JP3966042B2 - Friction material - Google Patents

Friction material Download PDF

Info

Publication number
JP3966042B2
JP3966042B2 JP2002095338A JP2002095338A JP3966042B2 JP 3966042 B2 JP3966042 B2 JP 3966042B2 JP 2002095338 A JP2002095338 A JP 2002095338A JP 2002095338 A JP2002095338 A JP 2002095338A JP 3966042 B2 JP3966042 B2 JP 3966042B2
Authority
JP
Japan
Prior art keywords
resin
phenol resin
fiber
friction
aramid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002095338A
Other languages
Japanese (ja)
Other versions
JP2003292727A (en
Inventor
邦夫 森
峰夫 横山
重雄 高畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP2002095338A priority Critical patent/JP3966042B2/en
Publication of JP2003292727A publication Critical patent/JP2003292727A/en
Application granted granted Critical
Publication of JP3966042B2 publication Critical patent/JP3966042B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【産業上の利用分野】
本発明は、強靭性、耐熱性の優れた成形品、接着剤、特に高温で使用される構造材料等に好適なバインダーとして、自動車、産業機械等に使用されるブレーキやクラッチ用摩擦材、自動変速機などで油中に浸漬した状態で使用される湿式クラッチなどに適用することが出来る樹脂組成物を使用した摩擦材に関する。
【0002】
【従来の技術】
フェノール樹脂は、耐熱性、機械的特性、低価格、成形加工性などの優れた特性を有しており、従来、成形材料を初めとし接着、含浸等の加工手段を用いて使用されてきた。近年、耐熱性への要求は高温で使用する材料、例えば自動車用摩擦材料等で更に高まり、使用される基材も従来のガラスの様な無機繊維から耐熱性の高いアラミド繊維などが普及してきた。結合剤としてのフェノール樹脂に対してもこれらの繊維に適合できるものが要求されて来た。これらの要求に応えるため、フェノール樹脂を改質(変性)する技術が種々開発されて来ている。この変性手法としては、フェノール核の間にベンゼン核、アルキルベンゼン核等を導入する方法、シリコン化合物を導入する方法などが実用化している。しかしながらこれらの方法はフェノール樹脂の硬化速度遅延、各種の基材との接着性低下などをもたらし必ずしも充分な性能が得られているわけではない。特に前記アラミド繊維に対する密着性は充分な物では無かった。また、耐熱性が特に必要とされる、ブレーキ、クラッチ等の自動車用摩擦材料にはこの要求が強い
【0003】
。同様に油中で使用される、いわゆる湿式摩擦材は、パルプ、アラミド等の繊維状基材、摩擦調整用添加剤等の混合物を抄造工程を経て抄紙成形物とした後、フェノール系樹脂を結合剤として含浸、熱硬化して製造されている。とくに近年、この様な摩擦材は環境負荷軽減の為、自動車の軽量化をめざし摩擦面の面積の減少等の要求が高まり、耐熱性や剛性の高い繊維基材のへ変更、使用するフェノール系樹脂の変性による柔軟性の向上検討、更に摩擦調整剤用充填材の形状、種類等の検討がなされて来ている。特にアラミド繊維を基材に用いた摩擦材が精力的に検討され、実用化に至っている。しかしながら、アラミド基材は結合剤のフェノール系樹脂との濡れ性が一般的に悪いとされ、折角耐熱性、耐摩耗性の高い基材を用いてもその性能を充分に発揮することが出来なかった。
【0004】
【発明が解決しようとする課題】
本発明の課題は、アラミド系繊維との密着性を高め、長期にわたり耐熱性、摩擦特性が安定し、耐摩耗性が高い摩擦材を提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは上記実状に鑑み鋭意検討したところ、特定構造のチタンキレート化合物をフェノール樹脂に含有させた熱硬化性樹脂組成物が、アラミド繊維との接着性が優れ、耐久性が長期に安定した、且つ耐摩耗性の高い摩擦材を得る事が出来ることを見出し、本発明を完成するに至った。
【0006】
すなわち、本発明は、フェノール樹脂(A)と、チタンキレート化合物(B)を必須成分とし含有していることを特徴とする熱硬化性樹脂組成物、これをアラミド繊維含有繊維状基材(C)に含浸、硬化した硬化物、或いは摩擦材を提供する。
【0007】
【発明の実施の形態】
本発明に用いるフェノール樹脂(A)としては、レゾール型フェノール樹脂、及びノボラック型フェノール樹脂のいずれも使用できる。使用用途として、成形用に供試するためには、ノボラック型フェノール樹脂が良く、含浸するためにはレゾール型フェノール樹脂が好ましい。フェノール樹脂(A)の原料であるフェノール類としては、例えば、フェノールを始めとして、ビスフェノール等のフェノール2量体類、クレゾール、PTBP(p−ターシャリーブチルフェノール)等のアルキル置換フェノール類、レゾルシン等のフェノール性水酸基を2個以上含有する化合物、ヒドロキシナフタレンやジヒドロキシナフタレンのようなナフトール系化合物などが挙げられる。これらのフェノール樹脂は2種類以上を混合して用いることも可能である。フェノール樹脂(A)の原料であるホルムアルデヒド供給物質としては、一般に知られているホルムアルデヒド水溶液や、パラホルムアルデヒド、ヘキサメチレンテトラミン水溶液、1,3−ジオキソラン等が使用できる。
【0008】
前記フェノール樹脂(A)は、上記の原料のみから得られるもののほかに、他の変性剤により変性されたものも使用できる。変性方法としては、フェノール樹脂(A)そのものとの化学的結合を伴うものであってもよいし、単にフェノール樹脂(A)と変性剤との混合物であってもよい。前記変性剤としては、例えばキシレン樹脂やメシチレン樹脂等の芳香族炭化水素樹脂、桐油やカシュー油の如き油類、ポリビニルブチラール等の熱可塑性化合物、ゴム類、エポキシ樹脂、フルフラール、メラミンやジシアンジアミド等アミノ化合物、ほう酸や燐酸等の無機酸類が挙げられる。
【0009】
前記フェノール樹脂(A)としては、フェノール類とホルムアルデヒデ供給物質を蓚酸や硫酸等の酸性触媒でノボラック化した後、溶剤に溶解したもの、或いは水酸化ナトリウム、アミン化合物等で代表される化合物を触媒として用いて反応しレゾール化した後、溶剤に溶解した樹脂も使用できる。また、アンモニアや金属塩を触媒として使用して得られる周知の固形レゾール型フェノール樹脂を溶剤に溶解したものも使用できる。これらのフェノール樹脂類は、水溶液、或いは有機溶剤溶液で使用することが好ましく、固形分濃度として、30〜70重量%が好ましい。また、前記有機溶媒としては、メタノール等のアルコール類が好ましい。
【0010】
本発明に使用されるチタンキレート化合物(B)としては乳酸チタン、リンゴ酸チタン、酒石酸チタン等のオキシ酸系キレート(オキシ酸を配位子としてもつ化合物)、アセチルアセトンで代表されるケトン系キレート、シュウ酸チタン等のジカルボン酸系キレート類が挙げられる。これらは2種類以上混合して使用してもよい。これらの中でも、オキシ酸系キレート化合物が好ましい。また、チタンキレート化合物(B)はアルコールやケトン溶液でも良いし、水溶性の物は水溶液として使用してもよい。
【0011】
前記チタンキレート化合物(B)の使用量は、フェノール樹脂(A)100重量部に対して、繊維基材との密着性が良好なことから0.2重量部以上、また、繊維基材との接着性が良好で、且つ繰り返し圧縮に耐える効果が顕著で、更に樹脂組成物の価格も安くなることから5重量部以下が好ましく、1〜3重量部が特に好ましい。
【0012】
