JP3939003B2 - 同期偏波スクランブラを用いた光通信システム及び光受信装置 - Google Patents

同期偏波スクランブラを用いた光通信システム及び光受信装置 Download PDF

Info

Publication number
JP3939003B2
JP3939003B2 JP03916398A JP3916398A JP3939003B2 JP 3939003 B2 JP3939003 B2 JP 3939003B2 JP 03916398 A JP03916398 A JP 03916398A JP 3916398 A JP3916398 A JP 3916398A JP 3939003 B2 JP3939003 B2 JP 3939003B2
Authority
JP
Japan
Prior art keywords
signal
optical
polarization
light
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03916398A
Other languages
English (en)
Other versions
JPH11239099A (ja
Inventor
崇男 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP03916398A priority Critical patent/JP3939003B2/ja
Priority to US09/111,772 priority patent/US6538786B1/en
Priority to EP98305590A priority patent/EP0939503A3/en
Publication of JPH11239099A publication Critical patent/JPH11239099A/ja
Application granted granted Critical
Publication of JP3939003B2 publication Critical patent/JP3939003B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/532Polarisation modulation

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、信号光の伝送速度と一致する繰り返し周波数の偏波変調信号に従って信号光の偏波状態をスクランブルする同期偏波スクランブラを用いた光通信システム及び光受信装置に関する。
【0002】
【従来の技術】
従来、数千キロメートルに及ぶ大洋を横断する長距離の光伝送システムでは、光信号を電気信号に変換し、タイミング再生(retiming)、波形等化(reshaping) 及識別再生(regenerating)を行う光再生中継器を用いて伝送を行っていた。しかし、現在では、光増幅器の実用化が進み、光増幅器を線形中継器として用いる光増幅中継伝送方式が検討されている。光再生中継器を光増幅中継器に置き換えることにより、中継器内の部品点数を大幅に削減し、信頼性を確保するとともに大幅なコストダウンが見込まれる。
【0003】
1993年にM.G Taylorは、光中継増幅器にて発生する雑音光が信号光の偏波状態に依存し、余分雑音光が増大する現象(偏波ホールバーニング、polarization hole burning)を指摘した。偏波ホールバーニングにより、信号光対雑音光の比(光SNR)の平均値が低下すると同時に光SNRの揺らぎが増大するために、光増幅中継伝送を行う上で大きな問題になった。
【0004】
この対策として、例えば、送信側において信号光の偏波状態を積極的に可変する偏波スクランブル(polarization scrambling)が提案された。図21は、従来の偏波スクランブラを用いた光通信システムの概略構成を示す。
図21の従来システムは、偏波スクランブルされた信号光を伝送系200に送出する光送信機100と、伝送系200からの信号光を受信して識別等の処理を行なう光受信機300とを備える。光送信機100では、伝送データに従って変調された所定の伝送速度の信号光が信号光発生器(E/O)101から出射され、その信号光が、偏波スクランブラ(PS)102で偏波変調信号に従って偏波スクランブルされ伝送系200に出力される。偏波スクランブルを行う方法としては、例えば、位相変調器を用いた方法、光ファイバの側面から応力を与える方法、2つの光源を用いた方法などがある。光受信機300では、伝送系200からの信号光が受光器(O/E)301で電気信号に変換されて、識別回路(DEC)302で識別処理される。
【0005】
例えば、1994年にF.Heismannらは、伝送速度5.33Gb/s,伝送距離8100kmの実験において、45度入力偏波状態指定のニオブ酸リチウム(LiNbO3)の位相変調器を用いた偏波スクランブラにより、偏波状態の繰り返し周波数が、40kHz において4dBのQ値改善、10.66GHzにおいて5dBのQ値改善を達成している。前者の繰り返し周波数は伝送速度よりも低く、低速偏波スクランブルと呼ばれ、後者は伝送速度以上なので高速偏波スクランブルと呼ばれている。高速偏波スクランブルは、光伝送路および光増幅中継器の偏光依存性損失による光SNRの揺らぎを抑圧する効果があるために、その改善量が大きい。
【0006】
ここで、位相変調器を用いた偏波スクランブラについて簡単に説明する。位相変調器で発生するTMモードおよびTEモードの光の位相差Δφ(t) は、次のような式で表すことができる。
Δφ(t) =π/λ[(ne3γ33−no3γ13) V(t) LΓ]
ただし、λは光波長、γ33,γ13はTMモード、TEモードの電気光学定数、ne ,no はTMモード、TEモードの光屈折率、V(t) は印加電圧、Lは電極長、Γは印加電圧低減係数である。このTMモードおよびTEモードの光の位相差Δφ(t) を用いることで、位相変調器を使用した偏波スクランブラは信号光の偏波状態を変化させることができる。
【0007】
また、光伝送システムの大容量化を実現する方法の1つとして、単一の光伝送路に2つ以上の異なる波長を持つ光信号を多重して伝送する波長多重(WDM)光伝送方式が注目されている。
このWDM光伝送方式と上記の光増幅中継伝送方式を組み合わせたWDM光増幅中継伝送方式においては、光増幅器を用いて2つ以上の異なる波長を持つ光信号を一括して増幅することが可能であり、簡素な構成(経済的)で、大容量かつ長距離伝送が実現可能である。
【0008】
WDM光増幅中継伝送方式においては、光伝送路の非線形効果による伝送特性劣化を低減することが重要である。例えば、非線形効果の一つである4光波混合(four-wave mixing;以下FWMとする) は、いくつかの信号光の偏波状態が一致する場合にその発生効率が最大になる。したがって、例えば、高速偏波スクランブルを行なうことで、いくつかの信号光の偏波状態の一致が積極的に持続できないように設定できるため、4光波混合の発生を低減させることが可能である。
【0009】
一例として、1996年に本発明者らは、4波長多重、伝送速度5.33Gb/s、伝送距離4800kmの実験において、偏波状態の繰り返し周波数が伝送速度の2倍の高速偏波スクランブルを行なうことで、4光波混合発生率が低減して伝送特性の改善が図られることを確認している。なお、偏波スクランブルを行なったWDM伝送方式については、例えば、本出願人の先願である特開平9−149006号公報等に詳細に記載されている。
【0010】
また、WDM光増幅中継伝送方式における他の重要な課題の一つに、チャネル間隔の低減、即ち波長多重数の増大がある。しかし、高速偏波スクランブルをかけた信号光はスペクトルが拡がってしまうために、波長多重の高密度化を実現する上での障害になる。
そこで、1995年にN.S Bergano らは、信号光のスペクトル拡がりの比較的小さい、繰り返し周波数が伝送速度の偏波スクランブルを提案している。ここでは、このような偏波スクランブルを同期偏波スクランブルと呼ぶことにする。ただし、この提案では、伝送特性を改善させるために信号の強度変調と偏波スクランブルとを同期させる構成を必要とする。
【0011】
この同期偏波スクランブルを行なう光送信機としては、例えば、図22に示すように、連続光を発生する光源(LD)101Aと、光源101Aからの光を強度変調する強度変調器(IM)101Bと、強度変調器101Bを駆動する第1駆動回路(DRV)101Cと、入力信号INを発振信号に同期させて第1駆動回路101Cに送る波形整形回路101Dと、強度変調器101Bからの信号光を偏波スクランブルする偏波スクランブラ(PS)102Aと、偏波スクランブラ102Aを駆動する第2駆動回路(DRV)102Bと、発振信号を遅延させた偏波変調信号を第2駆動回路102Bに送る遅延回路102Cと、から構成されるものなどがある。
【0012】
上述したような偏波スクランブルに関する技術は、その繰り返し周波数に応じて、低速偏波スクランブル、同期偏波スクランブルおよび高速偏波スクランブルの3つに大別できる。ここで、それぞれの偏波スクランブルを行なう場合および偏波スクランブルを行なわない場合について、その特徴を比較検討した結果を次の表1に示す。
