JP3942518B2 - Road surface measuring device - Google Patents

Road surface measuring device Download PDF

Info

Publication number
JP3942518B2
JP3942518B2 JP2002267776A JP2002267776A JP3942518B2 JP 3942518 B2 JP3942518 B2 JP 3942518B2 JP 2002267776 A JP2002267776 A JP 2002267776A JP 2002267776 A JP2002267776 A JP 2002267776A JP 3942518 B2 JP3942518 B2 JP 3942518B2
Authority
JP
Japan
Prior art keywords
road surface
measurement
measuring device
road
storage container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002267776A
Other languages
Japanese (ja)
Other versions
JP2004108775A (en
Inventor
守 高階
千葉博治
齋藤優
稲葉富男
Original Assignee
株式会社錢高組
株式会社エス・ジー・エス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社錢高組, 株式会社エス・ジー・エス filed Critical 株式会社錢高組
Priority to JP2002267776A priority Critical patent/JP3942518B2/en
Publication of JP2004108775A publication Critical patent/JP2004108775A/en
Application granted granted Critical
Publication of JP3942518B2 publication Critical patent/JP3942518B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Road Repair (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、路面の沈下や地盤沈下等を非接触で計測する技術に関するものである。
【0002】
【従来の技術】
既に供用されている道路、鉄道等の公共交通構造物の真下を掘削して、立体交差等の新たな構造物を構築する工事において、工事中及び供用後の既存構造物の過度の不等沈下は、通過車両の安全確保に大きな影響を及ぼし、人命に関わる災害発生の原因にもなりかねないため、沈下管理及びその対応は最優先で行われなければならない。
従来、この種の管理は、既存通過交通機関に及ぼす影響を考慮して、夜間等の交通量の少ない時間帯に、一時的に交通を遮断して人海戦術で行われたり、道路では路肩、中央分離帯等の通過交通に直接影響を及ぼさない箇所に、反射プリズム等の視準点を設置して、定期的に計測を行う等で対応してきた。
【発明が解決しようとする課題】
【0003】
しかし、これらの方法に用いられるレーザー測距装置は、風雨や温度変化の影響を受けやすいという問題があり、人員が常駐することが困難な場所等において、継続して安定した測定データを得ることが困難であった。
【0004】
そこで、出願人は、レーザー測距装置の具体的な設置構造を提案して、正確且つ安定した測定を可能とする技術を提供するために本発明をしたものである。
この設置構造は、例えば、特願平11−248945号等において提案した沈下測定方法等に適用できることがいうまでもない。
【0005】
【課題を解決するための手段】
本発明にかかる請求項1の路面測定装置は、
レーザー光を測定対象路面に所定の角度で斜めに照射して、前記測定対象路面による反射光を測定することによってレーザー光が照射される部位までの距離の変化を計測するように構成された複数のレーザー測距手段を測定対象路面の近傍に配設した路面測定装置において、
前記レーザー測距手段は、レーザー光の走査範囲が、レーザー光を透過する透過部材によって構成された収納容器内に配設されており、
さらに、前記レーザー測距手段の電源を、夏季には、非測定時にはオフにして測定する度にオンにして測定終了後には直ちにオフに制御し、冬季には、非測定時にもオンにして測定する度に一旦オフにして所定時間経過後に再びオンにして測定するように制御する制御手段を備えていることを特徴としている。
【0006】
請求項2においては、
レーザー測距手段は、測定対象路面を5度以上の角度で見下ろすようにタワー上に設置されていることを特徴としている。
請求項3においては、
レーザー測距手段は、測定対象路面から水平距離100m以内に設置されていることを特徴としている。
【0007】
請求項4においては、
前記収納容器は、互いに直交する2枚の垂直な透過部材を備え、
前記透過部材はそれぞれ測定対象路の走行方向に対して約45度傾斜させて設けられている。
請求項5においては、
前記収納容器において、透過部材を備えた立壁面の上部には、雨よけの庇が形成されている。
【0008】
請求項6においては、
前記収納容器において、透過部材には曇り止め手段が施されている。
【0009】
請求項7においては、
前記曇り止め手段は、収納容器の内部を外気によって換気する換気手段によって構成されている。
【0010】
請求項8においては、
前記曇り止め手段は、収納容器の内部の温度もしくは湿度の少なくとも何れか一方を調整する空調手段によって構成されている。
【0011】
請求項9においては、
前記収納容器の各構成部材は、互いに固定及び分離が容易な組み立て手段を備えている。
請求項10においては、
収納容器は架台上に設定されている。
【0012】
請求項11においては、レーザー測距手段の電源は、無停電電源装置に接続されていることを特徴としている。
【0013】
【発明の実施の形態】
以下に、本発明にかかる路面測定装置の実施の形態を図1に基づいて詳細に説明する。
図1に示したように、レーザー測距手段としての測量機1は、収納容器を構成する防雨構造の監視室10内に設置されている。この監視室10は、図1に示したように、例えば道路に面した2面が透過部材としてのガラス面11、12で構成されている。
また、前記監視室10もしくは測量機1は、図2に示したように架台(タワー)16上に設置されている。前記架台16から測定対象路面までの水平距離は100m以内であれば充分な精度で測定できるが、40m以内とすることによって、測定精度が大幅に向上するという効果が得られる。
【0014】
前記ガラス面11、12は互いに直交した垂直面を構成しているとともに、それぞれ道路の走行方向に対して約45度傾斜している。
そのため、前記測量機1による走査範囲は、ほぼ180度確保でき、道路面に設定された各ポイントを計測することができる。
【0015】
また、図2に示したように、前記監視室10には、換気装置13を設けて、ガラス面の曇り止め手段とするとよい。
なお、前記曇り止め手段としては、換気装置に限らず、ガラス面を拭くワイパーを設けたり、曇り止め剤を塗布したり、ガラス面に電熱線を敷設して加温したり、室内を空気が流れるような構造を備えたりしてもよい。また、室内の温度もしくは湿度の少なくともいずれかを調整する空調設備を備えてもよい。
また、ガラス面の上部には庇14を設けるとよい。
また、前記監視室10は計測範囲を見渡すために高い位置もしくは架台(タワー)上に設置するので、落雷による機器の損傷を防止するために、図2に示したように避雷器17を設けるとよい。
なお、避雷器17を設けることは、雷の直撃だけでなく、遠くの雷に起因する誘導電圧に対しても有効である。
そして、停電時には自動的に電源供給を行う無停電電源装置18を備えている。
また、図3に示したように、2枚のガラスに代えて、3枚のガラス22を備えた監視室20としてもよい。
また、図4に示したように、複数枚の平面ガラスに代えて、曲面ガラス32を備えた監視室30としてもよい。
さらには、図示はしないが、4枚以上のガラス面で構成してもよい。また、道路の走行方向に対する角度も45°に限定されるものではない。
【0016】
次に、上記構成の路面測定装置による実際の配置状況を示した図5、6、7、8を参照して、実際の測定方法を説明する。
既設の道路の地下に、斜めに交差するトンネルを掘削する場合に、その掘削による道路の路面沈下の影響を監視する場合を例にとって説明する。
図5において、Rは計測対象路面としての既設の道路であり、Tはその地下に掘削されるトンネルである。そして、トンネルTと交差する部分の路面が沈下する可能性があるので、トンネルと交差する範囲の沈下を、本発明による路面測定装置を用いて監視するものとする。
【0017】
1A〜1Hは図1に示したように、レーザー測距手段としての測量機であり、レーザー光線を照射して反射光を測定し、反射点までの距離を測定して距離信号を出力する測距機能を備えている。
また、この測量機1A〜1Hは、モータドライブ機構と、このモータドライブ機構を用いて、レーザー光の照射角度を指定された方位角・俯角に設定する角度設定機能と、現在の照射角度を電気信号として出力する角度信号出力機能と、通信回線を介して別途計測室に設置された計測コンピュータ3(図8参照)との通信を行う通信機能とを備えている。
この通信機能は、必要に応じてRS−232C規格からRS−422規格等の適切な規格の信号に変換して伝送する機能をも含んだものであり、有線通信でも無線通信でもよい。
【0018】
そして、一つの測量機は半径40m以内の路面を、5.0m×3.5mメッシュのポイント(計60ポイント)に分けて沈下を計測することができるので、隣り合う測量機の計測範囲が少しずつ重なり合うように設定する。なお、以上の数値は一例であり、状況に応じて適宜設定することは言うまでもない。
【0019】
図5に示したように、以上のような測量機1A〜1Hが、測定対象領域を網羅すべく複数(例えば8台)設置されている。そして、各測量機1A〜1Hは、図8に示したように、RS−232CとRS−422との信号変換機能を備えた通信機能を介して計測コンピュータ3に接続されている。
この計測コンピュータ3は、各測量機で検出した距離の変化に基づいて路面の沈下量を演算する演算手段と、沈下量の測定値を時系列データとして蓄積するデータ蓄積手段と、蓄積された時系列データを統計処理する処理手段と、処理手段による処理結果に基づいて沈下特性を判断する判断手段とを備えている。
そして、前記計測コンピュータ3にて処理されたデータは、有線通信もしくは無線通信による通信機能を介して別途管理事務所に設置された処理コンピュータに伝送される。
これらの通信機能としては、RS−232C規格やRS−422規格等の通信規格を適宜選択するとよい。
【0020】
図5において、S1,S2,S3,S4はトンネルの掘削工事の影響を受けない場所(測定対象面外の非沈下点)に設置した不動点であり、例えばプリズムを設置しておく。
【0021】
次に、上記構成において、実際の路面の沈下量の演算方法を、図5を参照して説明する。
まず、インターバルタイマ等において設定された沈下量測定のタイミングになっているか否かを確認して、沈下量測定のタイミングであれば以下の計測を開始する。
第1の測量機1Aで第1の不動点S1を視準して角度と距離を計測し、次に、前記第1の測量機1Aで第2の測量機1Bのプリズムを視準して角度と距離を計測し、第2の測量機1Bで第1の測量機1Aのプリズムを視準して角度と距離を計測する。このようにして順次計測し、最後に、第4の測量機1Dで第3の測量機1Cのプリズムを視準して角度と距離を計測した後、第4の測量機1Dで第2の不動点S2を視準して角度と距離を計測する。この一連の計測によって、第1の不動点S1と第2の不動点S2を基準とした第1の測量機1A〜第4の測量機1Dを位置を確定することができるのである。
【0022】
既設道路Rの反対側においても、同様にして、第3の不動点S3と第4の不動点S4を基準にして、第5〜第8の測量機1E,1F,1G,1Hの位置を計測する。
これらの位置データは計測コンピュータ3へ伝送し保存しておく。
【0023】
以上のようにして、各測量機の位置を確認した後に、路面の計測を行う。これは、図6に示したように、路面にメッシュ状に設定された各ポイントにそれぞれ担当する測量機からレーザー光線を斜めに照射し、反射光を測定して各ポイント(Pa)までの基準距離(La)を測定しておく。しかる後に計測を開始する。
なお、季節変動や温度条件等によって監視室の構造体の熱膨張/収縮が発生すると、実際の路面の沈下が無くても、測量機1による計測値(反射光による計測距離)が基準距離と異なった値となってしまうこともあるので、前記基準距離(La)は、季節変動や温度条件等を加味して、種々の条件に対応できるように複数種類設定しておくとよい。
【0024】
図7において、前記測量機1による計測値(反射光による計測距離)がLsであるときの沈下量ΔHは次式で求める。
ΔH=(Ls−La)×sin θ
なお、レーザーの照射角度はθaとする。
なお、計測誤差を小さくするために、前記照射角度θaは5度以上とする。さらに、好ましくは10度以上とすると精度が向上する。
前記測量機1から測定対象路面までの水平距離を40m以内とするとともに、前記照射角度θaを10度以上とすることによって、測定精度が大幅に向上するという効果が得られる。
また、計測地点を明確にするために計測対象の路面上に、主として白色のマークを設置するとよい。
以上のようにして、ポイントPaにおける路面の沈下量を、距離の変化量と傾斜角度より求めるのである。
そして、別のポイントPb,Pc,・・・・・における路面の沈下量をそれぞれ求めることができるのである。
8台の測量機によって全てのポイントの沈下量を計測して、計測コンピュータ3に蓄積するとともに管理事務所の処理コンピュータへ伝送し、計測コンピュータ及び処理コンピュータの画面で路面の沈下量をグラフィカルに表示することができる。
また、予め設定された沈下量を越えた場合には、通信機能を介して警報を出力することもできる。このような警報機能によって、特定の人もしくは特定の受信機に異常な沈降を知らせて対策を講じることも可能になる。
なお、測定手順の例を、図9、10、11のフローチャートに示した。
【0025】
なお、路面の沈下の進行と比較すると、車両の通行による瞬間的な路面の上下振動等は極めて短時間の変化であるので、計測値から短時間の変化を排除することによって、車両の通行による瞬間的な路面の上下振動等の影響を取り除いた、実際の路面の沈下量を抽出して計測することができるのである。
このように、路面の沈下量には、通過車両による弾性沈下もあるので、毎回の計測値の変化が、路面の沈下によるものか、それ以外の外乱によるものかを判定する必要がある。
また、測量中に、走行中の自動車等の障害物に当たった場合等には、そのデータが、正常な範囲を外れていることから異常データと判定できるので、そのデータを削除することによって精確な測量が可能となる。
【0026】
次に、図12を参照して、季節毎の運転制御方法を説明する。
図12の(A)に示したように、
監視室に配設された測量機1は制御手段19によって、以下のようにオン/オフ制御されるように構成されている。
まず、温度の上昇する夏季には、図12の(B)に示したように、非測定時にはオフにして測定する直前にオンにする。そして、測定終了後には直ちにオフに制御する。
このように制御することによって、通電時間を短縮し、監視室内の温度上昇を抑制するとともに、測量機の温度上昇を抑制して正確な測定を可能とするのである。
また、温度の低下する冬季には、図12の(C)に示したように、非測定時にもオンにして通電し、測定する度に一旦オフにして所定時間経過後に再びオンにして測定するように制御する。
このように制御することによって、ほぼ常時通電して測量機の温度低下を防止して常時安定した測定が可能な定常状態にしておき、測定開始に先立って一旦電源をオフにして、種々の要因をリセットした後、測量機が冷める前に直ちに再度オンにして、正確な測定を可能とするのである。
【0027】
上記構成の路面測定装置によれば、車両の通行量の多い道路であっても、通行を禁止したり制限したりすることなく、無人で連続的に計測できるので、車両の通行等の影響を取り除いた路面の沈下を継続して観測することができ、事故の予防や、補修時期の予測が可能となり、計画的で且つ安全な道路管理が可能となるのである。
そして、路面の沈降を計測する前に、測量機の沈降や位置変動がないかを確認するので、正確な路面の沈降の計測が可能になったのである。
【0028】
また、路面だけでなく、地盤の沈下や建物の沈下等を非接触で離れた位置から無人で連続的に正確に計測することが可能となるのである。
【0029】
【発明の効果】
本発明によれば、レーザー測距手段を収納容器内に収納したので、風雨や砂塵等の周囲環境からの影響を排除して、長期間にわたって安定した測定が可能となった。
特に、広範囲の測定対象路面を、高速且つ高精度で測量することが可能となった。
また、季節に応じて、電源のオン/オフを制御し、四季を通じて正確な測定を可能とした。
また、無停電電源装置を備えることによって、落雷等によって停電が発生しても、長期にわたる連続測量が可能となった。
【図面の簡単な説明】
【図1】本発明の計測方法に用いる監視室の平面図である。
【図2】本発明の計測方法に用いる監視室の側面図である。
【図3】本発明の計測方法に用いる別の実施形態の監視室の平面図である。
【図4】本発明の計測方法に用いるさらに別の実施形態の監視室の平面図である。
【図5】本発明にかかる路面測定装置の実際の使用例の平面配置図である。
【図6】前記使用例の側面図である。
【図7】前記使用例における計測原理を説明する図である。
【図8】前記使用例に用いる系統図である。
【図9】前記使用例における測定方法に対応したフローチャートである。
【図10】前記使用例における測定方法に対応したフローチャートである。
【図11】前記使用例における測定方法に対応したフローチャートである。
【図12】季節毎の運転制御方法を説明する図である。
【符号の説明】
10 監視室、収納容器
11、12 ガラス面、透過部材
13 換気装置
16 架台、タワー
17 避雷器
18 無停電電源装置
19 制御手段
1 測量機
R 既設道路、測定対象路面
20 監視室、収納容器
21 ガラス面、透過部材
30 監視室、収納容器
31 ガラス面、透過部材
[0001]
[Industrial application fields]
The present invention relates to a technique for measuring road subsidence and ground subsidence in a non-contact manner.
[0002]
[Prior art]
Excessive subsidence of existing structures during and after construction during construction to construct new structures such as three-dimensional intersections by excavating directly under public transport structures such as roads and railways that are already in service Because it has a major impact on ensuring the safety of passing vehicles and may cause disasters involving human lives, subsidence management and response must be given top priority.
Conventionally, this type of management has been performed by human naval tactics by temporarily blocking traffic during times of low traffic such as at night, taking into account the impact on existing transit transportation systems, For example, a collimation point such as a reflecting prism is installed at a place that does not directly affect the passing traffic such as a median strip and measures are taken periodically.
[Problems to be solved by the invention]
[0003]
However, the laser range finder used in these methods has the problem of being easily affected by wind and rain and temperature changes, and it is possible to continuously obtain stable measurement data in places where it is difficult for personnel to be stationed. It was difficult.
[0004]
Therefore, the applicant has proposed the present invention in order to propose a specific installation structure of the laser distance measuring device and to provide a technique that enables accurate and stable measurement.
Needless to say, this installation structure can be applied to, for example, the settlement measurement method proposed in Japanese Patent Application No. 11-248945.
[0005]
[Means for Solving the Problems]
The road surface measuring device according to claim 1 of the present invention is
A plurality of devices configured to measure a change in distance to a portion irradiated with laser light by irradiating laser light obliquely to a measurement target road surface at a predetermined angle and measuring reflected light from the measurement target road surface In the road surface measuring device in which the laser distance measuring means is disposed in the vicinity of the road surface to be measured,
The laser distance measuring means is disposed in a storage container configured by a transmission member that transmits a laser beam, the scanning range of the laser beam ,
In addition, the power of the laser distance measuring means is turned off every summer during non-measurement and turned on every time measurement is performed, and is turned off immediately after the measurement is completed. It is characterized in that it is provided with a control means for controlling to turn it off once and turn it on again after a predetermined time and measure .
[0006]
In claim 2,
The laser distance measuring means is characterized in that it is installed on the tower so as to look down on the road surface to be measured at an angle of 5 degrees or more.
In claim 3,
The laser distance measuring means is installed within a horizontal distance of 100 m from the measurement target road surface.
[0007]
In claim 4,
The storage container includes two perpendicular transmission members orthogonal to each other,
Each of the transmitting members is provided with an inclination of about 45 degrees with respect to the traveling direction of the measurement target road.
In claim 5,
In the storage container, a rain guard is formed on an upper portion of the standing wall surface provided with the transmission member.
[0008]
In claim 6,
In the storage container, the transmissive member is provided with anti-fogging means.
[0009]
In claim 7,
The anti-fogging means is constituted by ventilation means for ventilating the inside of the storage container with outside air.
[0010]
In claim 8,
The anti-fogging means is constituted by air conditioning means for adjusting at least one of temperature and humidity inside the storage container.
[0011]
In claim 9,
Each component of the storage container includes an assembling means that can be easily fixed and separated from each other.
In claim 10,
The storage container is set on a gantry.
[0012]
The power source of the laser ranging means is connected to the uninterruptible power supply.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a road surface measuring apparatus according to the present invention will be described in detail with reference to FIG.
As shown in FIG. 1, the surveying instrument 1 as a laser ranging means is installed in a rainproof monitoring room 10 constituting a storage container. As shown in FIG. 1, the monitoring room 10 includes, for example, two glass facing surfaces 11 and 12 serving as transmissive members facing the road.
The monitoring room 10 or surveying instrument 1 is installed on a gantry 16 as shown in FIG. If the horizontal distance from the gantry 16 to the road surface to be measured is within 100 m, the measurement can be performed with sufficient accuracy. However, by setting the horizontal distance within 40 m, the effect of greatly improving the measurement accuracy can be obtained.
[0014]
The glass surfaces 11 and 12 constitute vertical surfaces orthogonal to each other, and are inclined by about 45 degrees with respect to the traveling direction of the road.
Therefore, the scanning range by the surveying instrument 1 can be secured approximately 180 degrees, and each point set on the road surface can be measured.
[0015]
In addition, as shown in FIG. 2, the monitoring room 10 may be provided with a ventilation device 13 to serve as a defogging means for the glass surface.
The anti-fogging means is not limited to a ventilator, but a wiper for wiping the glass surface is provided, an anti-fogging agent is applied, a heating wire is laid on the glass surface for heating, and air is passed through the room. A flowing structure may be provided. Moreover, you may provide the air-conditioning equipment which adjusts at least any one of indoor temperature or humidity.
Moreover, it is good to provide the collar 14 in the upper part of a glass surface.
Further, since the monitoring room 10 is installed at a high position or on a pedestal (tower) in order to overlook the measurement range, a lightning arrester 17 may be provided as shown in FIG. 2 in order to prevent damage to the equipment due to lightning. .
The provision of the lightning arrester 17 is effective not only for direct lightning strikes but also for induced voltages caused by distant lightning.
And the uninterruptible power supply 18 which supplies power automatically at the time of a power failure is provided.
Moreover, as shown in FIG. 3, it is good also as the monitoring room 20 provided with three glass 22 instead of two glass.
Moreover, as shown in FIG. 4, it is good also as the monitoring room 30 provided with the curved glass 32 instead of several flat glass.
Further, although not shown, it may be composed of four or more glass surfaces. Further, the angle with respect to the traveling direction of the road is not limited to 45 °.
[0016]
Next, the actual measurement method will be described with reference to FIGS. 5, 6, 7 and 8 showing the actual arrangement state by the road surface measuring apparatus having the above-described configuration.
In the case of excavating a tunnel that intersects diagonally in the basement of an existing road, a case will be described as an example in which the influence of road subsidence on the road due to the excavation is monitored.
In FIG. 5, R is an existing road as a measurement target road surface, and T is a tunnel excavated underground. Since there is a possibility that the road surface intersecting the tunnel T may sink, the sinking of the range intersecting the tunnel is monitored using the road surface measuring device according to the present invention.
[0017]
As shown in FIG. 1, 1A to 1H are surveying instruments as laser distance measuring means, which measure the reflected light by irradiating a laser beam, measure the distance to the reflection point, and output a distance signal. It has a function.
In addition, the surveying instruments 1A to 1H use a motor drive mechanism, an angle setting function for setting a laser beam irradiation angle to a specified azimuth angle and depression angle, and a current irradiation angle using the motor drive mechanism. An angle signal output function for outputting as a signal and a communication function for communicating with a measurement computer 3 (see FIG. 8) separately installed in a measurement room via a communication line are provided.
This communication function includes a function of converting the signal from the RS-232C standard to a signal of an appropriate standard such as the RS-422 standard as necessary, and transmitting the signal, and may be wired communication or wireless communication.
[0018]
And since one surveying instrument can measure the subsidence by dividing the road surface within a radius of 40m into 5.0m x 3.5m mesh points (60 points in total), the measurement range of adjacent surveying instruments overlaps little by little. Set as follows. In addition, the above numerical value is an example and it cannot be overemphasized that it sets suitably according to a condition.
[0019]
As shown in FIG. 5, a plurality of (for example, eight) surveying instruments 1A to 1H as described above are installed to cover the measurement target region. And each surveying instrument 1A-1H is connected to the measurement computer 3 via the communication function provided with the signal conversion function of RS-232C and RS-422, as shown in FIG.
The measurement computer 3 includes a calculation unit that calculates a subsidence amount of the road surface based on a change in distance detected by each surveying instrument, a data storage unit that accumulates measurement values of the subsidence amount as time-series data, and an accumulated time Processing means for statistically processing the series data, and determination means for determining a settlement characteristic based on a processing result by the processing means are provided.
Then, the data processed by the measurement computer 3 is transmitted to a processing computer separately installed in a management office via a communication function by wired communication or wireless communication.
As these communication functions, a communication standard such as the RS-232C standard or the RS-422 standard may be appropriately selected.
[0020]
In FIG. 5, S1, S2, S3, and S4 are fixed points installed at a place (non-sinking point outside the surface to be measured) that is not affected by the tunnel excavation work. For example, a prism is installed.
[0021]
Next, in the above configuration, a method for calculating the actual amount of settlement of the road surface will be described with reference to FIG.
First, it is confirmed whether or not it is the timing of the settlement amount measurement set in the interval timer or the like, and if it is the timing of the settlement amount measurement, the following measurement is started.
The first surveying instrument 1A collimates the first fixed point S1 to measure the angle and distance, and then the first surveying instrument 1A collimates the prism of the second surveying instrument 1B to measure the angle. The distance is measured, and the second surveying instrument 1B collimates the prism of the first surveying instrument 1A to measure the angle and distance. After sequentially measuring in this way, and finally collimating the prism of the third surveying instrument 1C with the fourth surveying instrument 1D and measuring the angle and distance, the second stationary with the fourth surveying instrument 1D. The angle and distance are measured by collimating the point S2. By this series of measurements, the positions of the first surveying instrument 1A to the fourth surveying instrument 1D based on the first fixed point S1 and the second fixed point S2 can be determined.
[0022]
Similarly, on the other side of the existing road R, the positions of the fifth to eighth surveying instruments 1E, 1F, 1G, and 1H are measured based on the third fixed point S3 and the fourth fixed point S4. To do.
These position data are transmitted to the measurement computer 3 and stored.
[0023]
After confirming the position of each surveying instrument as described above, the road surface is measured. As shown in FIG. 6, the reference distance to each point (Pa) is measured by obliquely irradiating a laser beam from a surveying instrument in charge to each point set in a mesh shape on the road surface and measuring the reflected light. (La) is measured. After that, start measurement.
If thermal expansion / contraction of the structure of the monitoring room occurs due to seasonal fluctuations or temperature conditions, the measured value (measured distance by reflected light) from the surveying instrument 1 is the reference distance even if there is no actual road surface subsidence. Since the values may be different, it is preferable to set a plurality of types of the reference distance (La) so as to be able to deal with various conditions in consideration of seasonal variation, temperature conditions, and the like.
[0024]
In FIG. 7, the subsidence amount ΔH when the measurement value by the surveying instrument 1 (measurement distance by reflected light) is Ls is obtained by the following equation.
ΔH = (Ls−La) × sin θ
Note that the laser irradiation angle is θa.
In order to reduce the measurement error, the irradiation angle θa is set to 5 degrees or more. Furthermore, when the angle is preferably 10 degrees or more, the accuracy is improved.
By setting the horizontal distance from the surveying instrument 1 to the road surface to be measured within 40 m and setting the irradiation angle θa to 10 degrees or more, the measurement accuracy can be greatly improved.
In order to clarify the measurement point, it is preferable to install a white mark mainly on the road surface to be measured.
As described above, the amount of settlement of the road surface at the point Pa is obtained from the distance change amount and the inclination angle.
And the amount of settlement of the road surface at other points Pb, Pc,.
The amount of settlement at all points is measured by eight surveying instruments, stored in the measurement computer 3 and transmitted to the processing computer of the management office, and the amount of settlement on the road surface is displayed graphically on the screen of the measurement computer and processing computer. can do.
In addition, when a preset subsidence amount is exceeded, an alarm can be output via the communication function. Such an alarm function makes it possible to notify a specific person or a specific receiver of abnormal sedimentation and take measures.
In addition, the example of the measurement procedure was shown to the flowchart of FIG.
[0025]
Compared with the progress of the settlement of the road surface, the instantaneous vertical vibration of the road surface due to the passage of the vehicle is a very short time change, so by eliminating the short time change from the measured value, It is possible to extract and measure the actual amount of road subsidence, excluding the effects of instantaneous vertical vibrations of the road surface.
As described above, since the amount of settlement on the road surface also includes elastic settlement due to passing vehicles, it is necessary to determine whether the change in the measured value every time is due to road surface settlement or other disturbances.
In addition, if the vehicle hits an obstacle such as a running car during surveying, it can be determined as abnormal data because the data is out of the normal range. Surveying is possible.
[0026]
Next, the operation control method for each season will be described with reference to FIG.
As shown in FIG.
The surveying instrument 1 disposed in the monitoring room is configured to be on / off controlled by the control means 19 as follows.
First, in the summer when the temperature rises, as shown in FIG. 12B, when it is not measured, it is turned off and turned on immediately before measurement. Then, immediately after the measurement, the control is turned off.
By controlling in this way, the energization time is shortened, the temperature rise in the monitoring room is suppressed, and the temperature rise of the surveying instrument is suppressed to enable accurate measurement.
In winter when the temperature decreases, as shown in FIG. 12C, the power is turned on even during non-measurement and the power is turned on. To control.
By controlling in this way, the instrument is almost always energized to prevent the temperature drop of the surveying instrument and to be in a steady state where stable measurement is possible at all times. After resetting, turn on again immediately before the surveying instrument cools down, allowing accurate measurement.
[0027]
According to the road surface measuring device having the above-described configuration, even if the road has a large amount of traffic, it can be continuously measured unattended without prohibiting or restricting traffic. The subsidence of the removed road surface can be continuously observed, accidents can be prevented and the repair time can be predicted, and planned and safe road management becomes possible.
Then, before measuring the sedimentation of the road surface, it is confirmed whether there is any sedimentation or position fluctuation of the surveying instrument, so that accurate sedimentation of the road surface can be measured.
[0028]
Further, not only the road surface but also ground subsidence and building subsidence can be continuously and accurately measured unattended from a position away from each other without contact.
[0029]
【The invention's effect】
According to the present invention, since the laser distance measuring means is stored in the storage container, the influence from the surrounding environment such as wind and rain and dust can be eliminated, and stable measurement can be performed over a long period of time.
In particular, it has become possible to survey a wide range of measurement target road surfaces with high speed and high accuracy.
In addition, the power on / off was controlled according to the season, enabling accurate measurement throughout the seasons.
In addition, by providing an uninterruptible power supply, continuous surveying over a long period of time is possible even if a power failure occurs due to lightning strikes.
[Brief description of the drawings]
FIG. 1 is a plan view of a monitoring room used in a measurement method of the present invention.
FIG. 2 is a side view of a monitoring room used in the measurement method of the present invention.
FIG. 3 is a plan view of a monitoring room according to another embodiment used in the measurement method of the present invention.
FIG. 4 is a plan view of a monitoring room according to still another embodiment used in the measurement method of the present invention.
FIG. 5 is a plan layout view of an actual usage example of the road surface measuring device according to the present invention.
FIG. 6 is a side view of the use example.
FIG. 7 is a diagram for explaining a measurement principle in the use example.
FIG. 8 is a system diagram used in the usage example.
FIG. 9 is a flowchart corresponding to the measurement method in the use example.
FIG. 10 is a flowchart corresponding to the measurement method in the use example.
FIG. 11 is a flowchart corresponding to the measurement method in the use example.
FIG. 12 is a diagram for explaining an operation control method for each season.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Monitoring room, storage container 11, 12 Glass surface, permeable member 13 Ventilation device 16 Mount, tower 17 Lightning arrester 18 Uninterruptible power supply device 19 Control means 1 Surveying machine R Existing road, measurement object road surface 20 Monitoring room, storage container 21 Glass surface , Transmission member 30 Monitoring room, storage container 31 Glass surface, transmission member

Claims (11)

レーザー光を測定対象路面に所定の角度で斜めに照射して、前記測定対象路面による反射光を測定することによってレーザー光が照射される部位までの距離の変化を計測するように構成された複数のレーザー測距手段を測定対象路面の近傍に配設した路面測定装置において、
前記レーザー測距手段は、レーザー光の走査範囲が、レーザー光を透過する透過部材によって構成された収納容器内に配設されており、
さらに、前記レーザー測距手段の電源を、夏季には、非測定時にはオフにして測定する度にオンにして測定終了後には直ちにオフに制御し、冬季には、非測定時にもオンにして測定する度に一旦オフにして所定時間経過後に再びオンにして測定するように制御する制御手段を備えていることを特徴とする路面測定装置。
A plurality of devices configured to measure a change in distance to a portion irradiated with laser light by irradiating laser light obliquely to a measurement target road surface at a predetermined angle and measuring reflected light from the measurement target road surface In the road surface measuring device in which the laser distance measuring means is disposed in the vicinity of the road surface to be measured,
The laser distance measuring means is disposed in a storage container configured by a transmission member that transmits a laser beam, the scanning range of the laser beam ,
In addition, the power of the laser distance measuring means is turned off every summer during non-measurement and turned on every time measurement is performed, and is turned off immediately after the measurement is completed. A road surface measuring device comprising control means for controlling to turn off and measure again after a predetermined time every time the measurement is performed .
レーザー測距手段は、測定対象路面を5度以上の角度で見下ろすようにタワー上に設置されていることを特徴とする請求項1に記載の路面測定装置。The road surface measuring device according to claim 1, wherein the laser distance measuring means is installed on the tower so as to look down at the road surface to be measured at an angle of 5 degrees or more. レーザー測距手段は、測定対象路面から水平距離100m以内に設置されていることを特徴とする請求項1、2の何れか1項に記載の路面測定装置。Laser ranging means, road measurement device according to any one of claims 1, 2, characterized in that the measured road surface is disposed within a horizontal distance 100 m. 収納容器は、互いに直交する2枚の垂直な透過部材を備え、
前記透過部材はそれぞれ測定対象路の走行方向に対して約45度傾斜させて設けられていることを特徴とする請求項1〜3の何れか1項に記載の路面測定装置。に記載の路面測定装置。
The storage container includes two perpendicular transmission members orthogonal to each other,
The transmitting member is a road surface measuring apparatus according to any one of claims 1 to 3, characterized in that is provided is inclined at about 45 degrees to the direction of travel of the measured path, respectively. The road surface measuring device described in 1.
収納容器において、透過部材を備えた立壁面の上部には、雨よけの庇が形成されていることを特徴とする請求項1〜4の何れか1項に記載の路面測定装置。The storage container in the upper portion of the upright wall surface having a transparent member, the road measurement device according to any one of claims 1 to 4, characterized in that the eaves of rain is formed. 収納容器において、透過部材には曇り止め手段が施されていることを特徴とする請求項1〜5の何れか1項に記載の路面測定装置。The storage container, road measurement device according to any one of claims 1 to 5, characterized in that the transmission member defogging means is applied. 曇り止め手段は、収納容器の内部を外気によって換気する換気手段によって構成されていることを特徴とする請求項6に記載の路面測定装置。The road surface measuring device according to claim 6, wherein the anti-fogging means is constituted by ventilation means for ventilating the inside of the storage container with outside air. 曇り止め手段は、収納容器の内部の温度もしくは湿度の少なくとも何れか一方を調整する空調手段によって構成されていることを特徴とする請求項6に記載の路面測定装置。The road surface measuring device according to claim 6, wherein the anti-fogging means comprises air conditioning means for adjusting at least one of temperature and humidity inside the storage container. 収納容器の各構成部材は、互いに固定及び分離が容易な組み立て手段を備えていることを特徴とする請求項1〜8の何れか1項に記載の路面測定装置。Each component of the container, the road measurement device according to any one of claims 1-8, characterized in that it comprises an easy assembling means fixed and separated from each other. 収納容器は架台上に設定されていることを特徴とする請求項1〜9の何れか1項に記載の路面測定装置。Container road surface measuring device according to any one of claims 1 to 9, characterized in that configured on the pedestal. レーザー測距手段の電源は、無停電電源装置に接続されていることを特徴とする請求項1〜10の何れか1項に記載の路面測定装置。The road surface measuring device according to any one of claims 1 to 10, wherein a power source of the laser distance measuring means is connected to an uninterruptible power supply device.
JP2002267776A 2002-09-13 2002-09-13 Road surface measuring device Expired - Lifetime JP3942518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002267776A JP3942518B2 (en) 2002-09-13 2002-09-13 Road surface measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002267776A JP3942518B2 (en) 2002-09-13 2002-09-13 Road surface measuring device

Publications (2)

Publication Number Publication Date
JP2004108775A JP2004108775A (en) 2004-04-08
JP3942518B2 true JP3942518B2 (en) 2007-07-11

Family

ID=32266186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002267776A Expired - Lifetime JP3942518B2 (en) 2002-09-13 2002-09-13 Road surface measuring device

Country Status (1)

Country Link
JP (1) JP3942518B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102679903A (en) * 2012-06-05 2012-09-19 中铁六局集团有限公司 System for measuring bridge bottom deformation by aid of laser ranging method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105180897A (en) * 2015-09-28 2015-12-23 长安大学 Method for improving precision of opposite side measurement for settlement of tunnel vault
CN106767688B (en) * 2017-02-27 2018-06-19 中国石油大学(华东) Tank foundation settlement monitoring device based on laser ranging
CN107084703A (en) * 2017-06-16 2017-08-22 上海工程技术大学 A kind of tunnel subsidence monitoring system
JP7028085B2 (en) * 2018-07-02 2022-03-02 株式会社デンソー Distance measuring device
CN109837824B (en) * 2018-11-08 2021-02-23 廊坊师范学院 Highway road surface settlement monitoring and early warning system
CN113048886B (en) * 2021-05-31 2021-08-17 山东捷瑞数字科技股份有限公司 Method and apparatus for measuring size of irregular body of workpiece
CN113638293A (en) * 2021-08-11 2021-11-12 齐爱娴 Road and bridge strength detection device
CN116222496B (en) * 2022-12-20 2024-01-26 深圳市前海公共安全科学研究院有限公司 Parameter monitoring device for constructional engineering
CN116124083B (en) * 2023-04-12 2023-06-20 中铁二十三局集团有限公司 High-fill roadbed settlement observation device and observation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102679903A (en) * 2012-06-05 2012-09-19 中铁六局集团有限公司 System for measuring bridge bottom deformation by aid of laser ranging method

Also Published As

Publication number Publication date
JP2004108775A (en) 2004-04-08

Similar Documents

Publication Publication Date Title
JP7195021B2 (en) Data collection device, road condition evaluation support device, and program
US9911328B2 (en) Apparatus, system, and method for roadway monitoring
JP3942518B2 (en) Road surface measuring device
KR101092093B1 (en) Apparatus for sensing inundation and street lamp therewith
US20210027624A1 (en) Device for Monitoring the State of Roads, Infrastructure and Traffic
CN107907100B (en) System and method for monitoring rail transit uneven settlement
WO2020021282A1 (en) Determining position of a vehicle on a rail
CN105966424A (en) High-definition railway line safety monitoring system based on laser positioning
GB2533396A (en) Monitoring system for railway embankment
JP2005353015A (en) Environment-conscious road energy utilization system for extracting, collecting and effectively utilizing unused energy and unifying management of road information
JP2001165656A (en) Automatic measurement system for tunnel convergence
JP3909294B2 (en) Settlement measurement method
JPH09138280A (en) Monitoring apparatus
JP4355869B2 (en) Settlement measurement method and settlement measurement device
CN108106604A (en) A kind of photogrammetric optical measurement mark method of work and device
CN108427116A (en) A kind of position reference net node working method and device
KR102453093B1 (en) Manhole repair apparatus and manhole repair method using the same
US20230260393A1 (en) Traffic management device, traffic management system, traffic information system, starting module that can be retrofitted and method for managing traffic
JP4335769B2 (en) Movement amount measuring method using non-prism distance measuring means
CN110864663B (en) House volume measuring method based on unmanned aerial vehicle technology
JPH11325901A (en) Special measurement rivet for automatic tracking total station displacement observation system (with built-in corner prism)
CN205661461U (en) Based on swashing optical locating and high definition railway safety monitoring system along line
JP2002310648A (en) Depression measuring method
KR102635185B1 (en) Earth surface water level measuring device
US20220051563A1 (en) Devices, systems and processes for determining and communicating hazards road conditions to users

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070403

R150 Certificate of patent or registration of utility model

Ref document number: 3942518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313118

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313118

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term