前記チタンキレート化合物(B)は、本発明の組成上特徴的な成分であり、前記チタンキレート化合物(B)はフェノール樹脂と配位結合により容易に結合するとともに、アラミド繊維とも電子的に親和することにあると示唆される。本発明の化合物(B)の添加は、フェノール樹脂(A)を合成した後に添加するだけでも良いし、フェノール樹脂反応時に予め、添加しておいても良い。使用直前に配合添加することもできる。
【0013】
本発明に用いる熱硬化性樹脂組成物には、さらに必要に応じて界面活性剤、難燃剤、酸化防止剤、可塑剤、着色剤、シランカップリング剤等を加えて用いてもよい。
本発明のチタンキレート化合物(B)を包含したフェノール樹脂(A)は、100〜300℃で硬化させることが好ましく、150〜250℃の範囲が特に好ましい。また、いわゆる後焼成工程で樹脂を完全硬化させる方法も一般的に有効である。
【0014】
本発明に用いる熱硬化性樹脂組成物を、アラミド繊維含有繊維状基材(C)に含浸、次いで硬化した硬化物が得られる。前記硬化物としては、例えば、摩擦剤が挙げられる。
【0015】
本発明に用いるアラミド繊維含有繊維状基材(C)としては、アラミド繊維単独でも良いし、木材パルプ、リンターパルプ、ガラス繊維、セラミックス繊維、炭素繊維、チタン酸カリウム繊維のような無機繊維、綿、麻のような天然繊維、ポリエステル、ポリアミド繊維のような合成有機繊維等とアラミド繊維を2種類以上混合した物でも良い。又、繊維の形状に関しては有機繊維をフィブリル化して用いられる場合もある。
【0016】
アラミド繊維含有繊維状基材(C)と含浸用樹脂溶液の比率が[繊維状基材との含浸用樹脂溶液の固形分]/[アラミド繊維含有繊維状基材(C)]=5/95〜50/50であることが好ましい。
【0017】
本発明に用いる熱硬化性樹脂組成物をアラミド繊維含有繊維状基材(C)に含浸させる際には、必要に応じて摩擦調整剤としての充填剤を添加して使用できる。前記充填剤は、種々のものが使用できるが、例えば、ウオラストナイト、ケイソウ土、シリカ、硫酸バリウム、炭酸カルシウム、酸化珪素、カシューダスト、グラファイト等が挙げられる。これらの強化材や充填剤は特に限定するものではなく、2種類以上の混合での使用も可能であり、また、その使用量も用途、要求性能によって調整させるべきものである。
【0018】
なお、本発明に用いる熱硬化性樹脂組成物は、摩擦材を代表とする従来フェノール樹脂を利用していた分野だけでなく、さらに先端複合材料や成形材料等、耐熱性、耐久性が要求される分野においても使用することが期待できるものである。
【0019】
【実施例】
以下に実施例をあげて本発明を説明する。なお例中の部および%はすべて重量基準とする。
【0020】
合成例1
攪拌機、コンデンサー、温度計を備えた4つ口3リットルフラスコに、フェノール940g及び、37%ホルムアルデヒド水溶液1054g、触媒として48%苛性ソーダ液18.8gを加え、95℃まで昇温し、1時間反応させた後、減圧し釜内温度が95℃になる迄脱水を続けた。次いで滴下ロートよりメタノールを加え、不揮発分が50%になるように調整してレゾール型フェノール樹脂液を得た
【0021】
合成例2
攪拌機、コンデンサー、温度計を備えた4つ口3リットルフラスコに、フェノール940g、37%ホルムアルデヒド水溶液1054g、触媒として48%苛性ソーダ液18g、及び、ビスフェノールA型エポキシ樹脂(大日本インキ化学工業製EPICLON850)94gを加え、95℃迄昇温し、1時間反応させた後、減圧し釜内温度が95℃になる迄脱水を続けた。次いで滴下ロートよりメタノールを加え、不揮発分が50%になるように調製してレゾール型フェノール樹脂液を得た
【0022】
合成例3
ノボラック型フェノール樹脂(大日本インキ化学工業製:フェノライト467B)100重量部及び硬化剤としてヘキサメチレンテトラミン10重量部とをメタノールに溶解させて不揮発分50%となるように調製してノボラック樹脂液を得た。
【0023】
合成例4
攪拌機、コンデンサー、温度計を備えた4つ口3リットルフラスコに、フェノール940g及び、37%ホルムアルデヒド水溶液1054g、触媒として48%苛性ソーダ液18.8gを加え、95℃まで昇温し、1時間反応させた後冷却して、70℃にて乳酸チタンを2部添加し、さらに70℃で1時間反応させた後、減圧し釜内温度が95℃になる迄脱水を続けた。次いで滴下ロートよりメタノールを加え、不揮発分が50%になるように調製してレゾール型フェノール樹脂液を得た
【0024】
実施例1
合成例1で調製したレゾール液100部に乳酸チタンを3部、常温下で加え、混合し、熱硬化性樹脂組成物を調製し、アラミド繊維含有繊維状基材(C)含浸して、硬化した硬化物を作成し、得られた物性値を表1に示す。前記樹脂組成物をm−アラミド繊維の不織布に繊維/樹脂=5/5(固形分重量比)になるように含浸し、120℃で20分間予備乾燥した物を10枚重ね、150℃で10分間プレスした後、200℃×3時間アフターキュアーを行い厚み2.5mmのアラミド積層板を作成した。得られた積層板を幅10mmに、切り出し、25℃、及び200℃熱間での曲げ強度を測定した。
【0025】
実施例2
合成例2で調製したレゾール液を使用した以外は、実施例1と同様の操作を行った。得られた結果を表1に示す。
【0026】
実施例3
合成例3で調製したレゾール液を使用した以外は、実施例1と同様の操作を行った。得られた結果を表1に示す。
【0027】
実施例4
合成例4で調製したレゾール液(乳酸チタン2部反応したもの)をm−アラミド繊維の不織布に繊維/樹脂=5/5(固形分重量比)になるように含浸し、120℃で20分間予備乾燥した物を10枚重ね、150℃で10分間プレスした後、200℃×3時間アフターキュアーを行い厚み2.5mmのアラミド積層板を作成した。得られた積層板を幅10mmに、切り出し、25℃、及び200℃熱間での曲げ強度を測定した。得られた結果を表1に示す。
【0028】
実施例5
合成例1で調製したレゾール液100部に乳酸チタンを5部、常温下で加え、混合した物をm−アラミド繊維の不織布に繊維/樹脂=5/5(固形分重量比)になるように含浸し、120℃で20分間予備乾燥した物を10枚重ね、150℃で10分間プレスした後、200℃×3時間アフターキュアーを行い厚み2.5mmのアラミド積層板を作成した。得られた積層板を幅10mmに、切り出し、25℃、及び200℃熱間での曲げ強度を測定した。得られた結果を表1に示す。
【0029】
実施例6
合成例1で調製したレゾール液100部にアセチルアセトンチタンを3部、常温下で加え、混合した物をm−アラミド繊維の不織布に繊維/樹脂=5/5(固形分重量比)になるように含浸し、120℃で20分間予備乾燥した物を10枚重ね、150℃で10分間プレスした後、200℃×3時間アフターキュアーを行い厚み2.5mmのアラミド積層板を作成した。得られた積層板を幅10mmに、切り出し、25℃、及び200℃熱間での曲げ強度を測定した。得られた結果を表1に示す。
【0030】
比較例1
合成例1で調製したレゾール液をm−アラミド繊維の不織布に繊維/樹脂=5/5(固形分重量比)になるように含浸し、120℃で20分間予備乾燥した物を10枚重ね、150℃で10分間プレスした後、200℃×3時間アフターキュアーを行い厚み2.5mmのアラミド積層板を作成した。得られた積層板を幅10mmに、切り出し、25℃、及び200℃熱間での曲げ強度を測定した。得られた結果を表1に示す。
【0031】
比較例2
合成例2で調製したレゾール液をm−アラミド繊維の不織布に繊維/樹脂=5/5(固形分重量比)になるように含浸し、120℃で20分間予備乾燥した物を10枚重ね、150℃で10分間プレスした後、200℃×3時間アフターキュアーを行い厚み2.5mmのアラミド積層板を作成した。得られた積層板を幅10mmに、切り出し、25℃、及び200℃熱間での曲げ強度を測定した。得られた結果を表1に示す。
【0032】
比較例3
合成例3で調製したノボラック液をm−アラミド繊維の不織布に繊維/樹脂=5/5(固形分重量比)になるように含浸し、120℃で20分間予備乾燥した物を10枚重ね、150℃で10分間プレスした後、200℃×3時間アフターキュアーを行い厚み2.5mmのアラミド積層板を作成した。得られた積層板を幅10mmに、切り出し、25℃、及び200℃熱間での曲げ強度を測定した。得られた結果を表1に示す。
【0033】
【表1】

