとを有する冷延伸ローラーを備え、
     前記複数本のフィードローラーの内、中空糸の搬送方向最上流に配置されたテークアップローラーの外周面の摩擦係数が、それ以外のテークアップローラーの外周面の摩擦係数よりも高く、かつ前記複数本のフィードローラーの内、中空糸の搬送方向最下流に配置されたフィードローラー以外のフィードローラーの外周面の摩擦係数よりも高い、多孔質中空糸膜製造装置。
    A heat treatment section for heat treating the hollow fiber,
    What is claimed is: 1. A porous hollow fiber membrane manufacturing apparatus comprising: a cold drawing section for cold drawing a heat treated hollow fiber;
    The cold drawing section includes a cold drawing roller having a plurality of feed rollers and a plurality of take-up rollers disposed on the downstream side of the hollow fiber conveyance direction with respect to the plurality of feed rollers.
    Among the plurality of feed rollers, the coefficient of friction of the outer peripheral surface of the take-up roller disposed on the most upstream side in the conveyance direction of the hollow fiber is higher than the coefficient of friction of the outer peripheral surface of the other take-up rollers A porous hollow fiber membrane manufacturing apparatus having a higher coefficient of friction than the outer peripheral surface of a feed roller other than the feed roller disposed in the conveyance direction most downstream of the hollow fiber among the feed rollers.
  6.  前記複数本のフィードローラーの内、中空糸の搬送方向最下流に配置されたフィードローラーの外周面の摩擦係数が、前記複数本のテークアップローラーの内、中空糸の搬送方向最上流に配置されたテークアップローラーの外周面の摩擦係数よりも高い、請求項5に記載の多孔質中空糸膜製造装置。 Among the plurality of feed rollers, the friction coefficient of the outer peripheral surface of the feed roller disposed at the most downstream side of the hollow fiber conveyance direction is disposed at the most upstream of the hollow fiber conveyance direction among the plurality of take-up rollers. The porous hollow fiber membrane manufacturing apparatus according to claim 5, wherein the friction coefficient of the outer peripheral surface of the take-up roller is higher.
  7.  前記中空糸の搬送方向最下流に配置されたフィードローラーの外表面は、金属メッキされている、請求項5又は6に記載の多孔質中空糸膜製造装置。 The porous hollow fiber membrane manufacturing apparatus according to claim 5 or 6, wherein the outer surface of the feed roller disposed at the most downstream side in the conveying direction of the hollow fiber is plated with metal.
  8.  前記中空糸の搬送方向最上流に配置されたテークアップローラーの外表面は、ゴムで構成されている、請求項5乃至7の何れか1項に記載の多孔質中空糸膜製造装置。 The porous hollow fiber membrane manufacturing apparatus according to any one of claims 5 to 7, wherein an outer surface of the take-up roller disposed on the most upstream side of the hollow fiber in the transport direction is made of rubber.
  9.  前記ゴムの最大静止摩擦係数が、0.35~0.6である、請求項4又は8に記載の多孔質中空糸膜製造装置。 The porous hollow fiber membrane producing apparatus according to claim 4 or 8, wherein the maximum static friction coefficient of the rubber is 0.35 to 0.6.
  10.  冷延伸部の下流側に、冷延伸された中空糸を熱延伸する熱延伸部をさらに備える請求項1乃至9の何れか1項に記載の多孔質中空糸膜製造装置。 The porous hollow fiber membrane manufacturing apparatus according to any one of claims 1 to 9, further comprising a heat drawing part for heat drawing the cold drawn hollow fiber on the downstream side of the cold drawing part.
  11.  冷延伸部における冷延伸区間が、20mm~100mm以下である、請求項1乃至10の何れか1項に記載の多孔質中空糸膜製造装置。 The porous hollow fiber membrane manufacturing apparatus according to any one of claims 1 to 10, wherein a cold drawing section in the cold drawing section is 20 mm to 100 mm or less.
  12.  中空糸を熱処理する熱処理工程と、
     熱処理された中空糸を冷延伸する冷延伸工程とを含む、多孔質中空糸膜の製造方法であって、
     前記冷延伸工程では、複数本のフィードローラーと、この複数本のフィードローラーよりも中空糸の搬送方向下流側に配置された複数本のテークアップローラーとを有する冷延伸ローラーとを用いて中空糸を冷延伸するようになっており、
     前記複数本のフィードローラーの内、中空糸の搬送方向最下流に配置されたフィードローラーの外周面の摩擦係数が、それ以外のフィードローラーの外周面の摩擦係数よりも高く、かつ前記複数本のテークアップローラーの内、中空糸の搬送方向最上流に配置されたテークアップローラー以外のテークアップローラーの外周面の摩擦係数よりも高い、多孔質中空糸膜の製造方法。
    A heat treatment step of heat treating the hollow fiber,
    And a cold drawing step of cold drawing a heat-treated hollow fiber.
    In the cold drawing step, a hollow yarn is formed using a cold drawing roller having a plurality of feed rollers and a plurality of take-up rollers disposed on the downstream side of the hollow fiber conveyance direction with respect to the plurality of feed rollers. Is cold-stretched,
    Among the plurality of feed rollers, the coefficient of friction of the outer peripheral surface of the feed roller disposed at the most downstream side of the hollow fiber in the conveying direction is higher than the coefficient of friction of the outer peripheral surface of the other feed rollers. A method for producing a porous hollow fiber membrane having a higher coefficient of friction than the outer circumferential surface of the take-up roller other than the take-up roller disposed among the take-up rollers in the transport direction of the hollow fiber in the uppermost stream.
  13.  中空糸を熱処理する熱処理工程と、
     熱処理された中空糸を冷延伸する冷延伸工程とを含む、多孔質中空糸膜の製造方法であって、
     前記冷延伸工程では、複数本のフィードローラーと、この複数本のフィードローラーよりも中空糸の搬送方向下流側に配置された複数本のテークアップローラーとを有する冷延伸ローラーを用いて中空糸を冷延伸するようになっており、
     前記複数本のフィードローラーの内、中空糸の搬送方向最上流に配置されたテークアップローラーの外周面の外周面の摩擦係数が、それ以外のテークアップローラーの外周面の摩擦係数よりも高く、かつ前記複数本のフィードローラーの内、中空糸の搬送方向最下流に配置されたフィードローラー以外のフィードローラーの外周面の摩擦係数よりも高い、多孔質中空糸膜の製造方法。
    A heat treatment step of heat treating the hollow fiber,
    And a cold drawing step of cold drawing a heat-treated hollow fiber.
    In the cold drawing step, the hollow fiber is formed using a cold drawing roller having a plurality of feed rollers and a plurality of take-up rollers disposed on the downstream side of the hollow fiber conveyance direction with respect to the plurality of feed rollers. It is cold drawn.
    Among the plurality of feed rollers, the coefficient of friction of the outer peripheral surface of the outer peripheral surface of the take-up roller disposed on the most upstream side of the hollow fiber conveyance direction is higher than the coefficient of friction of the outer peripheral surface of the other take-up rollers, And the manufacturing method of the porous hollow fiber membrane higher than the friction coefficient of the outer peripheral surface of feed rollers other than the feed roller arrange | positioned in the conveyance direction most downstream of hollow fiber among said plurality of feed rollers.
  14.  さらに、冷延伸工程の後に冷延伸された中空糸を熱延伸する熱延伸工程を備える、請求項12または13に記載の多孔質中空糸膜の製造方法。 Furthermore, the manufacturing method of the porous hollow fiber membrane of Claim 12 or 13 provided with the heat | fever drawing process which carries out the heat | fever drawing of the hollow fiber cold drawn by the cold drawing process.
  15.  冷延伸工程における冷延伸倍率が、5%~200%であることを特徴とする請求項12乃至14の何れか1項に記載の多孔質中空糸膜の製造方法。 The method for producing a porous hollow fiber membrane according to any one of claims 12 to 14, wherein the cold drawing ratio in the cold drawing step is 5% to 200%.
  16.  冷延伸工程における冷延伸区間が、20mm~100mm以下である、冷延伸温度が0~60℃であることを特徴とする請求項12乃至15の何れか1項に記載の多孔質中空糸膜の製造方法。 16. The porous hollow fiber according to any one of claims 12 to 15, wherein the cold drawing section in the cold drawing step is 20 mm to 100 mm or less, and the cold drawing temperature is 0 to 60 ° C. Production method.
  17.  冷延伸工程における温度が0~60℃であることを特徴とする請求項12乃至16の何れか1項に記載の多孔質中空糸膜の製造方法。 The method for producing a porous hollow fiber membrane according to any one of claims 12 to 16, wherein the temperature in the cold drawing step is 0 to 60 属 C.
PCT/JP2013/058822 2012-03-26 2013-03-26 Manufacturing device and manufacturing method for porous hollow fiber membrane WO2013146795A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020147026094A KR101770017B1 (en) 2012-03-26 2013-03-26 Manufacturing device and manufacturing method for porous hollow fiber membrane
CN201380026867.8A CN104334262B (en) 2012-03-26 2013-03-26 Porous doughnut film manufacturing device and manufacture method
JP2013519674A JP6108291B2 (en) 2012-03-26 2013-03-26 Porous hollow fiber membrane production apparatus and production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-069499 2012-03-26
JP2012069499 2012-03-26

Publications (1)

Publication Number Publication Date
WO2013146795A1 true WO2013146795A1 (en) 2013-10-03

Family

ID=49260047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058822 WO2013146795A1 (en) 2012-03-26 2013-03-26 Manufacturing device and manufacturing method for porous hollow fiber membrane

Country Status (4)

Country Link
JP (1) JP6108291B2 (en)
KR (1) KR101770017B1 (en)
CN (1) CN104334262B (en)
WO (1) WO2013146795A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159305A1 (en) * 2015-03-31 2016-10-06 東レ株式会社 Hollow fiber membrane manufacturing method
CN107278169A (en) * 2014-12-22 2017-10-20 甘布罗伦迪亚股份公司 Dried on the line of hollow-fibre membrane

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101672003B1 (en) * 2015-01-23 2016-11-03 (주)세프라텍 Manufacturing equipment of hollow fiber membrane and winding method of hollow fiber membrane using it, hollow fiber membrane manufacturing methd of it using the method
CN105921353A (en) * 2016-04-28 2016-09-07 融水县鼎丰竹木制品有限公司 Roll-coating machine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6245715A (en) * 1985-08-22 1987-02-27 Mitsubishi Petrochem Co Ltd Production of drawn polypropylene tape yarn
JPH09268430A (en) * 1996-03-28 1997-10-14 Toray Ind Inc Production of polyester filament by spinning and direct drawing
JP2001200423A (en) * 2000-01-19 2001-07-27 Mitsubishi Rayon Co Ltd Apparatus for producing porous hollow fiber membrane and method for producing the membrane
JP2002088577A (en) * 2000-09-13 2002-03-27 Toray Ind Inc Polyamide fiber and method of producing the same and use thereof
JP2004218189A (en) * 2004-04-28 2004-08-05 Asahi Kasei Fibers Corp Polyketone processed cord and method for producing the same
JP2005232669A (en) * 2004-01-23 2005-09-02 Toray Ind Inc Drawing member for synthetic fiber production, method for production of the same and method for production of synthetic fiber
JP2010163724A (en) * 2009-01-19 2010-07-29 Teijin Fibers Ltd Method for producing polyester fiber used as industrial material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4501710A (en) * 1975-07-15 1985-02-26 Allied Corporation Controlled tow stretching process
US5910136A (en) * 1996-12-30 1999-06-08 Kimberly-Clark Worldwide, Inc. Oriented polymeric microporous films with flexible polyolefins
JP3113651B1 (en) * 1999-06-18 2000-12-04 倉敷紡績株式会社 Elongated animal hair fiber and method for producing the same
EP1568468A1 (en) * 2002-11-26 2005-08-31 Seiji Kagawa Method for producing polybutylene terephthalate film
CN1272092C (en) * 2005-01-27 2006-08-30 浙江大学 Hydrophilic modified preparation method for polyethylene hollow fiber microporous membrane
CN101612530B (en) * 2009-06-23 2011-07-20 天津工业大学 LabView control-based two-component hollow fiber composite membrane melt-spinning and stretching equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6245715A (en) * 1985-08-22 1987-02-27 Mitsubishi Petrochem Co Ltd Production of drawn polypropylene tape yarn
JPH09268430A (en) * 1996-03-28 1997-10-14 Toray Ind Inc Production of polyester filament by spinning and direct drawing
JP2001200423A (en) * 2000-01-19 2001-07-27 Mitsubishi Rayon Co Ltd Apparatus for producing porous hollow fiber membrane and method for producing the membrane
JP2002088577A (en) * 2000-09-13 2002-03-27 Toray Ind Inc Polyamide fiber and method of producing the same and use thereof
JP2005232669A (en) * 2004-01-23 2005-09-02 Toray Ind Inc Drawing member for synthetic fiber production, method for production of the same and method for production of synthetic fiber
JP2004218189A (en) * 2004-04-28 2004-08-05 Asahi Kasei Fibers Corp Polyketone processed cord and method for producing the same
JP2010163724A (en) * 2009-01-19 2010-07-29 Teijin Fibers Ltd Method for producing polyester fiber used as industrial material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107278169A (en) * 2014-12-22 2017-10-20 甘布罗伦迪亚股份公司 Dried on the line of hollow-fibre membrane
JP2018504274A (en) * 2014-12-22 2018-02-15 ガンブロ・ルンディア・エービーGambro Lundia Ab Online drying of hollow fiber membranes
CN107278169B (en) * 2014-12-22 2021-01-22 甘布罗伦迪亚股份公司 On-line drying of hollow fiber membranes
WO2016159305A1 (en) * 2015-03-31 2016-10-06 東レ株式会社 Hollow fiber membrane manufacturing method
JPWO2016159305A1 (en) * 2015-03-31 2017-04-27 東レ株式会社 Method for producing hollow fiber membrane

Also Published As

Publication number Publication date
CN104334262A (en) 2015-02-04
KR20140130485A (en) 2014-11-10
CN104334262B (en) 2016-04-20
JP6108291B2 (en) 2017-04-05
JPWO2013146795A1 (en) 2015-12-14
KR101770017B1 (en) 2017-08-21

Similar Documents

Publication Publication Date Title
WO2013146795A1 (en) Manufacturing device and manufacturing method for porous hollow fiber membrane
CN104070666A (en) Method of producing stretching film and film stretching facility
KR20170117432A (en) Process for producing microporous plastic film
KR102045194B1 (en) Process for combined rolling and stretching of tapes
KR20170117442A (en) Process for producing microporous plastic film
WO2006118135A1 (en) Apparatus for producing polymer film and process for producing polymer film
JP5819876B2 (en) Method for producing stretched film
US4017251A (en) Apparatus for physically conditioning plastic tape
KR20170118739A (en) Process for producing microporous plastic film
KR20170117428A (en) Process for producing microporous plastic film
JP6195026B2 (en) Method for producing hollow fiber membrane
JP2001200423A (en) Apparatus for producing porous hollow fiber membrane and method for producing the membrane
JP2009255548A (en) Manufacturing device for biaxially oriented polyamide film
JP2009138322A (en) Method for producing monofilament
JP2013129532A (en) Winding device of film, device for manufacturing film equipped with the winding device, and method for manufacturing the film
JP6377355B2 (en) Method for producing stretched film
JP2015134453A (en) Production method of stretched film
RU2776380C1 (en) Apparatus and method for providing uniaxial changes in the length of film sheets
JP5023464B2 (en) Method and apparatus for producing polymer film
JP2002301341A (en) Method for manufacturing hollow fiber membrane
JP2003305769A (en) Film stretching method and device therefor
JP2006346929A (en) Manufacturing apparatus of polymer film and manufacturing method of polymer film
JPH09286054A (en) Production of biaxially stretched polyamide film
JP2769862B2 (en) Method for producing polypropylene flat yarn
JP2007321300A (en) Method for producing synthetic yarn

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380026867.8

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2013519674

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13767837

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147026094

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13767837

Country of ref document: EP

Kind code of ref document: A1