JP2004108775A - Road surface measurement device - Google Patents

Road surface measurement device Download PDF

Info

Publication number
JP2004108775A
JP2004108775A JP2002267776A JP2002267776A JP2004108775A JP 2004108775 A JP2004108775 A JP 2004108775A JP 2002267776 A JP2002267776 A JP 2002267776A JP 2002267776 A JP2002267776 A JP 2002267776A JP 2004108775 A JP2004108775 A JP 2004108775A
Authority
JP
Japan
Prior art keywords
road surface
measurement
measured
storage container
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002267776A
Other languages
Japanese (ja)
Other versions
JP3942518B2 (en
Inventor
Mamoru Takashina
高階 守
Hiroji Chiba
千葉博治
Masaru Saito
齋藤優
Tomio Inaba
稲葉富男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SGS KK
Zenitaka Corp
Original Assignee
SGS KK
Zenitaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SGS KK, Zenitaka Corp filed Critical SGS KK
Priority to JP2002267776A priority Critical patent/JP3942518B2/en
Publication of JP2004108775A publication Critical patent/JP2004108775A/en
Application granted granted Critical
Publication of JP3942518B2 publication Critical patent/JP3942518B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Road Repair (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide concrete installation structure for a laser distance measurement device for use in measurement of the settlement of a road surface or the like, and to permit accurate and stable measurement. <P>SOLUTION: In the road surface measurement device, in which a plurality of laser distance measurement means 1 that are constituted so as to measure the change in the distance to a part irradiated with a laser light, by irradiating the road surface to be measured with the laser light at a prescribed oblique angle to measure the light reflected by the road surface to be measured are arranged near the road surface to be measured, the laser distance measurement means 1 is housed in a housing container 10 whose range corresponding to the scanning laser light is composed of a transparent member 12 through which the laser light penetrates. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明は、路面の沈下や地盤沈下等を非接触で計測する技術に関するものである。
【0002】
【従来の技術】
既に供用されている道路、鉄道等の公共交通構造物の真下を掘削して、立体交差等の新たな構造物を構築する工事において、工事中及び供用後の既存構造物の過度の不等沈下は、通過車両の安全確保に大きな影響を及ぼし、人命に関わる災害発生の原因にもなりかねないため、沈下管理及びその対応は最優先で行われなければならない。
従来、この種の管理は、既存通過交通機関に及ぼす影響を考慮して、夜間等の交通量の少ない時間帯に、一時的に交通を遮断して人海戦術で行われたり、道路では路肩、中央分離帯等の通過交通に直接影響を及ぼさない箇所に、反射プリズム等の視準点を設置して、定期的に計測を行う等で対応してきた。
【発明が解決しようとする課題】
【0003】
しかし、これらの方法に用いられるレーザー測距装置は、風雨や温度変化の影響を受けやすいという問題があり、人員が常駐することが困難な場所等において、継続して安定した測定データを得ることが困難であった。
【0004】
そこで、出願人は、レーザー測距装置の具体的な設置構造を提案して、正確且つ安定した測定を可能とする技術を提供するために本発明をしたものである。
この設置構造は、例えば、特願平11−248945号等において提案した沈下測定方法等に適用できることがいうまでもない。
【0005】
【課題を解決するための手段】
本発明にかかる請求項1の路面測定装置は、
レーザー光を測定対象路面に所定の角度で斜めに照射して、前記測定対象路面による反射光を測定することによってレーザー光が照射される部位までの距離の変化を計測するように構成された複数のレーザー測距手段を測定対象路面の近傍に配設した路面測定装置において、
前記レーザー測距手段は、レーザー光の走査範囲が、レーザー光を透過する透過部材によって構成された収納容器内に配設されていることを特徴としている。
【0006】
請求項2においては、
レーザー測距手段は、測定対象路面を5度以上の角度で見下ろすようにタワー上に設置されていることを特徴としている。
請求項3においては、
レーザー測距手段は、測定対象路面から水平距離100m以内に設置されていることを特徴としている。
【0007】
請求項4においては、
前記収納容器は、互いに直交する2枚の垂直な透過部材を備え、
前記透過部材はそれぞれ測定対象路の走行方向に対して約45度傾斜させて設けられている。
請求項5においては、
前記収納容器において、透過部材を備えた立壁面の上部には、雨よけの庇が形成されている。
【0008】
請求項6においては、
前記収納容器において、透過部材には曇り止め手段が施されている。
【0009】
請求項7においては、
前記曇り止め手段は、収納容器の内部を外気によって換気する換気手段によって構成されている。
【0010】
請求項8においては、
前記曇り止め手段は、収納容器の内部の温度もしくは湿度の少なくとも何れか一方を調整する空調手段によって構成されている。
【0011】
請求項9においては、
前記収納容器の各構成部材は、互いに固定及び分離が容易な組み立て手段を備えている。
請求項10においては、
収納容器は架台上に設定されている。
【0012】
請求項11においては、
レーザー測距手段の電源を、夏季には、非測定時にはオフにして測定する度にオンにして測定終了後には直ちにオフに制御し、冬季には、非測定時にもオンにして測定する度に一旦オフにして所定時間経過後に再びオンにして測定するように制御する制御手段を備えている。
請求項12においては、
レーザー測距手段の電源は、無停電電源装置に接続されていることを特徴としている。
【0013】
【発明の実施の形態】
以下に、本発明にかかる路面測定装置の実施の形態を図1に基づいて詳細に説明する。
図1に示したように、レーザー測距手段としての測量機1は、収納容器を構成する防雨構造の監視室10内に設置されている。この監視室10は、図1に示したように、例えば道路に面した2面が透過部材としてのガラス面11、12で構成されている。
また、前記監視室10もしくは測量機1は、図2に示したように架台(タワー)16上に設置されている。前記架台16から測定対象路面までの水平距離は100m以内であれば充分な精度で測定できるが、40m以内とすることによって、測定精度が大幅に向上するという効果が得られる。
【0014】
前記ガラス面11、12は互いに直交した垂直面を構成しているとともに、それぞれ道路の走行方向に対して約45度傾斜している。
そのため、前記測量機1による走査範囲は、ほぼ180度確保でき、道路面に設定された各ポイントを計測することができる。
【0015】
また、図2に示したように、前記監視室10には、換気装置13を設けて、ガラス面の曇り止め手段とするとよい。
なお、前記曇り止め手段としては、換気装置に限らず、ガラス面を拭くワイパーを設けたり、曇り止め剤を塗布したり、ガラス面に電熱線を敷設して加温したり、室内を空気が流れるような構造を備えたりしてもよい。また、室内の温度もしくは湿度の少なくともいずれかを調整する空調設備を備えてもよい。
また、ガラス面の上部には庇14を設けるとよい。
また、前記監視室10は計測範囲を見渡すために高い位置もしくは架台(タワー)上に設置するので、落雷による機器の損傷を防止するために、図2に示したように避雷器17を設けるとよい。
なお、避雷器17を設けることは、雷の直撃だけでなく、遠くの雷に起因する誘導電圧に対しても有効である。
そして、停電時には自動的に電源供給を行う無停電電源装置18を備えている。
また、図3に示したように、2枚のガラスに代えて、3枚のガラス22を備えた監視室20としてもよい。
また、図4に示したように、複数枚の平面ガラスに代えて、曲面ガラス32を備えた監視室30としてもよい。
さらには、図示はしないが、4枚以上のガラス面で構成してもよい。また、道路の走行方向に対する角度も45°に限定されるものではない。
【0016】
次に、上記構成の路面測定装置による実際の配置状況を示した図5、6、7、8を参照して、実際の測定方法を説明する。
既設の道路の地下に、斜めに交差するトンネルを掘削する場合に、その掘削による道路の路面沈下の影響を監視する場合を例にとって説明する。
図5において、Rは計測対象路面としての既設の道路であり、Tはその地下に掘削されるトンネルである。そして、トンネルTと交差する部分の路面が沈下する可能性があるので、トンネルと交差する範囲の沈下を、本発明による路面測定装置を用いて監視するものとする。
【0017】
1A〜1Hは図1に示したように、レーザー測距手段としての測量機であり、レーザー光線を照射して反射光を測定し、反射点までの距離を測定して距離信号を出力する測距機能を備えている。
また、この測量機1A〜1Hは、モータドライブ機構と、このモータドライブ機構を用いて、レーザー光の照射角度を指定された方位角・俯角に設定する角度設定機能と、現在の照射角度を電気信号として出力する角度信号出力機能と、通信回線を介して別途計測室に設置された計測コンピュータ3(図8参照)との通信を行う通信機能とを備えている。
この通信機能は、必要に応じてRS−232C規格からRS−422規格等の適切な規格の信号に変換して伝送する機能をも含んだものであり、有線通信でも無線通信でもよい。
【0018】
そして、一つの測量機は半径40m以内の路面を、5.0m×3.5mメッシュのポイント(計60ポイント)に分けて沈下を計測することができるので、隣り合う測量機の計測範囲が少しずつ重なり合うように設定する。なお、以上の数値は一例であり、状況に応じて適宜設定することは言うまでもない。
【0019】
図5に示したように、以上のような測量機1A〜1Hが、測定対象領域を網羅すべく複数(例えば8台)設置されている。そして、各測量機1A〜1Hは、図8に示したように、RS−232CとRS−422との信号変換機能を備えた通信機能を介して計測コンピュータ3に接続されている。
この計測コンピュータ3は、各測量機で検出した距離の変化に基づいて路面の沈下量を演算する演算手段と、沈下量の測定値を時系列データとして蓄積するデータ蓄積手段と、蓄積された時系列データを統計処理する処理手段と、処理手段による処理結果に基づいて沈下特性を判断する判断手段とを備えている。
そして、前記計測コンピュータ3にて処理されたデータは、有線通信もしくは無線通信による通信機能を介して別途管理事務所に設置された処理コンピュータに伝送される。
これらの通信機能としては、RS−232C規格やRS−422規格等の通信規格を適宜選択するとよい。
【0020】
図5において、S1,S2,S3,S4はトンネルの掘削工事の影響を受けない場所(測定対象面外の非沈下点)に設置した不動点であり、例えばプリズムを設置しておく。
【0021】
次に、上記構成において、実際の路面の沈下量の演算方法を、図5を参照して説明する。
まず、インターバルタイマ等において設定された沈下量測定のタイミングになっているか否かを確認して、沈下量測定のタイミングであれば以下の計測を開始する。
第1の測量機1Aで第1の不動点S1を視準して角度と距離を計測し、次に、前記第1の測量機1Aで第2の測量機1Bのプリズムを視準して角度と距離を計測し、第2の測量機1Bで第1の測量機1Aのプリズムを視準して角度と距離を計測する。このようにして順次計測し、最後に、第4の測量機1Dで第3の測量機1Cのプリズムを視準して角度と距離を計測した後、第4の測量機1Dで第2の不動点S2を視準して角度と距離を計測する。この一連の計測によって、第1の不動点S1と第2の不動点S2を基準とした第1の測量機1A〜第4の測量機1Dを位置を確定することができるのである。
【0022】
既設道路Rの反対側においても、同様にして、第3の不動点S3と第4の不動点S4を基準にして、第5〜第8の測量機1E,1F,1G,1Hの位置を計測する。
これらの位置データは計測コンピュータ3へ伝送し保存しておく。
【0023】
以上のようにして、各測量機の位置を確認した後に、路面の計測を行う。これは、図6に示したように、路面にメッシュ状に設定された各ポイントにそれぞれ担当する測量機からレーザー光線を斜めに照射し、反射光を測定して各ポイント(Pa)までの基準距離(La)を測定しておく。しかる後に計測を開始する。
なお、季節変動や温度条件等によって監視室の構造体の熱膨張/収縮が発生すると、実際の路面の沈下が無くても、測量機1による計測値(反射光による計測距離)が基準距離と異なった値となってしまうこともあるので、前記基準距離(La)は、季節変動や温度条件等を加味して、種々の条件に対応できるように複数種類設定しておくとよい。
【0024】
図7において、前記測量機1による計測値(反射光による計測距離)がLsであるときの沈下量ΔHは次式で求める。
ΔH=(Ls−La)×sin θ
なお、レーザーの照射角度はθaとする。
なお、計測誤差を小さくするために、前記照射角度θaは5度以上とする。さらに、好ましくは10度以上とすると精度が向上する。
前記測量機1から測定対象路面までの水平距離を40m以内とするとともに、前記照射角度θaを10度以上とすることによって、測定精度が大幅に向上するという効果が得られる。
また、計測地点を明確にするために計測対象の路面上に、主として白色のマークを設置するとよい。
以上のようにして、ポイントPaにおける路面の沈下量を、距離の変化量と傾斜角度より求めるのである。
そして、別のポイントPb,Pc,・・・・・における路面の沈下量をそれぞれ求めることができるのである。
8台の測量機によって全てのポイントの沈下量を計測して、計測コンピュータ3に蓄積するとともに管理事務所の処理コンピュータへ伝送し、計測コンピュータ及び処理コンピュータの画面で路面の沈下量をグラフィカルに表示することができる。
また、予め設定された沈下量を越えた場合には、通信機能を介して警報を出力することもできる。このような警報機能によって、特定の人もしくは特定の受信機に異常な沈降を知らせて対策を講じることも可能になる。
なお、測定手順の例を、図9、10、11のフローチャートに示した。
【0025】
なお、路面の沈下の進行と比較すると、車両の通行による瞬間的な路面の上下振動等は極めて短時間の変化であるので、計測値から短時間の変化を排除することによって、車両の通行による瞬間的な路面の上下振動等の影響を取り除いた、実際の路面の沈下量を抽出して計測することができるのである。
このように、路面の沈下量には、通過車両による弾性沈下もあるので、毎回の計測値の変化が、路面の沈下によるものか、それ以外の外乱によるものかを判定する必要がある。
また、測量中に、走行中の自動車等の障害物に当たった場合等には、そのデータが、正常な範囲を外れていることから異常データと判定できるので、そのデータを削除することによって精確な測量が可能となる。
【0026】
次に、図12を参照して、季節毎の運転制御方法を説明する。
図12の(A)に示したように、
監視室に配設された測量機1は制御手段19によって、以下のようにオン/オフ制御されるように構成されている。
まず、温度の上昇する夏季には、図12の(B)に示したように、非測定時にはオフにして測定する直前にオンにする。そして、測定終了後には直ちにオフに制御する。
このように制御することによって、通電時間を短縮し、監視室内の温度上昇を抑制するとともに、測量機の温度上昇を抑制して正確な測定を可能とするのである。
また、温度の低下する冬季には、図12の(C)に示したように、非測定時にもオンにして通電し、測定する度に一旦オフにして所定時間経過後に再びオンにして測定するように制御する。
このように制御することによって、ほぼ常時通電して測量機の温度低下を防止して常時安定した測定が可能な定常状態にしておき、測定開始に先立って一旦電源をオフにして、種々の要因をリセットした後、測量機が冷める前に直ちに再度オンにして、正確な測定を可能とするのである。
【0027】
上記構成の路面測定装置によれば、車両の通行量の多い道路であっても、通行を禁止したり制限したりすることなく、無人で連続的に計測できるので、車両の通行等の影響を取り除いた路面の沈下を継続して観測することができ、事故の予防や、補修時期の予測が可能となり、計画的で且つ安全な道路管理が可能となるのである。
そして、路面の沈降を計測する前に、測量機の沈降や位置変動がないかを確認するので、正確な路面の沈降の計測が可能になったのである。
【0028】
また、路面だけでなく、地盤の沈下や建物の沈下等を非接触で離れた位置から無人で連続的に正確に計測することが可能となるのである。
【0029】
【発明の効果】
本発明によれば、レーザー測距手段を収納容器内に収納したので、風雨や砂塵等の周囲環境からの影響を排除して、長期間にわたって安定した測定が可能となった。
特に、広範囲の測定対象路面を、高速且つ高精度で測量することが可能となった。
また、季節に応じて、電源のオン/オフを制御し、四季を通じて正確な測定を可能とした。
また、無停電電源装置を備えることによって、落雷等によって停電が発生しても、長期にわたる連続測量が可能となった。
【図面の簡単な説明】
【図1】本発明の計測方法に用いる監視室の平面図である。
【図2】本発明の計測方法に用いる監視室の側面図である。
【図3】本発明の計測方法に用いる別の実施形態の監視室の平面図である。
【図4】本発明の計測方法に用いるさらに別の実施形態の監視室の平面図である。
【図5】本発明にかかる路面測定装置の実際の使用例の平面配置図である。
【図6】前記使用例の側面図である。
【図7】前記使用例における計測原理を説明する図である。
【図8】前記使用例に用いる系統図である。
【図9】前記使用例における測定方法に対応したフローチャートである。
【図10】前記使用例における測定方法に対応したフローチャートである。
【図11】前記使用例における測定方法に対応したフローチャートである。
【図12】季節毎の運転制御方法を説明する図である。
【符号の説明】
10  監視室、収納容器
11、12 ガラス面、透過部材
13  換気装置
16  架台、タワー
17  避雷器
18  無停電電源装置
19  制御手段
1  測量機
R  既設道路、測定対象路面
20  監視室、収納容器
21  ガラス面、透過部材
30  監視室、収納容器
31  ガラス面、透過部材
[0001]
[Industrial applications]
The present invention relates to a technique for non-contact measurement of road surface subsidence and ground subsidence.
[0002]
[Prior art]
Excavation beneath public transportation structures such as roads and railways that are already in service to construct new structures such as flyovers, etc., and excessive unequal settlement of existing structures during and after construction Since the impact on the safety of passing vehicles can be greatly affected and cause a life-threatening disaster, subsidence management and response must be given top priority.
Conventionally, this type of management has been carried out by human naval tactics by temporarily blocking traffic during times of low traffic volume, such as at night, in consideration of the impact on existing transit transportation, or on road shoulders. In addition, collimating points such as reflecting prisms are installed in places that do not directly affect passing traffic such as the median strip, and measurements are periodically taken.
[Problems to be solved by the invention]
[0003]
However, the laser range finder used in these methods has a problem that it is susceptible to the effects of wind, rain, and temperature changes, and it is necessary to obtain stable measurement data continuously in places where personnel are difficult to stay. Was difficult.
[0004]
Therefore, the applicant has proposed the present invention in order to propose a specific installation structure of a laser distance measuring apparatus and to provide a technology that enables accurate and stable measurement.
It goes without saying that this installation structure can be applied to, for example, the settlement measurement method proposed in Japanese Patent Application No. 11-248945.
[0005]
[Means for Solving the Problems]
The road surface measuring device of claim 1 according to the present invention
A plurality of laser beams are irradiated obliquely at a predetermined angle to the road surface to be measured, and the reflected light from the road surface to be measured is measured to measure a change in a distance to a portion irradiated with the laser light by measuring the reflected light. In a road surface measuring device in which the laser distance measuring means is arranged near the road surface to be measured,
The laser distance measuring means is characterized in that the scanning range of the laser light is disposed in a storage container constituted by a transmission member that transmits the laser light.
[0006]
In claim 2,
The laser distance measuring means is installed on the tower so as to look down on the road surface to be measured at an angle of 5 degrees or more.
In claim 3,
The laser distance measuring means is installed within a horizontal distance of 100 m from the road surface to be measured.
[0007]
In claim 4,
The storage container includes two perpendicular transmission members orthogonal to each other,
Each of the transmission members is provided to be inclined at about 45 degrees with respect to the traveling direction of the road to be measured.
In claim 5,
In the storage container, a rain eave is formed on an upper part of the upright wall provided with the transmission member.
[0008]
In claim 6,
In the storage container, the permeable member is provided with anti-fog means.
[0009]
In claim 7,
The fogging prevention means is constituted by ventilation means for ventilating the inside of the storage container with outside air.
[0010]
In claim 8,
The fogging prevention means is constituted by an air conditioning means for adjusting at least one of the temperature and the humidity inside the storage container.
[0011]
In claim 9,
Each component of the storage container is provided with assembling means that can be easily fixed and separated from each other.
In claim 10,
The storage container is set on a gantry.
[0012]
In claim 11,
In summer, turn off the power of the laser distance measuring means during non-measurement and turn it on every time measurement is performed, and immediately turn it off after the measurement is completed. There is provided control means for turning off once and turning on again after a lapse of a predetermined time to perform measurement.
In claim 12,
The power source of the laser ranging means is connected to an uninterruptible power supply.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a road surface measuring apparatus according to the present invention will be described in detail with reference to FIG.
As shown in FIG. 1, a surveying instrument 1 as a laser distance measuring means is installed in a monitoring room 10 having a rainproof structure constituting a storage container. As shown in FIG. 1, the monitoring room 10 has, for example, two glass surfaces 11 and 12 as transparent members on two sides facing the road.
Further, the monitoring room 10 or the surveying instrument 1 is installed on a gantry (tower) 16 as shown in FIG. The measurement can be performed with sufficient accuracy if the horizontal distance from the gantry 16 to the road surface to be measured is within 100 m. However, if the horizontal distance is within 40 m, the effect that the measurement accuracy is greatly improved can be obtained.
[0014]
The glass surfaces 11 and 12 form vertical surfaces orthogonal to each other, and are each inclined at about 45 degrees with respect to the traveling direction of the road.
Therefore, the scanning range by the surveying instrument 1 can be secured approximately 180 degrees, and each point set on the road surface can be measured.
[0015]
Further, as shown in FIG. 2, a ventilation device 13 may be provided in the monitoring room 10 to prevent fogging of the glass surface.
The anti-fog means is not limited to a ventilation device, but may be provided with a wiper for wiping the glass surface, applying an anti-fog agent, laying a heating wire on the glass surface to heat the room, or air inside the room. A flowing structure may be provided. Further, an air conditioner for adjusting at least one of the indoor temperature and the humidity may be provided.
Further, an eave 14 may be provided above the glass surface.
Further, since the monitoring room 10 is installed at a high position or on a gantry (tower) in order to see the measurement range, a lightning arrester 17 may be provided as shown in FIG. .
The provision of the lightning arrester 17 is effective not only for direct lightning strikes but also for induced voltage caused by distant lightning.
An uninterruptible power supply 18 that automatically supplies power in the event of a power failure is provided.
Further, as shown in FIG. 3, a monitoring room 20 having three glasses 22 may be used instead of the two glasses.
In addition, as shown in FIG. 4, a monitoring room 30 having a curved glass 32 may be used instead of a plurality of flat glasses.
Further, although not shown, it may be constituted by four or more glass surfaces. Further, the angle with respect to the traveling direction of the road is not limited to 45 °.
[0016]
Next, an actual measurement method will be described with reference to FIGS. 5, 6, 7, and 8, which show actual arrangements by the road surface measurement device having the above-described configuration.
A case will be described as an example where a diagonally intersecting tunnel is excavated under the existing road, and the influence of the excavation on the road surface subsidence is excavated.
In FIG. 5, R is an existing road as a measurement target road surface, and T is a tunnel excavated under the road. Since there is a possibility that the road surface intersecting with the tunnel T may sink, the settlement in the area intersecting with the tunnel T is monitored using the road surface measuring device according to the present invention.
[0017]
As shown in FIG. 1, reference numerals 1A to 1H denote surveying instruments as laser distance measuring means, which measure a reflected light by irradiating a laser beam, measure a distance to a reflecting point, and output a distance signal. Has functions.
Each of the surveying instruments 1A to 1H has a motor drive mechanism, an angle setting function for setting the irradiation angle of the laser beam to a specified azimuth angle and depression angle using the motor drive mechanism, and an electric current irradiation angle. It has an angle signal output function of outputting as a signal, and a communication function of communicating with a measurement computer 3 (see FIG. 8) separately installed in a measurement room via a communication line.
This communication function includes a function of converting the signal from the RS-232C standard into a signal of an appropriate standard such as the RS-422 standard as necessary and transmitting the signal, and may be a wired communication or a wireless communication.
[0018]
And one surveying instrument can measure the settlement by dividing the road surface within a radius of 40m into 5.0m x 3.5m mesh points (total 60 points), so the measurement range of adjacent surveying instruments is a little Set to overlap each other. Note that the above numerical values are merely examples, and it goes without saying that they are set as appropriate according to the situation.
[0019]
As shown in FIG. 5, a plurality of (for example, eight) surveying instruments 1A to 1H as described above are installed to cover the measurement target area. Each of the surveying instruments 1A to 1H is connected to the measurement computer 3 via a communication function having a signal conversion function between RS-232C and RS-422 as shown in FIG.
The measurement computer 3 includes a calculation unit that calculates the amount of settlement of the road surface based on a change in the distance detected by each surveying instrument, a data storage unit that stores measured values of the amount of settlement as time-series data, The apparatus includes processing means for statistically processing the series data, and determination means for determining settlement characteristics based on the processing result of the processing means.
Then, the data processed by the measurement computer 3 is transmitted to a processing computer separately installed in the management office via a communication function by wire communication or wireless communication.
As these communication functions, communication standards such as the RS-232C standard and the RS-422 standard may be appropriately selected.
[0020]
In FIG. 5, S1, S2, S3, and S4 are fixed points that are installed at locations that are not affected by tunnel excavation work (non-sinking points outside the surface to be measured). For example, prisms are installed.
[0021]
Next, a method of calculating the actual amount of settlement of the road surface in the above configuration will be described with reference to FIG.
First, it is confirmed whether or not the timing of the squat amount measurement set by the interval timer or the like has come, and if it is the timing of the squat amount measurement, the following measurement is started.
The first surveying instrument 1A collimates the first fixed point S1 to measure the angle and distance, and then collimates the prism of the second surveying instrument 1B with the first surveying instrument 1A to measure the angle. And the distance are measured, and the angle and distance are measured by collimating the prism of the first surveying instrument 1A with the second surveying instrument 1B. In this way, the measurement is sequentially performed, and finally, the fourth surveying instrument 1D collimates the prism of the third surveying instrument 1C to measure the angle and the distance, and then the fourth surveying instrument 1D measures the second immobile. The angle and the distance are measured by collimating the point S2. By this series of measurements, the positions of the first surveying instrument 1A to the fourth surveying instrument 1D based on the first fixed point S1 and the second fixed point S2 can be determined.
[0022]
Similarly, on the opposite side of the existing road R, the positions of the fifth to eighth surveying instruments 1E, 1F, 1G, and 1H are measured based on the third fixed point S3 and the fourth fixed point S4. I do.
These position data are transmitted to the measurement computer 3 and stored.
[0023]
After confirming the position of each surveying instrument as described above, the road surface is measured. As shown in FIG. 6, this is performed by irradiating a laser beam obliquely from a surveying instrument in charge of each point set in a mesh shape on the road surface, measuring reflected light, and measuring a reference distance to each point (Pa). (La) is measured in advance. After a while, measurement is started.
If thermal expansion / contraction of the monitoring room structure occurs due to seasonal fluctuations, temperature conditions, or the like, the measured value (measured distance by reflected light) measured by the surveying instrument 1 is equal to the reference distance even if there is no actual settlement of the road surface. Since the reference distance (La) may be different, a plurality of types of the reference distance (La) may be set in consideration of seasonal fluctuations, temperature conditions, and the like so as to correspond to various conditions.
[0024]
In FIG. 7, when the measured value (measured distance by reflected light) by the surveying instrument 1 is Ls, the sinking amount ΔH is obtained by the following equation.
ΔH = (Ls−La) × sin θ
Note that the laser irradiation angle is θa.
In order to reduce a measurement error, the irradiation angle θa is set to 5 degrees or more. Further, when the angle is preferably set to 10 degrees or more, the accuracy is improved.
By setting the horizontal distance from the surveying instrument 1 to the road surface to be measured within 40 m and setting the irradiation angle θa to 10 degrees or more, the effect of significantly improving the measurement accuracy can be obtained.
Further, in order to clarify the measurement point, it is preferable to mainly set a white mark on the road surface to be measured.
As described above, the amount of settlement of the road surface at the point Pa is determined from the amount of change in the distance and the inclination angle.
.. Can be obtained respectively at different points Pb, Pc,....
The amount of settlement of all points is measured by eight surveying instruments, stored in the measuring computer 3 and transmitted to the processing computer of the management office, and the amount of settlement of the road surface is graphically displayed on the screen of the measuring computer and the processing computer. can do.
Further, when the amount of sinking exceeds a preset amount, an alarm can be output via a communication function. Such an alarm function also makes it possible to notify a specific person or a specific receiver of abnormal sinking and take measures.
Note that examples of the measurement procedure are shown in the flowcharts of FIGS.
[0025]
Compared with the progress of the settlement of the road surface, the instantaneous vertical vibration of the road surface due to the traffic of the vehicle is a very short-term change, so by eliminating the short-time change from the measured value, It is possible to extract and measure the actual amount of subsidence of the road surface from which the influence of instantaneous vertical vibration of the road surface has been removed.
As described above, since the amount of settlement of the road surface includes the elastic settlement caused by the passing vehicle, it is necessary to determine whether the change of the measured value every time is caused by the settlement of the road surface or other disturbance.
In addition, during a survey, if the vehicle hits an obstacle such as a running car, the data is out of the normal range and can be determined to be abnormal data. Surveying is possible.
[0026]
Next, an operation control method for each season will be described with reference to FIG.
As shown in FIG.
The surveying instrument 1 arranged in the monitoring room is configured to be controlled on / off by the control means 19 as follows.
First, in the summer season when the temperature rises, as shown in FIG. 12B, it is turned off when not measuring and turned on immediately before measuring. Then, it is turned off immediately after the measurement is completed.
By controlling in this way, the energization time is shortened, the temperature rise in the monitoring room is suppressed, and the temperature rise of the surveying instrument is suppressed, enabling accurate measurement.
Also, in winter when the temperature decreases, as shown in FIG. 12 (C), it is turned on and energized even during non-measurement, is turned off once every measurement, and is turned on again after a lapse of a predetermined time to perform measurement. Control.
By performing control in this manner, the power is almost always supplied to prevent the temperature of the surveying instrument from dropping, and a steady state where stable measurement can be performed at all times is performed. After resetting, the surveyor is turned on again immediately before it cools down, enabling accurate measurements.
[0027]
According to the road surface measuring device having the above configuration, even on a road with a large traffic volume, the traffic can be continuously measured unmanned without prohibiting or restricting the traffic. The subsidence of the removed road surface can be continuously observed, the prevention of accidents and the prediction of repair time can be performed, and planned and safe road management can be performed.
Then, before measuring the subsidence of the road surface, it is checked whether there is any subsidence or positional change of the surveying instrument, so that it is possible to accurately measure the subsidence of the road surface.
[0028]
In addition, it is possible to continuously and accurately measure not only the road surface but also the settlement of the ground and the settlement of the building from a remote position without contact.
[0029]
【The invention's effect】
According to the present invention, since the laser distance measuring means is stored in the storage container, the influence of the surrounding environment such as wind, rain, dust and the like is eliminated, and stable measurement can be performed for a long period of time.
In particular, it has become possible to measure a wide range of road surfaces to be measured with high speed and high accuracy.
In addition, the on / off of the power supply is controlled according to the season, thereby enabling accurate measurement throughout the four seasons.
In addition, the provision of the uninterruptible power supply enables long-term continuous surveying even if a power failure occurs due to a lightning strike or the like.
[Brief description of the drawings]
FIG. 1 is a plan view of a monitoring room used for a measurement method of the present invention.
FIG. 2 is a side view of a monitoring room used in the measurement method of the present invention.
FIG. 3 is a plan view of a monitoring room of another embodiment used for the measurement method of the present invention.
FIG. 4 is a plan view of a monitoring room of still another embodiment used in the measurement method of the present invention.
FIG. 5 is a plan layout view of an actual use example of the road surface measuring device according to the present invention.
FIG. 6 is a side view of the usage example.
FIG. 7 is a diagram for explaining a measurement principle in the usage example.
FIG. 8 is a system diagram used in the use example.
FIG. 9 is a flowchart corresponding to a measurement method in the usage example.
FIG. 10 is a flowchart corresponding to a measurement method in the usage example.
FIG. 11 is a flowchart corresponding to a measurement method in the usage example.
FIG. 12 is a diagram illustrating an operation control method for each season.
[Explanation of symbols]
Reference Signs List 10 monitoring room, storage containers 11, 12 glass surface, transparent member 13 ventilation device 16 gantry, tower 17 lightning arrester 18 uninterruptible power supply 19 control means 1 surveying instrument R existing road, road surface to be measured 20 monitoring room, storage container 21 glass surface , Transmission member 30 monitoring room, storage container 31 glass surface, transmission member

Claims (12)

レーザー光を測定対象路面に所定の角度で斜めに照射して、前記測定対象路面による反射光を測定することによってレーザー光が照射される部位までの距離の変化を計測するように構成された複数のレーザー測距手段を測定対象路面の近傍に配設した路面測定装置において、
前記レーザー測距手段は、レーザー光の走査範囲が、レーザー光を透過する透過部材によって構成された収納容器内に配設されていることを特徴とする路面測定装置。
A plurality of laser beams are irradiated obliquely at a predetermined angle to the road surface to be measured, and a change in a distance to a portion to be irradiated with the laser light is measured by measuring reflected light from the road surface to be measured. In a road surface measuring device in which the laser distance measuring means is disposed near the road surface to be measured,
A road surface measuring apparatus, wherein the laser distance measuring means is provided in a storage container in which a scanning range of the laser light is constituted by a transmission member that transmits the laser light.
レーザー測距手段は、測定対象路面を5度以上の角度で見下ろすようにタワー上に設置されていることを特徴とする請求項1に記載の路面測定装置。The road surface measuring device according to claim 1, wherein the laser distance measuring means is installed on the tower so as to look down on the road surface to be measured at an angle of 5 degrees or more. レーザー測距手段は、測定対象路面から水平距離100m以内に設置されていることを特徴とする請求項1、2の何れかに記載の路面測定装置。The road surface measuring device according to claim 1, wherein the laser distance measuring unit is installed within a horizontal distance of 100 m from a road surface to be measured. 収納容器は、互いに直交する2枚の垂直な透過部材を備え、
前記透過部材はそれぞれ測定対象路の走行方向に対して約45度傾斜させて設けられているとを特徴とする請求項1〜3の何れかに記載の路面測定装置。に記載の路面測定装置。
The storage container includes two perpendicular transmission members orthogonal to each other,
The road surface measurement device according to any one of claims 1 to 3, wherein each of the transmission members is provided to be inclined at about 45 degrees with respect to a traveling direction of a measurement target road. The road surface measuring device according to claim 1.
収納容器において、透過部材を備えた立壁面の上部には、雨よけの庇が形成されていることを特徴とする請求項1〜4の何れかに記載の路面測定装置。The road surface measuring device according to any one of claims 1 to 4, wherein the storage container is provided with an eave for protecting a rain from being formed on an upper portion of an upright wall provided with a transmission member. 収納容器において、透過部材には曇り止め手段が施されていることを特徴とする請求項1〜5の何れかに記載の路面測定装置。The road surface measurement device according to any one of claims 1 to 5, wherein in the storage container, a defogging unit is provided on the transmission member. 曇り止め手段は、収納容器の内部を外気によって換気する換気手段によって構成されていることを特徴とする請求項6に記載の路面測定装置。The road surface measurement device according to claim 6, wherein the anti-fog means is configured by a ventilation means that ventilates the inside of the storage container with outside air. 曇り止め手段は、収納容器の内部の温度もしくは湿度の少なくとも何れか一方を調整する空調手段によって構成されていることを特徴とする請求項6に記載の路面測定装置。The road surface measuring device according to claim 6, wherein the anti-fog means is configured by an air-conditioning means for adjusting at least one of temperature and humidity inside the storage container. 収納容器の各構成部材は、互いに固定及び分離が容易な組み立て手段を備えていることを特徴とする請求項1〜8の何れかに記載の路面測定装置。The road surface measuring device according to any one of claims 1 to 8, wherein each constituent member of the storage container includes an assembling means that can be easily fixed and separated from each other. 収納容器は架台上に設定されていることを特徴とする請求項1〜9の何れかに記載の路面測定装置。The road surface measuring device according to claim 1, wherein the storage container is set on a gantry. レーザー測距手段の電源を、夏季には、非測定時にはオフにして測定する度にオンにして測定終了後には直ちにオフに制御し、冬季には、非測定時にもオンにして測定する度に一旦オフにして所定時間経過後に再びオンにして測定するように制御する制御手段を備えていることを特徴とする請求項1〜10の何れかに記載の路面測定装置。In summer, turn off the power of the laser range finder during non-measurement and turn it on every time measurement is performed. The road surface measuring device according to any one of claims 1 to 10, further comprising a control unit that controls the device to be turned off and then turned on again after a predetermined time has elapsed to perform measurement. レーザー測距手段の電源は、無停電電源装置に接続されていることを特徴とする請求項1〜11の何れかに記載の路面測定装置。The road surface measuring device according to any one of claims 1 to 11, wherein a power supply of the laser distance measuring means is connected to an uninterruptible power supply.
JP2002267776A 2002-09-13 2002-09-13 Road surface measuring device Expired - Lifetime JP3942518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002267776A JP3942518B2 (en) 2002-09-13 2002-09-13 Road surface measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002267776A JP3942518B2 (en) 2002-09-13 2002-09-13 Road surface measuring device

Publications (2)

Publication Number Publication Date
JP2004108775A true JP2004108775A (en) 2004-04-08
JP3942518B2 JP3942518B2 (en) 2007-07-11

Family

ID=32266186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002267776A Expired - Lifetime JP3942518B2 (en) 2002-09-13 2002-09-13 Road surface measuring device

Country Status (1)

Country Link
JP (1) JP3942518B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105180897A (en) * 2015-09-28 2015-12-23 长安大学 Method for improving precision of opposite side measurement for settlement of tunnel vault
CN106767688A (en) * 2017-02-27 2017-05-31 中国石油大学(华东) Tank foundation settlement monitoring device based on laser ranging
CN107084703A (en) * 2017-06-16 2017-08-22 上海工程技术大学 A kind of tunnel subsidence monitoring system
CN109837824A (en) * 2018-11-08 2019-06-04 廊坊师范学院 A kind of express highway pavement settlement monitoring early warning system
CN112368595A (en) * 2018-07-02 2021-02-12 株式会社电装 Distance measuring device
CN113048886A (en) * 2021-05-31 2021-06-29 山东捷瑞数字科技股份有限公司 Method and apparatus for measuring size of irregular body of workpiece
CN113638293A (en) * 2021-08-11 2021-11-12 齐爱娴 Road and bridge strength detection device
CN116124083A (en) * 2023-04-12 2023-05-16 中铁二十三局集团有限公司 High-fill roadbed settlement observation device and observation method
CN116222496A (en) * 2022-12-20 2023-06-06 深圳市前海公共安全科学研究院有限公司 Parameter monitoring device for constructional engineering

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102679903A (en) * 2012-06-05 2012-09-19 中铁六局集团有限公司 System for measuring bridge bottom deformation by aid of laser ranging method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105180897A (en) * 2015-09-28 2015-12-23 长安大学 Method for improving precision of opposite side measurement for settlement of tunnel vault
CN106767688A (en) * 2017-02-27 2017-05-31 中国石油大学(华东) Tank foundation settlement monitoring device based on laser ranging
CN106767688B (en) * 2017-02-27 2018-06-19 中国石油大学(华东) Tank foundation settlement monitoring device based on laser ranging
CN107084703A (en) * 2017-06-16 2017-08-22 上海工程技术大学 A kind of tunnel subsidence monitoring system
CN112368595A (en) * 2018-07-02 2021-02-12 株式会社电装 Distance measuring device
CN109837824A (en) * 2018-11-08 2019-06-04 廊坊师范学院 A kind of express highway pavement settlement monitoring early warning system
CN113048886A (en) * 2021-05-31 2021-06-29 山东捷瑞数字科技股份有限公司 Method and apparatus for measuring size of irregular body of workpiece
CN113638293A (en) * 2021-08-11 2021-11-12 齐爱娴 Road and bridge strength detection device
CN116222496A (en) * 2022-12-20 2023-06-06 深圳市前海公共安全科学研究院有限公司 Parameter monitoring device for constructional engineering
CN116222496B (en) * 2022-12-20 2024-01-26 深圳市前海公共安全科学研究院有限公司 Parameter monitoring device for constructional engineering
CN116124083A (en) * 2023-04-12 2023-05-16 中铁二十三局集团有限公司 High-fill roadbed settlement observation device and observation method

Also Published As

Publication number Publication date
JP3942518B2 (en) 2007-07-11

Similar Documents

Publication Publication Date Title
US9911328B2 (en) Apparatus, system, and method for roadway monitoring
US20210027624A1 (en) Device for Monitoring the State of Roads, Infrastructure and Traffic
Breuer et al. The Stuttgart TV Tower—displacement of the top caused by the effects of sun and wind
JP2004108775A (en) Road surface measurement device
KR101092093B1 (en) Apparatus for sensing inundation and street lamp therewith
CN203165208U (en) Traffic management system based on Internet of things and dynamic 3D GIS
CN105966424A (en) High-definition railway line safety monitoring system based on laser positioning
JP2005353015A (en) Environment-conscious road energy utilization system for extracting, collecting and effectively utilizing unused energy and unifying management of road information
JP2004233245A (en) Subsidence measuring method
ES2201715T3 (en) ALERT PROCEDURE AND DEVICE FOR GENERATING A PRE-WARNING STATE SIGNAL FOR ROADS.
JP2009293958A (en) Liquid depth monitoring system
JP2001073316A (en) Settlement measuring method and settlement measuring device
CN108427116A (en) A kind of position reference net node working method and device
JP4335769B2 (en) Movement amount measuring method using non-prism distance measuring means
US20230260393A1 (en) Traffic management device, traffic management system, traffic information system, starting module that can be retrofitted and method for managing traffic
JP4059832B2 (en) Road section measuring device and road section measuring method
RU2572407C1 (en) Control over topographic survey vehicle
JPH11325901A (en) Special measurement rivet for automatic tracking total station displacement observation system (with built-in corner prism)
CN205661461U (en) Based on swashing optical locating and high definition railway safety monitoring system along line
WO2018060700A1 (en) Monitoring system
US20220051563A1 (en) Devices, systems and processes for determining and communicating hazards road conditions to users
CN108061544A (en) A kind of orbit photography measuring method and device
KR102632463B1 (en) Urban flooding monitoring system
KR102149978B1 (en) Geodetic survey method according to the change of terrain by reference point
Trevino Traffic Noise Barrier Analysis for SH 190 in Rowlett, Texas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070403

R150 Certificate of patent or registration of utility model

Ref document number: 3942518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313118

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313118

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term