Figure 0003966042
【0034】
実施例7
合成例1で調製したレゾール液100部に乳酸チタンを3部、常温下で加え、混合し、得られた熱硬化性樹脂組成物を下記構成の抄紙体基材にディッピング法にて含浸し、常温で溶剤を揮発させ、更に230℃で10分間硬化させペーパー摩擦材を得た。抄紙基材と樹脂の比率は70対30(重量比)になるように調整した。抄紙基材構成の構成を表2に示す。
【0035】
得られたペーパー摩擦材を所定のサイズに加工した物を金属コア板に接着して試験片を作成した。これを用いてSAE(アメリカ自動車技術協会)#2摩擦試験機で試験を実施した。試験項目は次の通りである。得られた結果を表3に示す。
【0036】
・試験サイクル数:<1>500サイクル耐久試験、<2>5000サイクル耐久試験
試験条件は次の通り、イナーシャ;0.035kgm・sec2、面圧8kg/cm2、ダイナミック回転数3600rpm、スタティック回転数0.7rpm,
・試料油温度100℃、使用試料油トヨタオートフルードD−II(トヨタ自動車(株)の純正オートマチックオイル)とした。
・測定項目;μ1800(1800rpmの動摩擦係数)、μ0(止まり際の動摩擦係数)、μs(0.7rpmの静摩擦係数)、μ0/μ1800、摩耗量(μm)
【0037】
比較例4
合成例1で調製したレゾール液100部を用いた以外は、実施例7と同様にして、ペーパー摩擦材の評価を行った。得られた結果を表3に示す。
【0038】
【表2】
Figure 0003966042
【0039】
得られたペーパー摩擦材を所定のサイズに加工した物を金属コア板に接着して試験片を作成した。これを用いてSAE(アメリカ自動車技術協会)#2摩擦試験機で試験を実施した。試験項目は次の通りである。得られた結果を表3に示す。
【0040】
・試験サイクル数:<1>500サイクル耐久試験、<2>5000サイクル耐久試験
試験条件は次の通り、イナーシャ;0.035kgm・sec2、面圧8kg/cm2、ダイナミック回転数3600rpm、スタティック回転数0.7rpm,
・試料油温度100℃、使用試料油トヨタオートフルードD−II(トヨタ自動車(株)の純正オートマチックオイル)とした。
・測定項目;μ1800(1800rpmの動摩擦係数)、μ0(止まり際の動摩擦係数)、μs(0.7rpmの静摩擦係数)、μ0/μ1800、摩耗量(μm)
【0041】
【表3】
Figure 0003966042
【0042】
これらの結果から本発明の化合物で変性したフェノール樹脂は従来のフェノール樹脂に比較して耐熱性、特にアラミドとの密着性が優れている事は明らかである。
【0043】
【発明の効果】
本発明によれば、チタンキレート化合物を配合したフェノール樹脂組成物は、硬化の過程でフェノール樹脂、或いはフェノール樹脂を変性する化合物類と反応し、更に近年耐久性を向上させる目的で使用するアラミド繊維との密着性が良好なために、摩擦材とした場合に耐剥離性、耐摩耗性、及び高い摩擦係数を維持する事が出来る。この湿式摩擦材は工業用として有益である。[0001]
[Industrial application fields]
The present invention is a binder suitable for a molded article having excellent toughness and heat resistance, an adhesive, particularly a structural material used at high temperatures, etc., and a friction material for brakes and clutches used in automobiles, industrial machines, etc. The present invention relates to a friction material using a resin composition that can be applied to a wet clutch used in a state of being immersed in oil by a transmission or the like.
[0002]
[Prior art]
Phenolic resins have excellent properties such as heat resistance, mechanical properties, low cost, and moldability, and have been used conventionally using processing means such as molding materials, adhesion, and impregnation. In recent years, demand for heat resistance has further increased for materials used at high temperatures, such as friction materials for automobiles, and the base material used has been widespread from inorganic fibers such as conventional glass to aramid fibers with high heat resistance. . There has been a demand for a phenolic resin as a binder that is compatible with these fibers. In order to meet these requirements, various techniques for modifying (denaturing) phenolic resins have been developed. As this modification method, a method of introducing a benzene nucleus, an alkylbenzene nucleus or the like between phenol nuclei, a method of introducing a silicon compound, and the like have been put into practical use. However, these methods bring about a delay in the curing rate of the phenol resin, a decrease in adhesiveness with various base materials, etc., and sufficient performance is not necessarily obtained. In particular, the adhesion to the aramid fibers was not sufficient. Moreover, this requirement is strong for friction materials for automobiles such as brakes and clutches, which particularly require heat resistance.
. Similarly, the so-called wet friction material used in oil is a mixture of pulp, aramid and other fibrous base materials, friction modifier additives, etc., made into a papermaking molding through a papermaking process and then combined with a phenolic resin. It is manufactured by impregnation and thermosetting as an agent. In particular, in recent years, such friction materials have been increasingly demanded to reduce the area of the friction surface in order to reduce the burden on the environment in order to reduce the environmental impact, and changed to a fiber base with high heat resistance and rigidity. Studies have been made on improving flexibility by modifying the resin, and on the shape and type of the filler for the friction modifier. In particular, friction materials using aramid fibers as a base material have been energetically studied and have been put into practical use. However, the aramid base material is generally considered to have poor wettability with the phenolic resin of the binder, and even if a base material with high cornering heat resistance and wear resistance is used, its performance cannot be fully exhibited. It was.
[0004]
[Problems to be solved by the invention]
An object of the present invention enhances the adhesion between the aramid fiber, long period heat resistance, friction characteristics are stabilized, is to provide a wear-resistant high friction material.
[0005]
[Means for Solving the Problems]
As a result of intensive studies in view of the above circumstances, the present inventors have found that a thermosetting resin composition containing a titanium chelate compound having a specific structure in a phenolic resin has excellent adhesion to aramid fibers and has long-term durability. In addition, the present inventors have found that a friction material with high wear resistance can be obtained, and have completed the present invention.
[0006]
That is, the present invention includes a thermosetting resin composition containing a phenol resin (A) and a titanium chelate compound (B) as essential components, and an aramid fiber-containing fibrous base material (C ) Is impregnated and cured, or a friction material is provided.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
