JP3939648B2 - Equipment for heat / humidity exchange - Google Patents

Equipment for heat / humidity exchange Download PDF

Info

Publication number
JP3939648B2
JP3939648B2 JP2002510887A JP2002510887A JP3939648B2 JP 3939648 B2 JP3939648 B2 JP 3939648B2 JP 2002510887 A JP2002510887 A JP 2002510887A JP 2002510887 A JP2002510887 A JP 2002510887A JP 3939648 B2 JP3939648 B2 JP 3939648B2
Authority
JP
Japan
Prior art keywords
duct
turbulent flow
heat
ratio
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002510887A
Other languages
Japanese (ja)
Other versions
JP2004503739A (en
Inventor
スベン メルケル ニルスン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2004503739A publication Critical patent/JP2004503739A/en
Application granted granted Critical
Publication of JP3939648B2 publication Critical patent/JP3939648B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/04Air-mixing units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • F28F1/424Means comprising outside portions integral with inside portions
    • F28F1/426Means comprising outside portions integral with inside portions the outside portions and the inside portions forming parts of complementary shape, e.g. concave and convex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/46Air flow forming a vortex

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

【0004】
【発明の属する技術分野】
【0005】
本発明は、熱/湿度交換のための装置に関するもので、交換器を通して流れる空気流の圧力損失に対する熱及び湿度の伝達率の比率をそれぞれ最適化するためのものである。この目的を視野に入れて、交換器は、ダクトを横切って伸びている乱流発生部分を備え、該乱流発生部分は、後側面、上面及び前側面を有している。
【従来の技術】
【0006】
前記の如きタイプの空気対空気の熱/湿度交換器は、通常、平板と波形の帯とを交互にして作られ、一緒にすると三角形又は台形のダクトを形成する。比較的小さい断面のダクトを有するとともに、これらの情況下では頻繁な気流率を有する前記の如きタイプの熱/湿度交換器においては、空気はダクトの方向に比較的整然とした層をなして流れる。したがって、流れは本質的に層流である。ダクト入口から近い距離に沿ってのみ、一定の流れがダクト壁に対し横方向に発生する。このような情況においては、100〜600の範囲にあるいわゆるレイノルズ数が、空気流の特性として用いられる。レイノルズ数が約2000より小さい限り、流れは層流である。
【0007】
この技術分野に熟練した人には良く知られていることであるが、ダクト壁に最も近い層流の気流においては、境界層が形成され、この境界層での気流速度は本質的にゼロである。前記境界層は、熱と湿度の伝達の係数をかなり低減せしめる。特に、いわゆる完全に発展した流れの場合に、しかりである。熱と湿度の伝達の係数を増加させるためには、境界層が縮小し、一つの層から他の層への熱と湿度の伝達がより大きくなるような方法で、空気がダクトの表面に向かう方向に流れるようにせしめなければならない。これはいわゆる乱流において起こりうる。滑らかで平面なダクトでは、層流は、レイノルズ数が約2000を超えた時に、乱流に変化する。もし、熱/湿度交換器のダクト内のレイノルズ数をここで論じられている程度より高くすることが望まれるならば、気流速度が、この情況で通常必要な気流速度よりも本質的に高速であることを要する。したがって、上述の交換器に適用される低いレイノルズ数に関連して、乱流は、例えば、ダクト内に特別の乱流発生部分を設けること等によって、人工的に発生させられなければならない。
【0008】
かかる乱流発生部分は、多くの異なった形式において知られている。SE−B−444071により、横置きの波形の形式の乱流発生部分を有している熱伝達のためのローラーが知られている。これらの波形は、特に、中心管に巻かれた帯が入れ子式に嵌まり込まないように止めておく役割を果たすものであるが、しかし、同時に、上述のように完全に滑らかなダクトを持つ交換器に関して、熱と湿度の伝達特性の一定の改善をもたらす乱流発生効果も合わせ持っている。
【0009】
したがって、このタイプの乱流発生部分は、熱と湿度の伝達をかなりの程度増加せしめる。しかし、圧力損失は激しく増加する。圧力損失の増加は、熱と湿度の伝達の増加より大きいように見えた。しかしながら、空気対空気の交換器では、圧力損失が小さいことが肝要である。なぜなら、圧力損失が、交換器を通して気流を動かすために配置されるファンの寸法や出力の決定を左右するからである。更に、この圧力損失は、乱流発生部分の設計、寸法、幾何図形的外形次第であることが判明している。
【発明が解決しようとする課題】
【0010】
従って、本発明の目的は、熱/湿度交換器を提供することにあり、交換器のダクト内において、乱流発生部分が、熱と湿度の伝達率に対する気流の圧力損失の最適な比率が得られるような配置や設計となっている、熱/湿度交換器を提供することにある。
【課題を解決するための手段】
【0011】
本発明によれば、上述の目的は、ダクトの構造が下記の条件を満たす、熱/湿度交換器により達成される。
【0012】
すなわち、ダクトの入口と、該ダクトの入口に最も近い乱流発生部分の中心と、の間の距離は、その距離の、水力学的直径(hydrauliska diameter/hydraulic diameter)とレイノルズ数との積に対する比率が、0.01〜0.04の範囲となるように決められること、ダクトの底を通る垂直面に対する乱流発生部分の後側面の傾斜を示す角度θが、30度〜60度の範囲にあること、ダクトの水力学的直径に対するダクトの底から乱流発生部分の上面までの高さeの比率が、0.30〜1.1の範囲にあること、前記高さeに対するダクト内の乱流発生部分同士の間の距離の比率が、8〜30の範囲にあること、前記高さeに対する前記各乱流発生部分の上面の長さの比率が、1.0〜4.0の範囲にあること、水力学的直径に対する各乱流発生部分の端部のアール(radius)の比率が、0.01〜0.2の範囲にあること、そして、前記乱流発生部分の上方にダクト上方への突出部分が形成され、前記高さeが、ダクト上面からの前記突出部分の高さfより高いこと、である。さらに、好ましい実施の形態として、前記突出部分が、前記乱流発生部分によってダクトの下面に画成された凹所に適合するように設計されている態様を例示する。
熱と湿度の伝達率に対する圧力損失の比率を最適化するために、乱流をもたらす横向きの波、すなわち、いわゆる乱流発生部分が、一方では、ダクトの開口部から正しい距離に設置されなければならないし、他方では、相互間の間隔を適正にして配置されなければなければならない。更に、それらは適正に設計されていなければならず、ダクト内で垂直方向及び水平方向に伸びる一定の伸長部を有していなければならない。
【0013】
熱/湿度交換器のダクトの入口では、境界層が非常に薄いので、熱と湿度の伝達の係数は高い。その後、流れの主方向に向かって境界層の厚さが増し、熱と湿度の伝達の係数は低減する。熱と湿度の伝達を増大させるために、ダクト壁内の乱流発生部分は、入口にあまりに近い位置には配置すべきでない。この領域では、熱と湿度の伝達は元々高いからである。したがって、乱流発生部分は、本質的には圧力損失を増加させるだけであり、それは望ましいことではない。よって、ダクト入口に最も近い一番目の乱流発生部分は、ダクト入口で自然に起こる乱流が消え去るような距離に配置することが最適である。
【0014】
空気が一番目の乱流発生部分に到達すると、注文通り(意図した通り)乱流が発生し、空気はダクト壁に向かって流れるようにせしめられる。こうして、熱/湿度の伝達率が目立って増大する。前記乱流が乱流発生部分を離れるにつれて、乱流は次第に低減する。前記乱流が消え去るところで、次の乱流発生部分を設置するのが最適である。
【0015】
広範な試験と研究により、乱流発生部分の幾何図形的外形と、そのダクト内の配設位置と、の定義を見い出すことができ、それにより、圧力損失に対する熱と湿度の伝達率の最適比率が出た。
【0016】
ここでは、水力学的直径という表現が用いられている。これは、ダクトの断面の周囲に対するダクトの断面積の比率を示す表現である。空気流は、いわゆるレイノルズ数とシュミット数(Schmidt’s number)とによって特徴づけられる。
【発明の実施の形態】
【0017】
以下、添付図面を参照して、本発明をより詳細に説明する。図1は、本発明による乱流発生部分を有する熱/湿度交換器のダクトの斜視図、図2は、図1のダクトの概略側面図、図3は、図1及び図2のダクトの図2におけるI−I線に沿う断面図である。
【0018】
図1及び図2には、本発明による熱/湿度交換器の入口1とダクト2の一部が示されている。図面では、入口1に最も近い所に位置している一番目の乱流発生部分3と二番目の乱流発生部分4のみが示されている。ダクト2は、高さhを有している。ダクトの入口の開口部と、一番目の乱流発生部分3の中心と、の間の距離Aは、水力学的直径とレイノルズ数との積に対する前記距離Aの比率が、0.01〜0.04の範囲内となるように決定される。ここで、水力学的直径とは、ダクトの断面の周囲(の長さ)に対するダクトの断面積の比率を示す表現であり、レイノルズ数は空気流に依存する。
【0019】
上記の説明から、前記距離Aはレイノルズ数に依存し、従って、気流の速度に依存することもまた明らかである。よって、一番目の乱流発生部分の最適な位置は、現在(使用時)の運転条件に依存する。
【0020】
図2から特に明らかなように、乱流発生部分3,4は、特有の幾何図形的外形を持つ。それらは、傾斜した後側面5と、平坦な上面6と、傾斜した前側面7とで、形成されている。
【0021】
本発明によれば、以下の条件が更に適用される。すなわち、ダクト2の底8に対する乱流発生部分3,4の後側面5の傾斜を示す角度θが、30度〜60度の範囲にあること、及び、ダクト2の水力学的直径Dhに対するダクト2の底8から乱流発生部分3,4の上面までの高さeの比率が、0.30〜1.1の範囲にあることである。さらに、前記高さeに対する前記一番目及び二番目の乱流発生部分3,4の中心間の距離Pの比率が、8〜30の範囲にあること、及び、前記高さeに対する前記各乱流発生部分の上面6の長さBの比率が、1.0〜4.0の範囲にあることである。
【0022】
本発明に従い、断面三角形及び/又は断面六角形のダクト2内に、特別の幾何図形的外形を有し且つ相互間に計算された間隔を有し且つダクト入口1から計算された距離を有する乱流発生部分3,4を用いる(設ける)ことにより、熱及び湿度の伝達率のかなりの上昇が達成されるが、圧力損失の増加は著しくはない。空気流が乱流発生部分3に近づくと、(流路の)断面の縮小により気流の流速が局部的に上昇する。図3は、それを図解するのを意図したものである。その後、空気が乱流発生部分3を通過しその上面6から前側面7へと移る過程で鋭い端部を離れる時、その分離とかなり末広がりの流路断面を原因として、強力な乱流の動きが起こる。この過程は、熱及び湿度の伝達を増大せしめるようになる時に、多大な効果を生ずる。
【0023】
二番目の乱流発生部分4は、一番目の乱流発生部分3で発生した乱流ができるだけ完全に使い果たされ、その後、二番目の乱流発生部分4を空気が通過する前に、図1に符号Oで示したいわゆる再接触区域(re−engaging area)が形成されるように、一番目の乱流発生部分3から計算された距離Pだけ離れた位置に配置されている。これにより、前に生じた乱流の空気の流れにおける熱および湿度の伝達率を有意義に上昇させることなく、不必要な更なる減圧が防止される。前記再接触区域Oでは、空気は、かなりの程度、次の乱流発生部分に到達するまで再度平坦な表面と接触する。
【0024】
乱流発生部分3,4の端部は、分離点(軽減点)を作り出すに足るだけ鋭いことが重要である。前記端部のアール(radius)r(図2参照)は、比率r/Dhが0.01〜0.2の範囲にあるように設定されるべきである。
【0025】
伝達率を維持しながら圧力損失を更に減少せしめるため、図2に示すように、ダクトの底8からの乱流発生部分の高さeを、これに対応するダクトの上面からの高さfより高くすることができる。この構成により、前記突出した空間での不必要な乱流を排除することができる。都合の良いことに、前記突出した部分は、これに対応するダクトの下部の壁の部分5,6,7で画成された凹所にうまく適合するように設計されている。それは、ダクトを積み重ねて配置するときに安定した結合を得ること、及び、例えば、ダクトが入れ子式に嵌まり込むのを回避すること、を目的としたものである。
【0026】
乱流発生部分3,4を本発明に従って設計することにより、乱流発生部分はまた、平坦な(凸凹のない)ダクト内においても乱流が形成されるような高速気流についても有効とされる
【図面の簡単な説明】
【0027】
【図1】 本発明による乱流発生部分を有する熱/湿度交換器のダクトの斜視図である。
【図2】 図1のダクトの概略側面図である。
【図3】 図1及び図2のダクトの図2におけるI−I線に沿う断面図である。
[0004]
BACKGROUND OF THE INVENTION
[0005]
The present invention relates to an apparatus for heat / humidity exchange, which optimizes the ratio of heat and humidity transfer rates to the pressure loss of the air flow flowing through the exchanger, respectively. With this purpose in mind, the exchanger includes a turbulent flow generating portion extending across the duct, the turbulent flow generating portion having a rear side, an upper surface and a front side.
[Prior art]
[0006]
Such types of air-to-air heat / humidity exchangers are usually made by alternating flat plates and corrugated strips, which together form a triangular or trapezoidal duct. In a heat / humidity exchanger of the type described above having a relatively small cross-section duct and having a frequent air flow rate under these circumstances, the air flows in a relatively ordered layer in the direction of the duct. Thus, the flow is essentially laminar. Only along a short distance from the duct entrance is a constant flow transverse to the duct wall. In such circumstances, so-called Reynolds numbers in the range of 100 to 600 are used as airflow characteristics. As long as the Reynolds number is less than about 2000, the flow is laminar.
[0007]
As is well known to those skilled in the art, in the laminar air flow closest to the duct wall, a boundary layer is formed, and the air velocity in this boundary layer is essentially zero. is there. The boundary layer significantly reduces the coefficient of heat and humidity transfer . This is especially true in the case of so-called fully developed flows. In order to increase the coefficient of heat transfer and humidity, reduces the boundary layer, heat and moisture transfer Gayori larger manner from one layer to another, the air is directed toward the surface of the duct It must be allowed to flow in the direction. This can occur in so-called turbulence. In a smooth and flat duct, laminar flow changes to turbulent flow when the Reynolds number exceeds about 2000. If it is desired to increase the Reynolds number in the heat / humidity exchanger duct above the level discussed here, the air velocity is essentially higher than that normally required in this situation. It needs to be. Therefore, in connection with the low Reynolds number applied to the exchangers described above, turbulence must be generated artificially, for example by providing a special turbulence generating part in the duct.
[0008]
Such turbulence generating parts are known in many different forms. From SE-B-444071 a roller for heat transfer having a turbulence generating part in the form of a horizontal waveform is known. These corrugations, in particular, serve to keep the belt wound around the central tube from being telescoped, but at the same time have a perfectly smooth duct as described above. The exchanger also has the effect of generating turbulence that provides a certain improvement in heat and humidity transfer characteristics .
[0009]
Thus, this type of turbulence generating portion increases the transfer of heat and humidity to a considerable extent. However, pressure loss is increased as intense. The increase in pressure loss appeared to be greater than the increase in heat and humidity transfer. However, it is important that the air-to-air exchanger has a low pressure loss . This is because the pressure loss affects the determination of the size and power of the fan placed to move the airflow through the exchanger. Furthermore, it has been found that this pressure loss depends on the design, dimensions and geometrical shape of the turbulence generating part.
[Problems to be solved by the invention]
[0010]
Accordingly, it is an object of the present invention to provide a heat / humidity exchanger in which the turbulent flow generating portion in the duct of the exchanger obtains an optimal ratio of air flow pressure loss to heat / humidity transfer rate . It is to provide a heat / humidity exchanger that is arranged and designed.
[Means for Solving the Problems]
[0011]
According to the present invention, the above object is achieved by a heat / humidity exchanger in which the structure of the duct satisfies the following conditions.
[0012]
That is, for the product of the inlet of the duct, and the center of the nearest turbulence generating part to the inlet of the duct, the distance between, the distance, the hydrodynamic diameter (hydrauliska diameter / hydraulic diameter) and Reynolds number The ratio is determined to be in the range of 0.01 to 0.04, and the angle θ indicating the inclination of the rear side of the turbulent flow generation portion with respect to the vertical plane passing through the bottom of the duct is in the range of 30 to 60 degrees. The ratio of the height e from the bottom of the duct to the top surface of the turbulent flow generation portion with respect to the hydraulic diameter of the duct is in the range of 0.30 to 1.1, and the inside of the duct with respect to the height e The ratio of the distance between the turbulent flow generation portions is in the range of 8 to 30, and the ratio of the length of the upper surface of each turbulent flow generation portion to the height e is 1.0 to 4.0. In the range The ratio of the radius of the end of each turbulent flow generation portion to the hydrodynamic diameter is in the range of 0.01 to 0.2, and above the turbulence generation portion above the duct A protruding portion is formed, and the height e is higher than a height f of the protruding portion from the upper surface of the duct . Furthermore, as a preferred embodiment, a mode in which the protruding portion is designed to fit into a recess defined in the lower surface of the duct by the turbulent flow generating portion is illustrated.
In order to optimize the ratio of pressure loss to heat and humidity transfer rate, the transverse waves that cause turbulence, i.e. the so-called turbulence generating part, must be installed on the other hand at the correct distance from the duct opening. On the other hand, they must be arranged with proper spacing between them. In addition, they must be properly designed and have constant extensions that extend vertically and horizontally within the duct.
[0013]
At the entrance of the heat / humidity exchanger duct, the boundary layer is so thin that the coefficient of heat and humidity transfer is high. Thereafter, the thickness of the boundary layer increases towards the main direction of flow and the coefficient of heat and humidity transfer decreases. In order to increase heat and humidity transfer , the turbulence generating part in the duct wall should not be placed too close to the inlet. This is because heat and humidity are inherently high in this region. Therefore, the turbulence generating part essentially only increases the pressure loss , which is not desirable. Therefore, it is optimal to arrange the first turbulent flow generation portion closest to the duct inlet at such a distance that the turbulent flow that naturally occurs at the duct inlet disappears.
[0014]
When the air reaches the first turbulent flow generating portion, turbulent flow is generated as ordered (as intended), causing the air to flow toward the duct wall. Thus, the heat / humidity transfer rate is significantly increased. As the turbulent flow leaves the turbulent flow generation portion, the turbulent flow gradually decreases. When the turbulent flow disappears, it is optimal to install the next turbulent flow generation part.
[0015]
Extensive testing and research can find a definition of the geometrical outline of the turbulent flow source and its location in the duct, which allows the optimal ratio of heat and humidity transfer rates to pressure loss Came out.
[0016]
Here, the expression hydraulic diameter is used. This is a representation showing the ratio of the cross-sectional area of the duct to the periphery of the cross-section of the duct. The air flow is characterized by the so-called Reynolds number and Schmidt number.
DETAILED DESCRIPTION OF THE INVENTION
[0017]
Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings. 1 is a perspective view of a duct of a heat / humidity exchanger having a turbulent flow generating portion according to the present invention, FIG. 2 is a schematic side view of the duct of FIG. 1, and FIG. 3 is a diagram of the duct of FIGS. 2 is a cross-sectional view taken along line II in FIG.
[0018]
1 and 2 show a part of an inlet 1 and a duct 2 of a heat / humidity exchanger according to the invention. In the drawing, only the first turbulent flow generating portion 3 and the second turbulent flow generating portion 4 located closest to the inlet 1 are shown. The duct 2 has a height h. The distance A between the opening at the entrance of the duct and the center of the first turbulent flow generation portion 3 is such that the ratio of the distance A to the product of the hydraulic diameter and the Reynolds number is 0.01-0. .04 is determined. Here, the hydraulic diameter is an expression indicating the ratio of the cross-sectional area of the duct to the circumference of the duct cross-section, and the Reynolds number depends on the air flow.
[0019]
From the above description, it is also clear that the distance A depends on the Reynolds number and thus depends on the velocity of the airflow. Therefore, the optimal position of the first turbulent flow generation portion depends on the current (in use) operating conditions.
[0020]
As is particularly clear from FIG. 2, the turbulent flow generating portions 3 and 4 have a unique geometric outline. They are formed by an inclined rear side surface 5, a flat upper surface 6, and an inclined front side surface 7.
[0021]
According to the invention, the following conditions further apply: That is, the angle θ indicating the inclination of the rear side surface 5 of the turbulent flow generating portions 3 and 4 with respect to the bottom 8 of the duct 2 is in the range of 30 to 60 degrees, and the duct with respect to the hydraulic diameter Dh of the duct 2 The ratio of the height e from the bottom 8 of 2 to the upper surfaces of the turbulent flow generation portions 3 and 4 is in the range of 0.30 to 1.1. Furthermore, the ratio of the distance P between the centers of the first and second turbulent flow generation portions 3 and 4 with respect to the height e is in the range of 8 to 30, and the turbulence with respect to the height e. The ratio of the length B of the upper surface 6 of the flow generation portion is in the range of 1.0 to 4.0.
[0022]
In accordance with the invention, in a duct 2 having a triangular cross section and / or a hexagonal cross section, a disturbance having a special geometrical profile and having a calculated distance between them and a calculated distance from the duct inlet 1 By using (providing) the flow generating parts 3 and 4, a considerable increase in heat and humidity transfer rates is achieved, but the increase in pressure loss is not significant. When the airflow approaches the turbulent flow generation portion 3, the flow velocity of the airflow increases locally due to the reduction in the cross section (of the flow path). FIG. 3 is intended to illustrate it. After that, when the air leaves the sharp end in the process of passing through the turbulent flow generating part 3 and moving from its upper surface 6 to its front surface 7, strong turbulent movement is caused by the separation and the considerably divergent channel cross section. Happens. This process has a significant effect when it comes to increasing heat and humidity transfer .
[0023]
In the second turbulent flow generation part 4, the turbulent flow generated in the first turbulent flow generation part 3 is used up as completely as possible, and then before the air passes through the second turbulent flow generation part 4, The so-called re-engaging area indicated by symbol O in FIG. 1 is formed at a position separated from the first turbulent flow generation portion 3 by a calculated distance P. This prevents unnecessary further depressurization without significantly increasing the heat and humidity transfer rates in the previously generated turbulent air flow. In the re-contact zone O, the air again comes into contact with the flat surface again to a considerable extent until it reaches the next turbulence generation part.
[0024]
It is important that the ends of the turbulent flow generation portions 3 and 4 are sharp enough to create a separation point (reduction point). The radius r of the end (see FIG. 2) should be set so that the ratio r / Dh is in the range of 0.01 to 0.2.
[0025]
In order to further reduce the pressure loss while maintaining the heat transfer coefficient , as shown in FIG. 2, the height e of the turbulent flow generation portion from the bottom 8 of the duct is set to the height f from the top surface of the corresponding duct. Can be higher. With this configuration, unnecessary turbulent flow in the protruding space can be eliminated. Conveniently, the protruding portion is designed to fit well into the recess defined by the corresponding lower wall portions 5, 6, 7 of the duct. It is intended to obtain a stable connection when stacking the ducts and to avoid, for example, telescoping of the ducts.
[0026]
By designing the turbulent flow generating portions 3 and 4 according to the present invention, the turbulent flow generating portion is also effective for high-speed air currents in which turbulent flow is formed even in a flat (non-concave) duct. .
[Brief description of the drawings]
[0027]
FIG. 1 is a perspective view of a duct of a heat / humidity exchanger having a turbulent flow generating portion according to the present invention.
FIG. 2 is a schematic side view of the duct of FIG.
3 is a cross-sectional view of the duct of FIGS. 1 and 2 taken along line II in FIG.

Claims (2)

熱/湿度交換のための装置であって、交換器を通して流れる空気流の圧力損失に対する熱及び湿度の伝達率の比率をそれぞれ最適化するための装置であり、この目的を視野に入れて、交換器にはダクトがあり、このダクトを横切って伸びている乱流発生部分(3,4)が備わっていて、該乱流発生部分(3,4)は、後側面(5)と、上面(6)と、前側面(7)と、を備え、さらに、前記ダクトは、前記目的を達成するために、以下の条件、すなわち、
【0002】
ダクトの入口(1)と、該ダクトの入口(1)に最も近い乱流発生部分(3)の中心と、の間の距離(A)は、その距離の、水力学的直径(Dhとレイノルズ数との積に対する比率が、0.01〜0.04の範囲となるように決められること、
ダクトの底(8)を通る垂直面に対する乱流発生部分(3,4)の後面(5)の傾斜を示す角度θが、30度〜60度の範囲にあること、
ダクトの水力学的直径に対するダクトの底(8)から乱流発生部分の上面(6)までの高さの比率が、0.3〜1.1の範囲にあること、
前記高さに対する前記入口から見てダクト内の一番目と二番目の乱流発生部分(3,4)の中心間の距離の比率が、8〜30の範囲にあること、
前記高さに対する前記各乱流発生部分(3,4)の上面(6)の長さの比率が、1.0〜4.0の範囲にあること
水力学的直径(Dhに対する各乱流発生部分(3,4)の端部のアールの比率が、0.01〜0.2の範囲にあること、そして、
前記乱流発生部分(3,4)の上方にダクト上方への突出部分が形成され、前記高さ(e)が、ダクト上面からの前記突出部分の高さ(f)より高いこと、
を満たしている、熱/湿度交換のための装置。
A device for heat / humidity exchange, optimizing the ratio of heat and humidity transfer rates to the pressure loss of the air flow flowing through the exchanger, respectively. The vessel has a duct and is provided with a turbulent flow generating portion (3, 4) extending across the duct. The turbulent flow generating portion (3,4) includes a rear side (5) and an upper surface ( 6) and a front side surface (7), and in order to achieve the object, the duct has the following conditions:
[0002]
The distance (A) between the duct inlet (1) and the center of the turbulent flow generation part (3) closest to the duct inlet (1) is the hydrodynamic diameter ( Dh ) of the distance. The ratio to the product of the Reynolds number is determined to be in the range of 0.01 to 0.04;
The angle ( θ ) indicating the inclination of the rear surface (5) of the turbulent flow generation part (3, 4) with respect to the vertical plane passing through the bottom (8) of the duct is in the range of 30 to 60 degrees;
The ratio of the height ( e ) from the bottom (8) of the duct to the top surface (6) of the turbulent flow generation portion relative to the hydraulic diameter of the duct is in the range of 0.3 to 1.1;
The ratio of the distance ( P ) between the centers of the first and second turbulent flow generation portions (3, 4) in the duct as viewed from the inlet with respect to the height ( e ) is in the range of 8-30. ,
The ratio of the length ( B ) of the upper surface (6) of each of the turbulent flow generation portions (3, 4) to the height ( e ) is in the range of 1.0 to 4.0 ,
The ratio of the radius ( r ) at the end of each turbulent flow generation portion (3,4) to the hydraulic diameter ( Dh ) is in the range of 0.01 to 0.2; and
A protruding portion upward of the duct is formed above the turbulent flow generating portion (3, 4), and the height (e) is higher than the height (f) of the protruding portion from the upper surface of the duct,
For heat / humidity exchange.
前記突出部分が、前記後側面(5)と前記上面(6)と前記前側面(7)とでダクトの下面に画成された凹所に適合するように設計されている、請求項1に記載の熱/湿度交換のための装置。
【0003】
The projecting portion is designed to fit into a recess defined in the lower surface of the duct by the rear side (5), the upper surface (6) and the front side (7). Device for heat / humidity exchange as described.
[0003]
JP2002510887A 2000-06-15 2001-05-14 Equipment for heat / humidity exchange Expired - Lifetime JP3939648B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE0002222A SE0002222L (en) 2000-06-15 2000-06-15 Device for heat / moisture exchanger with turbulence generators
PCT/SE2001/001041 WO2001096803A1 (en) 2000-06-15 2001-05-14 Device for heat/moist exchange

Publications (2)

Publication Number Publication Date
JP2004503739A JP2004503739A (en) 2004-02-05
JP3939648B2 true JP3939648B2 (en) 2007-07-04

Family

ID=20280085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002510887A Expired - Lifetime JP3939648B2 (en) 2000-06-15 2001-05-14 Equipment for heat / humidity exchange

Country Status (9)

Country Link
JP (1) JP3939648B2 (en)
KR (1) KR100709233B1 (en)
CN (1) CN1237321C (en)
AU (1) AU2001256930A1 (en)
DE (1) DE10196335B3 (en)
FI (1) FI112880B (en)
PL (1) PL197437B1 (en)
SE (1) SE0002222L (en)
WO (1) WO2001096803A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023107618A1 (en) * 2021-12-08 2023-06-15 Worcester Polytechnic Institute Passive flow control for captive vortex

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101579141B1 (en) * 2008-04-18 2015-12-21 스벤 멜커 닐손 Channel system
CN102980424A (en) * 2008-04-18 2013-03-20 S·M·尼尔松 Channel system
SE533453C2 (en) * 2008-08-06 2010-10-05 Sven Melker Nilsson Duct
JP5545260B2 (en) 2010-05-21 2014-07-09 株式会社デンソー Heat exchanger
FR2990151B1 (en) * 2012-05-02 2014-05-23 Michelin & Cie MEMBRANE FOR VULCANIZING THE INNER PART OF A TIRE IN WHICH CIRCULATES A PRESSURIZED GAS COMPRISING TURBULENCE GENERATORS
JP6121765B2 (en) * 2013-03-23 2017-04-26 京セラ株式会社 Sample holder
JP2014059139A (en) * 2013-10-23 2014-04-03 Melker Nilsson Sven Channel system
PL235069B1 (en) 2017-12-04 2020-05-18 Ts Group Spolka Z Ograniczona Odpowiedzialnoscia Coil for transmission of heat for the rotary, cylindrical heat exchanger
FR3082237B1 (en) * 2018-06-12 2020-10-30 Safran Aircraft Engines LOW PRESSURE DROP HEAT EXCHANGE DEVICE
KR102206263B1 (en) * 2019-05-13 2021-01-21 조영호 White Smoke(includiong hazardous substances)Removal System Using High-Efficiency Heat Exchanger

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2219130C2 (en) * 1972-04-19 1974-06-20 Ulrich Dr.-Ing. 5100 Aachen Regehr CONTACT BODY FOR HEAT AND / OR SUBSTANCE EXCHANGE
SE444071B (en) * 1980-11-14 1986-03-17 Sven Melker Nilsson ROTATING REGENERATIVE EXCHANGER, PROCEDURE FOR ITS MANUFACTURING AND MACHINE FOR IMPLEMENTATION OF THE PROCEDURE
FR2559575A1 (en) * 1984-02-14 1985-08-16 Gea Ahlborn Gmbh Co Kg Plate heat exchanger
SE458806B (en) 1987-04-21 1989-05-08 Alfa Laval Thermal Ab PLATE HEAT EXCHANGER WITH DIFFERENT FLOW RESISTANCE FOR MEDIA
US5573062A (en) 1992-12-30 1996-11-12 The Furukawa Electric Co., Ltd. Heat transfer tube for absorption refrigerating machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023107618A1 (en) * 2021-12-08 2023-06-15 Worcester Polytechnic Institute Passive flow control for captive vortex

Also Published As

Publication number Publication date
CN1237321C (en) 2006-01-18
PL358923A1 (en) 2004-08-23
PL197437B1 (en) 2008-03-31
CN1432123A (en) 2003-07-23
DE10196335B3 (en) 2016-10-06
KR100709233B1 (en) 2007-04-19
WO2001096803A1 (en) 2001-12-20
FI20022196A (en) 2002-12-13
FI112880B (en) 2004-01-30
SE515132C2 (en) 2001-06-11
JP2004503739A (en) 2004-02-05
DE10196335T1 (en) 2003-05-22
AU2001256930A1 (en) 2001-12-24
KR20030010626A (en) 2003-02-05
SE0002222L (en) 2001-06-11
SE0002222D0 (en) 2000-06-15

Similar Documents

Publication Publication Date Title
JP3939648B2 (en) Equipment for heat / humidity exchange
CN105546648B (en) Air conditioner indoor unit and air-conditioning system
AU755459B2 (en) Ceiling-embedded type air conditioner
US20030006030A1 (en) Heat exchanger tube with integral restricting and turbulating structure
JP3505066B2 (en) Air purifier
JPWO2003014649A1 (en) Heat transfer device
JP6993311B2 (en) Boundary layer control device and wind tunnel test device
SE459826B (en) INSERT BODY OF FOLDED LAYERS WITH SPECIFICALLY DESIGNED EDGE PARTIES
JP3982121B2 (en) Heat sink device
JPH02157498A (en) Transitional duct for blower
ITMI972819A1 (en) INDOOR UNIT FOR AIR CONDITIONER
JPH10206085A (en) Heat-exchanger for air-conditioner
JP2611595B2 (en) Air conditioner
JP2000304347A (en) Heat exchanging unit
JPH11166757A (en) Clean room
US1992561A (en) Method of heat transfer
JPS633185A (en) Finned heat exchanger
JP2001248891A (en) Air conditioner
JPS63210596A (en) Plate fin tube heat exchanger
US20230054689A1 (en) Double-sided uniform air discharge ceiling cassette
JPS6212182Y2 (en)
JPH0131881Y2 (en)
CN106403383A (en) Heat exchanger and air conditioning equipment comprising same
JPS6155595A (en) Heat exchanger with fin
KR940004111B1 (en) Outlet of air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070328

R150 Certificate of patent or registration of utility model

Ref document number: 3939648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term