【0013】
【表1】
Figure 0003939003
【0014】
表1において、Brは伝送速度に用いる発振周波数、PDGは偏光依存性利得(polarization dependence gain)、PDLは偏光依存性損失(polarization dependence loss )を表すものである。
大容量・長距離伝送システム実用化への重要な要求項目の一つは、中継間隔の延長による光増幅中継器の削減である。そのためにはFWM発生効率の低減を図り、光増幅中継器を高出力化する必要がある。FWM発生効率の低減方法としては、表1に示すように同期偏波スクランブルまたは高速偏波スクランブルが有効である。また、同期または高速偏波スクランブルは、表1の項目にはないが、低速偏波スクランブルを行なった場合よりも約3dBの高出力化が可能でもある。
【0015】
高速偏波スクランブルについては、伝送速度が例えば2.5Gb/s 程度の場合に特に有効である。しかし、伝送速度が約5Gb/s以上の高速になると、その信号光のスペクトル拡がりが無視できなくなるため、波長分散トレランスが小さくなる。また、チャネル間隔も広くとる必要がある。一方、同期偏波スクランブルについては、信号光のスペクトル拡がりが高速偏波スクランブルの場合の約半分であるため、波長分散トレランスおよびチャネル間隔の要求を緩和できる。
【0016】
したがって、伝送速度が5Gb/s以上といった高速光通信システムには、同期偏波スクランブルがより有効である。
【0017】
【発明が解決しようとする課題】
しかしながら、同期偏波スクランブラを用いた高速光通信システムでは、伝送速度と一致する繰り返し周波数(以下、偏波CLK周波数とする)の変調信号を用いて偏波変調した信号光が光伝送路を伝送されると、その偏波変調に起因する位相変調成分によりカー効果に基づいた強度変調が発生し、伝送後の波形の発光側に偏波CLK周波数が重畳される。また、光伝送路や光増幅中継器等の偏光依存性損失(PDL)により、偏波変調成分が強度雑音に変換されてQ値揺らぎを増大させる可能性もある。
【0018】
例えば、伝送速度5.3Gb/s 、8波長多重、伝送距離2679kmの条件下で行なった伝送実験の結果を図23〜図25に示す。図23(a)(b)は、光送信機から送信された信号光(同期偏波スクランブルされた伝送前の信号光)の等化波形および電気スペクトルを示し、図24(a)(b)は、光受信機で受信された信号光(伝送後の信号光)の等化波形および電気スペクトルを示す。また、図25(a)(b)は、受信信号を等化フィルタに通した後の等化波形および電気スペクトルを示す。
【0019】
まず、伝送前後の変化について、図23(a) の伝送前の等化波形は略上下対称であるが、図24(a) の伝送後の等化波形は発光側(図で上側)に偏波CLK周波数成分が重畳され、上下非対称になることがわかる。また、図23(b) および図24(b) の各電気スペクトルでは、伝送前後における偏波CLK周波数fo成分のパワーが約16dB(約40倍)に増大していることがわかる。
【0020】
伝送前後における信号光の変化は、上述したように位相変調によるカー効果に基づくものと、偏光依存性損失により発生するものとが考えられる。前者については、位相変調と強度変調との相関が強いため、伝送データの状態と偏波(位相)変調の状態とを一致させれば、図24(a) のような開口部分の大きい波形を得ることは可能である。しかし、後者については、光伝送路の状態に依存して発生するため、その発生を制御することは難しい。
【0021】
さらに、偏波CLK周波数foの近傍のスペクトル成分は、光伝送路の偏波揺らぎ(主な周波数成分は約50Hz以下)によって偏波CLK周波数foに僅かに変調がかかるため、偏波CLK周波数fo±50Hzの範囲となる。このため図24(b) の偏波CLK周波数foのピークは約100Hz 程度の幅を有している。なお、図23(b) および図24(b) で右側のピークは、偏波CLK周波数の2倍の高調波成分である。
【0022】
このように同期偏波スクランブルさせた信号光を伝送すると、偏波変調の影響を受けた信号光が光受信機で受光される。そして、光受信機は、受光した信号光を電気信号に変換し、等化フィルタを通して必要な周波数成分のみを抽出して識別等の処理を行なう。一般に、光受信機に用いる等化フィルタは、群遅延特性に優れたベッセル型フィルタ等が用いられ、その遮断周波数は、NRZ符号等を用いるとき伝送速度の0.6 〜0.8 倍程度に設定される。このような等化フィルタでは、同期偏波スクランブルを行なった場合、伝送速度の周波数成分、即ち、偏波CLK周波数fo成分を十分に遮断することができない。
【0023】
上記の伝送実験において、例えば、伝送速度5.3Gb/s に対して4.0GHzの遮断周波数を持つ等化フィルタを用いた場合には、図25(a)(b)に示すように、等化波形は上下非対称のままであり、偏波CLK周波数fo成分の減衰量は等化フィルタ通過前に対して約6dBに過ぎないことがわかる。
このような信号が識別回路に送られると、偏波CLK周波数fo成分の影響により受信特性が劣化する可能性があり問題である。
【0024】
本発明は上記問題点に着目してなされたもので、同期偏波スクランブルさせた信号光を伝送するときに発生する雑音成分を低減させることのできる光通信システム及び光受信装置を提供することを目的とする。
なお、低速偏波スクランブルを対象にした不要成分を抑圧する技術は、本出願人の先願である特開平9−8742号公報等で提案されているが、本発明は同期偏波スクランブルを対象とするとともにその構成も異なるものである。
【0025】
【課題を解決するための手段】
このため本発明の光受信装置は、伝送速度と一致する繰り返し周波数の偏波変調信号に従って信号光の偏波状態をスクランブルする同期偏波スクランブラを用いて同期偏波スクランブルされた信号光を光伝送手段を介して受信処理する光受信装置であって、光電変換前の信号光および光電変換後の電気信号の少なくとも一方について、同期偏波スクランブルを行なったことに基づく雑音を発生させる周波数成分のみを低減させる雑音低減部を備えて構成される。
【0026】
かかる構成によれば、同期偏波スクランブルされた信号光が光伝送手段を介して光受信装置に伝送される際に、同期偏波スクランブルされた信号光が光伝送手段を伝送されることで偏波変調に起因した雑音が発生する。光受信装置は、このような雑音成分を含んだ信号光を受信するが、受信した信号光または光電変換した電気信号を雑音低減部に介すことで、上記雑音を発生させる周波数成分のみが低減される。このように、雑音を低減した信号を用いて受信処理を行なうことで良好な受信特性が得られるようになる。
【0027】
受信信号に含まれる雑音成分を電気信号の段階で低減させる雑音低減部の1つの具体例としては、前記繰り返し周波数を中心とした阻止帯域幅を有する帯域阻止フィルタを用いてもよい。この帯域阻止フィルタは、前記阻止帯域幅内の雑音成分の減衰量が3dB以上であることが望ましく、また、阻止帯域幅が100Hz以上であることが好ましい。さらに、受信処理に必要な帯域幅内における群遅延量が伝送速度から与えられる1ビットの周期の10%以下であることが望ましい。
【0028】
また、雑音成分を電気信号の段階で低減させる雑音低減部の他の具体例としては、前記繰り返し周波数以上の雑音成分を遮断する低域通過フィルタを用いてもよい。この低域通過フィルタは、前記繰り返し周波数以上の雑音成分の減衰量が3dB以上であることが望ましく、また、受信処理に必要な帯域幅内における群遅延量が伝送速度から与えられる1ビットの周期の10%以下であることが好ましい。
【0029】
一方、受信信号に含まれる雑音成分を光信号の段階で低減させるようにした雑音低減部の具体例としては、前記繰り返し周波数の影響を受けた雑音成分を遮断可能な狭いバンド幅をもつ光低減フィルタを用いてもよい。この光低減フィルタは、前記信号光の周波数に応じた中心周波数で前記繰り返し周波数の2倍よりも狭いバンド幅をもつことが望ましい。
【0030】
上記のようにして雑音低減部を構成することで、受信した信号光またはその信号光を光電変換した電気信号に含まれる雑音成分を確実に低減することができる。もちろん、雑音低減部が、信号光および光電変換された電気信号の両方について雑音成分を低減させる構成も可能である。
また、光低減フィルタを用いた雑音低減部では、光低減フィルタのバンド幅の中心周波数を前記信号光の周波数に追従させる光低減フィルタ制御部を含むようにしてもよい。
【0031】
光低減フィルタ制御部を設けることで、信号光の周波数が変動しても光低減フィルタのバンド幅の中心周波数がその変動に追従するようになるため、狭いバンド幅の光低減フィルタであっても確実に雑音成分を遮断できるようになる。
上述した光受信装置は、前記雑音低減部の前段に、前記繰り返し周波数成分の信号を抽出する信号抽出部を含み、前記光伝送手段の偏波依存状態を監視する監視信号として前記信号抽出部で抽出された信号を出力する構成としてもよい。信号抽出部としては、前記雑音低減部で遮断され反射された雑音成分を抽出するサーキュレータを用いることもできる。また、信号抽出部は、前記雑音低減部への入力信号の一部を分岐する分岐部と、該分岐部で分岐された信号のうちの前記繰り返し周波数およびその近傍成分のみを通過する帯域通過フィルタと、を含むようにすることもできる。
【0032】
かかる構成によれば、受信信号に含まれる繰り返し周波数成分の信号が信号抽出部よって抽出されるようになる。この繰り返し周波数成分の信号は、光伝送手段の偏波依存状態を反映した信号である。このため、抽出した信号を監視信号とし、その監視信号を、例えば、時間領域や周波数領域において分析等をすることによって、光伝送手段の偏波依存状態の監視が可能となる。
【0033】
また、上記信号抽出部を含む光受信装置については、信号抽出部で抽出された信号を用いて、受信処理のためのクロック信号を生成するクロック生成部を含むようにしてもよい。
信号抽出部で抽出される信号は、伝送速度と一致する繰り返し周波数をもつため、受信処理の際に用いるクロック信号として利用できる。上記のようにクロック生成部を設けて、抽出した信号からクロック信号を生成すれば、これまでデータ信号をタイミング再生することで得ていた受信処理用のクロック信号を容易に得ることができるようになる。
【0034】
本発明の同期偏波スクランブラを用いた光通信システムは、伝送速度と一致する繰り返し周波数の偏波変調信号に従って信号光の偏波状態をスクランブルする同期偏波スクランブラを含み、同期偏波スクランブルされた信号光を光伝送手段に送信する光送信手段と、該光送信手段から前記光伝送手段を介して伝送された前記信号光を受信処理する光受信手段と、を含んで構成される光通信システムであって、前記光受信手段が、光電変換前の信号光および光電変換後の電気信号の少なくとも一方について、同期偏波スクランブルを行なったことに基づく雑音を発生させる周波数成分のみを低減させる雑音低減部を備えたものである。
【0035】
かかる構成によれば、同期偏波スクランブルされた信号光が光送信手段から光伝送手段を介して光受信手段に伝送される。この際、同期偏波スクランブルされた信号光が光伝送手段を伝送されることで偏波変調に起因した雑音が発生する。光受信手段は、このような雑音成分を含んだ信号光を受信するが、受信した信号光または光電変換した電気信号を雑音低減部に介すことで、上記雑音を発生させる周波数成分のみが低減される。このように、雑音を低減した信号を用いて受信処理を行なうことで良好な受信特性が得られるようになる。
【0036】
また、上記光通信システムについて、前記光送信手段が、前記光伝送手段の状態を示す監視制御信号を前記偏波変調信号に重畳する監視制御信号重畳部を含み、前記光受信手段が、前記雑音低減部の前段で前記繰り返し周波数成分の信号を抽出する信号抽出部と、該信号抽出部で抽出された信号を基に前記監視制御信号を復調する監視制御信号復調部と、を含んで構成されるようにしてもよい。
【0037】
かかる構成によれば、監視制御信号が重畳された偏波変調信号により同期偏波スクランブルされた信号光が光伝送手段を介して光受信手段に伝送され、光受信手段の信号抽出部で繰り返し周波数成分の信号が取り出される。この繰り返し周波数成分の信号は、偏波変調信号と同様に監視制御信号が重畳された信号となるので、監視制御信号復調部で監視制御信号を復調することにより、光送信手段と光受信手段との間で監視制御信号の伝達が可能となる。
【0038】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
図1は、第1の実施形態の同期偏波スクランブラを用いた光通信システムの構成を示すブロック図である。
図1において、本光通信システムは、同期偏波スクランブルされた信号光を送出する光送信手段としての光送信機1と、光送信機1からの信号光を伝送する光伝送手段としての伝送系2と、伝送系2からの信号光を受信して識別等の処理を行なう光受信装置または光受信手段としての光受信機31 と、を備えて構成される。
【0039】
光送信機1は、従来の構成と同様に、例えば、信号光発生器(E/O)11および偏波スクランブラ(PS)12を含んで構成される。信号光発生器11は、外部から印加される伝送データINに従って変調された信号光を出射する。偏波スクランブラ12は、信号光発生器11からの信号光の伝送速度と同じ繰り返し周波数(偏波CLK周波数fo)の変調信号に従って前記信号光を位相変調することにより、伝送系2へ送出する信号光を同期偏波スクランブルさせる。なお、この光送信機1の具体的な構成については、上述の図22に示したような信号光の強度変調と偏波スクランブルとを同期させるものが適用できる。
【0040】
伝送系2は、例えば、m個の光伝送路211 〜21m と、各光伝送路211 〜21m の間に挿入された光増幅器221 〜22m-1 とから構成される。光伝送路211 は、その一端が光送信機1の出力端子に接続され、他端が光増幅器221 の入力端子に接続される。光増幅器221 の出力端子には、光伝送路212 の一端が接続される。以降同様にして、各光伝送路が光増幅器をそれぞれ介して順次接続され、光伝送路21m の終端が光受信機31 の入力端子に接続される。なお、ここでは伝送系2の構成を光増幅中継方式としたが、これに限らず光伝送路のみで構成しても構わない。
【0041】
光受信機31 は、従来の構成と同様な、受光器(O/E)31、増幅器32、等化フィルタ(EQ)33および識別回路(DEC)34に加えて、例えば、増幅器32と等化フィルタ33の間に帯域阻止フィルタ(BRF;band reject filter)35を備えて構成される。受光器31は、光伝送路21m から送られる信号光を受光して電気信号に変換するフォトダイオード等が用いられる。増幅器32は、受光器31で変換された電気信号を所要のレベルまで増幅する十分な帯域を備えた電気増幅器である。
【0042】
帯域阻止フィルタ35は、増幅器32で増幅された信号に含まれる、偏波CLK周波数foおよびその近傍の成分のみを除去する電気フィルタである。
図2に、帯域阻止フィルタ35の透過(反射)特性の一例を示す。また、図3には、帯域阻止フィルタ35の遅延特性の一例を示す。
図2に示すように、帯域阻止フィルタ35は、偏波CLK周波数foを中心とする阻止帯域幅の周波数成分のみを遮断し、上記以外の周波数成分を透過する特性をもつ。阻止帯域幅は、上述したように受信信号に含まれる偏波CLK周波数fo近傍のスペクトル成分がfo±50Hzの範囲にあるため(光伝送路の偏波揺らぎにより偏波CLK周波数foが変調されることによる)、約100Hz以上に設定することが好ましい。このように設定することで、上記範囲の信号を確実に遮断できる。また、遮断する周波数成分の減衰量は、偏波CLK周波数fo成分を受信特性に影響を与えないレベルまで低減させるため、約3dB以上とするのが望ましい。さらに、帯域阻止フィルタ35は、遅延特性に優れていることが必要である。例えば、図3に示すように、DCから周波数foの0.8 倍(伝送データを識別するのに必要な周波数帯域)の範囲において、最大遅延時間差(群遅延量)が伝送速度から与えられる1ビットの周期の約10%以下の遅延特性をもつ帯域阻止フィルタ35を使用するのが好ましい。
【0043】
等化フィルタ33は、帯域阻止フィルタ35を通過した信号から、伝送データを識別するのに必要な周波数成分を抽出するための電気フィルタである。ここでは等化フィルタ33として、例えばベッセル型フィルタ等を用い、その遮断周波数を伝送速度の0.6 〜0.8 倍程度に設定する。識別回路34は、等化フィルタ33を通過した信号を基にクロック信号を再生し、そのクロック信号に従って受信信号のデータ識別処理を行ない、その結果を端子OUTに出力する。
【0044】
次に、第1の実施形態の動作について説明する。
まず、光送信機1では、伝送データINに従って変調された信号光が、信号光発生器11から偏波スクランブラ12に送られて同期偏波スクランブルされた後に伝送系2に送信される。この光送信機1から送信される信号光の等化波形および電気スペクトルは、上述の図23に示したものと同様となる。
【0045】
そして、光送信機1からの信号光は、伝送系2の各光伝送路211 〜21m および各光増幅器221 〜22m-1 を順次通過して、光受信機31 の入力端に到達する。この際、同期偏波スクランブルされた信号光は、位相変調によるカー効果や伝送系2の偏光依存性損失などの影響を受ける。伝送後の信号光の等化波形および電気スペクトルは、上述の図24に示したものと同様である。
【0046】
光受信機31 に到達した信号光は、受光器31で電気信号に変換され、増幅器32で増幅される。増幅器32から出力される信号は、偏波CLK周波数foおよびその近傍に大きなパワーを有するものとなる。
次に、このような信号が帯域阻止フィルタ35に入力すると、偏波CLK周波数foおよびその近傍の成分は帯域阻止フィルタ35を殆ど通過できずに、それ以外の周波数成分が等化フィルタ33に伝達される。そして、等化フィルタ33では、伝送データの識別に不要な高周波成分が除去される。
【0047】
図4には、帯域阻止フィルタ35を介して等化フィルタ33から出力された信号の波形および電気スペクトルの一例を示す。
図4(a) の波形では、発光側の偏波CLK周波数fo成分の重畳が殆どなくなり、略上下対称の波形となっている。また、図4(b) の電気スペクトルでは、偏波CLK周波数fo成分のパワーが大幅に減少している。上述の図25(b) に示した電気スペクトルと比較すると、帯域阻止フィルタ35を挿入したことによって、偏波CLK周波数fo成分のパワーが約25dB(約300分の1)に減衰したことがわかる。
【0048】
そして、等化フィルタ33から出力された信号が識別回路34に送られ、この信号に基づいてクロック信号の再生および受信信号の識別処理等が行われる。
このように第1の実施形態によれば、光受信機31 に帯域阻止フィルタ35を設けたことによって、偏波CLK周波数foおよびその近傍の成分だけを確実に低減できるため、同期偏波スクランブルを行なって信号光を伝送した場合の受信特性の劣化を防止することができる。
【0049】
次に、本発明の第2の実施形態について説明する。
図5は、第2の実施形態の同期偏波スクランブラを用いた光通信システムの構成を示すブロック図である。ただし、第1の実施形態の構成と同じ部分には同一の符号を付してその説明を省略し、以下同様とする。
図5において、本実施形態の光通信システムは、第1の実施形態で光受信機31 に設けた帯域阻止フィルタ35に代えて、それと同じ位置に低域通過フィルタ(LPF;low-pass filter )36を備えて構成される。これ以外の構成は、第1の実施形態の構成と同一である。
【0050】
低域通過フィルタ36は、偏波CLK周波数foを含む高周波数成分を遮断する電気フィルタである。図6に、低域通過フィルタ36の透過(反射)特性の一例を示す。遮断する周波数成分の減衰量は、受信特性に影響を与えないレベルまで偏波CLK周波数fo成分を低減させるため、約3dB以上とするのが望ましい。また、この低域通過フィルタ36は、前述の図3に示した帯域阻止フィルタ35の場合と同様に、遅延特性に優れたものとする。低域通過フィルタ36の具体的な構成としては、例えば、バターワース型フィルタやチェビシェフ型フィルタなどが好適である。
【0051】
このように第2の実施形態では、光受信機32 に低域通過フィルタ36を設けても、偏波CLK周波数foおよびその近傍の成分を十分に低減でき、第1の実施形態の効果と同様に、同期偏波スクランブルを行なって信号光を伝送した場合の受信特性の劣化を防止することができる。
なお、第1、2の実施形態では、帯域阻止フィルタ35または低域通過フィルタ36を増幅器32と等化フィルタ33の間に配置するようにしたが、これらのフィルタは、受光器31と識別回路34の間の適宜な位置に設けることができる。
【0052】
次に、本発明の第3の実施形態について説明する。
図7は、第3の実施形態の同期偏波スクランブラを用いた光通信システムの構成を示すブロック図である。
図7において、本実施形態の光通信システムは、第1の実施形態で光受信機31 に設けた帯域阻止フィルタ35に代えて、受光器31の前段に光低減フィルタ(OpF)37を備えて構成される。これ以外の構成は、第1の実施形態の構成と同一である。
【0053】
光低減フィルタ37は、光伝送路21m の終端と受光器31の入力端との間に接続され、伝送系2からの信号光に含まれる偏波CLK周波数fo成分の影響を受けた光を除去する。光受信機33 に到達する同期偏波スクランブルされた信号光は、図8のスペクトル例に示すように、スペクトル密度が信号光の周波数fs(=光速/波長)を中心に最大となるピークを有するとともに、その周波数fsに対して光周波数fs−foおよびfs+foをそれぞれ中心としたスペクトル密度の高い部分が存在する。光低減フィルタ37は、上記のようなスペクトル状態の信号光を入力して、光周波数fsを中心とする光のみを透過し、光周波数fs−foおよびfs+foをそれぞれ中心とする光を遮断する。
【0054】
図9は、そのような光低減フィルタ37の透過特性の一例を示す。
図9に示すように、光低減フィルタ37の透過率は、光周波数fsを中心とした十分に狭い帯域のみが高く、それ以外の周波数域が低くなるようにする。具体的には、透過率の高いバンド幅が、偏波CLK周波数foの2倍よりも狭くなるように設定することが好ましい。
【0055】
このような構成の光通信システムの動作については、第1、2の実施形態の動作と同様に、同期偏波スクランブルされた信号光が光送信機1から伝送系2を介して光受信機33 まで伝送されると、その信号光が光低減フィルタ37に入力されることで、光周波数fsおよびその近傍の信号光成分のみが光低減フィルタ37を通過して受光器31に送られ、それ以外の信号光成分が光低減フィルタ37で遮断される。これにより偏波CLK周波数fo成分の影響を受けた信号光成分が、受光器31以降では殆ど処理されなくなるため、識別回路34に入力される信号は、上述の図4に示したものと同様に、偏波CLK周波数foおよびその近傍の成分が十分に低減された信号となる。
【0056】
上記のように第3の実施形態によれば、信号光の周波数fsを中心とした十分に狭いバンド幅の信号光のみを透過する光低減フィルタ37を光受信機33 の入力端に設けることによっても、同期偏波スクランブルを行なって信号光を伝送する際の受信特性の劣化を防止することができる。
次に、本発明の第4の実施形態について説明する。
【0057】
第4の実施形態は、光低減フィルタ37の透過帯域の中心周波数が信号光の周波数fsの変動に追従する機能を第3の実施形態の構成に付加したものである。
図10に、第4の実施形態の光受信機の構成を示す。
図10において、本光受信機34 の構成は、増幅器32と等化フィルタ33の間に電気分岐回路38が挿入され、この電気分岐回路38で分岐された信号を基に光低減フィルタ37’の透過帯域の中心周波数を制御する光低減フィルタ制御回路39が設けられる。また、光低減フィルタ37’は、その透過帯域の中心周波数が可変なものを使用する。ここでは電気分岐回路38および光低減フィルタ制御回路39が光低減フィルタ制御部として機能する。
【0058】
一般に、伝送系2を伝送されてきた信号光は、その周波数(波長)が僅かに変動することが考えられる。また、光低減フィルタの透過中心周波数も、温度依存性等を有するために変動する。光低減フィルタのバンド幅は前述したように非常に狭いため、信号光の周波数fsや光低減フィルタの透過中心周波数が変化した場合、偏波CLK周波数foの影響を受けた光周波数fs−foまたはfs+foが光低減フィルタを透過してしまうことがある。
【0059】
このため本実施形態では、光低減フィルタ37’の透過中心周波数を可変にするとともに、その光低減フィルタ37’を透過し、受光器31および増幅器32を通過した信号の一部を電気分岐回路38で取り出して、その信号を基に光低減フィルタ制御回路39で信号光の周波数fsを求めて光低減フィルタ37’にフィードバックする。これにより、光低減フィルタ37’の透過中心周波数が信号光の周波数fsの変化に追従するように制御されて、信号光の周波数fsのみが安定して受光器31に送られるようになる。
【0060】
このように第4の実施形態では、光低減フィルタ37’の透過中心周波数が信号光の周波数fsを追従する機能を持つようにしたことで、偏波CLK周波数fo成分の影響を受けた信号光成分を光低減フィルタ37’で確実に低減できる。
次に、本発明の第5の実施形態について説明する。
第5の実施形態では、光低減フィルタ37の透過帯域の中心周波数が信号光の周波数fsの変動に追従するようにした他の構成例を説明する。
【0061】
図11は、本実施形態の光受信機の構成を示すブロック図である。
図11に示す光受信機35 ’の構成は、透過帯域の中心周波数が可変な光低減フィルタ37’の前段に設けられた光サーキュレータ40と、光サーキュレータ40で取り出された信号光を光周波数に応じて2分波する光分波器41と、分波された各信号光を電気信号にそれぞれ変換する受光器42A,42Bと、各受光器42A,42Bからの電気信号を比較する比較器43と、比較器43からの結果を基に光低減フィルタ37’の透過中心周波数を制御する制御回路44と、を備える。ここでは、これらの各構成が光低減フィルタ制御部として機能する。上記以外の光受信機35 ’の構成は、第3の実施形態の光受信機33 と同様である。
【0062】
光サーキュレータ40は、図12に示すように、3つの端子P1,P2,P3を有する。端子P1は光伝送路21m の終端に接続され、端子P2は光低減フィルタ37’の入力端子に接続され、端子P3は光分波器41の入力端子に接続される。各端子P1〜P3間では、端子P1から端子P2への方向および端子P2から端子P3への方向にのみ信号光が伝達され、他の方向へは信号が伝達されない。
【0063】
光分波器41は、図13の透過特性に示すように、光サーキュレータ40の端子P3からの信号光のうち、光周波数がfsよりも高い成分を第1出力光として受光器42Aに送り、光周波数がfsよりも低い成分を第2出力光として受光器42Bに送る。
このような構成の光受信機35 ’では、伝送系2からの信号光が光サーキュレータ40の端子P1に入力して端子P2から出力される。そして、端子P2から出力した信号光は、光低減フィルタ37’に入力して、光周波数fsおよびその近傍の信号光成分のみが光低減フィルタ37’を通過し、それ以外の信号光成分は遮断される。遮断される信号光成分は、光低減フィルタ37’で反射され、光サーキュレータ40の端子P2に戻されて端子P3から出力される。したがって、光サーキュレータ40の端子P3からは、受信した信号光に含まれる光周波数fsおよびその近傍以外の信号光成分が抽出される。
【0064】
抽出された信号光は、その光周波数に応じて光分波器41で2分波される。伝送系2からの信号光の周波数fsと光低減フィルタ37’の透過中心周波数とが略一致している場合には、光周波数fs+foの信号光成分が光分波器41の第1出力光として受光器42Aに送られ、光周波数fs−foの信号光成分が光分波器41の第1出力光として受光器42Bに送られる。
【0065】
一方、伝送系2からの信号光の周波数fsが低周波側(高周波側)にずれた場合には、光分波器41の第1出力光(第2出力光)が小さくなる。このため、伝送系2からの信号光の周波数fsと光低減フィルタ37’の透過中心周波数とにずれが生じると、各受光器42A,42Bから出力される電気信号のレベルが変化する。したがって、各受光器42A,42Bからの信号レベルを比較器43で比較することにより、光低減フィルタ37’の透過中心周波数のずれ量が判断でき、その結果を制御回路44に伝えることで光低減フィルタ37’の透過中心周波数を信号光の周波数fsに追従させる制御が可能となる。
【0066】
このように第5の実施形態の構成によっても、第4の実施形態の場合と同様に、偏波CLK周波数fo成分の影響を受けた信号光成分を光低減フィルタ37’で確実に低減できる。
次に、本発明の第6の実施形態について説明する。
図14は、第6の実施形態の同期偏波スクランブラを用いた光通信システムの構成を示すブロック図である。
【0067】
図14において、本光通信システムは、1つの光受信機36 内に帯域阻止フィルタ35および光低減フィルタ37をそれぞれ備えたことを特徴とする。帯域阻止フィルタ35および光低減フィルタ37の配置は、第1および第3の実施形態での配置と同じであり、上記以外の各構成は、第1または第3の実施形態の構成と同様である。
【0068】
1つの光受信機36 内に帯域阻止フィルタ35および光低減フィルタ37を設けたことで、まず、伝送系2からの信号光に含まれる偏波CLK周波数fo成分の影響を受けた信号光成分が光低減フィルタ37で低減され、さらに、光受光器31および増幅器32を通過した電気信号が偏波CLK周波数fo成分を含む場合には、その成分が帯域阻止フィルタ35で低減される。このため、同期偏波スクランブルを行なって信号光を伝送する際の受信特性の劣化がより確実に防止できるようになる。
【0069】
なお、上記第6の実施形態では、帯域阻止フィルタ35および光低減フィルタ37を光受信機36 内に設けるようにしたが、これに限らず、帯域阻止フィルタ35に代えて第2の実施形態で用いた低域通過フィルタ36を使用してもよい。また、透過中心周波数が固定の光低減フィルタ37に代えて、第4、5の実施形態で用いた透過中心周波数可変の光低減フィルタ37’を使用し、その透過中心周波数が信号光の周波数fsに追従する機能を備えるようにしても構わない。
【0070】
次に、本発明の第7の実施形態について説明する。
一般の光通信システムでは、光伝送路や光増幅器で構成される伝送系の状態を監視することは重要であり、特に、伝送系の偏波依存性に関する情報を監視することの必要性が高まっている。そこで、第7の実施形態では、光受信機側において、受信信号に含まれる偏波CLK周波数成分foを抽出し、その偏波CLK周波数成分foに基づいて伝送系における偏波状態を監視する場合を考える。
【0071】
図15は、第7の実施形態の同期偏波スクランブラを用いた光通信システムの構成を示すブロック図である。
図15において、本光通信システムは、光受信機37 が増幅器32と帯域阻止フィルタ35の間に信号抽出部としての、例えば、電気サーキュレータ45等を備え、この電気サーキュレータ45によって抽出される信号を監視信号とするものである。上記以外の構成は、第1の実施形態の構成と同様である。
【0072】
電気サーキュレータ45は、上述の図12に示した光サーキュレータ40と同様に3つの端子P1〜P3を有し、端子P1は増幅器32の出力端子に接続され、端子P2は帯域阻止フィルタ35の入力端子に接続され、端子P3は監視信号の出力端子として使用される。各端子P1〜P3間では、端子P1から端子P2への方向および端子P2から端子P3への方向にのみ信号が伝達され、他の方向へは信号が伝達されない。
【0073】
このような電気サーキュレータ45を備えた光受信機37 では、伝送系2からの信号光が受光器31および増幅器32を通って電気サーキュレータ45の端子P1に入力して端子P2から出力される。そして、端子P2から出力した信号は、帯域阻止フィルタ35に入力して、偏波CLK周波数foおよびその近傍の成分のみが遮断され、その他の信号成分は等化フィルタ33に送られる。遮断される信号成分は、帯域阻止フィルタ35で反射され、電気サーキュレータ45の端子P2に戻されて端子P3から出力される。したがって、電気サーキュレータ45の端子P3からは、受信信号に含まれる偏波CLK周波数foおよびその近傍の成分が抽出される。
【0074】
この抽出信号は、伝送系2の各光伝送路211 〜21m および各光増幅器221 〜22m-1 の偏波依存性を反映した情報を含んだものであるため、例えば、抽出された偏波CLK周波数foを時間領域あるいは周波数領域等において分析等することによって、伝送系2における偏波状態の監視が可能となる。ここでは、この抽出信号を監視信号とする。
【0075】
このように第7の実施形態では、光受信機37 に電気サーキュレータ45を設け、帯域阻止フィルタ35で反射された信号を監視信号として抽出することによって、伝送系2における偏波状態を簡略な構成により監視可能な光通信システムが提供される。伝送系2における偏波状態の監視は偏波スクランブルを行なわないシステムなどでは困難であり、本実施形態のように同期偏波スクランブルを行なうシステムにおいて簡易な方法で偏波状態を監視できるようにすることは特に有効である。
【0076】
なお、上記第7の実施形態では、光受信機に帯域阻止フィルタを用いる場合(第1の実施形態と同様)について、伝送系2における偏波状態を監視する場合を説明したが、本発明はこれに限られるものではない。光受信機に低域通過フィルタを用いる場合(第2の実施形態と同様)については、図16に示すように、例えば、増幅器32と低域通過フィルタ36の間に電気分岐回路46を設け、その電気分岐回路46で分岐された信号を、偏波CLK周波数foおよびその近傍の成分のみを通過させる帯域通過フィルタ(BPF;band pass filter )47に通して監視信号を抽出する構成とする。電気分岐回路46で分岐された信号から監視信号を抽出する電気フィルタとしては、帯域通過フィルタ47以外にも、例えば、偏波CLK周波数foを含み、それよりも高い周波数を通過させる高域通過フィルタ(high-pass filter)等を用いてもよい。
【0077】
また、光受信機に光低減フィルタを用いる場合(第3の実施形態と同様)については、図17に示すように、例えば、光伝送路21m の終端と光低減フィルタ37の間に光サーキュレータ48(上述の光サーキュレータ40と同等)を設け、光低減フィルタ37で通過が阻止され反射された信号光成分を光サーキュレータ48で抽出し、さらに、その抽出された信号光成分を受光器49で電気信号に変換して監視信号とする。この場合、第4、5の実施形態と同様にして、光低減フィルタの透過中心周波数を信号光の周波数fsに追従させる機能を備えるようにしてもよい。
【0078】
次に、第8の実施形態について説明する。
第8の実施形態では、光受信機で抽出した監視信号を、受信信号の識別処理に用いるクロック信号として利用する場合を説明する。
図18は、第8の実施形態の光受信機の構成を示すブロック図である。
図18の光受信機38 は、上述の図15に示した光受信機37 について、電気サーキュレータ40で抽出した監視信号の一部を所要のレベルまで増幅するクロック生成部としての増幅器50を設け、該増幅器50の出力をクロック信号として識別回路34に送る構成とする。
【0079】
監視信号として抽出した偏波CLK周波数fo成分の信号は、信号光の伝送速度と同じ繰り返し周波数であるため、伝送データを識別する際に用いるクロック信号として好適である。これまでは、受信信号を基にタイミング再生を行なってクロック信号を得ていた。しかし、抽出した偏波CLK周波数fo成分の信号をクロック信号に用いれば、上記タイミング再生処理を行なうことなく正確なクロックが得られるので、識別回路34の構成を簡略にできるとともに、識別精度の向上を図ることも可能である。
【0080】
次に、第9の実施形態について説明する。
第9の実施形態では、波長多重光通信システムに本発明を適用した場合を説明する。
図19に、同期偏波スクランブラを用いた波長多重光通信システムの構成を示す。
【0081】
図19において、本波長多重光通信システムは、同期偏波スクランブルさせたn個の波長の信号光を波長多重して出力する光送信機1’と、光送信機1’からの信号光を伝送する伝送系2’と、伝送系2’からの信号光を受信して各波長毎に識別等の処理を行なう光受信機3’と、を備えて構成される。
光送信機1’は、各波長に対応した、信号光発生器111 〜11n および偏波スクランブラ121 〜12n と、各偏波スクランブラ121 〜12n から出力される信号光を合波して波長多重信号光を伝送系2’に送る光合波器13と、を含んで構成される。各信号光発生器111 〜11n および各偏波スクランブラ121 〜12n は、第1の実施形態等で用いたものと同様である。
【0082】
伝送系2’は、順次接続された光伝送路211 〜21q および光増幅器221 〜22q を備えるとともに、ここでは、光伝送路21p の後段に利得等化器23を設け、光伝送路21q の後段に波長分散補償器24を設けたものである。利得等化器23および波長分散補償器24は、本システムにおける雑音を除去するために必要に応じて挿入される。
【0083】
光受信機3’は、伝送系2’からの波長多重信号光を波長毎に分波する光分波器51と、各波長に対応した、受光器311 〜31n 、増幅器321 〜32n 、帯域阻止フィルタ351 〜35n 、等化フィルタ331 〜33n および識別回路341 〜34n と、を備えて構成される。光分波器51を除いた各波長毎の構成は、第1の実施形態の構成と同様である。
【0084】
このような波長多重光通信システムでは、伝送データIN1 〜INn に従って変調された各波長の信号光が、各偏波スクランブラ121 〜12n で同期偏波スクランブルされた後、光合波器13で合波されて伝送系2’に送信される。伝送系2’を伝わり光受信機3’に到達した波長多重信号光は、光分波器51で分波されて各波長毎に受信処理される。各受信処理は、第1の実施形態の場合と同様であり、受信信号に含まれる偏波CLK周波数foおよびその近傍の成分が帯域阻止フィルタ351 〜35n で低減された後に識別等の処理が行われる。
【0085】
このように第9の実施形態によれば、波長多重光通信システムで同期偏波スクランブルを行なう場合においても、光受信機3’について各波長毎に帯域阻止フィルタ351 〜35n を設けることで、受信特性の劣化を防ぐことができる。
なお、上記第9の実施形態では、帯域阻止フィルタ35を用いた光受信機としたが、本発明はこれに限らず、上述の図16、17に示したような構成の光通信システムにも応用することが可能である。
【0086】
次に、第10の実施形態について説明する。
一般に、光通信システムでは、光送受信機や中継器等の間で監視制御信号を伝送することによって、伝送系の状態を監視することがよくある。この監視制御信号の伝送は、例えば、伝送データに従って変調された信号光を低周波の信号で僅かに強度変調させるなどして実現されてきた。第10の実施形態では、同期偏波スクランブルを行なって信号光を伝送するとき偏波CLK周波数成分が受信側で抽出できることに着目して、偏波変調信号に監視制御信号を重畳することにより、光送受信機間で監視制御信号を伝送して伝送系の状態を監視するようにした場合を説明する。
【0087】
図20は、第10の実施形態の同期偏波スクランブラを用いた光通信システムの構成を示すブロック図である。
図20において、本光通信システムが第7の実施形態の構成(図15参照)と異なる部分は、光送信機1”が、監視制御信号重畳部としての変調器14を備え、光受信機3”が監視制御信号復調部としての復調器51を備えた部分である。上記以外の光送信機1”および光受信機3”の構成並びに伝送系2の構成は、第7の実施形態の場合と同様である。
【0088】
変調器14は、偏波CLK周波数foの偏波変調信号を入力し、その偏波変調信号の強度、周波数または位相に監視制御信号に従った変調をかけて、偏波スクランブラ12に出力する。偏波変調信号に施す変調の度合は、偏波スクランブラ12における同期偏波スクランブルに影響を与えず、光受信機3”で復調可能な程度に設定する。
【0089】
このような光通信システムでは、光送信機1”において、監視制御信号が重畳された偏波変調信号により同期偏波スクランブルされた信号光が、伝送系2を介して光受信機3”に伝送される。光受信機3”では、第7の実施形態の場合と同様に、伝送系2からの信号光が、受光器31、増幅器32および電気サーキュレータ45を通って帯域阻止フィルタ35に入力し、偏波CLK周波数foおよびその近傍の成分が帯域阻止フィルタ35で反射されて、電気サーキュレータ45の端子P3から出力される。この抽出した偏波CLK周波数fo成分の信号は、監視制御信号に従って変調されているため、復調器51を用いて監視制御信号を再生することができる。
【0090】
このように第10の実施形態によれば、監視制御信号を重畳させた偏波変調信号により同期偏波スクランブルされた信号光を伝送し、光受信機3”で偏波CLK周波数fo成分の信号を抽出して監視制御信号を復調させることによって、簡便な方式により光送受信機間で監視制御信号を伝送することができる。
なお、上記第10の実施形態では、光受信機側において帯域阻止フィルタ35で反射された信号を電気サーキュレータ45で抽出する構成の光通信システムに適用した場合を説明したが、本発明はこれに限らず、上述の図16〜18に示したような構成の光通信システムにも応用することが可能である。
【0091】
【発明の効果】
以上説明したように本発明によれば、同期偏波スクランブルさせた信号光を伝送する光通信システム及び光受信装置において、光受信装置(手段)に雑音低減部を設けたことによって、偏波変調を行なうこに起因した雑音を発生させる周波数成分のみを低減できるため、同期偏波スクランブルを行なっても良好な受信特性を得ることができる。
【0092】
また、雑音低減部に光低減フィルタを用いる場合に、光低減フィルタ制御部を設けることで、光低減フィルタのバンド幅の中心周波数が信号光の周波数の変動に追従するようになるため、バンド幅の狭い光低減フィルタであっても確実に雑音成分を低減させることができる。
さらに、信号抽出部を設けたことによって、繰り返し周波数成分の信号を監視信号として取り出すことが可能となり、光伝送手段の偏波依存性を簡略な構成により監視できるようになる
加えて、光送信手段に監視制御信号重畳部を設け、監視制御信号が重畳された偏波変調信号により同期偏波スクランブルされた信号光を伝送し、光受信手段に監視制御信号復調部を設け、抽出した繰り返し周波数成分の信号から監視制御信号を復調するようにしたことで、簡便な方式により光送信手段と光受信手段との間で監視制御信号が伝送可能な光通信システムが提供できる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態の構成を示すブロック図である。
【図2】同上第1の実施形態の帯域阻止フィルタの透過(反射)特性を示す図である。
【図3】同上第1の実施形態の帯域阻止フィルタの遅延特性を示す図である。
【図4】同上第1の実施形態における帯域阻止フィルタおよび等化フィルタ通過後の信号波形および電気スペクトルを示す図である。
【図5】本発明の第2の実施形態の構成を示すブロック図である。
【図6】同上第2の実施形態の低域通過フィルタの透過(反射)特性を示す図である。
【図7】本発明の第3の実施形態の構成を示すブロック図である。
【図8】同上第3の実施形態における受信信号光の光スペクトルを示す図である。
【図9】同上第3の実施形態の光低減フィルタの透過特性を示す図である。
【図10】本発明の第4の実施形態における光受信機の構成を示すブロック図である。
【図11】本発明の第5の実施形態における光受信機の構成を示すブロック図である。
【図12】同上第5の実施形態に用いる光サーキュレータの端子構成を示す図である。
【図13】同上第5の実施形態に用いる光分波器の透過特性を示す図である。
【図14】本発明の第6の実施形態の構成を示すブロック図である。
【図15】本発明の第7の実施形態の構成を示すブロック図である。
【図16】監視信号を抽出する他の構成を示す第1のブロック図である。
【図17】監視信号を抽出する他の構成を示す第2のブロック図である。
【図18】本発明の第8の実施形態における光受信機の構成を示すブロック図である。
【図19】本発明の第9の実施形態の構成を示すブロック図である。
【図20】本発明の第10の実施形態の構成を示すブロック図である。
【図21】従来の偏波スクランブラを用いた光通信システムの構成を示すブロック図である。
【図22】信号光の強度変調と偏波スクランブルを同期して行なう従来の光送信機の構成例を示すブロック図である。
【図23】同期偏波スクランブルされた信号光の光送信機出力端における等化波形および電気スペクトルを示す図である。
【図24】同期偏波スクランブルされた信号光の光受信機入力端における等化波形および電気スペクトルを示す図である。
【図25】同期偏波スクランブルされた信号光の等化フィルタ通過後における信号波形および電気スペクトルを示す図である。
【符号の説明】
1,1’,1”…光送信機
2,2’…伝送系
1 〜38 ,3’…光受信機
11,111 〜11n …信号光発生器(E/O)
12,121 〜12n …偏波スクランブラ(PS)
13…光合波器
14…変調器
211 〜21q …光伝送路
221 〜21q …光増幅器
23…利得等化器
24…波長分散補償器
31,311 〜31n ,42A,42B,49…受光器(O/E)
32,321 〜32n ,50…増幅器
33,331 〜33n …等化フィルタ(EQ)
34,341 〜34n …識別回路(DEC)
35,351 〜35n …帯域阻止フィルタ(BRF)
36…低域通過フィルタ(LPF)
37,37’…光低減フィルタ
38,46…電気分岐回路
39,44…制御回路
40,48…光サーキュレータ
41…光分波器
43…比較器
45…電気サーキュレータ
47…帯域通過フィルタ(BPF)
51…復調器
fo…偏波CLK周波数
fs…信号光周波数

Claims (17)

  1. 伝送速度と一致する繰り返し周波数の偏波変調信号に従って信号光の偏波状態をスクランブルする同期偏波スクランブラを用いて同期偏波スクランブルされた信号光を光伝送手段を介して受信処理する光受信装置であって、
    光電変換前の信号光および光電変換後の電気信号の少なくとも一方について、同期偏波スクランブルを行なったことに基づく雑音を発生させる周波数成分のみを低減させる雑音低減部を備えたことを特徴とする光受信装置。
  2. 前記雑音低減部は、光電変換後の電気信号について、前記繰り返し周波数を中心とした阻止帯域幅を有する帯域阻止フィルタを含み、前記阻止帯域幅内の周波数成分のみを遮断することを特徴とする請求項1記載の光受信装置。
  3. 前記帯域阻止フィルタは、前記阻止帯域幅内の雑音成分の減衰量が3dB以上であることを特徴とする請求項2記載の光受信装置。
  4. 前記帯域阻止フィルタは、前記阻止帯域幅が100Hz以上であることを特徴とする請求項2または3記載の光受信装置。
  5. 前記帯域阻止フィルタは、受信処理に必要な帯域幅内における群遅延量が伝送速度から与えられる1ビットの周期の10%以下であることを特徴とする請求項2〜4のいずれか1つに記載の光受信装置。
  6. 前記雑音低減部は、光電変換後の電気信号について、前記繰り返し周波数以上の雑音成分を遮断する低域通過フィルタを含むことを特徴とする請求項1記載の光受信装置。
  7. 前記低域通過フィルタは、前記繰り返し周波数以上の雑音成分の減衰量が3dB以上であることを特徴とする請求項6記載の光受信装置。
  8. 前記低域通過フィルタは、受信処理に必要な帯域幅内における群遅延量が伝送速度から与えられる1ビットの周期の10%以下であることを特徴とする請求項6または7記載の光受信装置。
  9. 前記雑音低減部は、光電変換前の信号光について、前記繰り返し周波数の影響を受けた雑音成分を遮断可能な狭いバンド幅をもつ光低減フィルタを含むことを特徴とする請求項1〜8のいずれか1つに記載の光受信装置。
  10. 前記光低減フィルタは、前記信号光の周波数に応じた中心周波数で前記繰り返し周波数の2倍よりも狭いバンド幅をもつことを特徴とする請求項9記載の光受信装置。
  11. 前記雑音低減部は、前記光低減フィルタのバンド幅の中心周波数を前記信号光の周波数に追従させる光低減フィルタ制御部を含むことを特徴とする請求項9または10記載の光受信装置。
  12. 前記雑音低減部の前段に、前記繰り返し周波数成分の信号を抽出する信号抽出部を含み、前記光伝送手段の偏波依存状態を監視する監視信号として前記信号抽出部で抽出された信号を出力する構成としたことを特徴とする請求項1〜11のいずれか1つに記載の光受信装置。
  13. 前記信号抽出部は、前記雑音低減部で遮断され反射された雑音成分を抽出するサーキュレータを含むことを特徴とする請求項12記載の光受信装置。
  14. 前記信号抽出部は、前記雑音低減部への入力信号の一部を分岐する分岐部と、該分岐部で分岐された信号のうちの前記繰り返し周波数およびその近傍成分のみを通過する帯域通過フィルタと、を含むことを特徴とする請求項12記載の光受信装置。
  15. 前記信号抽出部で抽出された信号を用いて、受信処理のためのクロック信号を生成するクロック生成部を含むことを特徴とする請求項12〜14のいずれか1つに記載の光受信装置。
  16. 伝送速度と一致する繰り返し周波数の偏波変調信号に従って信号光の偏波状態をスクランブルする同期偏波スクランブラを含み、同期偏波スクランブルされた信号光を光伝送手段に送信する光送信手段と、該光送信手段から前記光伝送手段を介して伝送された前記信号光を受信処理する光受信手段と、を含んで構成される光通信システムであって、
    前記光受信手段が、光電変換前の信号光および光電変換後の電気信号の少なくとも一方について、同期偏波スクランブルを行なったことに基づく雑音を発生させる周波数成分のみを低減させる雑音低減部を備えたことを特徴とする同期偏波スクランブラを用いた光通信システム。
  17. 前記光送信手段が、前記光伝送手段の状態を示す監視制御信号を前記偏波変調信号に重畳する監視制御信号重畳部を含み、
    前記光受信手段が、前記雑音低減部の前段で前記繰り返し周波数成分の信号を抽出する信号抽出部と、該信号抽出部で抽出された信号を基に前記監視制御信号を復調する監視制御信号復調部と、を含んで構成されることを特徴とする請求項16記載の同期偏波スクランブラを用いた光通信システム。
JP03916398A 1998-02-20 1998-02-20 同期偏波スクランブラを用いた光通信システム及び光受信装置 Expired - Fee Related JP3939003B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP03916398A JP3939003B2 (ja) 1998-02-20 1998-02-20 同期偏波スクランブラを用いた光通信システム及び光受信装置
US09/111,772 US6538786B1 (en) 1998-02-20 1998-07-08 Optical communication system and optical reception apparatus using synchronous polarization scrambler
EP98305590A EP0939503A3 (en) 1998-02-20 1998-07-14 Optical communication system and optical reception apparatus using synchronous polarization scrambler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03916398A JP3939003B2 (ja) 1998-02-20 1998-02-20 同期偏波スクランブラを用いた光通信システム及び光受信装置

Publications (2)

Publication Number Publication Date
JPH11239099A JPH11239099A (ja) 1999-08-31
JP3939003B2 true JP3939003B2 (ja) 2007-06-27

Family

ID=12545465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03916398A Expired - Fee Related JP3939003B2 (ja) 1998-02-20 1998-02-20 同期偏波スクランブラを用いた光通信システム及び光受信装置

Country Status (3)

Country Link
US (1) US6538786B1 (ja)
EP (1) EP0939503A3 (ja)
JP (1) JP3939003B2 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6437892B1 (en) * 1998-09-09 2002-08-20 Sprint Communications Company L. P. System for reducing the influence of polarization mode dispersion in high-speed fiber optic transmission channels
DE10003398A1 (de) * 2000-01-27 2001-08-02 Alcatel Sa Verfahren zur Verbesserung der Signalqualität von optischen Signalen, Übertragungssystem sowie Sender
JP4828730B2 (ja) * 2001-07-05 2011-11-30 富士通株式会社 伝送装置
JP3937822B2 (ja) 2001-11-28 2007-06-27 日本電気株式会社 周波数検出回路及びそれを用いた光受信装置
CA2419357C (en) 2002-02-22 2007-07-24 Nippon Telegraph And Telephone Corporation Polarization scrambler and optical network using the same
US7505695B2 (en) * 2003-04-23 2009-03-17 Mitsubishi Denki Kabushiki Kaisha Optical receiver and optical transmission system
US7010180B2 (en) * 2003-07-31 2006-03-07 Lucent Technologies Inc. System and method for multi-channel mitigation of PMD/PDL/PDG
US7519295B2 (en) * 2003-10-30 2009-04-14 Tyco Telecommunications (Us) Inc. Apparatus and method for commissioning an optical transmission system
ATE352912T1 (de) * 2005-01-07 2007-02-15 Cit Alcatel Empfänger zur verbesserung der polarisationsmodendispersion mittels polarisationsverwürfelung
ATE396557T1 (de) * 2005-01-12 2008-06-15 Alcatel Lucent Optisches kommunikationssystem zur verminderung der polarisationsmodendispersion mittels polarisationsverwürfler
ATE434299T1 (de) * 2005-10-27 2009-07-15 Alcatel Lucent Vorrichtung zur adaptiven entzerrung eines optischen polarisationsverschlüsselten signals
EP1819070A1 (en) * 2006-02-09 2007-08-15 Alcatel Lucent Clock recovery circuit and method for optical receiver
JP4762793B2 (ja) * 2006-06-06 2011-08-31 日本電信電話株式会社 波長分散制御方法および波長分散制御システム
JP4738315B2 (ja) * 2006-11-02 2011-08-03 富士通株式会社 光信号処理装置、光信号伝送システム及び光信号処理方法
JP4565256B2 (ja) * 2008-07-22 2010-10-20 独立行政法人情報通信研究機構 偏光方向同期検出回路及び受信装置
JP5141498B2 (ja) * 2008-10-30 2013-02-13 富士通株式会社 光送受信システム,光送信器,光受信器および光送受信方法
EP2273708B1 (en) * 2009-06-30 2013-06-05 Alcatel Lucent System and method for transmitting optical signals
JP5549333B2 (ja) * 2010-04-07 2014-07-16 富士通株式会社 偏波変動補償装置および光通信システム
JP2014096663A (ja) * 2012-11-08 2014-05-22 Fujitsu Ltd 光伝送システム、光送信器、光受信器及び光伝送方法
JP2016100855A (ja) * 2014-11-26 2016-05-30 富士通株式会社 送信装置、受信装置および通信方法
WO2023152954A1 (ja) * 2022-02-14 2023-08-17 日本電信電話株式会社 制御信号多重装置、制御信号受信装置、制御信号多重方法および制御信号受信方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0236621A (ja) 1988-07-27 1990-02-06 Fujitsu Ltd 偏波スクランブル光受信方式
EP0361150B1 (de) * 1988-09-30 1994-12-14 Siemens Aktiengesellschaft Verfahren zum synchronisierten Umtasten eines Polarisationszustandes eines optischen Sendesignals eines optischen Übertragungssystems mit Überlagerungsempfang und Vorrichtung zur Durchführung des Verfahrens
JP3001943B2 (ja) * 1990-08-30 2000-01-24 株式会社東芝 偏波スイッチング光源、光受信装置及びコヒーレント光伝送システム
US5150236A (en) * 1990-08-31 1992-09-22 Bell Communications Research, Inc. Tunable liquid crystal etalon filter
US5159481A (en) * 1990-09-14 1992-10-27 Bell Communications Research, Inc. Polarization scrambler for polarization-sensitive optical devices
WO1995034141A1 (en) * 1994-06-09 1995-12-14 Philips Electronics N.V. Transmission system and receiver with polarization control
DE69534362T2 (de) * 1994-08-15 2006-05-24 Nippon Telegraph And Telephone Corp. Volloptischer mehrkanaliger TDM-WDM Konverter und volloptischer mehrkanaliger Zeit-Demultiplexer
US5526162A (en) * 1994-09-27 1996-06-11 At&T Corp. Synchronous polarization and phase modulation for improved performance of optical transmission systems
JPH08116310A (ja) 1994-10-17 1996-05-07 Fujitsu Ltd 偏波スクランブラ
JP3770635B2 (ja) 1995-06-20 2006-04-26 富士通株式会社 不要強度変調成分抑圧機能を有する光受信機
JP3751667B2 (ja) 1995-11-17 2006-03-01 富士通株式会社 偏波スクランブル式波長多重信号伝送方法
JPH09275378A (ja) * 1996-04-05 1997-10-21 Kokusai Denshin Denwa Co Ltd <Kdd> 高速偏波スクランブラを使用した光アド/ドロップ多重装置および光アド/ドロップ多重方法
US5611005A (en) * 1996-04-26 1997-03-11 Lucent Technologies, Inc. High-speed polarization scrambler with adjustable chirp

Also Published As

Publication number Publication date
US6538786B1 (en) 2003-03-25
EP0939503A2 (en) 1999-09-01
EP0939503A3 (en) 2001-09-26
JPH11239099A (ja) 1999-08-31

Similar Documents

Publication Publication Date Title
JP3939003B2 (ja) 同期偏波スクランブラを用いた光通信システム及び光受信装置
US5946119A (en) Wavelength division multiplexed system employing optimal channel modulation
JP3464867B2 (ja) 光送信装置およびこれを適用した波長多重光送信装置および光伝送システム
EP1620961B1 (en) Method and system for optical performance monitoring
JP5492887B2 (ja) 再構成可能なフィルタを含む光分岐挿入マルチプレクサ及びそれを含むシステム
US8768168B2 (en) Optical signal transmission systems, transmitters, receivers, and optical signal transmission method
JP2011527861A5 (ja)
JP2003510890A (ja) Nrzwdmシステムのfwm損失を減じる方法とそのシステム
JPH05284117A (ja) 光波形整形装置
EP1257079A2 (en) Optical transmission system using optical signal processing in terminals for improved system performance
JP4320573B2 (ja) 光受信方法、光受信装置及びこれを用いた光伝送システム
Bertran-Pardo et al. Overlaying 10 Gb/s legacy optical networks with 40 and 100 Gb/s coherent terminals
JP6862763B2 (ja) 光ネットワークにおけるスペクトル反転の際の波長シフトの消去
EP2453594B1 (en) Receiver, light spectrum shaping method, and optical communication system
US6814376B2 (en) Method and system for generating short pulse signals
JP2005260696A (ja) 光送信装置、光伝送システム及び信号光変調方法
JP2982402B2 (ja) 光通信装置
EP1408631B1 (en) Optical transmitter
JP3900874B2 (ja) 光送信器及び光変調方法
JP2000201106A (ja) 光伝送システム
KR100554225B1 (ko) 광신호의 클럭 추출장치 및 방법
JPH07336298A (ja) 波長多重光ソリトン伝送法
Xia et al. 92-Gb/s field trial with ultra-high PMD tolerance of 107-ps DGD
CN114189288B (zh) 一种光信号强度调制特征消隐装置及方法
JPH09129950A (ja) 光受信装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070327

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees