JP3950713B2 - Circuit wiring inspection method and apparatus - Google Patents

Circuit wiring inspection method and apparatus Download PDF

Info

Publication number
JP3950713B2
JP3950713B2 JP2002054237A JP2002054237A JP3950713B2 JP 3950713 B2 JP3950713 B2 JP 3950713B2 JP 2002054237 A JP2002054237 A JP 2002054237A JP 2002054237 A JP2002054237 A JP 2002054237A JP 3950713 B2 JP3950713 B2 JP 3950713B2
Authority
JP
Japan
Prior art keywords
wiring
branch
voltage
trunk
end point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002054237A
Other languages
Japanese (ja)
Other versions
JP2003255007A (en
Inventor
義典 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2002054237A priority Critical patent/JP3950713B2/en
Publication of JP2003255007A publication Critical patent/JP2003255007A/en
Application granted granted Critical
Publication of JP3950713B2 publication Critical patent/JP3950713B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、回路配線検査方法およびその装置に関し、さらに詳しく言えば、幹配線から分岐されている複数の枝配線間の短絡および各枝配線の断線の有無を検査する回路配線の検査技術に関するものである。
【0002】
【従来の技術】
回路配線の検査項目の一つに配線パターンの断線(オープン)検査と、隣接する配線パターン間の短絡(ショート)検査とがある。
【0003】
図5に模式的に示すように、回路基板に2つの配線パターンA,Bが隣接して形成されているとして、断線検査は、配線パターンAの端点Aa,Ab間、配線パターンBの端点Ba,Bb間の各抵抗値Rを測定することにより行われる。R≒0であれば断線なし、R≒∞であれば断線ありと判定される。
【0004】
配線パターンA,B間の短絡検査は、例えば配線パターンAの一方の端点Aaと配線パターンBの一方の端点Baとの間の抵抗値Rを測定し、R≒∞であればパターン間に短絡なし、R≒0であればパターン間に短絡ありと判定される。
【0005】
また、パターンによっては、図6に示すように幹配線Mから複数の枝配線P1〜PNが分岐している回路がある。この場合、枝配線P1〜PNはそれらの各一端(幹側端点)が幹配線Mにより相互に接続されているが、やはり抵抗測定により各枝配線の断線検査と枝配線間の短絡検査とが行われる。
【0006】
例えば、隣接する枝配線P1とP2の断線・短絡を検査するには、それらの反幹側端点P1aとP2a間の抵抗値を低抵抗測定器にて測定する。そして、その測定値Rと、あらかじめ設定されている所定のしきい値±Thとを比較することにより、断線・短絡の有無が検査される。なお、しきい値±Thは良品基板から得た基準値に基づいて設定される。
【0007】
すなわち、図7に示すように、枝配線P1,P2間が短絡していると、抵抗値Rが低くなり、しきい値±Thから外れる。これにより、枝配線間に短絡ありと判定される。また、図8に示すように、いずれか一方の枝配線(この例では枝配線P2)が断線していればR≒∞となるため、これをもって断線ありと判定される。
【0008】
抵抗測定は、抵抗測定器の測定プローブを配線パターンの端点に接触させることにより行われるが、図9に模式的に示すように、例えば端点P1aに対するプローブの接触位置が、良品基板から基準値を得た際には図示実線位置であるのに対して、実際の検査時に図示鎖線位置のようにずれると、プローブ間の抵抗値が変わってしまうため、正確な測定ができず判定ミスが生ずることがある。
【0009】
また、プローブの接触位置に上記のようなずれがなく、正確に配線パターンの抵抗値が測定できたとしても、配線パターン形成時の製造誤差(線幅のばらつきなど)が大きいと、基準値に対する最適なしきい値を設定することが困難となる。
【0010】
ちなみに、配線パターン形成時の製造誤差により、例えば線幅が広く形成された場合には、短絡してしまっているパターンの抵抗値とほぼ同値になることがあり、このような場合には、しきい値を設定できなくなる。
【0011】
一例として、配線パターンの抵抗値100mΩを基準として、そのしきい値を±10%の90〜110mΩに設定したとして、例えば120mΩ位の抵抗値をもつ配線パターンが隣の配線パターンと短絡して110mΩになると、短絡しているにもかかわらず良品と判断されることになる。
【0012】
また、上記従来例ではしきい値を設定するうえで、あらかじめ良品である配線パターンをもった回路基板をビジュアル検査などにより探し出して、その抵抗値を測定しておく必要があるため、作成された回路基板の検査を1枚目から行うことができない。
【0013】
さらに、抵抗測定による短絡検出は微小な抵抗変化を捉える必要があるため、測定プローブの接触抵抗の影響が問題となる。そのため、微小抵抗の測定には4端子法が用いられるが、4端子法の測定プローブは他のプローブよりも高価であり、また、狭いピッチの配線パターンへのプロービングが困難となる。
【0014】
【発明が解決しようとする課題】
したがって、本発明の課題は、配線パターンの端点に対するプロービング位置によって検査精度が左右されることがなく、また、あらかじめ良品基板から判定基準となるデータを収集する必要をなくして、作成された回路基板の1枚目から隣接パターンの断線・短絡検査を行えるようにすることにある。
【0015】
【課題を解決するための手段】
上記課題を解決するため、本願の第1発明は、幹配線と、それぞれ一方の端点(幹側端点)が上記幹配線に接続された複数の枝配線とを有する回路配線の上記枝配線間の短絡および上記各枝配線の断線の有無を検査する回路配線検査方法において、隣接する所定の第1および第2枝配線を検査するにあたって、測定信号発生源より上記第1枝配線の他方の端点(反幹側端点)に測定信号を印加した状態の下で、上記幹配線の上記第2枝配線の幹側端点よりも反第1枝配線側の所定箇所を電圧測定基準点として、電圧測定手段にて上記第2枝配線の反幹側端点と上記電圧測定基準点との間の電圧V1と、上記第2枝配線の幹側端点と上記電圧測定基準点との間の電圧V2とを測定し、V1=V2(ただし、V1,V2がともに0Vのときを除く)のとき良品と判定することを特徴としている。
【0016】
なお、V1=V2以外の場合、すなわちV1≠V2(ただし、V1,V2の少なくとも一方が0Vもしくは読み値不定のときを除く)のときには短絡ありと判定でき、V1,V2の少なくとも一方が0Vもしくは読み値不定のとき断線ありと判定することができる。
【0017】
このように、本発明によれば、2つの電圧V1,V2を比較するだけでよいため、配線パターンの端点に対するプロービング位置によって検査精度が左右されることがない。また、あらかじめ良品基板から判定基準となるデータを収集する必要もなく、作成された回路基板の1枚目から隣接パターンの断線・短絡検査を行うことができる。
【0018】
さらには、測定プローブの接触抵抗による影響を受けないため、通常の安価な測定プローブを使用でき、しかも4端子法のように1ラインに付き4本の測定プローブをプロービングする必要もないため、狭いピッチの配線パターンの測定も容易にできる。
【0019】
上記測定信号発生源は、直流または交流のいずれであってもよい。また、測定信号も電圧もしくは電流のいずれであってもよい。すなわち、直流電圧発生器,直流電流発生器,交流電圧発生器,交流電流発生器のすべてが使用可能である。
【0020】
また、上記第2枝配線の反幹側端点と上記電圧測定基準点との間の電圧V1を測定する電圧測定手段と、上記第2枝配線の幹側端点と上記電圧測定基準点との間の電圧V2を測定する電圧測定手段を別々に備えていてもよいが、電圧検出手段を一つとして、上記電圧V1,V2のいずれか一方の電圧を測定した後、いずれか他方の電圧を測定するようにしてもよい。
【0021】
上記第1枝配線の反幹側端点に対する測定信号印加用のプローブおよび上記第2枝配線の幹側端点,反幹側端点に対する電圧測定用のプローブは可動プローブで、上記電圧測定基準点に対する電圧測定用のプローブには固定プローブを用いることにより、実質的に2本の可動プローブで本発明の検査が可能となり、複雑なプローブ駆動機構を必要としない。
【0022】
また、本願の第2発明は上記第1発明を装置化したもので、幹配線と、それぞれ一方の端点(幹側端点)が上記幹配線に接続された複数の枝配線とを有する回路配線の上記枝配線間の短絡および上記各枝配線の断線の有無を検査する回路配線検査装置において、隣接する所定の第1および第2枝配線の内の上記第1枝配線の他方の端点(反幹側端点)に測定信号を印加する測定信号発生源と、上記幹配線の上記第2枝配線の幹側端点よりも反第1枝配線側の所定箇所を電圧測定基準点として、上記第2枝配線の反幹側端点と上記電圧測定基準点との間の電圧V1と、上記第2枝配線の幹側端点と上記電圧測定基準点との間の電圧V2とを測定する電圧測定手段と、上記電圧V1,V2により上記枝配線間の短絡および上記各枝配線の断線の有無を判定する制御手段とを備えていることを特徴としている。
【0023】
この第2発明において、上記制御手段は上記第1発明と同様に、V1=V2(ただし、V1,V2がともに0Vのときを除く)のとき良品と判定し、それ以外のとき、すなわちV1≠V2(ただし、V1,V2の少なくとも一方が0Vもしくは読み値不定のときを除く)のときには短絡ありと判定し、V1,V2の少なくとも一方が0Vもしくは読み値不定のとき断線ありと判定する。
【0024】
【発明の実施の形態】
次に、図1ないし図4により、本発明の実施形態について説明する。この実施形態は、先の図6で説明した幹配線Mと、幹配線Mから分岐された複数の枝配線P1〜PNとを有する回路配線の枝配線の断線および枝配線間の短絡を検査する場合についてのもので、説明の便宜上、幹配線Mに対する各枝配線P1〜PNの接続点を幹側端点とする。
【0025】
図1に示すように、この実施形態に係る回路配線検査装置10は、測定信号発生源としての直流電圧発生器11と、第1および第2の2つの電圧計21,22と、制御手段としてのCPU31と、検査結果を表示する表示器32とを備えている。
【0026】
複数ある枝配線P1〜PNのうち、隣接する2つの枝配線として枝配線P1,P2を例にして、配線の断線検査および配線間の短絡検査を行う場合について説明する。この検査には、4本の測定プローブQ1〜Q4が用いられる。
【0027】
図2(a)を参照して、直流電圧発生器11の正極側を測定プローブQ1を介して一方の第1枝配線P1の反幹側端点P1aに接触させる。第1電圧計21の一方の入力端子を測定プローブQ2を介して他方の第2枝配線P2の反幹側端点P2aに接触させる。第2電圧計22の一方の入力端子を測定プローブQ3を介して第2枝配線P2の幹側端点P2bに接触させる。
【0028】
そして、直流電圧発生器11の負極側,第1電圧計21の他方の入力端子および第2電圧計22の他方の入力端子をともに測定プローブQ4に接続し、測定プローブQ4を幹配線Mの電圧測定基準点Xに接触させる。この電圧測定基準点Xは、測定電流の流れる方向から見て、第2枝配線P2のの幹側端点P2bよりも下流側の任意の箇所であってよい。
【0029】
なお、この実施形態とは異なり、直流電圧発生器11をその正極と負極とを入れ替えて用いる場合には、電圧測定基準点Xは、そのときの電流の流れる方向から見て、第2枝配線P2の幹側端点P2bよりも上流側の任意の箇所に設定されることになる。
【0030】
すなわち、第1枝配線P1側から測定信号を印加するにしても、反対に電圧測定基準点X側から測定信号を印加するにしても、電圧測定基準点Xは、その電圧測定基準点Xと第1枝配線P1との間に第2枝配線P2が存在するような位置に設定される。
【0031】
CPU31は、直流電圧発生器11より第1枝配線P1の反幹側端点P1aに所定の電圧を印加した状態での第1電圧計21と第2電圧計22の測定値を読み込んで、短絡・断線の有無を判定する。図2(a)の回路を抵抗で表した等価回路を図2(b)に示す。
【0032】
第1枝配線P1と第2枝配線P2間が短絡していない場合、電流は第1枝配線P1の反幹側端点P1aから第1枝配線P1および幹配線Mを通って電圧測定基準点Xに流れ込む。なお、電圧計21(22)は入力インピーダンスが高いため、第2枝配線P2には電流が流れない。
【0033】
これにより、第1電圧計21と第2電圧計22はともに、第2枝配線P2の幹側端点P2bと電圧測定基準点Xとの間に存在する抵抗RXで生ずる電圧を測定することになる。したがって、第1電圧計21の測定値V1と第2電圧計22の測定値V2はV1=V2(同値)で、これをもってCPU31は短絡なし(良品)と判定し、必要に応じてその結果を表示器32に表示する。
【0034】
なお、ここで言うV1=V2(同値)とは、完全同値に限られるものでなく、上記電圧V1,V2がともに実質的に良品と見なしてよいしきい値幅内に存在する場合も含む。すなわち、良品基準値をVref、そのしきい値を±αとした場合、V1,V2がともにVref±αの範囲内であれば良品としてよい。
【0035】
次に、図3に示すように、第1枝配線P1と第2枝配線P2との間がAs−Bs点間で短絡している場合、反幹側端点P1aから第1枝配線P1に流れる電流は、As点で幹側端点P1bに至る電流と、As−Bs間を経由して第2枝配線P2の一部分を通ってその幹側端点P2bに至る電流とに分流される。
【0036】
ここで、第2枝配線P2において、その反幹側端点P2aとBs点との間の抵抗をRB1とし、Bs点と幹側端点P2bとの間の抵抗をRB2とすると、上記したように電圧計21は入力インピーダンスが高いため、抵抗RB1には電流が流れない。
【0037】
したがって、第1電圧計21は抵抗(RB2+RX)に生ずる電圧を測定し、第2電圧計22は抵抗RXに生ずる電圧を測定することになり、第1電圧計21の測定値V1と第2電圧計22の測定値V2はV1≠V2となる。これにより、CPU31は短絡あり(不良品)と判断して、その結果を表示器32に表示する。
【0038】
次に、断線の場合について説明する。図4(a)に示すように、第1枝配線P1が断線している場合には、第1電圧計21の測定値V1と第2電圧計22の測定値V2はともに0〔V〕となる。
【0039】
これに対して、図4(b)に示すように、第2枝配線P2が断線している場合には、第2電圧計22の測定値V2はV2≠0〔V〕であるが、第1電圧計21の測定値V1は読み値が不定(デジタル表示値がちらついて定まらない状態)となる。
【0040】
すなわち、電圧計は一般的に内部抵抗が高いため、第1電圧計21の測定電圧は0〔V〕にならず不安定に電圧になるからである。しかしながら、この読み値不定も良品・不良品の判断材料となり、この現象が生じた場合には、断線ありと判定することができる。
【0041】
このように、V1,V2がともに0〔V〕もしくはそのいずれか一方の読み値が不定のとき、CPU31は断線あり(不良品)と判断して、その結果を表示器32に表示する。第1枝配線P1と第2枝配線P2の検査が終了したら、次に例えば枝配線P2,P3に測定プローブをずらしてすべての隣り合う配線の短絡・断線検査を行う。
【0042】
なお、上記実施形態では測定信号発生源に直流電圧発生器11を用いているが、直流電流発生器,交流電圧発生器,交流電流発生器などを採用してもよい。また、2台の電圧計21,22を用いているが、電圧計を例えば一方の電圧計21のみとし、その測定プローブQ2を反幹側端点P2aに接触させて電圧V1を測定した後、測定プローブQ2を幹側端点P2b側に接触させて電圧V2を測定するようにしてもよく、これによれば電圧計1台,測定プローブ3本で済ませられる。
【0043】
なお、電圧測定基準点Xをすべての枝配線に対して共通の箇所に設定すれば、その測定プローブQ4は動かす必要がないため、固定式の測定プローブとしてもよい。これによれば、可動プローブ2本で検査が可能となる。
【0044】
また、各枝配線の検査ポイントに測定プローブを配置してなるピンボードを作製して、それらの測定プローブを同時に各枝配線の検査ポイントに接触させるようにしてもよい。この場合には、多数の測定プローブが必要となるが、高速検査が可能となる点でメリットがある。
【0045】
上記実施形態では、隣接する2つの枝配線の検査が終了したら、測定プローブの位置をずらして、次の隣接する2つの枝配線の検査を行うようにしているが、別の手順として、すべての枝配線について、まず例えば電圧V1を測定してそのデータを保持し、その後にすべての枝配線について電圧V2を測定しながら、電圧V1と比較するようにしてもよい。
【0046】
【発明の効果】
以上説明したように、本発明によれば、幹配線と、それぞれ一方の端点(幹側端点)が幹配線に接続された複数の枝配線とを有する配線パターンの隣接する枝配線間の短絡および各枝配線の断線を検査するにあたって、測定信号発生源より一方の枝配線の反幹側端点に測定信号を印加した状態の下で、幹配線上の所定箇所に電圧測定基準点を設定し、電圧測定手段にて他方の枝配線の反幹側端点と電圧測定基準点との間の電圧V1と、同じく他方の枝配線の幹側端点と電圧測定基準点との間の電圧V2とを測定し、これらの電圧V1,V2により短絡・断線の有無を判断するようにしたことにより、配線パターンの端点に対するプロービング位置によって検査精度が左右されることなく、高精度の検査を行うことができる。
【0047】
また、あらかじめ良品基板から判定基準となるデータを収集する必要がないため、作成された回路基板の1枚目から隣接パターンの断線・短絡検査を行うことができる。
【0048】
さらには、測定プローブの接触抵抗による影響を受けないため、通常の安価な測定プローブを使用でき、しかも4端子法のように1ラインに付き4本の測定プローブをプロービングする必要もないため、狭いピッチの配線パターンの測定も容易にできる。
【図面の簡単な説明】
【図1】本発明の実施形態を説明するための模式図。
【図2】上記実施形態で良品パターン時の場合を説明するための模式図。
【図3】上記実施形態で短絡パターン時の場合を説明するための模式図。
【図4】上記実施形態で断線パターン時の場合を説明するための模式図。
【図5】一般的な隣接配線パターン間の短絡および断線検査を説明するための模式図。
【図6】幹配線から分岐された枝配線の従来技術による短絡・断線検査を説明するための模式図。
【図7】上記枝配線間が短絡している場合の説明図。
【図8】上記枝配線が断線している場合の説明図。
【図9】上記従来技術における問題点を説明するための説明図。
【符号の説明】
10 回路配線検査装置
11 直流電圧発生器
21,22 電圧計
31 CPU
32 表示器
M 幹配線
P1〜PN 枝配線
P1a,P2a 反幹側端点
P1b,P2b 幹側端点
Q1〜Q4 測定プローブ
X 電圧測定基準点
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a circuit wiring inspection method and an apparatus therefor, and more particularly to a circuit wiring inspection technique for inspecting a short circuit between a plurality of branch wirings branched from a trunk wiring and a disconnection of each branch wiring. It is.
[0002]
[Prior art]
One inspection item of circuit wiring is a wiring pattern disconnection (open) inspection and a short-circuit inspection between adjacent wiring patterns.
[0003]
As schematically shown in FIG. 5, assuming that two wiring patterns A and B are formed adjacent to each other on the circuit board, the disconnection inspection is performed between the end points Aa and Ab of the wiring pattern A and the end point Ba of the wiring pattern B. , Bb by measuring each resistance value R. If R≈0, it is determined that there is no disconnection, and if R≈∞, it is determined that there is a disconnection.
[0004]
In the short circuit inspection between the wiring patterns A and B, for example, a resistance value R between one end point Aa of the wiring pattern A and one end point Ba of the wiring pattern B is measured. If none and R≈0, it is determined that there is a short circuit between the patterns.
[0005]
Further, depending on the pattern, there is a circuit in which a plurality of branch lines P1 to PN branch from the trunk line M as shown in FIG. In this case, each of the branch wirings P1 to PN is connected to the trunk wiring M at one end thereof (the trunk side end point). However, the disconnection inspection of each branch wiring and the short-circuit inspection between the branch wirings are also performed by resistance measurement. Done.
[0006]
For example, in order to inspect the disconnection / short circuit of the adjacent branch wirings P1 and P2, the resistance value between the anti-trunk end points P1a and P2a is measured with a low resistance measuring instrument. Then, by comparing the measured value R with a predetermined threshold value ± Th set in advance, the presence / absence of disconnection / short circuit is inspected. The threshold value ± Th is set based on a reference value obtained from a non-defective substrate.
[0007]
That is, as shown in FIG. 7, when the branch wirings P1 and P2 are short-circuited, the resistance value R becomes low and deviates from the threshold value ± Th. Thereby, it is determined that there is a short circuit between the branch wirings. In addition, as shown in FIG. 8, if any one of the branch wirings (branch wiring P2 in this example) is disconnected, R≈∞, so that it is determined that there is a disconnection.
[0008]
The resistance measurement is performed by bringing the measurement probe of the resistance measuring instrument into contact with the end point of the wiring pattern. As schematically shown in FIG. 9, for example, the contact position of the probe with respect to the end point P1a is a reference value from the non-defective substrate. When it is obtained, it is the position of the solid line in the figure, but if it shifts like the position of the chain line in the actual inspection, the resistance value between the probes changes, so that accurate measurement cannot be performed and a determination error occurs. There is.
[0009]
Further, even if the probe contact position does not have the above-described deviation and the resistance value of the wiring pattern can be measured accurately, if a manufacturing error (such as variation in line width) at the time of wiring pattern formation is large, It becomes difficult to set an optimum threshold value.
[0010]
By the way, due to manufacturing errors at the time of wiring pattern formation, for example, when the line width is wide, it may be almost the same as the resistance value of the short-circuited pattern. The threshold cannot be set.
[0011]
As an example, if the resistance value of a wiring pattern is set to 100 mΩ as a reference and the threshold value is set to 90 to 110 mΩ of ± 10%, for example, a wiring pattern having a resistance value of about 120 mΩ is short-circuited to an adjacent wiring pattern to 110 mΩ. If it becomes, it will be judged that it is non-defective although it is short-circuited.
[0012]
In addition, the above conventional example was created because it was necessary to find a circuit board with a non-defective wiring pattern in advance by visual inspection etc. and to measure its resistance value when setting the threshold value. The circuit board cannot be inspected from the first sheet.
[0013]
Furthermore, since the short circuit detection by resistance measurement needs to capture a minute resistance change, the influence of the contact resistance of the measurement probe becomes a problem. For this reason, the four-terminal method is used for measuring minute resistance, but the measurement probe of the four-terminal method is more expensive than other probes, and probing to a wiring pattern with a narrow pitch becomes difficult.
[0014]
[Problems to be solved by the invention]
Therefore, the problem of the present invention is that the inspection accuracy is not affected by the probing position with respect to the end point of the wiring pattern, and it is not necessary to collect data as a judgment criterion from a non-defective substrate in advance. It is to be able to perform the disconnection / short circuit inspection of the adjacent pattern from the first sheet.
[0015]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the first invention of the present application is that between the branch wirings of a circuit wiring having a trunk wiring and a plurality of branch wirings each having one end point (stem-side end point) connected to the trunk wiring. In the circuit wiring inspection method for inspecting the presence or absence of a short circuit and the disconnection of each branch wiring, when inspecting predetermined first and second branch wirings adjacent to each other, the other end point of the first branch wiring ( Under a state in which a measurement signal is applied to the non-trunk side end point), the voltage measuring means uses a predetermined location on the side opposite to the first branch wiring from the trunk side end of the second branch wiring as the voltage measurement reference point. To measure a voltage V1 between the opposite end of the second branch line and the voltage measurement reference point, and a voltage V2 between the second end of the second line and the voltage measurement reference point. V1 = V2 (except when V1 and V2 are both 0V It is characterized by determining a non-defective when.
[0016]
When V1 = V2 is not satisfied, that is, when V1 ≠ V2 (except when at least one of V1 and V2 is 0V or the reading value is undefined), it can be determined that there is a short circuit, and at least one of V1 and V2 is 0V or When the reading is indefinite, it can be determined that there is a disconnection.
[0017]
As described above, according to the present invention, since only the two voltages V1 and V2 need to be compared, the inspection accuracy is not affected by the probing position with respect to the end point of the wiring pattern. In addition, it is not necessary to collect data that is a criterion for determination from non-defective substrates in advance, and disconnection / short-circuit inspection of adjacent patterns can be performed from the first circuit board that is created.
[0018]
Furthermore, since it is not affected by the contact resistance of the measurement probe, a normal inexpensive measurement probe can be used, and it is not necessary to probe four measurement probes per line as in the 4-terminal method, so that it is narrow. Pitch wiring patterns can be easily measured.
[0019]
The measurement signal generation source may be either direct current or alternating current. Also, the measurement signal may be either voltage or current. That is, a DC voltage generator, a DC current generator, an AC voltage generator, and an AC current generator can all be used.
[0020]
Also, voltage measuring means for measuring a voltage V1 between the opposite end point of the second branch wiring and the voltage measurement reference point, and between the trunk end point of the second branch wiring and the voltage measurement reference point Voltage measuring means for measuring the voltage V2 may be provided separately, but one voltage detecting means is used, and after measuring one of the voltages V1 and V2, the other voltage is measured. You may make it do.
[0021]
The measurement signal application probe for the anti-trunk end point of the first branch wiring and the voltage measurement probe for the stem end point and the anti-end end point of the second branch wiring are movable probes, and the voltage with respect to the voltage measurement reference point. By using a fixed probe as the measurement probe, the inspection of the present invention can be performed with substantially two movable probes, and a complicated probe driving mechanism is not required.
[0022]
The second invention of the present application is an implementation of the first invention. A circuit wiring having a trunk wiring and a plurality of branch wirings each having one end point (stem-side end point) connected to the trunk wiring. In a circuit wiring inspection apparatus for inspecting the presence or absence of a short circuit between the branch wirings and the disconnection of each branch wiring, the other end point (anti-trunk) of the first branch wiring among the adjacent first and second branch wirings. A measurement signal generating source for applying a measurement signal to a side end point), and a second portion of the trunk wire on the side opposite to the first branch wiring from the trunk side end point of the second branch wiring as a voltage measurement reference point. Voltage measuring means for measuring a voltage V1 between an anti-trunk end point of the wiring and the voltage measurement reference point, and a voltage V2 between the trunk end point of the second branch wiring and the voltage measurement reference point; Due to the voltages V1 and V2, there is a short circuit between the branch wires and disconnection of the branch wires. It is characterized by comprising a determining control means.
[0023]
In the second invention, as in the first invention, the control means determines that the product is non-defective when V1 = V2 (except when V1 and V2 are both 0V), and otherwise, that is, V1 ≠. When V2 (however, at least one of V1 and V2 is 0V or when reading is undefined), it is determined that there is a short circuit, and when at least one of V1 and V2 is 0V or reading is undefined, it is determined that there is a break.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the present invention will be described with reference to FIGS. In this embodiment, the disconnection of the branch wiring of the circuit wiring having the trunk wiring M described in FIG. 6 and the plurality of branch wirings P1 to PN branched from the trunk wiring M and the short circuit between the branch wirings are inspected. For convenience of explanation, the connection points of the branch wirings P1 to PN with respect to the trunk wiring M are defined as trunk-side end points.
[0025]
As shown in FIG. 1, a circuit wiring inspection apparatus 10 according to this embodiment includes a DC voltage generator 11 as a measurement signal generation source, first and second voltmeters 21 and 22, and control means. CPU 31 and a display 32 for displaying the inspection result.
[0026]
A case will be described in which a wiring disconnection inspection and a short-circuit inspection between wirings are performed by using branch wirings P1 and P2 as two adjacent branch wirings among a plurality of branch wirings P1 to PN. For this inspection, four measurement probes Q1 to Q4 are used.
[0027]
Referring to FIG. 2 (a), the positive electrode side of DC voltage generator 11 is brought into contact with the non-stem side end point P1a of one first branch wiring P1 through measurement probe Q1. One input terminal of the first voltmeter 21 is brought into contact with the opposite side end point P2a of the other second branch wiring P2 through the measurement probe Q2. One input terminal of the second voltmeter 22 is brought into contact with the trunk-side end point P2b of the second branch wiring P2 via the measurement probe Q3.
[0028]
Then, the negative electrode side of the DC voltage generator 11, the other input terminal of the first voltmeter 21 and the other input terminal of the second voltmeter 22 are all connected to the measurement probe Q4, and the measurement probe Q4 is connected to the voltage of the main wiring M. The measurement reference point X is brought into contact. The voltage measurement reference point X may be an arbitrary location downstream of the trunk side end point P2b of the second branch wiring P2 when viewed from the direction in which the measurement current flows.
[0029]
Unlike this embodiment, when the DC voltage generator 11 is used with its positive and negative electrodes interchanged, the voltage measurement reference point X is the second branch wiring as viewed from the current flowing direction at that time. It is set at an arbitrary location upstream of the trunk side end point P2b of P2.
[0030]
That is, even if the measurement signal is applied from the first branch wiring P1 side, or the measurement signal is applied from the voltage measurement reference point X side, the voltage measurement reference point X is the same as the voltage measurement reference point X. The position is set such that the second branch wiring P2 exists between the first branch wiring P1.
[0031]
The CPU 31 reads the measured values of the first voltmeter 21 and the second voltmeter 22 in a state in which a predetermined voltage is applied from the DC voltage generator 11 to the anti-trunk end point P1a of the first branch wiring P1, and short-circuit / Determine if there is a break. FIG. 2B shows an equivalent circuit in which the circuit of FIG.
[0032]
When the first branch wiring P1 and the second branch wiring P2 are not short-circuited, the current is measured from the opposite end P1a of the first branch wiring P1 through the first branch wiring P1 and the main wiring M to the voltage measurement reference point X. Flow into. Since the voltmeter 21 (22) has a high input impedance, no current flows through the second branch wiring P2.
[0033]
Thus, both the first voltmeter 21 and the second voltmeter 22 measure the voltage generated at the resistor RX existing between the trunk side end point P2b of the second branch wiring P2 and the voltage measurement reference point X. . Therefore, the measured value V1 of the first voltmeter 21 and the measured value V2 of the second voltmeter 22 are V1 = V2 (same value), and with this, the CPU 31 determines that there is no short circuit (non-defective product), and the result is obtained if necessary. This is displayed on the display 32.
[0034]
Here, V1 = V2 (same value) is not limited to the completely same value, but includes the case where both of the voltages V1 and V2 exist within a threshold width that can be regarded as substantially non-defective products. That is, assuming that the non-defective product reference value is Vref and the threshold value is ± α, a non-defective product may be used as long as both V1 and V2 are within the range of Vref ± α.
[0035]
Next, as shown in FIG. 3, when the first branch wiring P1 and the second branch wiring P2 are short-circuited between the As-Bs points, the anti-trunk end point P1a flows to the first branch wiring P1. The current is divided into a current that reaches the trunk end point P1b at the As point and a current that passes through a portion of the second branch wiring P2 via As-Bs and reaches the trunk end point P2b.
[0036]
Here, in the second branch wiring P2, when the resistance between the opposite trunk side end point P2a and the Bs point is RB1, and the resistance between the Bs point and the trunk side end point P2b is RB2, the voltage is as described above. Since the total 21 has a high input impedance, no current flows through the resistor RB1.
[0037]
Therefore, the first voltmeter 21 measures the voltage generated in the resistor (RB2 + RX), and the second voltmeter 22 measures the voltage generated in the resistor RX. The measured value V1 and the second voltage of the first voltmeter 21 are measured. The measured value V2 of the total 22 is V1 ≠ V2. As a result, the CPU 31 determines that there is a short circuit (defective product) and displays the result on the display 32.
[0038]
Next, the case of disconnection will be described. As shown in FIG. 4A, when the first branch wiring P1 is disconnected, the measured value V1 of the first voltmeter 21 and the measured value V2 of the second voltmeter 22 are both 0 [V]. Become.
[0039]
On the other hand, as shown in FIG. 4B, when the second branch wiring P2 is disconnected, the measured value V2 of the second voltmeter 22 is V2 ≠ 0 [V]. 1 The measured value V1 of the voltmeter 21 is indeterminate (the digital display value flickers and is not determined).
[0040]
That is, since the voltmeter generally has a high internal resistance, the measurement voltage of the first voltmeter 21 does not become 0 [V] but becomes an unstable voltage. However, this indeterminate reading value is also a material for determining whether the product is good or defective, and if this phenomenon occurs, it can be determined that there is a disconnection.
[0041]
Thus, when both V1 and V2 are 0 [V] or any one of the readings is indefinite, the CPU 31 determines that there is a disconnection (defective product) and displays the result on the display 32. After the inspection of the first branch wiring P1 and the second branch wiring P2, the measurement probe is shifted to the branch wirings P2 and P3, for example, and a short circuit / disconnection inspection of all adjacent wirings is performed.
[0042]
In the above embodiment, the DC voltage generator 11 is used as the measurement signal generation source, but a DC current generator, an AC voltage generator, an AC current generator, or the like may be employed. In addition, although two voltmeters 21 and 22 are used, for example, the voltmeter is only one voltmeter 21, and the measurement probe Q2 is brought into contact with the opposite end P2a to measure the voltage V1, and then measured. The voltage V2 may be measured by bringing the probe Q2 into contact with the trunk end point P2b side. According to this, one voltmeter and three measurement probes are sufficient.
[0043]
Note that if the voltage measurement reference point X is set at a common location for all branch wirings, the measurement probe Q4 does not need to be moved, and may be a fixed measurement probe. According to this, it becomes possible to inspect with two movable probes.
[0044]
Further, a pin board in which measurement probes are arranged at the inspection points of the branch wirings may be manufactured, and these measurement probes may be brought into contact with the inspection points of the branch wirings at the same time. In this case, a large number of measurement probes are required, but there is an advantage in that high-speed inspection is possible.
[0045]
In the above embodiment, when the inspection of the two adjacent branch wirings is completed, the position of the measurement probe is shifted and the next two adjacent branch wirings are inspected. For the branch wiring, first, for example, the voltage V1 may be measured and the data may be held, and thereafter, the voltage V2 may be measured for all the branch wirings and compared with the voltage V1.
[0046]
【The invention's effect】
As described above, according to the present invention, a short circuit between adjacent branch lines of a wiring pattern having a trunk line and a plurality of branch lines each having one end point (trunk side end point) connected to the trunk line and In inspecting the disconnection of each branch wiring, under the state where a measurement signal is applied from the measurement signal generating source to the opposite trunk side end point of one branch wiring, a voltage measurement reference point is set at a predetermined location on the trunk wiring, The voltage measurement means measures the voltage V1 between the opposite trunk end point of the other branch wiring and the voltage measurement reference point, and the voltage V2 between the trunk end point of the other branch wiring and the voltage measurement reference point. In addition, by determining whether or not there is a short circuit / disconnection based on these voltages V1 and V2, it is possible to perform a highly accurate inspection without being influenced by the probing position with respect to the end point of the wiring pattern.
[0047]
In addition, since it is not necessary to collect data that is a criterion for determination from non-defective substrates in advance, it is possible to perform a disconnection / short circuit inspection of an adjacent pattern from the first circuit board that is created.
[0048]
Furthermore, since it is not affected by the contact resistance of the measurement probe, a normal inexpensive measurement probe can be used, and it is not necessary to probe four measurement probes per line as in the 4-terminal method, so that it is narrow. Pitch wiring patterns can be easily measured.
[Brief description of the drawings]
FIG. 1 is a schematic diagram for explaining an embodiment of the present invention.
FIG. 2 is a schematic diagram for explaining a case of a non-defective pattern in the embodiment.
FIG. 3 is a schematic diagram for explaining a case of a short-circuit pattern in the embodiment.
FIG. 4 is a schematic diagram for explaining a case of a disconnection pattern in the embodiment.
FIG. 5 is a schematic diagram for explaining a short circuit and a disconnection inspection between general adjacent wiring patterns.
FIG. 6 is a schematic diagram for explaining a short-circuit / disconnection inspection according to the prior art of a branch wiring branched from a trunk wiring.
FIG. 7 is an explanatory diagram when the branch wiring is short-circuited.
FIG. 8 is an explanatory diagram when the branch wiring is disconnected.
FIG. 9 is an explanatory diagram for explaining a problem in the prior art.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Circuit wiring inspection apparatus 11 DC voltage generator 21, 22 Voltmeter 31 CPU
32 Display M Trunk wiring P1 to PN Branch wiring P1a, P2a Anti-trunk side end points P1b, P2b Trunk side end points Q1 to Q4 Measurement probe X Voltage measurement reference point

Claims (6)

幹配線と、それぞれ一方の端点(幹側端点)が上記幹配線に接続された複数の枝配線とを有する回路配線の上記枝配線間の短絡および上記各枝配線の断線の有無を検査する回路配線検査方法において、
隣接する所定の第1および第2枝配線を検査するにあたって、測定信号発生源より上記第1枝配線の他方の端点(反幹側端点)に測定信号を印加した状態の下で、上記幹配線の上記第2枝配線の幹側端点よりも反第1枝配線側の所定箇所を電圧測定基準点として、電圧測定手段にて上記第2枝配線の反幹側端点と上記電圧測定基準点との間の電圧V1と、上記第2枝配線の幹側端点と上記電圧測定基準点との間の電圧V2とを測定し、V1=V2(ただし、V1,V2がともに0Vのときを除く)のとき良品と判定することを特徴とする回路配線検査方法。
A circuit for inspecting the presence or absence of a short circuit between the branch wirings of the circuit wiring having a trunk wiring and a plurality of branch wirings each having one end point (trunk side end point) connected to the trunk wiring and the disconnection of each branch wiring. In the wiring inspection method,
In inspecting predetermined first and second branch wirings adjacent to each other, the trunk wiring is in a state in which a measurement signal is applied from the measurement signal generation source to the other end point (counter-end side end point) of the first branch wiring. The voltage measurement means uses a predetermined location on the side opposite to the first branch wiring from the trunk side end point of the second branch wiring as a voltage measurement reference point, and the voltage measurement means uses the anti-trunk side end point of the second branch wiring and the voltage measurement reference point And a voltage V2 between the trunk-side end point of the second branch wiring and the voltage measurement reference point are measured, and V1 = V2 (except when V1 and V2 are both 0V) A circuit wiring inspection method characterized in that a non-defective product is determined.
上記電圧V1と上記電圧V2とが、V1≠V2(ただし、V1,V2の少なくとも一方が0Vもしくは読み値不定のときを除く)のとき短絡ありと判定し、V1,V2の少なくとも一方が0Vもしくは読み値不定のとき断線ありと判定する請求項1に記載の回路配線検査方法。It is determined that there is a short circuit when the voltage V1 and the voltage V2 are V1 ≠ V2 (except when at least one of V1 and V2 is 0V or reading is undefined), and at least one of V1 and V2 is 0V or The circuit wiring inspection method according to claim 1, wherein it is determined that there is a disconnection when the reading value is indefinite. 上記測定信号発生源として、直流または交流の電圧もしくは電流発生手段が用いられる請求項1または2に記載の回路配線検査方法。3. The circuit wiring inspection method according to claim 1, wherein a DC or AC voltage or current generating means is used as the measurement signal generating source. 上記電圧検出手段が一つであって、上記電圧V1,V2のいずれか一方の電圧を測定した後、いずれか他方の電圧を測定する請求項1,2または3に記載の回路配線検査方法。4. The circuit wiring inspection method according to claim 1, wherein the voltage detecting means is one, and the voltage of either one of the voltages V1 and V2 is measured and then the other voltage is measured. 上記第1枝配線の反幹側端点に対する測定信号印加用のプローブおよび上記第2枝配線の幹側端点,反幹側端点に対する電圧測定用のプローブは可動プローブで、上記電圧測定基準点に対する電圧測定用のプローブには固定プローブを用いる請求項1,2,3または4に記載の回路配線検査方法。The measurement signal application probe for the anti-trunk end point of the first branch wiring and the voltage measurement probe for the stem end point and the anti-end end point of the second branch wiring are movable probes, and the voltage with respect to the voltage measurement reference point. 5. The circuit wiring inspection method according to claim 1, wherein a fixed probe is used as the measurement probe. 幹配線と、それぞれ一方の端点(幹側端点)が上記幹配線に接続された複数の枝配線とを有する回路配線の上記枝配線間の短絡および上記各枝配線の断線の有無を検査する回路配線検査装置において、
隣接する所定の第1および第2枝配線の内の上記第1枝配線の他方の端点(反幹側端点)に測定信号を印加する測定信号発生源と、
上記幹配線の上記第2枝配線の幹側端点よりも反第1枝配線側の所定箇所を電圧測定基準点として、上記第2枝配線の反幹側端点と上記電圧測定基準点との間の電圧V1と、上記第2枝配線の幹側端点と上記電圧測定基準点との間の電圧V2とを測定する電圧測定手段と、
上記電圧V1,V2により上記枝配線間の短絡および上記各枝配線の断線の有無を判定する制御手段とを備え、
上記制御手段は、V1=V2(ただし、V1,V2がともに0Vのときを除く)のとき良品と判定し、それ以外のとき不良品と判定することを特徴とする回路配線検査装置。
A circuit for inspecting the presence or absence of a short circuit between the branch wirings of the circuit wiring having a trunk wiring and a plurality of branch wirings each having one end point (trunk side end point) connected to the trunk wiring and the disconnection of each branch wiring. In wiring inspection equipment,
A measurement signal generating source for applying a measurement signal to the other end point (the non-trunk side end point) of the first branch wiring among the predetermined first and second branch wirings adjacent to each other;
A predetermined location on the side opposite to the first branch wiring from the trunk-side end point of the second branch wiring of the trunk wiring is defined as a voltage measurement reference point, and between the anti-trunk side end point of the second branch wiring and the voltage measurement reference point. Voltage measuring means for measuring the voltage V1 of the second branch wiring and the voltage V2 between the trunk-side end point of the second branch wiring and the voltage measurement reference point;
Control means for determining the presence or absence of a short circuit between the branch wirings and a disconnection of each branch wiring by the voltages V1 and V2,
A circuit wiring inspection apparatus characterized in that the control means determines a non-defective product when V1 = V2 (except when both V1 and V2 are 0 V), and determines a defective product otherwise.
JP2002054237A 2002-02-28 2002-02-28 Circuit wiring inspection method and apparatus Expired - Lifetime JP3950713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002054237A JP3950713B2 (en) 2002-02-28 2002-02-28 Circuit wiring inspection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002054237A JP3950713B2 (en) 2002-02-28 2002-02-28 Circuit wiring inspection method and apparatus

Publications (2)

Publication Number Publication Date
JP2003255007A JP2003255007A (en) 2003-09-10
JP3950713B2 true JP3950713B2 (en) 2007-08-01

Family

ID=28665448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002054237A Expired - Lifetime JP3950713B2 (en) 2002-02-28 2002-02-28 Circuit wiring inspection method and apparatus

Country Status (1)

Country Link
JP (1) JP3950713B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4676218B2 (en) * 2005-02-22 2011-04-27 日置電機株式会社 Circuit wiring inspection method and circuit wiring inspection apparatus
JP5428748B2 (en) * 2009-10-21 2014-02-26 日本電産リード株式会社 Inspection jig maintenance method and substrate inspection apparatus
CN112684375B (en) * 2020-11-11 2024-05-17 大唐水电科学技术研究院有限公司 Fault analysis method for two-phase broken lines of four-circuit lines erected on same tower at ultrahigh voltage

Also Published As

Publication number Publication date
JP2003255007A (en) 2003-09-10

Similar Documents

Publication Publication Date Title
JP5131962B2 (en) Non-contact single side probe, pattern electrode disconnection / short circuit inspection apparatus using the same, and method thereof
KR100796171B1 (en) Contact type single side probe and inspection apparatus and method for open/short test of conductive lines used thereof
JP5797502B2 (en) Continuity inspection device and continuity inspection method
KR20150111865A (en) Resistance measuring apparatus, substrate test apparatus, test method and method of maintaining jig for test
CN103487955B (en) A kind of short circuit measuring method
JP3950713B2 (en) Circuit wiring inspection method and apparatus
KR101866427B1 (en) Testing device for test sockets of semiconductor chips
JP2007309691A (en) Substrate inspecting device and substrate inspection method
JP4582869B2 (en) Circuit board inspection equipment
KR20080098088A (en) Non-contact type single side probe and inspection apparatus and method for open/short test of pattern electrodes used thereof
JP4417762B2 (en) Circuit wiring inspection method and apparatus
JP4676218B2 (en) Circuit wiring inspection method and circuit wiring inspection apparatus
JP4107897B2 (en) Circuit wiring inspection method
JP2006200973A (en) Circuit board inspection method and its device
JP5844096B2 (en) Circuit board inspection apparatus and circuit board inspection method
JP5485012B2 (en) Circuit board inspection apparatus and circuit board inspection method
JPH0339989A (en) Method for inspecting defect of transparent conductive circuit substrate
JP2000232141A (en) Method for testing conduction of substrate for semiconductor package
JP5687943B2 (en) Short-circuit inspection apparatus and short-circuit inspection method
JP2004184374A (en) Impedance measuring apparatus
JP2005049314A (en) Probing test method and probe condition detector
JPH10300823A (en) Prober inspection method
JP5463198B2 (en) Probe card inspection method and inspection system
TWI661189B (en) Method for detecting defects of thin-film transistor panel and device thereof
TW200846686A (en) A lead contact module for detecting circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070423

R150 Certificate of patent or registration of utility model

Ref document number: 3950713

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term