JP2004503739A - Equipment for heat / humidity exchange - Google Patents

Equipment for heat / humidity exchange Download PDF

Info

Publication number
JP2004503739A
JP2004503739A JP2002510887A JP2002510887A JP2004503739A JP 2004503739 A JP2004503739 A JP 2004503739A JP 2002510887 A JP2002510887 A JP 2002510887A JP 2002510887 A JP2002510887 A JP 2002510887A JP 2004503739 A JP2004503739 A JP 2004503739A
Authority
JP
Japan
Prior art keywords
duct
turbulence generating
ratio
range
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002510887A
Other languages
Japanese (ja)
Other versions
JP3939648B2 (en
Inventor
ニルスン スベン メルケル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2004503739A publication Critical patent/JP2004503739A/en
Application granted granted Critical
Publication of JP3939648B2 publication Critical patent/JP3939648B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/04Air-mixing units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • F28F1/424Means comprising outside portions integral with inside portions
    • F28F1/426Means comprising outside portions integral with inside portions the outside portions and the inside portions forming parts of complementary shape, e.g. concave and convex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/46Air flow forming a vortex

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

本発明は、熱/湿度交換のための装置に関するもので、ダクトを横切って延びている乱流発生部分3,4には、後側面5と、上面6と、前側面7とがある。この装置の特徴はダクトの構成にある。すなわち、ダクトの入口と、該ダクトの入口に最も近い乱流発生部分の中心と、の間の距離Aは、その距離の、流体力学的直径とレイノルズ数との積に対する比率が、0.01〜0.04の範囲となるように決められること、乱流発生部分の後側面5の傾斜を示す角度θが、30度〜60度の範囲にあること、ダクトの流体力学的直径に対するダクトの底から乱流発生部分の上面6までの高さeの比率が、0.30〜1.1の範囲にあること、前記高さeに対するダクト内の乱流発生部分3,4同士の間の距離の比率が、8〜30の範囲にあること、前記高さeに対する前記各乱流発生部分の上面の長さの比率が、1.0〜4.0の範囲にあること、そして、流体力学的直径Dhに対する各乱流発生部分の端部のアールrの比率が、0.01〜0.2の範囲にあること、である。The invention relates to a device for heat / humidity exchange, in which turbulence generating parts 3, 4 extending across a duct have a rear side 5, an upper side 6, and a front side 7. The feature of this device lies in the configuration of the duct. That is, the distance A between the inlet of the duct and the center of the turbulence generating portion closest to the inlet of the duct is defined as the ratio of the distance to the product of the hydrodynamic diameter and the Reynolds number is 0.01. 0.00.04, the angle θ indicating the inclination of the rear surface 5 of the turbulence generating portion is in the range of 30 to 60 degrees, and the duct has a hydrodynamic diameter with respect to the duct. The ratio of the height e from the bottom to the upper surface 6 of the turbulence generating portion is in the range of 0.30 to 1.1, and the height e between the turbulence generating portions 3 and 4 in the duct with respect to the height e. The ratio of the distance is in the range of 8 to 30; the ratio of the length of the upper surface of each turbulence generating portion to the height e is in the range of 1.0 to 4.0; The ratio of the radius r at the end of each turbulence generating portion to the mechanical diameter Dh is 0.01 In the range of 0.2, a.

Description

【0001】
【発明の属する技術分野】
本発明は、熱/湿度交換のための装置に関するもので、交換器を通して流れる空気流の圧力減に対する熱及び湿度の移転率の比率をそれぞれ最適化するためのものである。この目的を視野に入れて、交換器は、ダクトを横切って伸びている乱流発生部分を備え、該乱流発生部分は、後側面、上面及び前側面を有している。
【0002】
【従来の技術】
前記の如きタイプの空気対空気の熱/湿度交換器は、通常、平板と波形の帯とを交互にして作られ、一緒にすると三角形又は台形のダクトを形成する。比較的小さい断面のダクトを有するとともに、これらの情況下では頻繁な気流率を有する前記の如きタイプの熱/湿度交換器においては、空気はダクトの方向に比較的整然とした層をなして流れる。したがって、流れは本質的に層流である。ダクト入口から近い距離に沿ってのみ、一定の流れがダクト壁に対し横方向に発生する。このような情況においては、100〜600の範囲にあるいわゆるレイノルズ数が、空気流の特性として用いられる。レイノルズ数が約2000より小さい限り、流れは層流である。
【0003】
この技術分野に熟練した人には良く知られていることであるが、ダクト壁に最も近い層流の気流においては、境界層が形成され、この境界層での気流速度は本質的にゼロである。前記境界層は、熱と湿度の移転の係数をかなり低減せしめる。特に、いわゆる完全に発展した流れの場合に、しかりである。熱と湿度の移転の係数を増加させるためには、境界層が縮小し、一つの層から他の層への熱と湿度の移転がより大きくなるような方法で、空気がダクトの表面に向かう方向に流れるようにせしめなければならない。これはいわゆる乱流において起こりうる。滑らかで平面なダクトでは、層流は、レイノルズ数が約2000を超えた時に、乱流に変化する。もし、熱/湿度交換器のダクト内のレイノルズ数をここで論じられている程度より高くすることが望まれるならば、気流速度が、この情況で通常必要な気流速度よりも本質的に高速であることを要する。したがって、上述の交換器に適用される低いレイノルズ数に関連して、乱流は、例えば、ダクト内に特別の乱流発生部分を設けること等によって、人工的に発生させられなければならない。
【0004】
かかる乱流発生部分は、多くの異なった形式において知られている。SE−B−444071により、横置きの波形の形式の乱流発生部分を有している熱移転のためのローラーが知られている。これらの波形は、特に、中心管に巻かれた帯が入れ子式に嵌まり込まないように止めておく役割を果たすものであるが、しかし、同時に、上述のように完全に滑らかなダクトを持つ交換器に関して、熱と湿度の移転特質の一定の改善をもたらす乱流発生効果も合わせ持っている。
【0005】
したがって、このタイプの乱流発生部分は、熱と湿度の移転をかなりの程度増加せしめる。しかし、減圧の度合いは、激しく増加する。減圧の度合いの増加は、熱と湿度の移転の増加より大きいように見えた。しかしながら、空気対空気の交換器では、減圧の度合いが小さいことが肝要である。なぜなら、減圧度が、交換器を通して気流を動かすために配置されるファンの寸法や出力の決定を左右するからである。更に、この減圧度は、乱流発生部分の設計、寸法、幾何図形的外形次第であることが判明している。
【0006】
【発明が解決しようとする課題】
従って、本発明の目的は、熱/湿度交換器を提供することにあり、交換器のダクト内において、乱流発生部分が、熱と湿度の移転率に対する気流の減圧度の最適な比率が得られるような配置や設計となっている、熱/湿度交換器を提供することにある。
【0007】
【課題を解決するための手段】
本発明によれば、上述の目的は、ダクトの構造が下記の条件を満たす、熱/湿度交換器により達成される。
【0008】
すなわち、ダクトの入口と、該ダクトの入口に最も近い乱流発生部分の中心と、の間の距離は、その距離の、流体力学的直径(hydrauliska diameter/hydraulic diameter)とレイノルズ数との積に対する比率が、0.01〜0.04の範囲となるように決められること、ダクトの底を通る垂直面に対する乱流発生部分の後側面の傾斜を示す角度θが、30度〜60度の範囲にあること、ダクトの流体力学的直径に対するダクトの底から乱流発生部分の上面までの高さeの比率が、0.30〜1.1の範囲にあること、前記高さeに対するダクト内の乱流発生部分同士の間の距離の比率が、8〜30の範囲にあること、前記高さeに対する前記各乱流発生部分の上面の長さの比率が、1.0〜4.0の範囲にあること、そして、流体力学的直径に対する各乱流発生部分の端部のアール(radius)の比率が、0.01〜0.2の範囲にあること、である。
【0009】
熱と湿度の移転率に対する減圧度の比率を最適化するために、乱流をもたらす横向きの波、すなわち、いわゆる乱流発生部分が、一方では、ダクトの開口部から正しい距離に設置されなければならないし、他方では、相互間の間隔を適正にして配置されなければなければならない。更に、それらは適正に設計されていなければならず、ダクト内で垂直方向及び水平方向に伸びる一定の伸長部を有していなければならない。
【0010】
熱/湿度交換器のダクトの入口では、境界層が非常に薄いので、熱と湿度の移転の係数は高い。その後、流れの主方向に向かって境界層の厚さが増し、熱と湿度の移転の係数は低減する。熱と湿度の移転を増大させるために、ダクト壁内の乱流発生部分は、入口にあまりに近い位置には配置すべきでない。この領域では、熱と湿度の移転は元々高いからである。したがって、乱流発生部分は、本質的には減圧を増加させるだけであり、それは望ましいことではない。よって、ダクト入口に最も近い一番目の乱流発生部分は、ダクト入口で自然に起こる乱流が消え去るような距離に配置することが最適である。
【0011】
空気が一番目の乱流発生部分に到達すると、注文通り(意図した通り)乱気流が発生し、空気はダクト壁に向かって流れるようにせしめられる。こうして、熱/湿度の移転率が目立って増大する。前記乱流が乱流発生部分を離れるにつれて、乱流は次第に低減する。前記乱流が消え去るところで、次の乱流発生部分を設置するのが最適である。
【0012】
広範な試験と研究により、乱流発生部分の幾何図形的外形と、そのダクト内の配設位置と、の定義を見い出すことができ、それにより、減圧に対する熱と湿度の移転率の最適比率が出た。
【0013】
ここでは、流体力学的直径という表現が用いられている。これは、ダクトの断面の周囲に対するダクトの断面積の比率を示す表現である。空気流は、いわゆるレイノルズ数とシュミット数(Schmidt’s number)とによって特徴づけられる。
【0014】
【発明の実施の形態】
以下、添付図面を参照して、本発明をより詳細に説明する。図1は、本発明による乱流発生部分を有する熱/湿度交換器のダクトの斜視図、図2は、図1のダクトの概略側面図、図3は、図1及び図2のダクトの図2におけるI−I線に沿う断面図である。
【0015】
図1及び図2には、本発明による熱/湿度交換器の入口1とダクト2の一部が示されている。図面では、入口1に最も近い所に位置している一番目の乱流発生部分3と二番目の乱流発生部分4のみが示されている。ダクト2は、高さhを有している。ダクトの入口の開口部と、一番目の乱流発生部分3の中心と、の間の距離Aは、流体力学的直径とレイノルズ数との積に対する前記距離Aの比率が、0.01〜0.04の範囲内となるように決定される。ここで、流体力学的直径とは、ダクトの断面の周囲(の長さ)に対するダクトの断面積の比率を示す表現であり、レイノルズ数は空気流に依存する。
【0016】
上記の説明から、前記距離Aはレイノルズ数に依存し、従って、気流の速度に依存することもまた明らかである。よって、一番目の乱流発生部分の最適な位置は、現在(使用時)の運転条件に依存する。
【0017】
図2から特に明らかなように、乱流発生部分3,4は、特有の幾何図形的外形を持つ。それらは、傾斜した後側面5と、平坦な上面6と、傾斜した前側面7とで、形成されている。
【0018】
本発明によれば、以下の条件が更に適用される。すなわち、ダクト2の底8に対する乱流発生部分3,4の後側面5の傾斜を示す角度θが、30度〜60度の範囲にあること、及び、ダクト2の流体力学的直径Dhに対するダクト2の底8から乱流発生部分3,4の上面までの高さeの比率が、0.30〜1.1の範囲にあることである。さらに、前記高さeに対する前記一番目及び二番目の乱流発生部分3,4の中心間の距離Pの比率が、8〜30の範囲にあること、及び、前記高さeに対する前記各乱流発生部分の上面6の長さBの比率が、1.0〜4.0の範囲にあることである。
【0019】
本発明に従い、断面三角形及び/又は断面六角形のダクト2内に、特別の幾何図形的外形を有し且つ相互間に計算された間隔を有し且つダクト入口1から計算された距離を有する乱流発生部分3,4を用いる(設ける)ことにより、熱及び湿度の移転率のかなりの上昇が達成されるが、減圧の増加は著しくはない。空気流が乱流発生部分3に近づくと、(流路の)断面の縮小により気流の流速が局部的に上昇する。図3は、それを図解するのを意図したものである。その後、空気が乱流発生部分3を通過しその上面6から前側面7へと移る過程で鋭い端部を離れる時、その分離とかなり末広がりの流路断面を原因として、強力な乱流の動きが起こる。この過程は、熱及び湿度の移転を増大せしめるようになる時に、多大な効果を生ずる。
【0020】
二番目の乱流発生部分4は、一番目の乱流発生部分3で発生した乱流ができるだけ完全に使い果たされ、その後、二番目の乱流発生部分4を空気が通過する前に、図1に符号Oで示したいわゆる再接触区域(re−engaging area)が形成されるように、一番目の乱流発生部分3から計算された距離Pだけ離れた位置に配置されている。これにより、前に生じた乱流の空気の流れにおける熱および湿度の移転率を有意義に上昇させることなく、不必要な更なる減圧が防止される。前記再接触区域Oでは、空気は、かなりの程度、次の乱流発生部分に到達するまで再度平坦な表面と接触する。
【0021】
乱流発生部分3,4の端部は、分離点(軽減点)を作り出すに足るだけ鋭いことが重要である。前記端部のアール(radius)r(図2参照)は、比率r/Dhが0.01〜0.2の範囲にあるように設定されるべきである。
【0022】
熱移転率を維持しながら減圧を更に減少せしめるため、図2に示すように、ダクトの底8からの乱流発生部分の高さeを、これに対応するダクトの上面からの高さfより高くすることができる。この構成により、前記突出した空間での不必要な乱流を排除することができる。都合の良いことに、前記突出した部分は、これに対応するダクトの下部の壁の部分5,6,7で画成された凹所にうまく適合するように設計されている。それは、ダクトを積み重ねて配置するときに安定した結合を得ること、及び、例えば、ダクトが入れ子式に嵌まり込むのを回避すること、を目的としたものである。
【0023】
乱流発生部分3,4を本発明に従って設計することにより、乱流発生部分はまた、平坦な(凸凹のない)ダクト内においても乱流気流が形成されるような高流気流でも有効とされる。自然に形成される乱流は、輻合作用/分岐作用効果と、空気の分離及び再接触のための機構と、により、改善される。
【図面の簡単な説明】
【図1】本発明による乱流発生部分を有する熱/湿度交換器のダクトの斜視図である。
【図2】図1のダクトの概略側面図である。
【図3】図1及び図2のダクトの図2におけるI−I線に沿う断面図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an apparatus for heat / humidity exchange, which optimizes the ratio of the heat and humidity transfer rates to the pressure reduction of the airflow flowing through the exchanger, respectively. With this objective in mind, the exchanger includes a turbulence-producing portion extending across the duct, the turbulence-producing portion having a rear side, a top surface, and a front side.
[0002]
[Prior art]
Air-to-air heat / humidity exchangers of the type described above are usually made of alternating flat plates and corrugated strips, which together form a triangular or trapezoidal duct. In a heat / humidity exchanger of the type described above which has a duct of relatively small cross-section and which has frequent airflow rates under these circumstances, the air flows in a relatively ordered layer in the direction of the duct. Thus, the flow is essentially laminar. Only along a short distance from the duct entrance does a constant flow occur transverse to the duct wall. In such a situation, a so-called Reynolds number in the range of 100 to 600 is used as a characteristic of the airflow. As long as the Reynolds number is less than about 2000, the flow is laminar.
[0003]
As is well known to those skilled in the art, a laminar air flow closest to the duct wall forms a boundary layer at which the air velocity is essentially zero. is there. The boundary layer significantly reduces the coefficient of heat and humidity transfer. Especially in the case of so-called fully developed flows. To increase the coefficient of heat and humidity transfer, the air is directed to the surface of the duct in such a way that the boundary layer shrinks and the transfer of heat and humidity from one layer to another increases. You have to make it flow in the direction. This can occur in so-called turbulence. In a smooth, flat duct, laminar flow changes to turbulent when the Reynolds number exceeds about 2000. If it is desired that the Reynolds number in the duct of the heat / humidity exchanger be higher than that discussed herein, the air velocity may be substantially higher than the air velocity normally required in this context. I need to be there. Thus, in connection with the low Reynolds number applied to the exchanger described above, the turbulence must be generated artificially, for example by providing a special turbulence generating part in the duct.
[0004]
Such turbulence generating parts are known in many different forms. From SE-B-440771 a roller for heat transfer is known which has a turbulence-generating part in the form of a transversely laid wave. These corrugations serve, inter alia, to keep the band wound around the central tube from nesting, but at the same time have a completely smooth duct as described above. For the exchanger, it also has a turbulence generating effect which leads to a certain improvement of the heat and humidity transfer characteristics.
[0005]
Thus, this type of turbulence-producing portion increases the transfer of heat and humidity to a considerable extent. However, the degree of decompression increases sharply. The increase in the degree of decompression appeared to be greater than the increase in heat and humidity transfer. However, in an air-to-air exchanger, it is important that the degree of pressure reduction be small. This is because the degree of pressure reduction determines the size and output of the fan arranged to move the airflow through the exchanger. Further, it has been found that this degree of decompression depends on the design, dimensions, and geometric shape of the turbulence generating part.
[0006]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a heat / humidity exchanger in which the turbulence generating part has an optimum ratio of the degree of decompression of the air flow to the rate of heat and humidity transfer in the duct of the exchanger. It is an object of the present invention to provide a heat / humidity exchanger which is arranged and designed as described above.
[0007]
[Means for Solving the Problems]
According to the present invention, the above object is achieved by a heat / humidity exchanger in which the structure of the duct satisfies the following conditions.
[0008]
That is, the distance between the inlet of the duct and the center of the turbulence generating portion closest to the inlet of the duct is the distance to the product of the hydrodynamic diameter / hydraulic diameter and the Reynolds number. The ratio is determined to be in the range of 0.01 to 0.04, and the angle θ indicating the inclination of the rear surface of the turbulence generating portion with respect to the vertical plane passing through the bottom of the duct is in the range of 30 to 60 degrees. The ratio of the height e from the bottom of the duct to the top surface of the turbulence generating portion to the hydrodynamic diameter of the duct is in the range of 0.30 to 1.1; The ratio of the distance between the turbulence generating portions is in the range of 8 to 30, and the ratio of the length of the upper surface of each turbulence generating portion to the height e is 1.0 to 4.0. Range of And that the ratio of the radius at the end of each turbulence generating portion to the hydrodynamic diameter is in the range of 0.01 to 0.2.
[0009]
In order to optimize the ratio of the degree of decompression to the rate of transfer of heat and humidity, the turbulent transverse waves, i.e. the so-called turbulence generating parts, on the one hand, must be located at the correct distance from the opening of the duct And, on the other hand, must be arranged with proper spacing between each other. In addition, they must be properly designed and have certain vertical and horizontal extensions within the duct.
[0010]
At the entrance of the duct of the heat / humidity exchanger, the coefficient of heat and humidity transfer is high because the boundary layer is very thin. Thereafter, the thickness of the boundary layer increases in the main direction of flow, and the coefficient of heat and humidity transfer decreases. In order to increase the transfer of heat and humidity, the turbulence generating part in the duct wall should not be located too close to the inlet. In this region, heat and humidity transfer is inherently high. Thus, the turbulence generating portion essentially only increases the vacuum, which is not desirable. Therefore, it is optimal to arrange the first turbulence generating portion closest to the duct entrance such that the turbulence naturally occurring at the duct entrance disappears.
[0011]
When the air reaches the first turbulence generating portion, turbulence is generated as ordered (as intended), and the air is caused to flow toward the duct wall. Thus, the heat / humidity transfer rate is significantly increased. As the turbulence leaves the turbulence generating portion, the turbulence gradually decreases. Where the turbulence disappears, it is optimal to install the next turbulence generating part.
[0012]
Extensive testing and research has led to the definition of the geometry of the turbulence-causing part and its location in the duct, so that the optimal ratio of heat and humidity transfer rates to reduced pressure is reduced. Came out.
[0013]
Here, the expression hydrodynamic diameter is used. This is an expression indicating the ratio of the cross-sectional area of the duct to the periphery of the cross-section of the duct. Airflow is characterized by the so-called Reynolds number and Schmidt's number.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings. 1 is a perspective view of a duct of a heat / humidity exchanger having a turbulence generating portion according to the present invention, FIG. 2 is a schematic side view of the duct of FIG. 1, and FIG. 3 is a view of the duct of FIGS. FIG. 2 is a sectional view taken along line II in FIG.
[0015]
1 and 2 show a part of an inlet 1 and a duct 2 of a heat / humidity exchanger according to the invention. In the drawing, only the first turbulence generating part 3 and the second turbulence generating part 4 located closest to the inlet 1 are shown. The duct 2 has a height h. The distance A between the opening of the inlet of the duct and the center of the first turbulence generating portion 3 is a ratio of the distance A to the product of the hydrodynamic diameter and the Reynolds number is 0.01 to 0. .04 is determined. Here, the hydrodynamic diameter is an expression indicating the ratio of the cross-sectional area of the duct to the circumference (length) of the cross-section of the duct, and the Reynolds number depends on the air flow.
[0016]
From the above description it is also clear that the distance A depends on the Reynolds number and therefore on the speed of the airflow. Therefore, the optimum position of the first turbulence generating portion depends on the current (operating) operating condition.
[0017]
As is particularly evident from FIG. 2, the turbulence generating parts 3, 4 have a unique geometrical outer shape. They are formed by an inclined rear side 5, a flat upper surface 6 and an inclined front side 7.
[0018]
According to the present invention, the following conditions further apply. That is, the angle θ indicating the inclination of the rear surface 5 of the turbulence generating portions 3 and 4 with respect to the bottom 8 of the duct 2 is in the range of 30 degrees to 60 degrees, and the duct with respect to the hydrodynamic diameter Dh of the duct 2 The ratio of the height e from the bottom 8 of 2 to the upper surface of the turbulence generating portions 3 and 4 is in the range of 0.30 to 1.1. Further, the ratio of the distance P between the centers of the first and second turbulence generating portions 3 and 4 with respect to the height e is in the range of 8 to 30, and the respective turbulences with respect to the height e. The ratio of the length B of the upper surface 6 of the flow generating portion is in the range of 1.0 to 4.0.
[0019]
In accordance with the invention, in a duct 2 having a triangular and / or hexagonal cross section, a disturbance having a special geometrical shape and having a calculated distance between each other and a distance calculated from the duct entrance 1. By using (providing) the flow generating parts 3, 4, a significant increase in the heat and humidity transfer rate is achieved, but the increase in the vacuum is not significant. When the air flow approaches the turbulence generating portion 3, the flow velocity of the air flow locally increases due to the reduction of the cross section (of the flow path). FIG. 3 is intended to illustrate it. Then, when the air leaves the sharp end in the process of passing through the turbulence generating part 3 and moving from the upper surface 6 to the front side surface 7, strong turbulent motion is caused by the separation and the considerably divergent flow path cross section. Happens. This process has significant effects when it comes to increasing heat and humidity transfer.
[0020]
The second turbulence generating portion 4 is used in such a manner that the turbulence generated in the first turbulence generating portion 3 is completely consumed as much as possible, and thereafter, before the air passes through the second turbulence generating portion 4, The so-called re-engaging area indicated by reference symbol O in FIG. 1 is formed at a position separated by the calculated distance P from the first turbulence generating portion 3. This prevents unnecessary further decompression without significantly increasing the heat and humidity transfer rates in the previously generated turbulent air flow. In said re-contact area O, the air again contacts the flat surface to a considerable extent until it reaches the next turbulence generating part.
[0021]
It is important that the ends of the turbulence generating portions 3 and 4 are sharp enough to create a separation point (reduction point). The radius r of the edge (see FIG. 2) should be set such that the ratio r / Dh is in the range of 0.01 to 0.2.
[0022]
In order to further reduce the pressure reduction while maintaining the heat transfer rate, as shown in FIG. 2, the height e of the turbulence generating portion from the bottom 8 of the duct is set to be higher than the corresponding height f from the upper surface of the duct. Can be higher. With this configuration, unnecessary turbulence in the protruding space can be eliminated. Conveniently, said protruding portion is designed to fit well into the corresponding recess defined by the lower wall portions 5, 6, 7 of the duct. It is intended to obtain a stable connection when stacking the ducts and to avoid, for example, nesting of the ducts.
[0023]
By designing the turbulence generating parts 3 and 4 according to the present invention, the turbulence generating parts are also effective in high flow airflow in which a turbulent airflow is formed even in a flat (uneven) duct. You. Naturally formed turbulence is improved by convergence / branching effects and mechanisms for air separation and re-contact.
[Brief description of the drawings]
FIG. 1 is a perspective view of a duct of a heat / humidity exchanger having a turbulence generating portion according to the present invention.
FIG. 2 is a schematic side view of the duct of FIG.
FIG. 3 is a cross-sectional view of the duct of FIGS. 1 and 2 taken along the line II in FIG. 2;

Claims (1)

熱/湿度交換のための装置であって、交換器を通して流れる空気流の圧力減に対する熱及び湿度の移転率の比率をそれぞれ最適化するための装置であり、この目的を視野に入れて、交換器にはダクトがあり、このダクトを横切って伸びている乱流発生部分(3,4)が備わっていて、前記ダクトは、後側面(5)と、上面(6)と、前側面(7)と、を備え、さらに、前記ダクトは、前記目的を達成するために、以下の条件、すなわち、
ダクトの入口(1)と、該ダクトの入口(1)に最も近い乱流発生部分(3)の中心と、の間の距離(A)は、その距離の、流体力学的直径Dhとレイノルズ数との積に対する比率が、0.01〜0.04の範囲となるように決められること、
ダクトの底(8)を通る垂直面に対する乱流発生部分(3,4)の後面(5)の傾斜を示す角度θが、30度〜60度の範囲にあること、
ダクトの流体力学的直径に対するダクトの底(8)から乱流発生部分の上面(6)までの高さeの比率が、0.3〜1.1の範囲にあること、
前記高さeに対する前記入口から見てダクト内の一番目と二番目の乱流発生部分(3,4)の中心間の距離Pの比率が、8〜30の範囲にあること、
前記高さeに対する前記各乱流発生部分(3,4)の上面(6)の長さBの比率が、1.0〜4.0の範囲にあること、そして、
流体力学的直径Dhに対する各乱流発生部分(3,4)の端部のアールrの比率が、0.01〜0.2の範囲にあること、
を満たしている、熱/湿度交換のための装置。
A device for heat / humidity exchange, which optimizes the ratio of the heat and humidity transfer rates to the pressure reduction of the airflow flowing through the exchanger, respectively. The vessel has a duct and is provided with turbulence generating sections (3, 4) extending across the duct, said duct comprising a rear side (5), a top side (6) and a front side (7). ), And the duct has the following conditions, in order to achieve the object:
The distance (A) between the inlet (1) of the duct and the center of the turbulence generating part (3) closest to the inlet (1) of the duct is the hydrodynamic diameter Dh and Reynolds number of that distance. Is determined to be in the range of 0.01 to 0.04,
The angle θ indicating the inclination of the rear surface (5) of the turbulence generating portion (3, 4) with respect to the vertical plane passing through the bottom (8) of the duct is in the range of 30 degrees to 60 degrees;
The ratio of the height e from the bottom (8) of the duct to the top surface (6) of the turbulence generating part to the hydrodynamic diameter of the duct is in the range of 0.3 to 1.1;
The ratio of the distance P between the centers of the first and second turbulence generating portions (3, 4) in the duct as viewed from the inlet to the height e is in the range of 8 to 30;
The ratio of the length B of the upper surface (6) of each of the turbulence generating portions (3, 4) to the height e is in the range of 1.0 to 4.0; and
The ratio of the radius r at the end of each turbulence generating portion (3, 4) to the hydrodynamic diameter Dh is in the range of 0.01 to 0.2;
A device for heat / humidity exchange that meets the requirements.
JP2002510887A 2000-06-15 2001-05-14 Equipment for heat / humidity exchange Expired - Lifetime JP3939648B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE0002222A SE515132C2 (en) 2000-06-15 2000-06-15 Device for heat / moisture exchanger with turbulence generators
PCT/SE2001/001041 WO2001096803A1 (en) 2000-06-15 2001-05-14 Device for heat/moist exchange

Publications (2)

Publication Number Publication Date
JP2004503739A true JP2004503739A (en) 2004-02-05
JP3939648B2 JP3939648B2 (en) 2007-07-04

Family

ID=20280085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002510887A Expired - Lifetime JP3939648B2 (en) 2000-06-15 2001-05-14 Equipment for heat / humidity exchange

Country Status (9)

Country Link
JP (1) JP3939648B2 (en)
KR (1) KR100709233B1 (en)
CN (1) CN1237321C (en)
AU (1) AU2001256930A1 (en)
DE (1) DE10196335B3 (en)
FI (1) FI112880B (en)
PL (1) PL197437B1 (en)
SE (1) SE515132C2 (en)
WO (1) WO2001096803A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011518302A (en) * 2008-04-18 2011-06-23 ニルソン、スベン・メルカー Channel system
JP2011530687A (en) * 2008-08-06 2011-12-22 ニルソン、スベン・メルカー Channel system
JP2014059139A (en) * 2013-10-23 2014-04-03 Melker Nilsson Sven Channel system
JP2014187214A (en) * 2013-03-23 2014-10-02 Kyocera Corp Sample holder

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102980424A (en) * 2008-04-18 2013-03-20 S·M·尼尔松 Channel system
JP5545260B2 (en) 2010-05-21 2014-07-09 株式会社デンソー Heat exchanger
FR2990151B1 (en) * 2012-05-02 2014-05-23 Michelin & Cie MEMBRANE FOR VULCANIZING THE INNER PART OF A TIRE IN WHICH CIRCULATES A PRESSURIZED GAS COMPRISING TURBULENCE GENERATORS
PL235069B1 (en) 2017-12-04 2020-05-18 Ts Group Spolka Z Ograniczona Odpowiedzialnoscia Coil for transmission of heat for the rotary, cylindrical heat exchanger
FR3082237B1 (en) * 2018-06-12 2020-10-30 Safran Aircraft Engines LOW PRESSURE DROP HEAT EXCHANGE DEVICE
KR102206263B1 (en) * 2019-05-13 2021-01-21 조영호 White Smoke(includiong hazardous substances)Removal System Using High-Efficiency Heat Exchanger
WO2023107618A1 (en) * 2021-12-08 2023-06-15 Worcester Polytechnic Institute Passive flow control for captive vortex

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2219130C2 (en) * 1972-04-19 1974-06-20 Ulrich Dr.-Ing. 5100 Aachen Regehr CONTACT BODY FOR HEAT AND / OR SUBSTANCE EXCHANGE
SE444071B (en) * 1980-11-14 1986-03-17 Sven Melker Nilsson ROTATING REGENERATIVE EXCHANGER, PROCEDURE FOR ITS MANUFACTURING AND MACHINE FOR IMPLEMENTATION OF THE PROCEDURE
FR2559575A1 (en) * 1984-02-14 1985-08-16 Gea Ahlborn Gmbh Co Kg Plate heat exchanger
SE458806B (en) * 1987-04-21 1989-05-08 Alfa Laval Thermal Ab PLATE HEAT EXCHANGER WITH DIFFERENT FLOW RESISTANCE FOR MEDIA
US5573062A (en) * 1992-12-30 1996-11-12 The Furukawa Electric Co., Ltd. Heat transfer tube for absorption refrigerating machine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011518302A (en) * 2008-04-18 2011-06-23 ニルソン、スベン・メルカー Channel system
KR20140069367A (en) * 2008-04-18 2014-06-09 스벤 멜커 닐손 Channel system
KR101505938B1 (en) 2008-04-18 2015-03-25 스벤 멜커 닐손 Channel system
KR101579141B1 (en) 2008-04-18 2015-12-21 스벤 멜커 닐손 Channel system
US9441523B2 (en) 2008-04-18 2016-09-13 Sven Melker Nilsson Channel system with internal flow director and turbulence generator
JP2011530687A (en) * 2008-08-06 2011-12-22 ニルソン、スベン・メルカー Channel system
US9410462B2 (en) 2008-08-06 2016-08-09 Sven Melker Nilsson Channel system
JP2014187214A (en) * 2013-03-23 2014-10-02 Kyocera Corp Sample holder
JP2014059139A (en) * 2013-10-23 2014-04-03 Melker Nilsson Sven Channel system

Also Published As

Publication number Publication date
AU2001256930A1 (en) 2001-12-24
SE0002222L (en) 2001-06-11
KR20030010626A (en) 2003-02-05
JP3939648B2 (en) 2007-07-04
CN1237321C (en) 2006-01-18
DE10196335T1 (en) 2003-05-22
PL358923A1 (en) 2004-08-23
FI112880B (en) 2004-01-30
WO2001096803A1 (en) 2001-12-20
KR100709233B1 (en) 2007-04-19
SE515132C2 (en) 2001-06-11
DE10196335B3 (en) 2016-10-06
FI20022196A (en) 2002-12-13
CN1432123A (en) 2003-07-23
SE0002222D0 (en) 2000-06-15
PL197437B1 (en) 2008-03-31

Similar Documents

Publication Publication Date Title
US7124813B2 (en) High-V plate fin heat exchanger and method of manufacturing
KR100220724B1 (en) Heat exchanger for air conditioner
JP2004503739A (en) Equipment for heat / humidity exchange
US9267511B2 (en) Turbofan and indoor unit of air-conditioning apparatus including the same
CN105546648B (en) Air conditioner indoor unit and air-conditioning system
US4830102A (en) Turbulent heat exchanger
AU755459B2 (en) Ceiling-embedded type air conditioner
JPH0670555B2 (en) Fin tube heat exchanger
US9784507B2 (en) Outdoor cooling unit for vehicular air conditioning apparatus
JP6601338B2 (en) Duct structure
CN104769368A (en) Air conditioner
JPH10197182A (en) Heat exchange for air conditioner
JPH07239196A (en) Fin-tube type heat exchanger
JP2795701B2 (en) Transition duct for blower
CN212774934U (en) Volute with flow guide structure, fan and air duct machine
JPH10206085A (en) Heat-exchanger for air-conditioner
JP5958771B2 (en) Finned tube heat exchanger
JP2000304347A (en) Heat exchanging unit
JPS59185992A (en) Heat exchanger
JP2003232561A (en) Blowout port of air conditioner
US1992561A (en) Method of heat transfer
JPH10311774A (en) Apparatus for circuration flow
EP4303522A1 (en) Air intake damper
JPS59210297A (en) Heat exchanger with fin
JPS63210596A (en) Plate fin tube heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070328

R150 Certificate of patent or registration of utility model

Ref document number: 3939648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term