As a phenol resin (A) used for this invention, both a resole type phenol resin and a novolak type phenol resin can be used. As a usage, a novolac type phenol resin is good for use in molding, and a resol type phenol resin is preferable for impregnation. Examples of phenols that are raw materials for the phenol resin (A) include phenols, phenol dimers such as bisphenol, alkyl-substituted phenols such as cresol and PTBP (p-tertiary butylphenol), and resorcinol. Examples thereof include compounds containing two or more phenolic hydroxyl groups, and naphthol compounds such as hydroxynaphthalene and dihydroxynaphthalene. These phenol resins can be used in combination of two or more. As a formaldehyde supply material which is a raw material of the phenol resin (A), a generally known formaldehyde aqueous solution, paraformaldehyde, hexamethylenetetramine aqueous solution, 1,3-dioxolane and the like can be used.
[0008]
As the phenol resin (A), in addition to those obtained only from the above raw materials, those modified with other modifiers can be used. As a modification method, a chemical bond with the phenol resin (A) itself may be used, or a mixture of the phenol resin (A) and the modifying agent may be used. Examples of the modifier include aromatic hydrocarbon resins such as xylene resin and mesitylene resin, oils such as tung oil and cashew oil, thermoplastic compounds such as polyvinyl butyral, rubbers, epoxy resins, furfural, melamine, dicyandiamide and the like Compounds, inorganic acids such as boric acid and phosphoric acid can be mentioned.
[0009]
Examples of the phenol resin (A) include compounds in which phenols and formaldehyde feed substances are novolaked with an acidic catalyst such as oxalic acid or sulfuric acid and then dissolved in a solvent, or compounds represented by sodium hydroxide, amine compounds, etc. A resin dissolved in a solvent after reacting as a catalyst to form a resole can also be used. Moreover, what melt | dissolved the well-known solid resol type phenol resin obtained using ammonia or a metal salt as a catalyst in a solvent can also be used. These phenol resins are preferably used in an aqueous solution or an organic solvent solution, and the solid content concentration is preferably 30 to 70% by weight. Moreover, as said organic solvent, alcohols, such as methanol, are preferable.
[0010]
As the titanium chelate compound (B) used in the present invention, an oxyacid chelate (compound having an oxyacid as a ligand) such as titanium lactate, titanium malate and titanium tartrate, a ketone chelate represented by acetylacetone, Examples thereof include dicarboxylic acid chelates such as titanium oxalate. You may use these in mixture of 2 or more types. Among these, oxyacid chelate compounds are preferable. The titanium chelate compound (B) may be an alcohol or ketone solution, or a water-soluble material may be used as an aqueous solution.
[0011]
The titanium chelate compound (B) is used in an amount of 0.2 parts by weight or more from 100 parts by weight of the phenolic resin (A) because the adhesiveness with the fiber base material is good. 5 parts by weight or less is preferable, and 1 to 3 parts by weight is particularly preferable because the adhesiveness is good and the effect of withstanding repeated compression is remarkable and the price of the resin composition is reduced.
[0012]
The titanium chelate compound (B) is a component characteristic of the composition of the present invention, and the titanium chelate compound (B) is easily bonded to a phenol resin by a coordinate bond and also has an electronic affinity with an aramid fiber. That is suggested. The compound (B) of the present invention may be added only after the phenol resin (A) is synthesized, or may be added in advance during the phenol resin reaction. It can also be added and added immediately before use.
[0013]
The thermosetting resin composition used in the present invention may further contain a surfactant, a flame retardant, an antioxidant, a plasticizer, a colorant, a silane coupling agent, and the like as necessary.
The phenol resin (A) including the titanium chelate compound (B) of the present invention is preferably cured at 100 to 300 ° C, particularly preferably in the range of 150 to 250 ° C. A method of completely curing the resin in a so-called post-baking step is also generally effective.
[0014]
A cured product obtained by impregnating the aramid fiber-containing fibrous base material (C) with the thermosetting resin composition used in the present invention and then curing it is obtained. As said hardened | cured material, a friction agent is mentioned, for example.
[0015]
The aramid fiber-containing fibrous base material (C) used in the present invention may be an aramid fiber alone, an inorganic fiber such as wood pulp, linter pulp, glass fiber, ceramic fiber, carbon fiber, potassium titanate fiber, cotton It may be a mixture of two or more kinds of natural fibers such as hemp, synthetic organic fibers such as polyester and polyamide fibers, and aramid fibers. Moreover, regarding the shape of the fiber, the organic fiber may be used in a fibrillated form.
[0016]
The ratio of the aramid fiber-containing fibrous base material (C) to the impregnating resin solution is [solid content of the impregnating resin solution with the fibrous base material] / [aramid fiber-containing fibrous base material (C)] = 5/95. It is preferably ˜50 / 50.
[0017]
When the aramid fiber-containing fibrous base material (C) is impregnated with the thermosetting resin composition used in the present invention , a filler as a friction modifier can be added and used as necessary. Various fillers can be used, and examples thereof include wollastonite, diatomaceous earth, silica, barium sulfate, calcium carbonate, silicon oxide, cashew dust, and graphite. These reinforcing materials and fillers are not particularly limited, and can be used in a mixture of two or more, and the amount of use should be adjusted according to the application and required performance.
[0018]
In addition, the thermosetting resin composition used in the present invention is required not only in fields where phenolic resins such as friction materials are conventionally used, but also in advanced composite materials and molding materials, which are required to have heat resistance and durability. It can be expected to be used in other fields.
[0019]
【Example】
Hereinafter, the present invention will be described with reference to examples. All parts and% in the examples are based on weight.
[0020]
Synthesis example 1
To a four-necked 3 liter flask equipped with a stirrer, condenser and thermometer, 940 g of phenol, 1054 g of 37% formaldehyde aqueous solution and 18.8 g of 48% caustic soda solution as a catalyst were added, and the temperature was raised to 95 ° C. and reacted for 1 hour. After that, dehydration was continued until the temperature in the kettle reached 95 ° C. Subsequently, methanol was added from the dropping funnel to adjust the non-volatile content to 50% to obtain a resol type phenol resin liquid.
Synthesis example 2
In a 4-neck 3 liter flask equipped with a stirrer, condenser and thermometer, phenol 940 g, 37% formaldehyde aqueous solution 1054 g, 48% caustic soda solution 18 g as a catalyst, and bisphenol A type epoxy resin (Epiclon 850 manufactured by Dainippon Ink and Chemicals) 94 g was added, and the temperature was raised to 95 ° C. and reacted for 1 hour. Next, methanol was added from the dropping funnel to prepare a resol-type phenol resin liquid by adjusting the non-volatile content to 50%.
Synthesis example 3
A novolak resin solution prepared by dissolving 100 parts by weight of a novolak-type phenolic resin (Dainippon Ink Chemical Co., Ltd .: Phenolite 467B) and 10 parts by weight of hexamethylenetetramine as a curing agent in methanol so as to have a nonvolatile content of 50%. Got.
[0023]
Synthesis example 4
To a four-necked 3 liter flask equipped with a stirrer, condenser and thermometer, 940 g of phenol, 1054 g of 37% formaldehyde aqueous solution and 18.8 g of 48% caustic soda solution as a catalyst were added, and the temperature was raised to 95 ° C. and reacted for 1 hour. After cooling, 2 parts of titanium lactate was added at 70 ° C., and the mixture was further reacted at 70 ° C. for 1 hour. Then, the pressure was reduced and dehydration was continued until the temperature in the kettle reached 95 ° C. Subsequently, methanol was added from the dropping funnel to prepare a resol type phenol resin liquid by adjusting the non-volatile content to 50%.
Example 1
3 parts of titanium lactate and 100 parts of the resole solution prepared in Synthesis Example 1 are added and mixed at room temperature to prepare a thermosetting resin composition, impregnated with an aramid fiber-containing fibrous base material (C), and cured. Table 1 shows the physical properties obtained. The resin composition was impregnated into m-aramid fiber non-woven fabric so that fiber / resin = 5/5 (solid content weight ratio) and pre-dried at 120 ° C. for 20 minutes. After pressing for a minute, after-curing was performed at 200 ° C. for 3 hours to prepare an aramid laminate having a thickness of 2.5 mm. The obtained laminated board was cut out to a width of 10 mm, and the bending strength between 25 ° C. and 200 ° C. hot was measured.
[0025]
Example 2
The same operation as in Example 1 was performed except that the resol solution prepared in Synthesis Example 2 was used. The obtained results are shown in Table 1.
[0026]
Example 3
The same operation as in Example 1 was performed except that the resol solution prepared in Synthesis Example 3 was used. The obtained results are shown in Table 1.
[0027]
Example 4
The resole solution prepared in Synthesis Example 4 (reacted with 2 parts of titanium lactate) was impregnated into a non-woven fabric of m-aramid fiber so that fiber / resin = 5/5 (solid content weight ratio), and at 120 ° C. for 20 minutes. Ten pre-dried products were stacked and pressed at 150 ° C. for 10 minutes, followed by after-curing at 200 ° C. for 3 hours to prepare an aramid laminate having a thickness of 2.5 mm. The obtained laminated board was cut out to a width of 10 mm, and the bending strength between 25 ° C. and 200 ° C. hot was measured. The obtained results are shown in Table 1.
[0028]
Example 5
To 100 parts of the resole solution prepared in Synthesis Example 1, 5 parts of titanium lactate was added at room temperature, and the resulting mixture was added to the nonwoven fabric of m-aramid fiber so that fiber / resin = 5/5 (solid content weight ratio). Ten sheets of impregnated and pre-dried materials at 120 ° C. for 20 minutes were stacked and pressed at 150 ° C. for 10 minutes, followed by after-curing at 200 ° C. for 3 hours to prepare an aramid laminate having a thickness of 2.5 mm. The obtained laminated board was cut out to a width of 10 mm, and the bending strength between 25 ° C. and 200 ° C. hot was measured. The obtained results are shown in Table 1.
[0029]
Example 6
To 100 parts of the resole solution prepared in Synthesis Example 1, 3 parts of acetylacetone titanium was added at room temperature, and the mixture was added to the nonwoven fabric of m-aramid fiber so that fiber / resin = 5/5 (solid content weight ratio). Ten sheets of impregnated and pre-dried materials at 120 ° C. for 20 minutes were stacked and pressed at 150 ° C. for 10 minutes, followed by after-curing at 200 ° C. for 3 hours to prepare an aramid laminate having a thickness of 2.5 mm. The obtained laminated board was cut out to a width of 10 mm, and the bending strength between 25 ° C. and 200 ° C. hot was measured. The obtained results are shown in Table 1.
[0030]
Comparative Example 1
The resol solution prepared in Synthesis Example 1 was impregnated into a non-woven fabric of m-aramid fiber so that fiber / resin = 5/5 (solid content weight ratio), and 10 pre-dried products at 120 ° C. for 20 minutes were stacked, After pressing at 150 ° C. for 10 minutes, aftercuring was performed at 200 ° C. for 3 hours to prepare an aramid laminate having a thickness of 2.5 mm. The obtained laminated board was cut out to a width of 10 mm, and the bending strength between 25 ° C. and 200 ° C. hot was measured. The obtained results are shown in Table 1.
[0031]
Comparative Example 2
The resol solution prepared in Synthesis Example 2 was impregnated into a non-woven fabric of m-aramid fiber so that fiber / resin = 5/5 (solid content weight ratio), and 10 pieces preliminarily dried at 120 ° C. for 20 minutes were stacked, After pressing at 150 ° C. for 10 minutes, aftercuring was performed at 200 ° C. for 3 hours to prepare an aramid laminate having a thickness of 2.5 mm. The obtained laminated board was cut out to a width of 10 mm, and the bending strength between 25 ° C. and 200 ° C. hot was measured. The obtained results are shown in Table 1.
[0032]
Comparative Example 3
The novolak liquid prepared in Synthesis Example 3 was impregnated into a non-woven fabric of m-aramid fiber so that the ratio of fiber / resin = 5/5 (solid content weight ratio), and 10 sheets preliminarily dried at 120 ° C. for 20 minutes were stacked. After pressing at 150 ° C. for 10 minutes, aftercuring was performed at 200 ° C. for 3 hours to prepare an aramid laminate having a thickness of 2.5 mm. The obtained laminated board was cut out to a width of 10 mm, and the bending strength between 25 ° C. and 200 ° C. hot was measured. The obtained results are shown in Table 1.
[0033]
[Table 1]
Figure 0003966042
[0034]
Example 7
To 100 parts of the resol solution prepared in Synthesis Example 1, 3 parts of titanium lactate was added at room temperature and mixed, and the resulting thermosetting resin composition was impregnated into the paper body substrate having the following constitution by the dipping method. The solvent was volatilized at room temperature and further cured at 230 ° C. for 10 minutes to obtain a paper friction material. The ratio of the papermaking substrate to the resin was adjusted to be 70:30 (weight ratio). Table 2 shows the construction of the papermaking base material.
[0035]
A test piece was prepared by bonding a product obtained by processing the obtained paper friction material to a predetermined size to a metal core plate. Using this, the test was carried out with an SAE (American Automotive Engineering Association) # 2 friction tester. The test items are as follows. The obtained results are shown in Table 3.
[0036]
Test cycle number: <1> 500 cycle endurance test, <2> 5000 cycle endurance test The test conditions are as follows: inertia; 0.035 kgm · sec 2 , surface pressure 8 kg / cm 2, dynamic rotational speed 3600 rpm, static rotational speed 0.7 rpm,
The sample oil temperature was 100 ° C. and the sample oil used was Toyota Auto Fluid D-II (genuine automatic oil from Toyota Motor Corporation).
・ Measurement items: μ 1800 (dynamic friction coefficient at 1800 rpm), μ 0 (dynamic friction coefficient when stationary), μ s (static friction coefficient at 0.7 rpm), μ 0 / μ 1800 , wear amount (μm)
[0037]
Comparative Example 4
The paper friction material was evaluated in the same manner as in Example 7 except that 100 parts of the resole solution prepared in Synthesis Example 1 was used. The obtained results are shown in Table 3.
[0038]
[Table 2]
Figure 0003966042
[0039]
A test piece was prepared by bonding a paper friction material obtained to a predetermined size to a metal core plate. Using this, the test was carried out with an SAE (American Automotive Engineering Association) # 2 friction tester. The test items are as follows. The obtained results are shown in Table 3.
[0040]
Test cycle number: <1> 500 cycle endurance test, <2> 5000 cycle endurance test The test conditions were as follows: inertia; 0.035 kgm · sec2, surface pressure 8 kg / cm2, dynamic rotational speed 3600 rpm, static rotational speed 0 .7 rpm,
The sample oil temperature was 100 ° C., and the sample oil used was Toyota Autofluid D-II (genuine automatic oil from Toyota Motor Corporation).
・ Measurement items: μ 1800 (dynamic friction coefficient at 1800 rpm), μ 0 (dynamic friction coefficient when stopped), μ s (static friction coefficient at 0.7 rpm), μ 0 / μ 1800 , wear amount (μm)
[0041]
[Table 3]
Figure 0003966042
[0042]
From these results, it is clear that the phenol resin modified with the compound of the present invention is superior in heat resistance, in particular, adhesion to aramid, as compared with the conventional phenol resin.
[0043]
【The invention's effect】
According to the present invention, a phenolic resin composition containing a titanium chelate compound reacts with a phenolic resin or a compound that modifies the phenolic resin in the course of curing, and has recently been used for the purpose of improving durability. Therefore, when a friction material is used, it is possible to maintain peeling resistance, wear resistance, and a high coefficient of friction. This wet friction material is useful for industrial use.

Claims (3)

フェノール樹脂(A)と、チタンキレート化合物(B)を必須成分とし含有する熱硬化性樹脂組成物をアラミド繊維含有繊維状基材(C)に含浸、硬化してなることを特徴とする摩擦材 Friction material obtained by impregnating and curing an aramid fiber-containing fibrous base material (C) with a thermosetting resin composition containing phenol resin (A) and titanium chelate compound (B) as essential components . フェノール樹脂(A)がレゾール型フェノール樹脂の溶液である請求項1記載の摩擦材The friction material according to claim 1, wherein the phenol resin (A) is a solution of a resol type phenol resin. チタンキレート化合物(B)がオキシ酸を配位子としてもつ化合物である請求項1記載の摩擦材The friction material according to claim 1, wherein the titanium chelate compound (B) is a compound having an oxyacid as a ligand.
JP2002095338A 2002-03-29 2002-03-29 Friction material Expired - Fee Related JP3966042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002095338A JP3966042B2 (en) 2002-03-29 2002-03-29 Friction material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002095338A JP3966042B2 (en) 2002-03-29 2002-03-29 Friction material

Publications (2)

Publication Number Publication Date
JP2003292727A JP2003292727A (en) 2003-10-15
JP3966042B2 true JP3966042B2 (en) 2007-08-29

Family

ID=29238880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002095338A Expired - Fee Related JP3966042B2 (en) 2002-03-29 2002-03-29 Friction material

Country Status (1)

Country Link
JP (1) JP3966042B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012121932A (en) * 2009-03-30 2012-06-28 Sumitomo Bakelite Co Ltd Molding phenolic resin material
JP2013091783A (en) * 2011-10-06 2013-05-16 Showa Denko Kk Electroconductive resin composition, and electroconductive coating and electroconductive adhesive using the same
JP7211850B2 (en) * 2019-02-27 2023-01-24 Nskワーナー株式会社 Phenolic resin for wet friction material, phenolic resin composition and wet friction material
CN114031892A (en) * 2021-12-08 2022-02-11 连云港英格达电子科技有限公司 Special glass fiber composite reinforced material for high-end electric tool commutator and preparation method thereof
CN114773777A (en) * 2022-05-26 2022-07-22 江西华伍制动器股份有限公司 Preparation method of resin-based composite material added with rare earth oxide and nano silicon dioxide

Also Published As

Publication number Publication date
JP2003292727A (en) 2003-10-15

Similar Documents

Publication Publication Date Title
US5032431A (en) Glass fiber insulation binder
EP3242052B1 (en) Friction material
JP6044820B2 (en) Adhesive composition and wet friction plate
Pizzi et al. Phenol–formaldehydes
US5910521A (en) Benzoxazine polymer composition
JP3966042B2 (en) Friction material
JPWO2016159218A1 (en) Resol-type modified phenolic resin composition, production method thereof and adhesive
US6569918B2 (en) Polymer composition for curing novolac resins
Pizzi et al. Phenol-formaldehyde resins
US7491664B2 (en) Wet friction material
JPWO2018190171A1 (en) Friction material
CA2088885C (en) Precure resistant thermoset resin for molded wood composites
JP2006152052A (en) Thermosetting resin composition and friction material
US5290843A (en) Phenolic resins for reinforced composites
JP2006152052A5 (en)
JP5861927B2 (en) Thermosetting resin composition and friction material
CN104364283A (en) Liquid phenolic resole resin and wet paper friction material
JP2007314684A (en) Thermosetting resin composition and friction material
JPH11310687A (en) Thermosetting resin composition
JP2004231850A (en) Thermosetting resin composition and friction material using it
JP2005213399A (en) Thermosetting resin composition and friction material
JP2010116440A (en) Wet type paper frictional material
JPH10512618A (en) Flexible phenolic resin, its production and use
JP2023070570A (en) friction material
JP2023070569A (en) friction material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070423

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070521

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees