JP3962993B2 - 非接地電源の絶縁検出装置 - Google Patents

非接地電源の絶縁検出装置 Download PDF

Info

Publication number
JP3962993B2
JP3962993B2 JP2002333811A JP2002333811A JP3962993B2 JP 3962993 B2 JP3962993 B2 JP 3962993B2 JP 2002333811 A JP2002333811 A JP 2002333811A JP 2002333811 A JP2002333811 A JP 2002333811A JP 3962993 B2 JP3962993 B2 JP 3962993B2
Authority
JP
Japan
Prior art keywords
power supply
voltage
detection
capacitor
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002333811A
Other languages
English (en)
Other versions
JP2004170131A (ja
Inventor
誠志 谷口
克之 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2002333811A priority Critical patent/JP3962993B2/ja
Publication of JP2004170131A publication Critical patent/JP2004170131A/ja
Application granted granted Critical
Publication of JP3962993B2 publication Critical patent/JP3962993B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非接地電源の絶縁検出装置に係り、特に、電気による推進力を利用する車両に搭載された非接地の直流電源に好適な絶縁検出装置に関する。
【0002】
【従来の技術】
非接地電源の絶縁検出装置は、非接地の直流電源の正及び負端子に接続され、接地電位部からは絶縁された正及び負側の主回路配線の接地電位部に対する絶縁抵抗つまり地絡抵抗を検出することで、接地電位部に対する絶縁や地絡状態を検出するものである(例えば、特許文献1参照)。このような絶縁検出装置では、非接地の直流電源の正端子と接地電位部との間にコンデンサを設定時間の間接続するスイッチング手段、非接地の電源の負端子と接地電位部との間にコンデンサを設定時間の間接続するスイッチング手段、各スイッチング手段の遮断後にコンデンサの両端子間の電圧を検出する検出手段を接続する検出用のスイッチング手段、検出手段で検出した各スイッチング手段の遮断後のコンデンサの両端子間電圧とコンデンサを完全に充電することによって予め算出しておいた電源電圧とに基づいて電源の接地電位部に対する絶縁抵抗つまり地絡抵抗を演算する演算手段などを備えており、演算手段で算出された地絡抵抗から絶縁状態の検出や判定などを行っている。
【0003】
上記のような絶縁検出装置では、地絡抵抗を算出する際、コンデンサの容量などを定数として含む式を用いるが、定数として用いるコンデンサの容量などには、製品間における容量などのばらつきや温度変化による容量のばらつきなどが存在し、さらに容量などの経時変化などが生じる場合もある。このように定数として用いる値にばらつきや変化がある場合、算出した地絡抵抗の値と実際の地絡抵抗の値との間の計測誤差が増大するため、絶縁状態の検出精度が低下してしまう。したがって、コンデンサの容量など地絡抵抗を算出する際の定数となる値にばらつきや変化などがあっても、地絡抵抗の計測誤差をできるだけ低減し、絶縁状態の検出精度を向上することが望まれている。
【0004】
これに対して、正端子側及び負端子側の配線が接地電位部から絶縁された直流電源にコンデンサを直列に第1の設定時間の間接続する第1のスイッチング手段と、電源の正端子と接地電位部との間にコンデンサを直列に第2の設定時間の間接続する第2のスイッチング手段と、接地電位部と電源の負端子との間にコンデンサを直列に第2の設定時間の間接続する第3のスイッチング手段と、第1、第2及び第3の各スイッチング手段の遮断後にコンデンサの両端子間の電圧を検出する検出手段を接続する第4のスイッチング手段と、第1のスイッチング手段を遮断後の検出手段での検出電圧に基づいて電源電圧を推定し、この推定した電源電圧と第2及び第3のスイッチング手段を遮断後の検出手段での各検出電圧とに基づいて電源の接地電位部に対する絶縁抵抗を演算する演算手段とを備えた構成とした絶縁検出装置が考えられている。
【0005】
このような絶縁検出装置では、コンデンサを完全に充電するのに要する時間よりも短い時間に第1の設定時間を設定すれば、この第1の設定時間の間、第1のスイッチング手段によって直流電源と接地電位部との間にコンデンサが直流に接続されて充電され、このときのコンデンサの両端端子間電圧を第4のスイッチング手段によって接続された検出手段で検出することにより、この検出した電圧から演算手段が電源電圧を推定することができる。そして、この推定した電源電圧と、第2及び第3のスイッチング手段遮断後の検出手段での各検出電圧とに基づいて絶縁抵抗を演算することで、絶縁抵抗の計測誤差を低減し、絶縁状態の検出精度を向上できる。
【0006】
【特許文献1】
特開平8−226950号公報(第4−7頁、第1図)
【0007】
【発明が解決しようとする課題】
ところで、電源電圧が変動する場合、上記のような推定した電源電圧を利用して絶縁抵抗を演算する絶縁検出装置では、電源電圧を推定するために第1のスイッチング手段を接続してコンデンサに充電するときの電源電圧と、第2または第3のスイッチング手段を接続してコンデンサに充電するときの電源電圧とが異なる場合が生じる。このため、電源電圧が変動する場合、推定した電源電圧と、第2及び第3のスイッチング手段遮断後の検出手段での各検出電圧とに基づいて絶縁抵抗を算出すると、この算出した絶縁抵抗の値の変化が絶縁状態の変化を反映しているものか、電源電圧の変動によるものかがわからず、絶縁状態の検出の信頼性が低下してしまう。
【0008】
本発明の課題は、絶縁状態の検出の信頼性を向上することにある。
【0009】
【課題を解決するための手段】
本発明の絶縁検出装置は、正端子側及び負端子側の配線が接地電位部から絶縁された直流電源にコンデンサと抵抗の直列接続体を並列に、このコンデンサが完全に充電される時間よりも短い第1の設定時間の間接続する第1のスイッチング手段と、電源の正端子と接地電位部との間に前記直列接続体を第2の設定時間の間接続する第2のスイッチング手段と、接地電位部と電源の負端子との間に前記直列接続体を第2の設定時間の間接続する第3のスイッチング手段と、第1、第2及び第3の各スイッチング手段の遮断後にコンデンサの両端子間の電圧を検出する検出手段を接続する第4のスイッチング手段と、電源の接地電位部に対する絶縁抵抗を演算する演算手段とを備え、演算手段は、第1のスイッチング手段を遮断後の検出手段での検出電圧に基づいて電源の電源電圧を推定し、連続する2回の絶縁検出サイクルのうち、先の絶縁検出サイクルで推定した電源電圧、後の絶縁検出サイクルで推定した電源電圧、及び各推定した電源電圧を算出するためのコンデンサの両端子間の電圧を検出した時間間隔に基づいて各推定した電源電圧を算出するためのコンデンサの両端子間の電圧を検出した時間の間の電源電圧の変動比を算出し、この算出した電源電圧の変動比に基づいて先の絶縁検出サイクルで第2及び第3のスイッチング手段を遮断後の検出手段での各検出電圧を補正し、この補正した各検出電圧と先の絶縁検出サイクルで推定した電源電圧とから電源の接地電位部に対する絶縁抵抗を演算する構成とすることにより上記課題を解決する。
【0010】
このような構成とすることにより、電源電圧の変動比を算出し、この算出した電源電圧の変動比に基づいて第2のスイッチング手段や第3のスイッチング手段を遮断後の検出手段での検出電圧を補正し、この補正した検出電圧を絶縁状態の検出に用いるため、算出した電源の接地電位部に対する絶縁抵抗の値に対する電源電圧の変動の影響を低減し、絶縁状態の検出の信頼性を向上できる。
【0011】
また、上記の絶縁検出装置として、第1のスイッチング手段が、電源の正端子に接続された第1のスイッチ部と、電源の負端子に接続された第2のスイッチ部とを含み、第3のスイッチング手段が、第2のスイッチ部と、第1のスイッチに直列に接続された第3のスイッチ部とを含み、第2のスイッチング手段が、第1のスイッチ部と、第2のスイッチ部に直列に接続された第4のスイッチ部とを含み、第1のスイッチ部と第3のスイッチ部との間と、第2のスイッチ部と第4のスイッチ部との間とに、正側から負側に向かう方向に整流する第1のダイオード、第1の抵抗及びコンデンサが直列に接続され、第1のダイオード及び第1の抵抗に並列に、この第1ダイオードと逆方向に整流する第2のダイオード及び第2の抵抗が直列に接続されており、検出手段が、第3のスイッチ部と第4のスイッチ部との間に接続され、検出手段と第4のスイッチ部との間が接地電位部に接地されている回路構成とする。
【0012】
さらに、閉路したときに第2の抵抗をバイパスする経路を形成する第5のスイッチ部を含むバイパス手段を備えた構成とすれば、第4のスイッチング手段が閉路している状態でバイパス手段の第5のスイッチ部が閉路すると、コンデンサの放電時間を短縮できるため、絶縁状態の検出に要する時間を短縮できるので好ましい。
【0013】
【発明の実施の形態】
以下、本発明を適用してなる絶縁検出装置の一実施形態について図1乃至図5を参照して説明する。図1は、本発明を適用してなる絶縁検出装置の概略構成を示す図である。図2は、本発明を適用してなる絶縁検出装置の絶縁抵抗の算出動作を示すフロー図である。図3は、各スイッチ部の動作に対するコンデンサの充放電状態と電圧の読み込みタイミングを示すタイムチャートである。図4は、本発明を適用してなる絶縁検出装置の絶縁抵抗の算出過程を示すフロー図である。図5は、電源電圧の変動とマイコンによる電圧検出タイミングとを示す図である。
【0014】
本実施形態の絶縁検出装置1は、図1に示すように、例えば電力を利用して推進力を得る電気推進車両などの電力源となる直流電源3に対して適用したものである。電源3は、複数の蓄電池などを直列接続したものや燃料電池などであり、電源3の正端子側の正側主回路配線5aと負端子側の負側主回路配線5bが、各々、接地電位部7、例えば車体などから絶縁されており、電源3は非接地電源となっている。絶縁検出装置1は、第1スイッチS1、第2スイッチS2、第3スイッチS3、第4スイッチS4、コンデンサ9、検出手段と演算手段を兼ねると共に絶縁状態を判定するマイコン11、そして各スイッチを設定された時間に応じて開閉制御する図示していないスイッチング制御回路などで構成されている。なお、図示していないスイッチング制御回路をマイコン11に一体に含めるなど、検出手段、演算手段及びスイッチング制御回路などは、別体または一体に適宜形成できる。また、図1で示した第1スイッチS1、第2スイッチS2、第3スイッチS3、第4スイッチS4は、例えばリレーや半導体スイッチといった様々なスイッチ機能を有する部品からなるスイッチ部を接点として模式的に示したものである。
【0015】
電源3の正側端子には、この正側端子から第1スイッチS1及び第3スイッチS3が順次直列に接続され、電源3の負側端子には、この負端子側から第2スイッチS2、第4スイッチS4及び第4抵抗R4が順次直列に接続されている。第1スイッチS1と第3スイッチS3との間から第2スイッチS2と第4スイッチS4との間には、第1ダイオードD1、第1抵抗R1及びコンデンサ9が順次直列に接続されている。第1抵抗R1とコンデンサ9との間から第1スイッチS1と第3スイッチS3との間には、第2ダイオードD2及び第2抵抗R2が順次直列に接続されている。すなわち、第1ダイオードD1及び第1抵抗R1と、第2ダイオードD2及び第2抵抗R2とは並列に接続されている。また、第2抵抗R2の両端子間には、第2抵抗R2と並列に第5スイッチS5が接続されている。第1ダイオードD1は、正側から負側に向かう方向に整流するものであり、第2ダイオードD2は、第1ダイオードD1と逆方向に整流するものである。
【0016】
第3スイッチS3と第4抵抗R4間には、第3スイッチS3と第4抵抗R4に対して直列に第3抵抗R3が接続されており、第3スイッチS3と第3抵抗R3との間には、検出手段と演算手段を兼ねるマイコン11がマイコン11のアナログ/デジタル変換ポートつまりA/Dポートを介して接続されている。また、第3抵抗R3と第4抵抗R4との間の部位は、接地電位部7に接地されている。
【0017】
したがって、電源3にコンデンサ9を直列に第1の設定時間の間接続する第1のスイッチング手段は、第1スイッチS1、第2スイッチS2及び図示していないスイッチング制御回路などで、電源3の正端子と接地電位部7との間にコンデンサ9を直列に第2の設定時間の間接続する第2のスイッチング手段は、第1スイッチS1、第4スイッチS4及び図示していないスイッチング制御回路などで、接地電位部7と電源3の負端子との間にコンデンサ9を直列に第2の設定時間の間接続する第3のスイッチング手段は、第2スイッチS2、第3スイッチS3及び図示していないスイッチング制御回路などで、第4のスイッチング手段は、第3スイッチS3、第4スイッチS4及び図示していないスイッチング制御回路などで形成されている。なお、コンデンサ9には、例えば数μFといった比較的高容量のものが用いられ、第1抵抗R1と第2抵抗R2には、例えば数百kΩといった比較的高い抵抗値のものが用いられている。
【0018】
このような構成の絶縁検出装置の動作と本発明の特徴部について説明する。絶縁検出装置1は、図2及び図3に示すように、絶縁状態の検出を開始すると、図示していないスイッチング制御回路が第1スイッチS1及び第2スイッチS2を第1の設定時間である第1閉路時間T1の間、閉路する(ステップ101)。すなわち、第1のスイッチング手段により、接地電位部7を介さずに電源3にコンデンサ9を直列に接続する回路が形成され、第1閉路時間T1の間、コンデンサ9への充電が行われ、コンデンサ9の両端子間の電圧VCが上昇する。なお、第1閉路時間T1は、コンデンサ9を完全に充電するのに必要な時間よりも短い時間に設定されており、例えばコンデンサ9を完全に充電するのに必要な時間の1/5〜1/10といったような短い時間となっており、第1閉路時間T1は、必要とされる絶縁抵抗の計測誤差範囲によって選択されたものである。
【0019】
ステップ101において第1閉路時間T1が経過すると、第1スイッチS1及び第2スイッチS2が開路つまり遮断され、第1閉路時間T1よりも短い所定時間tw1経過後、第3スイッチS3及び第4スイッチS4が閉路される(ステップ103)。すなわち、第4のスイッチング手段により、コンデンサ9の両端子間の電圧を検出するマイコン11が接続された回路が形成されると共に、第2抵抗R2、第3抵抗R3、そして第4抵抗R4を含むコンデンサ9からの放電回路が形成され、コンデンサ9の両端子間の電圧VCが降下する。第3スイッチS3及び第4スイッチS4が閉路されてから第1閉路時間T1よりも短い所定時間tw2経過後、マイコン11は、A/Dポートを介してA/D変換データ、つまりコンデンサ9の両端子間の電圧VCを読み込む(ステップ105)。このときのコンデンサ9の両端子間電圧VCの値つまり検出電圧V0により、次式(1)から推定の電源電圧V0sを算出する(ステップ107)。
V0=V0s(1−EXP(−T1/C・R1)) …(1)
ただし、式(1)において、T1は第1スイッチS1及び第2スイッチS2の閉路時間、Cはコンデンサ9の容量、R1は第1抵抗R1の抵抗値である。
【0020】
一方、図示していないスイッチング制御回路は、ステップ105でコンデンサ9の両端子間の電圧VCを検出した後、第3スイッチS3及び第4スイッチS4が閉路された状態で、第5スイッチS5を閉路して第2抵抗R2をバイパスさせることで、第2抵抗R2の抵抗値を下げた状態とし、コンデンサ9からの放電に要する時間を短縮する。第5スイッチS5を閉路して、第1閉路時間T1よりも短い所定時間td1経過後、第5スイッチS5を開路つまり遮断した後、マイコン11は、A/Dポートを介してA/D変換データ、つまりコンデンサ9の両端子間の電圧VCを読み込む(ステップ109)。
【0021】
ステップ109で電圧VCが0Vであることが確認されたら、図示していないスイッチング制御回路は、第3スイッチS3を開路し、所定時間tw1経過後に第1スイッチS1を閉路する。そして、第1スイッチS1及び第4スイッチS4を第2の設定時間である第2閉路時間T2の間、閉路する(ステップ111)。すなわち、第2のスイッチング手段により、電源3の正端子と接地電位部7との間にコンデンサ9を直列に接続した回路、つまり、図1に示すように、正側主回路配線5a、第1スイッチS1、第1ダイオードD1、第1抵抗R1、コンデンサ9、第4スイッチS4、第4抵抗R4、接地電位部7、そして図1において点線で示すような位置に仮定される負端子側の地絡抵抗Rn、負側主回路配線5bを順次直列に電源3に接続した回路が形成される。これにより、第2閉路時間T2の間、コンデンサ9への充電が行われ、図2に示すように、地絡抵抗Rnの値に応じてコンデンサ9の両端子間の電圧VCが上昇する。なお、第2の設定時間である第2閉路時間T2も、第1閉路時間T1と同様に、コンデンサ9を完全に充電するのに必要な時間よりも短く、所定時間tw1、tw2、td1よりも長い時間に設定されている。
【0022】
ステップ111において第2閉路時間T2が経過すると、図2及び図3に示すように、第1スイッチS1が開路つまり遮断され、所定時間tw1経過後、第3スイッチS3が閉路され、第3スイッチS3及び第4スイッチS4が閉路された状態となる。すなわち、第4のスイッチング手段により、コンデンサ9の両端子間の電圧を検出するマイコン11が接続された回路が形成されると共に、第2抵抗R2、第3抵抗R3、そして第4抵抗R4を含むコンデンサ9からの放電回路が形成され、コンデンサ9の両端子間の電圧VCが降下する。そして、第3スイッチS3が閉路されてから所定時間tw2経過後、マイコン11は、A/Dポートを介してA/D変換データ、つまりコンデンサ9の両端子間の電圧VCNを読み込む(ステップ113)。
【0023】
一方、図示していないスイッチング制御回路は、ステップ113でコンデンサ9の両端子間の電圧VCを検出した後、第3スイッチS3及び第4スイッチS4が閉路された状態で、第5スイッチS5を閉路して第2抵抗R2をバイパスさせることで、第2抵抗R2の抵抗値を下げた状態とし、コンデンサ9からの放電に要する時間を短縮する。第5スイッチS5を閉路して、第2閉路時間T2よりも短い所定時間td2経過後、第5スイッチS5を開路つまり遮断した後、マイコン11は、A/Dポートを介してA/D変換データ、つまりコンデンサ9の両端子間の電圧VCを読み込む(ステップ115)。
【0024】
ステップ115で電圧VCが0Vであることが確認されたら、図示していないスイッチング制御回路は、第4スイッチS4を開路し、所定時間tw1経過後、第2スイッチS2を閉路する。そして、第2スイッチS2及び第3スイッチS3を第2の設定時間である第2閉路時間T2の間、閉路する(ステップ117)。すなわち、第3のスイッチング手段により、接地電位部7と電源3の負端子との間にコンデンサ9を直列に接続した回路、つまり、図1に示すように、正側主回路配線5a、図1において点線で示すような位置に仮定される正端子側の地絡抵抗Rp、接地電位部7、第3抵抗R3、第3スイッチS3、第1ダイオードD1、第1抵抗R1、コンデンサ9、第2スイッチS2、そして負側主回路配線5bを順次直列に電源3に接続した回路が形成される。これにより、第2閉路時間T2の間、コンデンサ9への充電が行われ、図3に示すように、地絡抵抗Rpの値に応じてコンデンサ9の両端子間の電圧VCが上昇する。
【0025】
ステップ117において第2閉路時間T2が経過すると、図2及び図3に示すように、第2スイッチS2が開路つまり遮断され、所定時間tw1経過後、第4スイッチS4が閉路され、第3スイッチS3及び第4スイッチS4が閉路された状態となる。すなわち、第4のスイッチング手段により、コンデンサ9の両端子間の電圧を検出するマイコン11が接続された回路が形成されると共に、第2抵抗R2、第3抵抗R3、そして第4抵抗R4を含むコンデンサ9からの放電回路が形成され、コンデンサ9の両端子間の電圧VCが降下する。そして、第4スイッチS4が閉路されてから所定時間tw2経過後、マイコン11は、A/Dポートを介してA/D変換データ、つまりコンデンサ9の両端子間の電圧VCPを読み込む(ステップ119)。
【0026】
一方、図示していないスイッチング制御回路は、ステップ119でコンデンサ9の両端子間の電圧VCを検出した後、第3スイッチS3及び第4スイッチS4が閉路された状態で、第5スイッチS5を閉路して第2抵抗R2をバイパスさせることで、第2抵抗R2の抵抗値を下げた状態とし、コンデンサ9からの放電に要する時間を短縮する。第5スイッチS5を閉路して所定時間td2経過後、第5スイッチS5を開路つまり遮断した後、マイコン11は、A/Dポートを介してA/D変換データ、つまりコンデンサ9の両端子間の電圧VCを読み込む(ステップ121)。そして、ステップ121で電圧VCが0Vであることが確認された時点で、1回の絶縁状態の検出サイクルを終了する。
【0027】
ステップ121でこの検出サイクルつまり前回の検出サイクルが終了すると、この検出サイクルに続く次の検出サイクルつまり今回の検出サイクルに進み、同様の地絡抵抗の検出動作を行う。このとき、今回の検出サイクルのステップ107において、推定した電源電圧V0sが算出されると、図4に示すように、前回の検出サイクルにおける地絡抵抗Rp、Rnの算出過程(ステップ123〜ステップ133)が行われる。なお、このステップ123〜ステップ133が行われている間も、今回の検出サイクルにおけるステップ109以降のステップが実施されている。
【0028】
前回の検出サイクルにおける地絡抵抗Rp、Rnの算出過程に入ると、図4に示すように、前回の検出サイクルにおいて推定した電源電圧V0s、今回の検出サイクルにおいて推定した電源電圧V0s、そして前回の検出サイクルにおいて推定した電源電圧V0sを算出するためにマイコン11でコンデンサ9の両端子間の電圧を検出した時間と、今回の検出サイクルにおいて推定した電源電圧V0sを算出するためにマイコン11でコンデンサ9の両端子間の電圧を検出した時間との計測間隔、つまり絶縁状態の検出サイクルの計測周期I1に基づいた比例計算から、次式(2)により電源3の電源電圧変動比を算出する(ステップ123)。
電源電圧変動比=(前回V0s−今回V0s)/計測周期I1 …(2)
ここで、本実施形態の絶縁検出装置では、例えばコンデンサ9の両端子間の電圧検出に必要なスイッチを閉している時間は1秒以下程度であり、1回の電圧検出に要する時間も1秒以下程度である。そして、1回の検出サイクルに要する時間、つまり検出周期は、数秒程度となっている。したがって、電源電圧が数十秒や数百秒周期で変動している場合、数秒程度の1回の検出サイクル時間における電源電圧の変動は、図5に示すように、直線または近似直線となるため、ステップ123の式(2)のような比例計算によって電源電圧の変動比を求めることができる。
【0029】
ステップ123の後、ステップ123で求めた電源電圧変動比と、推定した電源電圧V0sを算出するためにマイコン11でコンデンサ9の両端子間の電圧を検出した時間とマイコン11での検出電圧VCNを検出した時間との計測間隔I2とに基づいて次式(3)からマイコン11での検出電圧VCN検出時の電源電圧変動量ΔV0s(VCN)を算出する(ステップ125)。
ΔV0s(VCN)=(電源電圧変動比×計測間隔I2) …(3)
ステップ125と同様に、ステップ123で求めた電源電圧変動比と、推定した電源電圧V0sを算出するためにマイコン11でコンデンサ9の両端子間の電圧を検出した時間とマイコン11での検出電圧VCPを検出した時間との計測間隔I3とに基づいて次式(4)からマイコン11での検出電圧VCP検出時の電源電圧変動量ΔV0s(VCP)を算出する(ステップ127)。
ΔV0s(VCP)=(電源電圧変動比×計測間隔I3) …(4)
ステップ127の後、ステップ125で求めた検出電圧VCN検出時の電源電圧変動量ΔV0s(VCN)に基づいて次式(5)からVCN補正値を算出する(ステップ129)。
VCN補正値=VCN×(1−ΔV0s(VCN))/前回V0s …(5)
同様に、ステップ127で求めた検出電圧VCP検出時の電源電圧変動量ΔV0s(VCP)に基づいて次式(6)からVCP補正値を算出する(ステップ131)。
VCP補正値=VCP×(1−ΔV0s(VCP))/前回V0s …(6)
ステップ129及びステップ131で求めたVCN補正値及びVCP補正値を用い、次式(7)、(8)によって、電源3の負端子側の地絡抵抗Rnと電源3の正端子側の地絡抵抗Rpを算出する(ステップ133)。
Rn=−R1−T2/C・ln(1−VCN補正値/V0s) …(7)
Rp=−R1−T2/C・ln(1−VCP補正値/V0s) …(8)
ただし、式(7)、(8)において、T2は第2スイッチS2及び第3スイッチS3の閉路時間、Cはコンデンサ9の容量、R1は第1抵抗R1の抵抗値、V0sはステップ107で推定した電源電圧である。
【0030】
そして、ステップ133の後、マイコン11は、ステップ133で求めた地絡抵抗Rn、Rpから絶縁状態の判定を行う。例えば、ステップ133で求めた地絡抵抗Rn、Rpと、予め定められた基準抵抗値とを比較し、地絡抵抗Rn、Rpのいずれか1方でも基準抵抗値以下になっていると、絶縁不良が生じていると判定する。また、絶縁状態の検出を行う間、ステップ101からステップ121、及びステップ123からステップ133までの絶縁状態の検出サイクルを繰り返す。
【0031】
このように、本実施形態の絶縁検出装置では、ステップ123からステップ133において、電源3の電源電圧変動比を算出し、この算出した電源電圧変動比に基づいて検出電圧VCN、VCPを補正し、この補正した検出電圧VCN、VCPによって地絡抵抗を検出して絶縁状態を判定している。このため、検出した地絡抵抗の値の変化への電源電圧の変動の影響を低減し、絶縁状態の検出の信頼性を向上できる。
【0032】
ところで、本実施形態の絶縁検出装置ような検出電圧VCN、VCPの補正を行わない絶縁検出装置では、地絡抵抗の検出に影響する電源電圧の変動がある場合、電源電圧の変動の影響を含んだ可能性がある地絡抵抗の検出値を絶縁状態の判定から排除するため、前回の推定した電源電圧V0sと今回の推定したV0sとの差が予め設定された値以上になると、電源電圧の変動が地絡抵抗の検出値に影響するとみなし、今回の地絡抵抗の検出サイクルをキャンセルしている。このため、電源電圧の変動状態によっては、単位時間における地絡抵抗の検出回数が少なくなり、例えば検出確率が50%程度になる場合もある。
【0033】
しかし、本実施形態の絶縁検出装置では、検出した地絡抵抗の値の変化への電源電圧の変動の影響を低減しているため、地絡抵抗の検出サイクルをキャンセルするための前回の推定した電源電圧V0sと今回の推定したV0sとの差に対する設定値を、検出電圧VCN、VCPの補正を行わない絶縁検出装置よりも大きな値にすることができる。したがって、単位時間における地絡抵抗の検出回数が、検出電圧VCN、VCPの補正を行わない絶縁検出装置よりも多くなり、絶縁状態の検出確率を向上できる。そして、絶縁状態の検出確率を向上できることにより、絶縁状態の検出精度を向上できる。
【0034】
さらに、本実施形態の絶縁検出装置1では、閉路したときに第2抵抗R2をバイパスする経路を形成する第5スイッチS5を含むバイパス手段を備えているため、マイコン11によるコンデンサ9の両端子間の電圧の検出後に第5スイッチS5を閉路することで、コンデンサ9からの放電時間を短縮することができる。したがって、絶縁検出のための1サイクルに要する時間を短縮することができ、単位時間当たりの絶縁検出の回数を増やし、絶縁検出の精度をさらに向上できる。
【0035】
なお、第5スイッチS5を含むバイパス手段としては、本実施形態の構成に限らず、バイパス手段は、第2ダイオードD2と第2抵抗R2との間から接地電位部7に、第5スイッチS5そして第2抵抗R2よりも抵抗が低い第5抵抗R5を直列に接続した構成などにするこもできる。また、絶縁検出のための1サイクルに要する時間の短縮などの必要性がない場合などには、第5スイッチS5を含むバイパス手段を設けない構成にすることもできる。
【0036】
また、本実施形態では、正端子側の地絡抵抗Rpと負端子側の地絡抵抗Rnを個別に算出し、これにより絶縁不良の部位も検出できるようにしている。しかし、絶縁不良の部位を検出せず絶縁不良の発生のみを判定する場合などには、推定した電源電圧V0sと検出電圧VCP、VCNなどとに基づいて正端子側の地絡抵抗Rpと負端子側の地絡抵抗Rnとを代表する地絡抵抗値などを算出する別の式を用いることもできる。
【0037】
また、本発明は、本実施形態において示した回路構成に限らず、正端子側及び負端子側の配線が接地電位部から絶縁された直流電源にコンデンサを直列に第1の設定時間の間接続する第1のスイッチング手段、電源の正端子と接地電位部との間に前記コンデンサを直列に第2の設定時間の間接続する第2のスイッチング手段、電源の負端子と接地電位部との間にコンデンサを直列に第2の設定時間の間接続する第3のスイッチング手段、第1、第2及び第3の各スイッチング手段の遮断後にコンデンサの両端子間の電圧を検出する検出手段を接続する第4のスイッチング手段などをそなえていれば様々な回路構成の絶縁検出装置に適用することができる。
【0038】
【発明の効果】
本発明によれば、絶縁状態の検出の信頼性を向上できる。
【図面の簡単な説明】
【図1】本発明を適用してなる絶縁検出装置の一実施形態の概略構成を示す図である。
【図2】本発明を適用してなる絶縁検出装置の一実施形態における絶縁抵抗の算出動作を示すフロー図である。
【図3】各スイッチ部の動作に対するコンデンサの充放電状態と電圧の読み込みタイミングを示すタイムチャートである。
【図4】本発明を適用してなる絶縁検出装置の一実施形態における絶縁抵抗の算出過程を示すフロー図である。
【図5】電源電圧の変動とマイコンによる電圧検出タイミングとを示す図である。
【符号の説明】
1 絶縁検出装置
3 電源
5a 正側主回路配線
5b 負側主回路配線
7 接地電位部
9 コンデンサ
11 マイコン
S1 第1スイッチ
S2 第2スイッチ
S3 第3スイッチ
S4 第4スイッチ
Rp 正端子側地絡抵抗
Rn 負端子側地絡抵抗

Claims (1)

  1. 正端子側及び負端子側の配線が接地電位部から絶縁された直流電源にコンデンサと抵抗の直列接続体を並列に、該コンデンサが完全に充電される時間よりも短い第1の設定時間の間接続する第1のスイッチング手段と、前記電源の正端子と前記接地電位部との間に前記直列接続体を第2の設定時間の間接続する第2のスイッチング手段と、前記電源の負端子と前記接地電位部との間に前記直列接続体を第2の設定時間の間接続する第3のスイッチング手段と、前記第1、第2及び第3の各スイッチング手段の遮断後に前記コンデンサの両端子間の電圧を検出する検出手段を接続する第4のスイッチング手段と、前記電源の前記接地電位部に対する絶縁抵抗を演算する演算手段とを備え、
    前記演算手段は、前記第1のスイッチング手段を遮断後の前記検出手段での検出電圧に基づいて前記電源の電源電圧を推定し、連続する2回の絶縁検出サイクルのうち、先の絶縁検出サイクルで推定した電源電圧、後の絶縁検出サイクルで推定した電源電圧、及び前記各推定した電源電圧を算出するための前記コンデンサの両端子間の電圧を検出した時間間隔に基づいて前記各推定した電源電圧を算出するための前記コンデンサの両端子間の電圧を検出した時間の間の前記電源電圧の変動比を算出し、該算出した電源電圧の変動比に基づいて前記先の絶縁検出サイクルで前記第2及び第3のスイッチング手段を遮断後の前記検出手段での各検出電圧を補正し、該補正した各検出電圧と前記先の絶縁検出サイクルで推定した電源電圧とから前記電源の前記接地電位部に対する絶縁抵抗を演算してなる非接地電源の絶縁検出装置。
JP2002333811A 2002-11-18 2002-11-18 非接地電源の絶縁検出装置 Expired - Fee Related JP3962993B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002333811A JP3962993B2 (ja) 2002-11-18 2002-11-18 非接地電源の絶縁検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002333811A JP3962993B2 (ja) 2002-11-18 2002-11-18 非接地電源の絶縁検出装置

Publications (2)

Publication Number Publication Date
JP2004170131A JP2004170131A (ja) 2004-06-17
JP3962993B2 true JP3962993B2 (ja) 2007-08-22

Family

ID=32698422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002333811A Expired - Fee Related JP3962993B2 (ja) 2002-11-18 2002-11-18 非接地電源の絶縁検出装置

Country Status (1)

Country Link
JP (1) JP3962993B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240300A (ja) * 2006-03-08 2007-09-20 Yazaki Corp 絶縁検出方法および装置
JP4659067B2 (ja) * 2008-05-26 2011-03-30 矢崎総業株式会社 絶縁計測方法及び絶縁計測装置
JP6504855B2 (ja) * 2015-02-27 2019-04-24 株式会社デンソーテン 劣化検出装置および劣化検出方法
JP6725578B2 (ja) * 2018-04-09 2020-07-22 矢崎総業株式会社 地絡検出装置
JP6725577B2 (ja) * 2018-04-09 2020-07-22 矢崎総業株式会社 地絡検出装置
RU2749577C1 (ru) * 2020-08-20 2021-06-15 Федеральное государственное унитарное предприятие "Центральный ордена Трудового Красного Знамени научно-исследовательский автомобильный и автомоторный институт "НАМИ" (ФГУП "НАМИ") Способ автоматического контроля сопротивления изоляции сети постоянного тока
RU2747043C1 (ru) * 2020-08-20 2021-04-23 Федеральное государственное унитарное предприятие "Центральный ордена Трудового Красного Знамени научно-исследовательский автомобильный и автомоторный институт "НАМИ" (ФГУП "НАМИ") Устройство автоматического контроля сопротивления изоляции сети питания постоянного тока
CN113791278B (zh) * 2021-09-30 2023-06-30 蜂巢能源科技有限公司 电池包绝缘电阻检测方法、装置及电池包和车辆

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3224977B2 (ja) * 1994-12-12 2001-11-05 本田技研工業株式会社 非接地電源の絶縁検出方法及び装置
JPH08179019A (ja) * 1994-12-22 1996-07-12 Hitachi Koki Co Ltd 電池の残容量表示装置
JP4190082B2 (ja) * 1999-04-15 2008-12-03 パナソニック株式会社 信号補正装置および信号補正方法
JP3672183B2 (ja) * 2000-11-20 2005-07-13 株式会社デンソー 組電池の電圧検出装置

Also Published As

Publication number Publication date
JP2004170131A (ja) 2004-06-17

Similar Documents

Publication Publication Date Title
US7075311B1 (en) Insulation detecting device for non-grounded power source
US7161355B1 (en) Voltage detection device and insulation detecting apparatus for non-grounded power supply including the voltage detection device
CN102539961B (zh) 用于检测绝缘状态检测单元的快速电容器的故障的装置
CN101010596B (zh) 内阻抗检测设备、内阻抗检测方法、退化程度检测设备和退化程度检测方法
US8040139B2 (en) Fault detection method for detecting leakage paths between power sources and chassis
JP7005895B2 (ja) 内部抵抗算出装置、内部抵抗算出方法および内部抵抗算出プログラム
US7443155B2 (en) Voltage detecting apparatus
KR20010043872A (ko) 전지 충전상태의 추정수단 및 전지 열화상태의 추정방법
US7639021B2 (en) Circuit and method for detecting a dielectric breakdown fault
JP3962990B2 (ja) 非接地電源の絶縁検出装置
US11280844B2 (en) Device and method for monitoring a reliability of a cell impedance measurement of a battery cell
KR20200102466A (ko) 쌍형 샘플 상관을 사용한 센서 결함 검출
JP3962993B2 (ja) 非接地電源の絶縁検出装置
US20170299658A1 (en) Battery voltage measurement circuit
JPH0715882A (ja) 充電回路
JPH09274062A (ja) 漏電検出装置
JP2007240426A (ja) 絶縁検出方法および絶縁検出装置
JP3890503B2 (ja) 非接地電源の絶縁検出装置
JP2004170137A (ja) 非接地電源の絶縁検出装置
JP3985158B2 (ja) 電圧検出回路、及びその電圧検出回路を備えた非接地電源の絶縁検出装置
JP2002291167A (ja) フライングキャパシタ式組電池電圧検出装置
JP3962991B2 (ja) 非接地電源の絶縁検出装置
JP3890502B2 (ja) 非接地電源の絶縁検出装置
JP3890504B2 (ja) 非接地電源の絶縁検出装置
JP3962992B2 (ja) 非接地電源の絶縁検出装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070510

R150 Certificate of patent or registration of utility model

Ref document number: 3962993

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees