JP3930256B2 - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
JP3930256B2
JP3930256B2 JP2001031320A JP2001031320A JP3930256B2 JP 3930256 B2 JP3930256 B2 JP 3930256B2 JP 2001031320 A JP2001031320 A JP 2001031320A JP 2001031320 A JP2001031320 A JP 2001031320A JP 3930256 B2 JP3930256 B2 JP 3930256B2
Authority
JP
Japan
Prior art keywords
film
gate
gate electrode
region
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001031320A
Other languages
English (en)
Other versions
JP2002237540A (ja
Inventor
浩司 高橋
Original Assignee
スパンション エルエルシー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スパンション エルエルシー filed Critical スパンション エルエルシー
Priority to JP2001031320A priority Critical patent/JP3930256B2/ja
Priority to TW090123619A priority patent/TW497228B/zh
Priority to EP01402621A priority patent/EP1231646A3/en
Priority to US09/973,743 priority patent/US6642586B2/en
Priority to KR1020020006849A priority patent/KR100864860B1/ko
Publication of JP2002237540A publication Critical patent/JP2002237540A/ja
Priority to US10/649,994 priority patent/US6927133B2/en
Application granted granted Critical
Publication of JP3930256B2 publication Critical patent/JP3930256B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66825Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a floating gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/792Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0491Virtual ground arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • H01L21/02238Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02255Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02323Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen
    • H01L21/02326Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen into a nitride layer, e.g. changing SiN to SiON
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/3143Inorganic layers composed of alternated layers or of mixtures of nitrides and oxides or of oxinitrides, e.g. formation of oxinitride by oxidation of nitride layers
    • H01L21/3144Inorganic layers composed of alternated layers or of mixtures of nitrides and oxides or of oxinitrides, e.g. formation of oxinitride by oxidation of nitride layers on silicon

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置及びその製造方法に関し、特にFETのチャネル領域上に配置された3層構造の中央の層にキャリアをトラップして情報を記憶する半導体装置及びその製造方法に関する。
【0002】
【従来の技術】
図23(A)に、従来のフラッシュメモリセルの断面図の一例を示す。p型のシリコン基板700の表層部に、n型のソース領域701及びドレイン領域702が形成され、その間にチャネル領域703が画定されている。ソース領域701及びドレイン領域702の表面が、局所酸化膜705で覆われている。
【0003】
チャネル領域703の表面上に、下層の酸化シリコン膜706A、窒化シリコン膜706B、及び上層の酸化シリコン膜706Cがこの順番に積層された積層膜(以下、ONO膜と呼ぶ)706が形成されている。局所酸化膜705及びONO膜706の上に、ゲート電極707が形成されている。
【0004】
次に、図23(A)に示したフラッシュメモリセルの動作原理について説明する。
【0005】
書込み時には、ソース領域701に印加するソース電圧Vs及び基板電圧Vsubを0V、ドレイン領域702に印加するドレイン電圧Vdを5V、ゲート電極707に印加するゲート電圧Vgを10Vとする。チャネル領域703とドレイン領域702との境界の近傍でチャネルホットエレクトロン注入(CHE注入)が生じ、窒化シリコン膜706B内に電子がトラップされる。
【0006】
ソース領域701とドレイン領域702とに印加する電圧を逆にすることにより、窒化シリコン膜706Bのうち、チャネル領域703とソース領域701との境界の近傍の部分に電子をトラップすることができる。これにより、一つのメモリセルで2ビットの情報を記憶することができる。
【0007】
読出し時には、ドレイン電圧Vd及び基板電圧Vsubを0V、ソース電圧Vsを1V、ゲート電圧Vgを3.3Vとする。窒化シリコン膜706B内に電子がトラップされている状態では、チャネル領域703の、ドレイン領域702側の端部にキャリア濃度分布の反転領域が形成されない。このため、ソースドレイン間に電流が流れない。窒化シリコン膜706B内に電子がトラップされていない状態では、ソースドレイン間にドレイン電流が流れる。なお、ソース領域701の近傍においては、ソース領域701からチャネル領域703内に空乏領域が延びるため、ドレイン電流は、ソース領域701側の部分へのキャリアトラップの有無による影響をほとんど受けない。
【0008】
ソース電圧Vsとドレイン電圧Vdとを逆にすることにより、窒化シリコン膜706Bのうち、ソース領域701とチャネル領域703との境界の近傍の部分に電子がトラップされているか否かを検出することができる。
【0009】
消去時には、基板電圧Vsubを0V、ソース電圧Vsを5Vまたはフローティング状態、ドレイン電圧Vdを5V、ゲート電圧Vgを−5Vとする。バンド間トンネリングにより、ドレイン領域702とチャネル領域703との境界近傍において、窒化シリコン膜706B内に正孔が注入される。これにより、トラップされていた電子による電荷が中和される。
【0010】
ソース電圧Vsとドレイン電圧Vdとを逆にすることにより、窒化シリコン膜706Bのうち、ソース領域701とチャネル領域703との境界の近傍に正孔を注入することができる。
【0011】
CHE注入により窒化シリコン膜706Bにトラップされる電子の密度分布は、バンド間トンネリングにより注入される正孔の密度分布に比べて、チャネル領域703の中央側に寄っている。チャネル領域703の中央寄りに分布する電子による電荷を中和するために、バンド間トンネリングにより、かなり多くの正孔を注入する必要がある。
【0012】
また、フラッシュメモリセルの書込み消去動作を繰り返すと、窒化シリコン膜706Bにトラップされる電子の密度分布が、チャネル領域703の中央に向かって延びていくと考えられる。このため、書込み消去動作を繰り返すと、正孔の注入による消去のために必要とされる時間が長くなってしまう。
【0013】
また、書込み時には、CHE注入の他に、2次衝突電離ホットエレクトロン注入も発生すると考えられる。2次衝突電離ホットエレクトロン注入が生じると、窒化シリコン膜706Bのうちチャネル領域703の中央部上の領域に、電子がトラップされる。チャネル領域703の中央部上の窒化シリコン膜706Bにトラップされた電子は、バンド間トンネリングによる正孔の注入では引く抜くことができない。このため、書込みと消去とを繰り返すと、しきい値が徐々に上昇してしまう。本願発明者による評価実験では、製造直後には、メモリセルの書込み時及び消去時のしきい値がそれぞれ約3.8V及び2.5Vであったが、1万回の書込みと消去とを繰り返した後のしきい値は、それぞれ約4.6V及び3.25Vまで上昇した。
【0014】
図23(B)に、特開平9−252059号公報に開示されたフラッシュメモリセルの断面図を示す。
【0015】
p型のシリコン基板710の表層部に、n型のソース領域711及びドレイン領域712が形成され、その間にチャネル領域714が画定されている。ドレイン領域712とシリコン基板710との界面に、低濃度のn型不純物拡散領域713が形成されている。
【0016】
チャネル領域714の表面上にゲート絶縁膜715が形成され、その上にゲート電極716が形成されている。ゲート絶縁膜715及びゲート電極716は、ソース領域711及びドレイン領域712のいずれからも、ある間隔を隔てて配置されている。ゲート電極716の、ドレイン領域712側の端部が、低濃度の不純物拡散領域713の一部と重なる。
【0017】
ゲート電極716の側面、ゲート電極716とソース領域711との間の基板表面、及びゲート電極716とドレイン領域712との間の基板表面を、ONO膜717が覆う。ONO膜717は、酸化シリコン膜717A、窒化シリコン膜717B、及び酸化シリコン膜717Cの3層構造を有する。ONO膜717の表面上に、酸化シリコンからなるサイドウォールスペーサ718が形成されている。
【0018】
低濃度の不純物拡散領域713が形成されていない場合には、ゲート電極716にしきい値電圧以上の電圧を印加しても、ゲート電極716とドレイン領域712との間の基板の表層部にはチャネルが形成されない。図23(B)に示したメモリセルでは、この部分に低濃度のn型の不純物拡散領域713が配置されているため、ソースドレイン間に電流が流れる。なお、ソース領域711側においては、ソース領域711からゲート電極716の端部まで空乏層が延びるため、低濃度不純物拡散領域を配置する必要はない。
【0019】
書込み時には、ソース領域711に正電圧を印加し、ゲート電極716にさらに高い正電圧を印加し、ドレイン領域712をフローティング状態にする。アバランシェホットエレクトロン注入により、ソース領域711側の窒化シリコン膜717B内に電子がトラップされる。なお、ドレイン領域712に0Vを印加し、CHE注入を利用してもよい。
【0020】
消去時には、ソース領域711に正電圧を印加し、ゲート電極716に負電圧を印加する。アバランシェホットホール注入により、ソース領域711側の窒化シリコン膜717Bに正孔がトラップされる。これにより、電荷が中和される。なお、ゲート電圧の絶対値をより大きくしてファウラノルドハイムトンネリング(FNトンネリング)を生じさせ、窒化シリコン膜717B内にトラップされている電子をチャネル領域714に引き抜いてもよい。
【0021】
図23(B)に示した従来例では、チャネル領域714の中央部に窒化シリコン膜が配置されていない。このため、窒化シリコン膜にトラップされる電子の濃度分布がチャネル領域714の中央に向かって延びることを防止できる。ただし、ドレイン領域712側に低濃度不純物拡散領域713が配置されているため、ドレイン領域712側の窒化シリコン膜717Bに電子を注入することができない。このため、一つのメモリセルで1ビットの情報しか記憶することができない。
【0022】
図23(C)に、図23(B)のメモリセルを改良したメモリセルの断面図を示す。図23(B)に示したメモリセルでは、サイドウォールスペーサ718が酸化シリコンで形成されていたが、図23(C)に示したメモリセルでは、サイドウォールスペーサ720がポリシリコンで形成されている。このため、ゲート電極716とドレイン領域710との間の基板の表層部が、サイドウォールスペーサ720を介してゲート電極に容量結合する。容量結合によって、ゲート電極716とドレイン領域712との間にチャネルを形成することができるため、図23(B)に示した低濃度の不純物拡散領域713は配置されていない。
【0023】
図23(C)に示したメモリセルの書込み及び消去の原理は、図23(B)に示したメモリセルの動作原理と同様である。ドレイン領域712とチャネル領域714との間に、低濃度の不純物拡散領域が配置されていないため、図23(A)に示したメモリセルと同様に、一つのメモリセルで2ビットの情報を記憶することができる。
【0024】
【発明が解決しようとする課題】
図23(C)に示したメモリセルにおいては、ゲート電極716とサイドウォールスペーサ720との間のキャパシタ、及びサイドウォールスペーサ720とチャネル領域714との間のキャパシタによって、ソース領域711とゲート電極716との間に加わる電圧が分割される。このため、書込み及び消去時に、ゲート電圧を高くしなければならない。ところが、ゲート電圧を高くしすぎると、ゲート絶縁膜715が絶縁破壊を起こしてしまう。
【0025】
また、ゲート電極716とサイドウォールスペーサ720との間の静電容量、及びサイドウォールスペーサ720とチャネル領域714との間の静電容量がばらついた場合には、サイドウォールスペーサ720とチャネル領域714との間に発生する電界強度が変動し、過書込みや過消去が生じてしまう。
【0026】
本発明の目的は、一つのメモリセルで2ビットの情報を記憶することが可能で、かつ低電圧駆動が可能な半導体装置及びその製造方法を提供することである。
【0027】
【課題を解決するための手段】
本発明の一観点によると、半導体基板と、前記半導体基板の表面の一部の領域上に形成されたゲート絶縁膜と、前記ゲート絶縁膜の上に形成されたゲート電極と、前記ゲート電極の側面、及び該ゲート電極の両側の前記半導体基板の表面上に、該側面及び表面に倣うように形成された積層膜であって、少なくとも3層構造を有し、3層の各々が絶縁材料で形成されており、中央の層がその両側の層よりもキャリアをトラップし易い材料で形成されている前記積層膜と、前記積層膜を介して、前記ゲート電極の側面及び前記半導体基板の表面に対向するように配置された導電性材料からなり、頂部が前記ゲート電極の上面及び前記積層膜の頂部よりも高い位置まで突出しているサイドウォールスペーサと、前記サイドウォールスペーサと前記ゲート電極とを電気的に接続する導電性の接続部材であって、前記サイドウォールスペーサの内側の側面のうち、前記積層膜の頂部よりも突出している部分、及び前記ゲート電極の上面に接触している接続部材と、前記半導体基板の表層部のうち、前記半導体基板の表面に平行な第1の方向に関して、前記ゲート電極を挟む領域の各々に形成され、前記積層膜の縁から横方向にある深さまで侵入し、かつ該ゲート電極の縁までは達していない不純物拡散領域と、前記不純物拡散領域の表面上に形成され、前記サイドウォールスペーサの外側の側面に密着した層間絶縁膜とを有し、前記接続部材が、前記層間絶縁膜の上まで延在している半導体装置が提供される。
【0028】
不純物拡散領域をソース領域及びドレイン領域とするFETが構成される。ゲート電圧が直接サイドウォールスペーサに印加され、その下のチャネル領域のキャリア濃度が制御される。CHE注入等により積層膜にキャリアをトラップすると、しきい値が変動する。キャリアのトラップの有無が、情報の0と1に対応づけられる。しきい値の変動を検出することにより、情報を読み出すことができる。トラップされているキャリアとは反対の電荷を有するキャリアを積層膜に注入することにより、記憶された情報を消去することができる。
【0033】
【発明の実施の形態】
図1に、本発明の第1の実施例による半導体装置の概略の平面図を示す。シリコン基板の表面内に、XY直交座標を定義する。
【0034】
p型シリコン基板の表層部に、相互に平行に配置されたn型の複数の不純物拡散領域2が形成されている。不純物拡散領域2の各々はY軸に平行な方向に延在する。シリコン基板の表面上に、相互に平行に配置された複数のゲートライン10が形成されている。ゲートライン10の各々は、X軸に平行である。ゲートライン10と不純物拡散領域2との交差箇所において、両者は相互に電気的に絶縁されている。
【0035】
相互に隣り合う一対の不純物拡散領域2とゲートライン10との交差箇所の各々に、電界効果型トランジスタ(FET)20が配置されている。Y軸に平行な方向に並んだ2つのFET20のチャネル領域の間の表層部に、チャネルストッパ領域50が配置されている。チャネルストッパ領域50は、p型の不純物拡散領域であり、その不純物濃度はシリコン基板の不純物濃度よりも高い。チャネルストッパ領域50は、その両側に配置されている2つのFET20のチャネル領域同士を電気的に絶縁する。
【0036】
図2に、図1の一点鎖線A2−A2における断面図を示す。p型のシリコン基板1の表層部に、Y軸方向に延在する複数のn型不純物拡散領域2が形成されている。不純物拡散領域2の表面上に、酸化シリコンからなる絶縁膜3が形成されている。
【0037】
相互に隣り合う2つの不純物拡散領域2の間の基板表面上に、酸化シリコンからなるゲート絶縁膜4が形成されている。絶縁膜3は、ゲート絶縁膜4よりも厚い。ゲート絶縁膜4は、その両側の不純物拡散領域2からある間隔を隔てて配置されている。ゲート絶縁膜4の上に、アモルファスシリコンからなるゲート電極5が形成されている。ゲート電極5の側面上及びゲート電極5と不純物拡散領域2との間の基板の表面上に、積層膜(ONO膜)6が形成されている。ONO膜6は、酸化シリコン膜6A、窒化シリコン膜6B、及び酸化シリコン膜6Cがこの順番に積層された3層構造を有する。ONO膜6は、ゲート電極5の側面及び基板表面に倣うように(コンフォーマルに)形成されている。不純物拡散領域2は、ONO膜6の縁から横方向にある深さまで侵入しており、ゲート電極5の縁までは達していない。絶縁膜3は、ONO膜6と不純物拡散領域2との界面に沿って、不純物拡散領域2の縁よりも浅い位置まで侵入している。
【0038】
ONO膜6の表面上に、アモルファスシリコンからなるサイドウォールスペーサ7が形成されている。サイドウォールスペーサ7は、ONO膜6を介してゲート電極5の側面及びシリコン基板1の表面に対向する。
【0039】
シリコン基板1の上に、X軸方向に延在するゲートライン10が形成されている。相互に隣り合う一対の不純物拡散領域2とゲートライン10との交差箇所に配置されたFET20は、一対の不純物拡散領域2のうち一方をソース領域とし、他方をドレイン領域とする。ゲートライン10は、タングステンシリサイド(WSi)もしくはタングステン(W)で形成され、対応するFET20のゲート電極5とサイドウォールスペーサ7とを電気的に接続する。さらに、ゲートライン10は、X軸方向に一列に配列した複数のFET20のゲート電極5同士を電気的に接続する。ゲートライン10と不純物拡散領域2との交差箇所において、両者は絶縁膜3により相互に絶縁される。
【0040】
図3に、図1及び図2に示した半導体装置の部分破断斜視図を示す。シリコン基板1の表面上にフィールド酸化膜25が形成され、活性領域が画定されている。不純物拡散領域2及びFET20は、この活性領域内に配置される。相互に隣り合うゲートライン10の間の領域においては、ゲート電極5及びサイドウォールスペーサ7が除去されている。ONO膜6は、ゲートライン10の間の領域にも残されている。
【0041】
ゲートライン10の端部は、フィールド酸化膜25の上まで延在している。ゲートライン10の各々の端部は、ゲートライン10を覆う層間絶縁膜に設けられたビアホール内のプラグ26を介して、上層の配線27に接続されている。不純物拡散領域2の各々は、層間絶縁膜に設けられたビアホール内のプラグ28を介して、上層の配線29に接続されている。
【0042】
図4に、上記第1の実施例による半導体装置の等価回路図を示す。ワードライン10(i)、ビットライン2(j)、及びFET20(i,j)が、それぞれ図1〜図3に示したゲートライン10、不純物拡散領域2、及びFET20に対応する。ビットライン2(j)の延在する方向に平行に、複数のメインライン41(h)が設けられている。
【0043】
i行j列目のFET20(i,j)のゲート電極が、ワードライン10(i)に接続され、ソース領域がビットライン2(j)に接続され、ドレイン領域がビットライン2(j+1)に接続されている。ビットライン2(j)は、FET42(a,h)を介してメインライン41(h)に接続され、ビットライン2(j+1)は、FET42(c,h+1)を介してメインライン41(h+1)に接続されている。ビットライン2(j+2)は、FET42(b,h)を介してメインライン41(h)に接続され、ビットライン2(j+3)は、FET42(d,h+1)を介してメインライン41(h+1)に接続されている。
【0044】
FET42(a,h)、FET42(b,h)、FET42(c,h+1)、及びFET42(d,h+1)のゲート電極は、それぞれセレクトゲート線40a,40b,40c,40dに接続されている。セレクトゲート線40aと40bとの一方、セレクトゲート線40cと40dとの一方、及び1本のワードライン10(i)を選択することにより、行列状に配置された複数のFET20(i,j)から1つのFETを選択することができる。
【0045】
例えば、セレクトゲート線40a、40c、及びワード線10(i)を選択すると、FET20(i,j)が選択される。このとき、メインライン41(h)に印加された電圧がFET42(a,h)を介してFET20(i,j)のソース領域に印加される。また、メインライン41(h+1)に印加された電圧が、FET42(c,h+1)を介してFET20(i,j)のドレイン領域に印加される。なお、ここでは、FET20(i,j)のソース及びドレイン領域のうち、番号の小さなビットライン2(j)に接続されている方をソース領域と呼び、番号の大きなビットライン2(j+1)に接続されている方をドレイン領域と呼ぶこととする。
【0046】
次に、図5〜図8を参照して、第1の実施例による半導体装置の製造方法について説明する。
【0047】
図5(A)に示すp型シリコン基板1の表面上に、LOCOS法により図3に示したフィールド酸化膜25を形成する。熱酸化の温度は900〜1100℃であり、フィールド酸化膜25の厚さは200〜500nmである。なお、図5〜図8の各図には、フィールド酸化膜25は現れていない。
【0048】
温度800〜1100℃でシリコン基板1の表面を酸化することにより、活性領域上に厚さ5〜10nmのゲート絶縁膜4を形成する。なお、この工程で形成されるゲート絶縁膜4は、メモリセル以外の周辺のトランジスタのゲート絶縁膜を兼ねる。
【0049】
ゲート絶縁膜4の表面上に、厚さ50〜100nmのアモルファスシリコン膜を形成し、このアモルファスシリコン膜をパターニングすることにより、ゲート電極5を残す。ゲート電極5にはリン(P)がドープされ、n型導電性が付与されている。この状態では、ゲート電極5は、図3に示した複数のゲートライン10の間の領域にも残されており、Y軸方向に延在している。
【0050】
アモルファスシリコン膜の成長は、化学気相成長(CVD)により行われ、成長中にリン(P)がドープされる。ドープされるリンの濃度は、2×1020〜3×1021cm-3である。アモルファスシリコン膜のエッチングは、HClとO2との混合ガスを用いた反応性イオンエッチング(RIE)により行うことができる。エッチング時に、周辺のトランジスタ領域はレジストパターンで覆われ、アモルファスシリコン膜が残される。
【0051】
図5(B)に示すように、フッ酸処理を行い、ゲート電極5で覆われていない領域のゲート絶縁膜4を除去する。隣り合う一対のゲート電極5の間に、シリコン基板1の表面が露出する。
【0052】
図6(C)に示すように、基板全面上に、酸化シリコン膜6A、窒化シリコン膜6B、及び酸化シリコン膜6Cを順番に形成する。この3層が、ONO膜6を構成する。酸化シリコン膜6Aは、基板温度800〜1100℃で基板表面を熱酸化することにより形成される。酸化シリコン膜6Aの厚さは5〜10nmである。
【0053】
窒化シリコン膜6Bは、成長温度600〜800℃としたCVDにより形成することができる。酸化シリコン膜6Cは、この窒化シリコン膜の表層部を、温度1000〜1100℃でウェット酸化することにより形成される。成長直後の窒化シリコン膜の厚さは12〜16nmであり、この窒化シリコン膜を酸化することによって形成される酸化シリコン膜6Cの厚さは5〜10nmである。なお、CVDで成長させる窒化シリコン膜を薄くし、その上にCVDにより酸化シリコン膜6Cを成長させてもよい。
【0054】
図6(D)の状態に至るまでの工程を説明する。基板全面を覆うように、厚さ50〜100nmのノンドープのポリシリコン膜をCVDにより成長させる。このポリシリコン膜を異方性エッチングし、ONO膜6の表面のうちゲート電極5の側面に沿った領域上にサイドウォールスペーサ7を残す。ポリシリコン膜のエッチングは、HClとO2との混合ガスを用いたRIEにより行うことができる。
【0055】
図7(E)に示すように、酸化シリコン膜6C及び窒化シリコン膜6Bの露出した部分をエッチングする。ゲート電極5の上面及びシリコン基板1の表面の上に、酸化シリコン膜6Aが露出する。酸化シリコン膜6Cと窒化シリコン膜6Bとのエッチングは、CF4とCHF3とO2との混合ガスを用いたRIEにより行うことができる。この条件では、窒化シリコン膜のエッチングレートが酸化シリコン膜のエッチングレートに比べて十分速いため、最下層の酸化シリコン膜6Aを再現性よく残すことができる。サイドウォールスペーサ7の厚さによって、ゲート電極5の両脇の基板表面を覆うONO膜6の幅が決定される。
【0056】
図7(F)に示すように、ゲート電極5及びサイドウォールスペーサ7をマスクとして、シリコン基板1の表層部に砒素(As)イオンを注入する。このイオン注入は、加速エネルギ50〜90keV、ドーズ量2×1015〜5×1015cm-2の条件で行われる。これにより、不純物拡散領域2が形成される。このとき、サイドウォールスペーサ7の頂部近傍及びゲート電極5の表層部にもAsが注入される。周辺のトランジスタ領域はゲート電極5と同時に成膜されたポリシリコン膜で覆われているため、この領域にはAsが注入されない。
【0057】
図8(G)に示すように、温度800〜1000℃でシリコン基板1の表面を局所的にウェット酸化する。不純物拡散領域2の表面上に、酸化シリコンからなる厚さ40〜60nmの絶縁膜3が形成される。なお、サイドウォールスペーサ7の表面にも酸化シリコン膜7aが形成される。また、ゲート電極5の上面に残されていた酸化シリコン膜6Aがより厚くなる。Asが注入された領域の酸化速度は、Asが注入されていない領域の酸化速度の4〜8倍である。
【0058】
ウェット酸化時に、不純物拡散領域2内のAs原子が横方向に拡散し、不純物拡散領域2が、窒化シリコン膜6Bの下に侵入する。また、絶縁膜3の縁には、窒化シリコン膜6Bの下に潜り込んだバーズビークが形成される。ただし、バーズビークの先端は、不純物拡散領域2の先端までは達しない。
【0059】
図8(H)に示すように、フッ酸を用いて、ゲート電極5の上面及びサイドウォールスペーサ7の表面に形成された酸化シリコン膜を除去する。
【0060】
図2に示した状態までの工程を説明する。基板の全面を覆うように、WSiもしくはWからなる厚さ100〜150nmの導電膜をCVDにより形成する。この導電膜の表面上に、図1に示したゲートライン10に対応するレジストパターンを形成する。このレジストパターンに覆われていない領域の導電膜、ゲート電極5、サイドウォールスペーサ7をエッチングする。このエッチングは、HClとO2との混合ガスを用いたRIEにより行うことができる。このエッチングにより、周辺のトランジスタのゲート電極も同時にパターニングされる。エッチング後、レジストパターンを除去する。
【0061】
図3に示したように、隣り合う2本のゲートライン10の間の領域に、ゲート絶縁膜4及び絶縁膜3が露出する。ゲートライン10をマスクとして、露出したゲート絶縁膜4の下の表層部に、ボロン(B)イオンを注入する。このイオン注入は、加速エネルギ50〜80keV、ドーズ量3×1012〜1×1013cm-2の条件で行われる。Y軸方向に並んだ2つのFET20のチャネル領域の間に、ボロンが注入されたチャネルストッパ領域50が形成される。
【0062】
図2に示した第1の実施例による半導体装置の動作原理は、図23(A)に示した従来の半導体装置の動作原理と同様である。以下、図23(A)〜(C)に示した従来の半導体装置と比較しつつ、第1の実施例による半導体装置の有する効果について説明する。
【0063】
図23(A)に示した従来例では、CHE注入される電子の分布が、バンド間トンネリングにより注入される正孔の分布に比べて、チャネル領域703の中央側に寄っていた。また、2次衝突電離ホットエレクトロン注入の発生により、チャネル領域703の中央近傍の窒化シリコン膜706B内に電子がトラップされる場合があった。
【0064】
これに対し、図2に示した第1の実施例では、チャネル領域の中央近傍には窒化シリコン膜6Bが配置されておらず、チャネル領域とドレイン領域2との境界の近傍にのみ窒化シリコン膜6Bが配置されている。このため、CHE注入される電子の分布が、バンド間トンネリングにより注入される正孔の分布と、ほぼ重なる。このため、消去時に、窒化シリコン膜6Bにトラップされている電子による電荷を、正孔の注入により容易に中和することができる。また、2次衝突電離ホットエレクトロンが発生したとしても、チャネル領域の中央近傍に電子がトラップされることはない。
【0065】
書込み消去動作を繰り返しても、窒化シリコン膜6B中に電子が蓄積されていかないため、書込み及び消去動作のしきい値の上昇を防止することができる。
【0066】
図23(B)に示した半導体装置では、ドレイン側がLDD構造にされているため、1つのメモリセルで1ビットの情報しか記憶できなかった。これに対し、図2に示した第1の実施例では、FET20の左側と右側の双方のONO膜6の窒化シリコン膜6B中に、相互に独立に電子を蓄積することにより、2ビットの情報を記憶することができる。
【0067】
図23(C)に示した半導体装置では、ゲート電極716とサイドウォールスペーサ720とからなるキャパシタ、及びサイドウォールスペーサ720とチャネル領域714とからなるキャパシタが直列に接続された回路を介して、ゲート電圧がONO膜717の下のチャネル領域に印加される。このため、書込み及び消去時に、比較的高いゲート電圧が必要であった。
【0068】
これに対し、図2に示した第1の実施例では、ゲート電極5が、ゲートライン10を介してサイドウォールスペーサ7に接続されている。このため、ゲート電圧が、サイドウォールスペーサ7に直接印加される。従って、書込み及び消去のためのゲート電圧を下げることができる。
【0069】
次に、図9〜図14を参照して、本発明の第2の実施例について説明する。第2の実施例による半導体装置の基板面内の配置は、図1に示した第1の実施例による半導体装置の配置と同様である。図9〜図12は、図1の一点鎖線A2−A2における断面図に対応し、図13及び図14は、図1の一点鎖線A13−A13における断面図に対応する。以下、第2の実施例による半導体装置の製造方法について説明する。
【0070】
図9(A)の状態に至るまでの工程を説明する。p型のシリコン基板101の表面に形成された厚さ100〜300nmの素子分離絶縁膜により活性領域が画定されている。この素子分離絶縁膜は、例えばシャロートレンチアイソレーション(STI)構造を有する。
【0071】
基板表面を、温度800〜1100℃で熱酸化することにより、活性領域上に厚さ5〜10nmの酸化シリコン膜を形成する。この酸化シリコン膜上に、CVDにより厚さ50〜100nmのアモルファスシリコン膜を形成する。このアモルファスシリコン膜には、成長中に、濃度が2×1020〜3×1021cm-3になるようにリンがドープされる。アモルファスシリコン膜の上に、厚さ80〜120nmの窒化シリコン膜をCVDにより成長させる。
【0072】
酸化シリコン膜、アモルファスシリコン膜、及び窒化シリコン膜をパターニングし、酸化シリコンからなるゲート絶縁膜104、アモルファスシリコンからなるゲート電極105、及び窒化シリコンからなるゲート上部膜106がこの順番に積層された複数の積層構造を残す。この積層構造の各々は、図1のY軸方向に延在する。窒化シリコン膜のエッチングは、CF4とCHF3とO2との混合ガスを用いたRIEで行われる。アモルファスシリコン膜のエッチングは、HClとO2との混合ガスを用いたRIEで行われる。酸化シリコン膜のパターニングは、レジストパターンを剥離した後、ゲート電極105をマスクとし、フッ酸を用いてウェットエッチングすることにより行われる。なお、メモリセル以外の周辺のトランジスタ領域は、アモルファスシリコン膜及び窒化シリコン膜で覆われている。
【0073】
図9(B)に示すように、基板全面上にONO膜110を形成する。最下層の酸化シリコン膜110Aは、温度800〜1100℃で熱酸化することにより形成される。窒化シリコンからなるゲート上部膜106の表面はほとんど酸化されないため、酸化シリコン膜110Aは、主としてゲート電極105及びシリコン基板101の露出した表面上に形成される。
【0074】
中央の窒化シリコン膜110Bは、成長温度600〜800℃の条件でCVDにより形成される。最上層の酸化シリコン膜110Cは、この窒化シリコン膜の表層部を、温度1000〜1100℃でウェット酸化することにより形成される。ウェット酸化前の窒化シリコン膜の厚さは12〜16nmであり、酸化シリコン膜110Cの厚さは5〜10nmである。
【0075】
図10(C)に示すように、ONO膜110の表面上に、CVDにより厚さ50〜100nmのノンドープのポリシリコン膜111を形成する。
【0076】
図10(D)に示した状態に至るまでの工程を説明する。ポリシリコン膜111を異方性エッチングし、ONO膜110の表面のうちゲート電極105及びゲート上部膜106の側面に対応する領域上に、サイドウォールスペーサ111aを残す。CF4とCHF3とO2との混合ガスを用いたRIEにより、上層の酸化シリコン膜110Cと中央の窒化シリコン膜110Bとを除去する。ゲート電極105及びゲート上部膜106の側面上には、3層構造のONO膜110が残る。
【0077】
図11(E)に示すように、ゲート電極105、ゲート上部膜106、サイドウォールスペーサ111a、及びONO膜110をマスクとして、シリコン基板101の表層部に、Asイオンを注入する。このイオン注入は、加速エネルギ50〜90keV、ドーズ量2×1015〜5×1015cm-2の条件で行われる。このイオン注入により、n型の不純物拡散領域112が形成される。この不純物拡散領域112は、図1に示した不純物拡散領域2に対応する。周辺トランジスタ領域は、アモルファスシリコン膜及び窒化シリコン膜で覆われているため、この領域の基板表層部には、Asイオンが注入されない。
【0078】
図11(F)に示した状態に至るまでの工程を説明する。テトラエチルオルソシリケート(TEOS)を用いたCVDにより、基板全面上に厚さ500〜1000nmの絶縁膜を形成する。この絶縁膜を、ゲート上部膜106の上面が露出するまで化学機械研磨する。このとき、ゲート上部膜106が、研磨停止層として働く。
【0079】
図12(G)に示すように、ゲート上部膜106及びONO膜110の一部をエッチングし、ゲート電極105の上面、及びサイドウォールスペーサ111aのうちゲート電極105の上面よりも上に突出した部分の内側の側面を露出させる。窒化シリコンからなるゲート上部膜106及び窒化シリコン膜110Bのエッチングは、熱リン酸を用いたウェット処理により行われる。サイドウォールスペーサ111aの側面上の酸化シリコン膜110Cは、フッ酸を用いたウェット処理により除去される。
【0080】
図12(H)に示すように、WSiもしくはWからなる厚さ100〜150nmの導電膜を、CVDにより形成する。レジストパターン117を用いて、この導電膜をパターニングすることにより、ゲートライン116を残す。ゲートライン116は、図1に示したゲートライン10に対応する。ゲートライン116は、ゲート電極105の上面とサイドウォールスペーサ111aの突出部の内側の側面に接触し、ゲート電極105とサイドウォールスペーサ111aとを電気的に接続する。層間絶縁膜115が、ゲートライン116を不純物拡散領域112から絶縁する。なお、周辺トランジスタ領域においては、アモルファスシリコン膜と、WSiもしくはWからなる導電膜との2層構造のゲート電極が形成される。
【0081】
図13(I)は、ゲートライン116の残されていない部分の断面図(図1の一点鎖線A13−A13における断面図に対応)を示す。なお、ゲートライン116の上には、レジストパターン117が残されている。
【0082】
図13(J)に示すように、層間絶縁膜115を、その上面からある深さまでエッチングする。残された層間絶縁膜115aの厚さは、30〜50nmである。この層間絶縁膜115aは、周辺トランジスタのソース及びドレイン領域の表面上に金属シリサイド膜を形成する際に、不純物拡散領域112の表面上に金属シリサイド膜が形成されないようにするための保護膜として働く。
【0083】
図14(K)に示すように、HClとO2との混合ガスを用いたRIEにより、ゲート電極105及びサイドウォールスペーサ111aをエッチングする。このとき、図12(H)に示したレジストパターン117が、ゲートライン116を保護している。ゲート電極105及びサイドウォールスペーサ111aをエッチングした後、レジストパターン117を剥離する。
【0084】
図14(L)に示すように、ボロンイオンを注入し、シリコン基板101の表層部にp型のチャネルストッパ領域118を形成する。このイオン注入は、加速エネルギ50〜80keV、ドーズ量3×1012〜1×1013cm-2の条件で行われる。図12(H)に示したゲートライン116の下の基板表層部には、ボロンは注入されない。
【0085】
不純物拡散領域112のAsのドーズ量は2×1015〜5×1015cm-2であり、ボロンのドーズ量の約100倍である。このため、不純物拡散領域112は、ボロンのイオン注入の影響をほとんど受けない。
【0086】
第2の実施例の場合も、第1の実施例の場合と同様に、図12(H)に示したように、メモリセルを構成する各FETのチャネル領域の中央部に窒化シリコン膜が配置されていない。このため、第1の実施例の場合と同様の効果が得られる。また、第2の実施例の場合には、ONO膜110の下にバーズビークが入り込まない。このため、書込み及び消去特性の向上が期待される。
【0087】
次に、図15〜図17を参照して、本発明の第3の実施例について説明する。第3の実施例による半導体装置の基板面内の配置は、図1に示した第1の実施例による半導体装置の配置と同様である。図15及び図16の各図は、図1の一点鎖線A2−A2における断面内の一つのFETの断面に対応し、図17は、一点鎖線A13−A13における断面内の一つのチャネルストッパ領域の断面に対応する。以下、第3の実施例による半導体装置の製造方法について説明する。
【0088】
図15(A)に示した状態に至るまでの工程を説明する。p型シリコン基板201の表面上に、フィールド酸化膜を形成し、活性領域を画定する。活性領域の表面上に、ONO膜を形成する。ONO膜の形成方法は、第1の実施例における図6(C)に示したONO膜6の形成方法と同様である。
【0089】
ONO膜の表面上に、紙面に垂直な方向(図1のY軸方向に対応)に延在する複数のレジストパターン210を形成する。図1の相互に隣り合う2本の不純物拡散領域2の間に、一対のレジストパターン210が配置される。一対のレジストパターン210の間隔は、フォトリソグラフィ工程における最小抜き幅に設定される。レジストパターン210をマスクとして、ONO膜の最上層の酸化シリコン膜と中央の窒化シリコン膜をエッチングする。レジストパターン210の下に、酸化シリコン膜202A、窒化シリコン膜202B、及び酸化シリコン膜202Cが積層されたONO膜202が残る。レジストパターン210の配置されていない領域のシリコン基板201の表面上には、酸化シリコン膜202Aのみが残る。
【0090】
シリコン基板201の表面に対して斜めの方向からAsをイオン注入する。このとき、2つのレジストパターン210の間の基板表面が、一方のレジストパターン210の陰になり、この領域にAsが注入されないようにイオンビームを傾ける。イオンビームに晒された基板表層部に、Asの注入された不純物拡散領域203が形成される。
【0091】
図15(B)に示すように、イオンビームの軸を、図15(A)の工程で行ったイオン注入のイオンビーム軸とは反対側に傾け、再度Asイオンを注入する。この2回のイオン注入の各々は、加速エネルギ50〜90keV、ドーズ量1×1015〜2.5×1015cm-2の条件で行われる。一対のレジストパターン210の外側の基板表面層の各々に、Asの注入された不純物拡散領域203が形成される。不純物拡散領域203の各々の縁は、レジストパターン210の縁と一致するか、またはレジストパターン210の縁よりも内側まで侵入する。
【0092】
図15(C)に示すように、レジストパターン210をマスクとして、酸化シリコン膜202Aの露出した部分をエッチングする。エッチング後、レジストパターン210を剥離する。その後、メモリセル部をレジストパターンで覆い、周辺トランジスタ領域のONO膜202を除去する。ONO膜の除去後、レジストパターンを剥離する。
【0093】
図16(D)に示す状態までの工程を説明する。シリコン基板201の露出した表層部を、温度800〜1100℃で熱酸化する。これにより、ONO膜202の間の領域に、厚さ5〜10nmのゲート絶縁膜204が形成される。Asの注入された領域の酸化速度は、Asの注入されていない領域の酸化速度の6〜8倍程度である。このため、不純物拡散領域203の表層部には、酸化シリコンからなる厚さ40〜60nmの絶縁膜205が形成される。絶縁膜205の端部には、ONO膜202の下に潜り込んだバーズビークが形成される。ゲート絶縁膜204は薄いため、この端部にはバーズビークが形成されない。なお、この熱酸化により、窒化シリコン膜202Bの表面も薄く酸化される。
【0094】
図16(E)に示す状態までの工程を説明する。基板の全面上に、CVDにより厚さ100〜150nmのアモルファスシリコン膜を形成し、その上にCVDにより厚さ100〜150nmのWSi膜を形成する。アモルファスシリコン膜には、成長中に、濃度が2×1020〜3×1021cm-3になるように、リンがドープされる。
【0095】
アモルファスシリコン膜とWSi膜との2層をパターニングし、ゲートライン206を残す。ゲートライン206は、図1に示したゲートライン10に対応する。この2層のエッチングは、HClとO2との混合ガスを用いたRIEにより行われる。ゲートライン206は、FETのゲート電極を兼ね、一対の不純物拡散領域203が、それぞれソース領域及びドレイン領域となり、酸化シリコン膜202Aがゲート絶縁膜となる。
【0096】
このFETにおいては、ゲート絶縁膜の上面を、ソース領域側の第1の領域、ドレイン領域側の第2の領域、及び第1の領域と第2の領域とに挟まれた第3の領域に区分したとき、窒化シリコン膜202Bが、第1の領域上と第3の領域上とに配置される。この窒化シリコン膜202Bが、酸化シリコン膜202Cで被覆されており、電子をトラップする。
【0097】
図17(F)は、相互に隣り合う2本のゲートライン206の間の断面(図1の一点鎖線A13−A13における断面に対応)を示す。ゲートライン206を残すときのレジストパターンをマスクとして、ボロンイオンを注入することにより、チャネルストッパ領域207を形成する。
【0098】
第3の実施例においても、第1の実施例の場合と同様に、図16(E)に示したように、各FETのチャネル領域の中央部に窒化シリコン膜が配置されていない。このため、第1の実施例による半導体装置と同様の効果が期待される。
【0099】
次に、図18〜図19を参照して、本発明の第4の実施例による半導体装置ついて説明する。第4の実施例による半導体装置の基板面内の配置は、図1に示した第1の実施例による半導体装置の配置と同様である。図19の各図は、図1の一点鎖線A2−A2における断面内の1つのFETの部分に対応し、図20は、一点鎖線A13−A13における断面内の1つのチャネルストッパ領域の部分に対応する。
【0100】
図18(A)に示した状態に至るまでの工程を説明する。図15(A)を参照して説明した工程と同様の工程を経て、p型のシリコン基板301の表面上にONO膜305、レジストパターン330が形成される。ただし、図15(A)では、レジストパターン210が図1のY軸方向に延在していたが、図18(A)においては、レジストパターン330は、図1のY軸方向に延在するとともに、チャネルストッパ領域50に対応する領域をも覆う。ONO膜の上層の酸化シリコン膜305C及び中央の窒化シリコン膜305Bは、レジストパターン330の下にのみ残されており、下層の酸化シリコン膜305Aはシリコン基板301の全表面を覆う。
【0101】
レジストパターン330をマスクとして、シリコン基板301の表層部にAsイオンを注入する。このイオン注入は、加速エネルギ50〜90keV、ドーズ量2×1015〜5×1015cm-2の条件で行われる。一対のレジストパターン330の外側の表層部に不純物拡散領域302が形成され、一対のレジストパターン330に挟まれた表層部に中間領域303が形成される。不純物拡散領域302は、図1のY軸方向に延在するが、中間領域303は、FETの各々に対応して離散的に分布する。イオン注入後、レジストパターン330を剥離する。
【0102】
図18(B)に示す状態に至るまでの工程を説明する。メモリセル領域をレジストパターンで覆い、周辺トランジスタ領域のONO膜305を除去する。その後、メモリセル領域を覆っていたレジストパターンを剥離する。
【0103】
温度800〜1100℃で基板表面を熱酸化する。Asの注入されていない周辺トランジスタ領域に、厚さ5〜10nmのゲート絶縁膜が形成される。Asが注入されているメモリセル領域においては、酸化速度が速いため、ONO膜305で覆われていない領域に、厚さ40〜60nmの絶縁膜306が形成される。このとき、注入されたAs原子が拡散し、不純物拡散領域302及び中間領域303が横方向に広がる。絶縁膜306の端部にバーズビークが形成されるが、その先端は、不純物拡散領域302や中間領域303の縁よりも浅い位置までしか達しない。なお、この熱酸化により、窒化シリコン膜305Bの側面も薄く酸化される。
【0104】
図18(C)に示すように、基板上にゲートライン310を形成する。ゲートライン310は、図1に示したゲートライン10に対応し、図16(E)に示したゲートライン206の形成方法と同様の方法で形成される。
【0105】
図19(D)は、相互に隣り合う2本のゲートライン310の間の断面(図1の一点鎖線A13−A13における断面に対応)を示す。ゲートライン310をパターニングするときのレジストパターンをマスクとして、ボロンをイオン注入することにより、チャネルストッパ領域307を形成する。
【0106】
第4の実施例の場合には、図18(C)に示した左側の不純物拡散領域302がソース領域となり、右側の不純物拡散領域がドレイン領域となる。次に、図18(C)及び図20を参照して、上記第4の実施例による半導体装置の動作原理について説明する。
【0107】
CHE注入によって、ONO膜305の窒化シリコン膜305B内に電子をトラップすることにより、書込みが行われる。バンド間トンネリングによって窒化シリコン膜305B中に正孔を注入することにより、消去が行われる。ソース領域側のONO膜とドレイン領域側のONO膜に、独立に電子をトラップさせることにより、一つのメモリセルで2ビットの情報を記憶することができる。
【0108】
図20(A)は、一つのメモリセルの断面図を示す。ソース領域302S、ドレイン領域302D、中間領域303、ソース領域302Sと中間領域303との間のONO膜305S、ドレイン領域302Dと中間領域303との間のONO膜305D、及びゲートライン310を含んでメモリセルが構成される。
【0109】
図20(B)は、図20(A)に示したメモリセルの、ソース電圧を0V、ドレイン電圧を2Vとした場合の電流特性のシミュレーション結果を示す。横軸はゲート電圧を単位「V」で表し、縦軸はドレイン電流を単位「A」で表す。曲線aは、ドレイン領域側のONO膜305Dに電子がトラップされている状態、曲線bは、ソース領域側のONO膜305Sに電子がトラップされている状態、曲線cは、いずれのONO膜にも電子がトラップされていない状態における電流を示す。
【0110】
例えば、0と1との判定電流を1×10-6Aとした場合、曲線aの状態と曲線bの状態とを、十分なマージンをもって識別することができる。すなわち、ドレイン領域側のONO膜305Dに電子がトラップされているかいないかに関わらず、ソース領域側のONO膜305Sに電子がトラップされているかいないかを識別することができる。ソース電圧とドレイン電圧とを逆にすると、ドレイン領域側のONO膜に電子がトラップされているかいないかを識別することができる。
【0111】
第4の実施例の場合には、図18(C)に示したように、チャネル領域の中央部にn型の中間領域303が配置されている。窒化シリコン膜305Bのうち、中間領域303とオーバラップする部分にトラップされた電子は、FETのしきい値にほとんど影響を及ぼさない。このため、書込み消去の繰り返しによって、窒化シリコン膜305Bにトラップされた電子がチャネル領域の中央寄りに分布したとしても、FETのしきい値の変動が抑制される。
【0112】
また、図3に示したように、不純物拡散領域302は上層配線に接続されるが、中間領域303は孤立している。中間領域303に対応するビアホール等を設ける必要がないため、中間領域303は、フォトリソグラフィ工程における抜き幅の限界まで小さくすることができる。このため、図23(A)に示したFETを2つ並べる場合に比べて、図18(C)に示したFETを小さくすることが可能になる。
【0113】
次に、図21及び図22を参照して、本発明の第5の実施例について説明する。第5の実施例による半導体装置の基板面内の配置は、図1に示した第1の実施例による半導体装置の配置と同様である。図21の各図は、図1の一点鎖線A2−A2における断面内の1つのFETの部分に対応し、図22は、一点鎖線A13−A13における断面内の1つのチャネルストッパ領域の部分に対応する。以下、第5の実施例による半導体装置の製造方法及びその構造について説明する。
【0114】
図21に示すように、p型シリコン基板401の表面の活性領域上に、温度800〜1100℃で熱酸化することにより、厚さ5〜10nmのスルー酸化膜405を形成する。スルー酸化膜405の表面上に、レジストパターン410を形成する。レジストパターン410は、図18(A)に示した第4の実施例におけるレジストパターン330と同様の平面形状を有する。
【0115】
レジストパターン410をマスクとして、シリコン基板401の表層部に、Asイオンを注入する。このイオン注入は、加速エネルギ50〜90keV、ドーズ量2×1015〜5×1015cm-2の条件で行う。一対のレジストパターン410の外側に、n型の不純物拡散領域402が形成され、一対のレジストパターン410に挟まれた領域に、n型の中間領域403が形成される。
【0116】
図21(B)に示すように、レジストパターン410を剥離し、さらに、フッ酸処理によりスルー酸化膜405を除去する。これにより、活性領域にシリコン基板401の表面が露出する。
【0117】
図21(C)の状態に至るまでの工程を説明する。温度800〜1100℃で、シリコン基板表面を熱酸化する。Asの注入されていない領域に、厚さ5〜10nmのゲート絶縁膜406が形成される。Asの注入されている不純物拡散領域402及び中間領域403の表面には、厚さ40〜60nmの絶縁膜407が形成される。Asの注入されている領域と注入されていない領域の境界には、バーズビーク状の部分が形成される。なお、熱酸化後にAsの注入されていない領域上に形成された薄い酸化シリコン膜を除去し、再度熱酸化を行って、ゲート絶縁膜406を形成してもよい。
【0118】
図21(D)に示すように、基板の全面上に、窒化シリコン膜415と酸化シリコン膜416を形成する。この2層は、図6(C)に示したONO膜6を構成する窒化シリコン膜6Bと酸化シリコン膜6Cとの形成方法と同様の方法で形成される。
【0119】
酸化シリコン膜416の上に、ゲートライン420を形成する。ゲートライン420は、図16(E)に示したゲートライン206の形成方法と同様の方法で形成される。
【0120】
図22(E)は、相互に隣り合う2本のゲートライン420の間の断面(図1の一点鎖線A13−A13における断面に対応)を示す。ゲートライン420をパターニングするときのレジストパターンをマスクとして、ボロンイオンを注入することにより、チャネルストッパ領域417を形成する。
【0121】
第5の実施例の場合も、第4の実施例の場合と同様に、ソース及びドレイン領域となる一対の不純物拡散領域402の間に中間領域403が配置されている。この中間領域403は、上層配線に接続されず、孤立したパターンである。このため、第5の実施例においても、第4の実施例の場合と同様の効果が期待される。
【0122】
上記実施例では、ONO膜中の窒化シリコン膜に電子をトラップすることにより、情報を記憶する場合を説明したが、電子の代わりに正孔をトラップすることにより情報を記憶することも可能である。また、ONO膜の代わりに、絶縁材料からなる3層の積層膜を用いてもよい。このとき、積層膜の中央の層を、その両側の層よりもキャリアをトラップし易い材料で形成すればよい。
【0123】
以上説明した実施例から、以下の付記に示した発明が導出される。
(付記1) 半導体基板と、
前記半導体基板の表面の一部の領域上に形成されたゲート絶縁膜と、
前記ゲート絶縁膜の上に形成されたゲート電極と、
前記ゲート電極の側面、及び該ゲート電極の両側の前記半導体基板の表面上に、該側面及び表面に倣うように形成された積層膜であって、少なくとも3層構造を有し、3層の各々が絶縁材料で形成されており、中央の層がその両側の層よりもキャリアをトラップし易い材料で形成されている前記積層膜と、
前記積層膜を介して、前記ゲート電極の側面及び前記半導体基板の表面に対向するように配置された導電性材料からなるサイドウォールスペーサと、
前記サイドウォールスペーサと前記ゲート電極とを電気的に接続する導電性の接続部材と、
前記半導体基板の表層部のうち、前記半導体基板の表面に平行な第1の方向に関して、前記ゲート電極を挟む領域の各々に形成され、前記積層膜の縁から横方向もある深さまで侵入し、かつ該ゲート電極の縁までは達していない不純物拡散領域と
を有する半導体装置。
(付記2) さらに、前記不純物拡散領域の表面上に形成され、前記積層膜と該不純物拡散領域との界面に沿って、該不純物拡散領域の縁よりも浅い位置まで侵入し、前記積層膜の最も基板側の層よりも厚い第1の絶縁膜を有し、
前記接続部材が、前記第1の絶縁膜の上まで延在している付記1に記載の半導体装置。
(付記3) 前記サイドウォールスペーサの頂部が前記ゲート電極の上面及び前記積層膜の頂部よりも高い位置まで突出しており、
さらに、前記不純物拡散領域の表面上に形成された第2の絶縁膜であって、前記サイドウォールスペーサの外側の側面に密着した第2の絶縁膜を有し、
前記接続部材が、前記サイドウォールスペーサの内側の側面のうち、前記積層膜の頂部よりも突出している部分、及び前記ゲート電極の上面に接触している付記1に記載の半導体装置。
(付記4) 前記接続部材が、前記第2の絶縁膜の上まで延在している付記3に記載の半導体装置。
(付記5) 半導体基板と、
前記半導体基板の表層部に形成され、第1の方向に延在し、相互に平行に配置された第1導電型の複数の不純物拡散領域と、
前記半導体基板の上に配置され、前記第1の方向と交差する第2の方向に延在し、ある間隔で相互に平行に配置され、前記不純物拡散領域との交差箇所において、該不純物拡散領域から絶縁されている複数のゲートラインと、
相互に隣り合う一対の前記不純物拡散領域と、前記ゲートラインとの交差箇所の各々に配置されたFETと、
前記第1の方向に並んだ2つのFETのチャネル領域の間の基板表層部に形成された第1導電型とは反対の第2導電型のチャネルストッパ領域と
を有し、
前記FETの各々が、
対応する一対の不純物拡散領域に挟まれた前記チャネル領域と、
該チャネル領域の上に形成され、対応する一対の不純物拡散領域の各々からある間隔を隔てて配置されたゲート絶縁膜と、
前記ゲート絶縁膜の上に形成され、対応するゲートラインに接続されたゲート電極と、
対応する一対の不純物拡散領域の各々と前記ゲート電極との間の前記半導体基板の表面、及び前記ゲート電極の側面をコンフォーマルに覆い、少なくとも3層を含み、中央の層が両側の層よりもキャリアをトラップし易い材料で形成されている積層膜と、
前記積層膜を介して、前記ゲート電極の側面及び前記チャネル領域に対向するように配置され、導電性材料で形成され、対応するゲートラインに接続されたサイドウォールスペーサと
を含む半導体装置。
(付記6) 前記不純物拡散領域の各々が、対応する前記積層膜の下まで侵入しており、さらに、
前記不純物拡散領域と前記ゲートラインとの交差箇所において両者の間に配置された第1の絶縁膜であって、前記積層膜と前記不純物拡散領域との界面に沿って、該不純物拡散領域の縁よりも浅い位置まで侵入し、前記積層膜の最も基板側の層よりも厚い前記第1の絶縁膜を有する付記5に記載の半導体装置。
(付記7) さらに、前記不純物拡散領域と前記ゲートラインとの交差箇所において、両者の間に配置され、前記サイドウォールスペーサの外側の側面に密着した第2の絶縁膜を有し、
前記サイドウォールスペーサの各々が、前記ゲート電極の上面及び前記積層膜の頂部よりも高い位置まで突出しており、前記ゲートラインの各々が、対応するサイドウォールスペーサの突出部の内側の側面、及び対応するゲート電極の上面に接触している付記5に記載の半導体装置。
(付記8) 半導体基板の表面の一部の領域上に、ゲート絶縁膜とゲート電極との2層を形成する工程と、
前記半導体基板、ゲート絶縁膜、及びゲート電極の露出した表面上に、該表面に倣うように積層膜を形成する工程であって、該積層膜が少なくとも3層構造を有し、3層の各々が絶縁材料で形成されており、中央の層がその両側の層よりもキャリアをトラップし易い材料で形成されている前記積層膜を形成する工程と、
前記積層膜の表面のうち、前記ゲート電極の側面に沿った領域上に、導電性のサイドウォールスペーサを形成する工程と、
前記積層膜のうち、前記サイドウォールスペーサで覆われていない領域において、該積層膜の少なくとも中央の層までをエッチングする工程と、
前記ゲート電極及びサイドウォールスペーサをマスクとして、前記半導体基板の表層部に第1の不純物を注入する工程と、
前記半導体基板の表面のうち、前記ゲート電極及びサイドウォールスペーサで覆われていない領域を局所的に酸化し、第1の絶縁膜を形成する工程と、
前記ゲート電極の上面及び前記サイドウォールスペーサの表面に形成された絶縁膜を除去する工程と、
前記ゲート電極の上面と前記サイドウォールスペーサの表面とを、電気的に接続する接続部材を形成する工程と
を有する半導体装置の製造方法。
(付記9) 前記ゲート絶縁膜とゲート電極との2層構造が、前記半導体基板の表面上において第1の方向に延在し、相互に平行に配置された複数の領域の各々の上に形成され、
前記接続部材を形成する工程が、
前記半導体基板の最表面を導電膜で覆う工程と、
前記導電膜をパターニングすることにより、前記第1の方向と交差する第2の方向に延在し、相互に平行に配置されている複数のゲートラインを残す工程と
を含み、
前記ゲートラインを残した後、さらに、該ゲートラインをマスクとして、前記ゲート電極をエッチングする工程と、
前記ゲート電極のエッチングされた部分の下の前記半導体基板の表層部に、前記第1の不純物とは反対導電型の第2の不純物を注入する工程と
を有する付記8に記載の半導体装置の製造方法。
(付記10) 半導体基板の表面の一部の領域上に、ゲート絶縁膜とゲート電極とゲート上部膜との3層を形成する工程と、
少なくとも前記半導体基板とゲート絶縁膜とゲート電極との露出した表面を覆う下層、該下層と前記ゲート上部膜の表面を覆う中層、及び該中層を覆う上層からなる積層膜であって、下層、中層、及び上層の各々が絶縁材料で形成されており、中層が下層及び上層よりもキャリアをトラップし易い材料で形成されている前記積層膜を形成する工程と、
前記積層膜の表面を覆う導電性の第1の膜を形成する工程と、
前記積層膜及び前記第1の膜を異方性エッチングし、前記ゲート電極及びゲート上部膜の側面上に、前記第1の膜の一部からなるサイドウォールスペーサ及び前記積層膜の一部を残すとともに、前記半導体基板の表面のうち前記ゲート電極の配置されていない領域においては、少なくとも前記第1の膜と、前記積層膜の上層及び中層を除去する工程と、
前記ゲート電極、ゲート上部膜、及びサイドウォールスペーサをマスクとして、前記半導体基板の表層部に第1の不純物を注入する工程と、
前記半導体基板の全面上に絶縁材料からなる第2の膜を堆積する工程と、
前記第2の膜を、前記ゲート上部膜が露出するまで研磨する工程と、
前記ゲート上部膜、及び該ゲート上部膜の側面上に残っていた前記積層膜を除去する工程と、
前記ゲート電極の上面と前記サイドウォールスペーサの露出した表面とを、電気的に接続する接続部材を形成する工程と
を有する半導体装置の製造方法。
(付記11) 前記ゲート絶縁膜とゲート電極とゲート上部膜との3層構造が、前記半導体基板の表面上において第1の方向に延在、相互に平行に配置された複数の領域の各々の上に形成され、
前記接続部材を形成する工程が、
前記半導体基板の最表面を、導電性の第3の膜で覆う工程と、
前記第3の膜をパターニングすることにより、前記第1の方向と交差する第2の方向に延在し、相互に平行に配置された複数のゲートラインを残す工程と
を含み、
前記ゲートラインを残した後、さらに、該ゲートラインをマスクとして、前記ゲート電極、及び前記第2の膜の少なくとも上層部分、及び前記サイドウォールスペーサをエッチングする工程と、
前記ゲート電極のエッチングされた部分の下の前記半導体基板の表層部に、前記第1の不純物とは反対導電型の第2の不純物を注入する工程と
を有する付記10に記載の半導体装置の製造方法。
(付記12) 半導体基板の表層部に画定されたチャネル領域の上に形成されたゲート絶縁膜と、
前記チャネル領域の両側の表層部に形成されたソース及びドレイン領域と、
前記ゲート絶縁膜の上面を、前記ソース領域側の第1の領域、前記ドレイン領域側の第2の領域、及び該第1の領域と第2の領域とに挟まれた第3の領域とに区分したとき、前記第1の領域と第2の領域とを覆い、前記ゲート絶縁膜よりもキャリアをトラップし易い材料で形成されたキャリアトラップ膜と、
前記キャリアトラップ膜の各々の表面を覆う絶縁材料からなる被覆膜と、
前記被覆膜、及び前記第3の領域上のゲート絶縁膜の表面のうち、少なくとも前記ソース領域とチャネル領域との境界から、前記ドレイン領域とチャネル領域との境界までを連続的に覆うゲート電極と
を有する半導体装置。
(付記13) 半導体基板と、
前記半導体基板の表層部に形成され、第1の方向に延在し、相互に平行に配置された第1導電型の複数の不純物拡散領域と、
前記半導体基板の上に配置され、前記第1の方向と交差する第2の方向に延在し、ある間隔で相互に平行に配置され、前記不純物拡散領域との交差箇所において、該不純物拡散領域から絶縁されている複数のゲートラインと、
相互に隣り合う一対の前記不純物拡散領域と、前記ゲートラインとの交差箇所の各々に配置されたFETと、
前記第1の方向に並んだ2つのFETのチャネル領域の間の基板表層部に形成され、前記第1導電型とは反対の第2導電型を有するチャネルストッパ領域と
を有し、
前記FETの各々が、
対応する一対の不純物拡散領域に挟まれた前記チャネル領域と、
該チャネル領域の上に形成されたゲート絶縁膜と、
前記ゲート絶縁膜の上面を、対応する一対の不純物拡散領域の一方の側の第1の領域、他方の側の第2の領域、及び該第1の領域と第2の領域とに挟まれた第3の領域とに区分したとき、前記第1の領域と第2の領域とを覆い、前記ゲート絶縁膜よりもキャリアをトラップし易い材料で形成されたキャリアトラップ膜と、
前記キャリアトラップ膜の各々の表面を覆う絶縁材料からなる被覆膜と
を有し、
前記ゲートラインが、対応するFETのゲート絶縁膜の前記第3の領域及び被覆膜を覆い、該FETのゲート電極を兼ねる半導体装置。
(付記14) 半導体基板の表面上に、ゲート絶縁膜、該ゲート絶縁膜よりもキャリアをトラップし易い材料で形成されたキャリアトラップ膜、及び上部絶縁膜を順番に形成する工程と、
前記半導体基板の表面上に、ある間隔を隔てて相互に平行に配置された一対の細長い第1のチャネル領域の上の、前記上部絶縁膜の表面をレジストパターンで覆う工程と、
前記レジストパターンをマスクとして、前記上部絶縁膜及びキャリアトラップ膜をエッチングする工程と、
前記半導体基板の表層部に不純物をイオン注入する工程であって、前記一対のレジストパターンの間の領域がレジストパターンの陰になり、陰の部分に不純物が注入されず、該一対のレジストパターンの外側の領域の各々においては、イオン注入された領域の縁が該レジストパターンの縁と一致するかもしくは該レジストパターンの縁よりも内側まで侵入する条件でイオン注入する工程と、
前記レジストパターンを除去する工程と、
前記半導体基板の表層部のうち前記イオン注入工程でイオン注入された領域の表面上に、絶縁材料からなる第1の膜を形成する工程と、
前記一対の第1のチャネル領域上のキャリアトラップ膜を覆う上部絶縁膜の上及び該一対の第1のチャネル領域の間の前記ゲート絶縁膜の上に、ゲート電極を形成する工程と
を有する半導体装置の製造方法。
(付記15) 半導体基板の表層部に、ある間隔を隔てて形成されたソース領域及びドレイン領域と、
前記ソース領域とドレイン領域との間の表層部に、該ソース領域及びドレイン領域のいずれともある間隔を隔てて配置され、前記ソース領域及びドレイン領域と同一導電型の不純物が添加された中間領域と、
前記ソース領域と前記中間領域との間のチャネル領域、及び前記ドレイン領域と中間領域との間のチャネル領域を覆うゲート絶縁膜と、
前記ソース領域、ドレイン領域、及び中間領域を覆い、絶縁材料で形成され、前記ゲート絶縁膜よりも厚い第1の膜と、
前記ゲート絶縁膜の各々の上に形成され、該ゲート絶縁膜よりもキャリアをトラップし易い材料からなるキャリアトラップ膜と、
前記キャリアトラップ膜の各々の表面を覆い、絶縁材料で形成された被覆膜と、
一方の前記チャネル領域から中間領域を経由して他方のチャネル領域までの領域上に配置されている前記被覆膜及び第1の膜を覆うゲート電極と
を有する半導体装置。
(付記16) 一方の前記ゲート絶縁膜上のキャリアトラップ膜と、他方の前記ゲート絶縁膜上のキャリアトラップ膜とが、前記中間領域上の第1の膜の上を経由して相互に連続している付記15に記載の半導体装置。
(付記17) 半導体基板と、
前記半導体基板の表層部に形成され、第1の方向に延在し、相互に平行に配置された第1導電型の複数の不純物拡散領域と、
前記半導体基板の上に配置され、前記第1の方向と交差する第2の方向に延在し、ある間隔で相互に平行に配置され、前記不純物拡散領域との交差箇所において、該不純物拡散領域から絶縁されている複数のゲートラインと、
相互に隣り合う一対の前記不純物拡散領域と、前記ゲートラインとの交差箇所の各々に配置されたFETと
を有し、
前記FETの各々が、
対応する一対の前記不純物拡散領域の間の基板表層部に、両者のいずれからもある間隔を隔てて配置され、該不純物拡散領域と同一導電型の中間領域と、
対応する一対の前記不純物拡散領域の各々と、前記中間領域との間のチャネル領域を覆うゲート絶縁膜と、
前記一対の不純物拡散領域及び中間領域を覆い、絶縁材料で形成され、前記ゲート絶縁膜よりも厚い第1の膜と、
前記ゲート絶縁膜の各々の上に形成され、該ゲート絶縁膜よりもキャリアをトラップし易い材料からなるキャリアトラップ膜と、
前記キャリアトラップ膜の各々の表面を覆い、絶縁材料で形成された被覆膜とを有し、
前記FETの各々に対応する前記ゲートラインが、前記被覆膜及び第1の膜上に配置され、当該FETのゲート電極を兼ね、
さらに、
前記第1の方向に並ぶ2つのFETのチャネル領域の間の基板表層部に形成された前記第1導電型とは反対の第2導電型のチャネルストッパ領域
を有する半導体装置。
(付記18) 前記FETの各々において、一方の前記ゲート絶縁膜上のキャリアトラップ膜と、他方の前記ゲート絶縁膜上のキャリアトラップ膜とが、前記中間領域上の第1の膜の上を経由して相互に連続している付記17に記載の半導体装置。
(付記19) 半導体基板の表面上に、ゲート絶縁膜、該ゲート絶縁膜よりもキャリアをトラップし易い材料で形成されたキャリアトラップ膜、及び上部絶縁膜を順番に形成する工程と、
前記上部絶縁膜の上に、ある間隔を隔てて相互に平行に配置された一対の細長い領域をレジストパターンで覆う工程と、
前記レジストパターンをマスクとして、前記上部絶縁膜及びキャリアトラップ膜をエッチングする工程と、
前記レジストパターンをマスクとして、前記半導体基板の表層部に、不純物をイオン注入する工程と、
前記レジストパターンを除去する工程と、
半導体基板の表層部のうち前記イオン注入工程でイオン注入された領域の表面上に、絶縁材料からなる第1の膜を形成する工程と、
前記レジストパターンの形成されていた領域に残っている前記上部絶縁膜及びその間の第1の膜の上に、ゲート電極を形成する工程と
を有する半導体装置の製造方法。
(付記20) 前記半導体基板がシリコン基板であり、前記第1の膜を形成する工程において、前記キャリアトラップ膜をマスクとして、該半導体基板の表層部を局所的に酸化することによって前記第1の膜を形成する付記19に記載の半導体装置の製造方法。
(付記21) シリコンからなる半導体基板の表面のうち、ある間隔を隔てて相互に平行に配置された一対の細長い領域をレジストパターンで覆う工程と、
前記レジストパターンをマスクとして、前記半導体基板の表層部に、不純物をイオン注入する工程と、
前記半導体基板の表層部を酸化することにより、イオン注入された領域の表面上には、酸化シリコンからなる第1の膜を形成し、イオン注入されていない領域の表面上には、該第1の膜よりも薄いゲート絶縁膜を形成する工程と、
前記第1の膜及びゲート絶縁膜の上に、該ゲート絶縁膜よりもキャリアをトラップし易い材料で形成されたキャリアトラップ膜、及び上部絶縁膜を順番に形成する工程と、
前記上部絶縁膜の表面のうち、少なくとも前記ゲート絶縁膜及びその間の第1の膜の上方の領域の上に、ゲート電極を形成する工程と
を有する半導体装置の製造方法。
【0124】
以上実施例に沿って本発明を説明したが、本発明はこれらに制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。
【0125】
【発明の効果】
以上説明したように、本発明によれば、キャリアをトラップする層を含む積層膜の上に、導電性の部材を配置し、この導電性部材にゲート電圧を直接印加する。これにより、比較的低いゲート電圧で、情報の書込み及び消去を行うことができる。また、チャネル領域の中央部上にはキャリアをトラップする層が配置されていないか、またはチャネル領域の中央部に不純物が添加された中間領域が配置されている。このため、書込み及び消去動作を繰り返しても、しきい値の変動が少ない。
【図面の簡単な説明】
【図1】第1の実施例による半導体装置の平面図である。
【図2】第1の実施例による半導体装置の断面図である。
【図3】第1の実施例による半導体装置の部分破断斜視図である。
【図4】第1の実施例による半導体装置の等価回路図である。
【図5】第1の実施例による半導体装置の製造方法を説明するための基板の断面図(その1)である。
【図6】第1の実施例による半導体装置の製造方法を説明するための基板の断面図(その2)である。
【図7】第1の実施例による半導体装置の製造方法を説明するための基板の断面図(その3)である。
【図8】第1の実施例による半導体装置の製造方法を説明するための基板の断面図(その4)である。
【図9】第2の実施例による半導体装置の製造方法を説明するための基板の断面図(その1)である。
【図10】第2の実施例による半導体装置の製造方法を説明するための基板の断面図(その2)である。
【図11】第2の実施例による半導体装置の製造方法を説明するための基板の断面図(その3)である。
【図12】第2の実施例による半導体装置の製造方法を説明するための基板の断面図(その4)である。
【図13】第2の実施例による半導体装置の製造方法を説明するための基板の断面図(その5)である。
【図14】第2の実施例による半導体装置の製造方法を説明するための基板の断面図(その6)である。
【図15】第3の実施例による半導体装置の製造方法を説明するための基板の断面図(その1)である。
【図16】第3の実施例による半導体装置の製造方法を説明するための基板の断面図(その2)である。
【図17】第3の実施例による半導体装置の製造方法を説明するための基板の断面図(その3)である。
【図18】第4の実施例による半導体装置の製造方法を説明するための基板の断面図(その1)である。
【図19】第4の実施例による半導体装置の製造方法を説明するための基板の断面図(その2)である。
【図20】第4の実施例による半導体装置の断面図、及びドレイン電流特性を示すグラフである。
【図21】第5の実施例による半導体装置の製造方法を説明するための基板の断面図(その1)である。
【図22】第5の実施例による半導体装置の製造方法を説明するための基板の断面図(その2)である。
【図23】従来のフラッシュメモリセルの断面図である。
【符号の説明】
1、101、201、301、401 シリコン基板
2、203、302、402 不純物拡散領域
3、205、306、407 絶縁膜
4、104、204、406 ゲート絶縁膜
5、105 ゲート電極
6、110、202、305 ONO膜
7、111a サイドウォールスペーサ
10、116、206、310、420 ゲートライン
20 FET
25 フィールド酸化膜
26、28 プラグ
27、29 上層配線
40a〜40d セレクトゲート線
41 メインライン
42 FET
50、118、207、307、417 チャネルストッパ領域
106 ゲート上部膜
111 ポリシリコン膜
115 層間絶縁膜
117、210、330、410 レジストパターン
303、403 中間領域
405 スルー酸化膜
415 窒化シリコン膜
416 酸化シリコン膜

Claims (6)

  1. 半導体基板と、
    前記半導体基板の表面の一部の領域上に形成されたゲート絶縁膜と、
    前記ゲート絶縁膜の上に形成されたゲート電極と、
    前記ゲート電極の側面、及び該ゲート電極の両側の前記半導体基板の表面上に、該側面及び表面に倣うように形成された積層膜であって、少なくとも3層構造を有し、3層の各々が絶縁材料で形成されており、中央の層がその両側の層よりもキャリアをトラップし易い材料で形成されている前記積層膜と、
    前記積層膜を介して、前記ゲート電極の側面及び前記半導体基板の表面に対向するように配置された導電性材料からなり、頂部が前記ゲート電極の上面及び前記積層膜の頂部よりも高い位置まで突出しているサイドウォールスペーサと、
    前記サイドウォールスペーサと前記ゲート電極とを電気的に接続する導電性の接続部材であって、前記サイドウォールスペーサの内側の側面のうち、前記積層膜の頂部よりも突出している部分、及び前記ゲート電極の上面に接触している接続部材と、
    前記半導体基板の表層部のうち、前記半導体基板の表面に平行な第1の方向に関して、前記ゲート電極を挟む領域の各々に形成され、前記積層膜の縁から横方向にある深さまで侵入し、かつ該ゲート電極の縁までは達していない不純物拡散領域と、
    前記不純物拡散領域の表面上に形成され、前記サイドウォールスペーサの外側の側面に密着した層間絶縁膜と
    を有し、
    前記接続部材が、前記層間絶縁膜の上まで延在している半導体装置。
  2. 半導体基板と、
    前記半導体基板の表層部に形成され、第1の方向に延在し、相互に平行に配置された第1導電型の複数の不純物拡散領域と、
    前記半導体基板の上に配置され、前記第1の方向と交差する第2の方向に延在し、ある間隔で相互に平行に配置され、前記不純物拡散領域との交差箇所において、該不純物拡散領域から絶縁されている複数のゲートラインと、
    相互に隣り合う一対の前記不純物拡散領域と、前記ゲートラインとの交差箇所の各々に配置されたFETと、
    前記第1の方向に並んだ2つのFETのチャネル領域の間の基板表層部に形成された第1導電型とは反対の第2導電型のチャネルストッパ領域と、
    前記不純物拡散領域と前記ゲートラインとの交差箇所において、両者の間に配置された層間絶縁膜と
    を有し、
    前記FETの各々が、
    対応する一対の不純物拡散領域に挟まれた前記チャネル領域と、
    該チャネル領域の上に形成され、対応する一対の不純物拡散領域の各々からある間隔を隔てて配置されたゲート絶縁膜と、
    前記ゲート絶縁膜の上に形成され、対応するゲートラインに接続されたゲート電極と、
    対応する一対の不純物拡散領域の各々と前記ゲート電極との間の前記半導体基板の表面、及び前記ゲート電極の側面をコンフォーマルに覆い、少なくとも3層を含み、中央の層が両側の層よりもキャリアをトラップし易い材料で形成されている積層膜と、
    前記積層膜を介して、前記ゲート電極の側面及び前記チャネル領域に対向するように配置され、導電性材料で形成され、対応するゲートラインに接続されたサイドウォールスペーサと
    を含み、
    前記サイドウォールスペーサの各々が、前記ゲート電極の上面及び前記積層膜の頂部よりも高い位置まで突出しており、前記ゲートラインの各々が、対応するサイドウォールスペーサの突出部の内側の側面、及び対応するゲート電極の上面に接触し、前記層間絶縁膜が、前記サイドウォールスペーサの外側の側面に密着している半導体装置。
  3. 半導体基板の表面の一部の領域上に、ゲート絶縁膜とゲート電極との2層を形成する工程と、
    前記半導体基板、ゲート絶縁膜、及びゲート電極の露出した表面上に、該表面に倣うように積層膜を形成する工程であって、該積層膜が少なくとも3層構造を有し、3層の各々が絶縁材料で形成されており、中央の層がその両側の層よりもキャリアをトラップし易い材料で形成されている前記積層膜を形成する工程と、
    前記積層膜の表面のうち、前記ゲート電極の側面に沿った領域上に、導電性のサイドウォールスペーサを形成する工程と、
    前記積層膜のうち、前記サイドウォールスペーサで覆われていない領域において、該積層膜の少なくとも中央の層までをエッチングする工程と、
    前記ゲート電極及びサイドウォールスペーサをマスクとして、前記半導体基板の表層部に第1の不純物を注入する工程と、
    前記半導体基板の表面のうち、前記ゲート電極及びサイドウォールスペーサで覆われていない領域を局所的に酸化し、第1の絶縁膜を形成する工程と、
    前記ゲート電極の上面及び前記サイドウォールスペーサの表面に形成された絶縁膜を除去する工程と、
    前記ゲート電極の上面と前記サイドウォールスペーサの表面とを、電気的に接続するゲートラインを形成する工程と、
    前記ゲートラインをマスクとして、前記ゲート電極をエッチングする工程と
    を有する半導体装置の製造方法。
  4. 前記ゲート絶縁膜とゲート電極との2層構造が、前記半導体基板の表面上において第1の方向に延在し、相互に平行に配置された複数の領域の各々の上に形成され、
    前記ゲートラインを形成する工程が、
    前記半導体基板の最表面を導電膜で覆う工程と、
    前記導電膜をパターニングすることにより、前記第1の方向と交差する第2の方向に延在し、相互に平行に配置されている複数のゲートラインを残す工程と
    を含み、
    前記ゲートラインを残した後、さらに、前記ゲート電極のエッチングされた部分の下の前記半導体基板の表層部に、前記第1の不純物とは反対導電型の第2の不純物を注入する工程を有する請求項3に記載の半導体装置の製造方法。
  5. 半導体基板の表面の一部の領域上に、ゲート絶縁膜とゲート電極とゲート上部膜との3層を形成する工程と、
    少なくとも前記半導体基板とゲート絶縁膜とゲート電極との露出した表面を覆う下層、該下層と前記ゲート上部膜の表面を覆う中層、及び該中層を覆う上層からなる積層膜であって、下層、中層、及び上層の各々が絶縁材料で形成されており、中層が下層及び上層よりもキャリアをトラップし易い材料で形成されている前記積層膜を形成する工程と、
    前記積層膜の表面を覆う導電性の第1の膜を形成する工程と、
    前記積層膜及び前記第1の膜を異方性エッチングし、前記ゲート電極及びゲート上部膜の側面上に、前記第1の膜の一部からなるサイドウォールスペーサ及び前記積層膜の一部を残すとともに、前記半導体基板の表面のうち前記ゲート電極の配置されていない領域においては、少なくとも前記第1の膜と、前記積層膜の上層及び中層を除去する工程と、
    前記ゲート電極、ゲート上部膜、及びサイドウォールスペーサをマスクとして、前記半導体基板の表層部に第1の不純物を注入する工程と、
    前記半導体基板の全面上に絶縁材料からなる第2の膜を堆積する工程と、
    前記第2の膜を、前記ゲート上部膜が露出するまで研磨する工程と、
    前記ゲート上部膜、及び該ゲート上部膜の側面上に残っていた前記積層膜を除去する工程と、
    前記ゲート電極の上面と前記サイドウォールスペーサの露出した表面とを、電気的に接続するゲートラインを形成する工程と、
    前記ゲートラインをマスクとして、前記ゲート電極、及び前記第2の膜の少なくとも上層部分、及び前記サイドウォールスペーサをエッチングする工程と
    を有する半導体装置の製造方法。
  6. 前記ゲート絶縁膜とゲート電極とゲート上部膜との3層構造が、前記半導体基板の表面上において第1の方向に延在し、相互に平行に配置された複数の領域の各々の上に形成され、
    前記ゲートラインを形成する工程が、
    前記半導体基板の最表面を、導電性の第3の膜で覆う工程と、
    前記第3の膜をパターニングすることにより、前記第1の方向と交差する第2の方向に延在し、相互に平行に配置された複数のゲートラインを残す工程と
    を含み、
    前記ゲートラインを残した後、さらに、前記ゲート電極のエッチングされた部分の下の前記半導体基板の表層部に、前記第1の不純物とは反対導電型の第2の不純物を注入する工程を有する請求項5に記載の半導体装置の製造方法。
JP2001031320A 2001-02-07 2001-02-07 半導体装置及びその製造方法 Expired - Fee Related JP3930256B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001031320A JP3930256B2 (ja) 2001-02-07 2001-02-07 半導体装置及びその製造方法
TW090123619A TW497228B (en) 2001-02-07 2001-09-25 Semiconductor memory capable of being driven at low voltage and its manufacture method
EP01402621A EP1231646A3 (en) 2001-02-07 2001-10-10 Semiconductor memory capable of being driven at low voltage and its manufacture method
US09/973,743 US6642586B2 (en) 2001-02-07 2001-10-11 Semiconductor memory capable of being driven at low voltage and its manufacture method
KR1020020006849A KR100864860B1 (ko) 2001-02-07 2002-02-06 반도체 장치 및 그 제조 방법
US10/649,994 US6927133B2 (en) 2001-02-07 2003-08-28 Semiconductor memory capable of being driven at low voltage and its manufacture method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001031320A JP3930256B2 (ja) 2001-02-07 2001-02-07 半導体装置及びその製造方法

Publications (2)

Publication Number Publication Date
JP2002237540A JP2002237540A (ja) 2002-08-23
JP3930256B2 true JP3930256B2 (ja) 2007-06-13

Family

ID=18895419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001031320A Expired - Fee Related JP3930256B2 (ja) 2001-02-07 2001-02-07 半導体装置及びその製造方法

Country Status (5)

Country Link
US (2) US6642586B2 (ja)
EP (1) EP1231646A3 (ja)
JP (1) JP3930256B2 (ja)
KR (1) KR100864860B1 (ja)
TW (1) TW497228B (ja)

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3650022B2 (ja) 2000-11-13 2005-05-18 三洋電機株式会社 半導体装置の製造方法
KR100385955B1 (ko) * 2001-02-13 2003-06-02 삼성전자주식회사 다중막으로 이루어진 스페이서를 갖는 반도체 소자 및 그제조방법
US6927472B2 (en) * 2001-11-14 2005-08-09 International Business Machines Corporation Fuse structure and method to form the same
EP1447851A4 (en) * 2001-11-21 2008-10-29 Sharp Kk SEMICONDUCTOR MEMORY DEVICE, METHOD FOR THE PRODUCTION THEREOF AND ITS OPERATION AND PORTABLE ELECTRONIC DEVICE
JP4647175B2 (ja) * 2002-04-18 2011-03-09 ルネサスエレクトロニクス株式会社 半導体集積回路装置
US6917544B2 (en) 2002-07-10 2005-07-12 Saifun Semiconductors Ltd. Multiple use memory chip
KR100452037B1 (ko) * 2002-07-18 2004-10-08 주식회사 하이닉스반도체 반도체 소자의 제조방법 및 그 소자
DE10238784A1 (de) * 2002-08-23 2004-03-11 Infineon Technologies Ag Nichtflüchtiges Halbleiterspeicherelement sowie zugehöriges Herstellungs- und Ansteuerverfahren
KR100480619B1 (ko) * 2002-09-17 2005-03-31 삼성전자주식회사 프로그램 및 소거 특성이 개선된 sonos eeprom및 그 제조방법
JP2004178782A (ja) 2002-10-04 2004-06-24 Sharp Corp 半導体記憶装置およびその制御方法および携帯電子機器
US7136304B2 (en) 2002-10-29 2006-11-14 Saifun Semiconductor Ltd Method, system and circuit for programming a non-volatile memory array
US6777288B1 (en) 2002-11-06 2004-08-17 National Semiconductor Corporation Vertical MOS transistor
KR100521371B1 (ko) 2003-01-22 2005-10-12 삼성전자주식회사 소노스형 비휘발성 메모리 및 그 제조 방법
KR100471188B1 (ko) * 2003-01-24 2005-03-10 삼성전자주식회사 듀얼 게이트를 갖는 비휘발성 기억 소자 및 그 형성방법
US7178004B2 (en) 2003-01-31 2007-02-13 Yan Polansky Memory array programming circuit and a method for using the circuit
JP2004342767A (ja) * 2003-05-14 2004-12-02 Sharp Corp 半導体記憶装置及び半導体装置、並びに携帯電子機器
JP2004342881A (ja) * 2003-05-16 2004-12-02 Sharp Corp 半導体記憶装置および半導体装置およびicカードおよび携帯電子機器および半導体記憶装置の製造方法
JP4105031B2 (ja) 2003-05-16 2008-06-18 シャープ株式会社 補聴器
JP4620334B2 (ja) * 2003-05-20 2011-01-26 シャープ株式会社 半導体記憶装置、半導体装置及びそれらを備える携帯電子機器、並びにicカード
JP2004343014A (ja) * 2003-05-19 2004-12-02 Sharp Corp 半導体記憶装置、半導体装置、及びそれらの製造方法、並びに携帯電子機器、並びにicカード
JP2004348817A (ja) * 2003-05-20 2004-12-09 Sharp Corp 半導体記憶装置、そのページバッファリソース割当方法及び回路、コンピュータシステム並びに携帯電子機器
JP2004349308A (ja) * 2003-05-20 2004-12-09 Sharp Corp 半導体記憶装置
DE10344541A1 (de) 2003-09-25 2005-04-28 Sebert Schwingungstechnik Gmbh Dämpfungsanordnung mit einer als Dämpfungsglied dienenden Seilschlaufenanordnung
JP4334315B2 (ja) 2003-10-10 2009-09-30 株式会社ルネサステクノロジ 半導体記憶装置の製造方法
JP4746835B2 (ja) * 2003-10-20 2011-08-10 ルネサスエレクトロニクス株式会社 不揮発性半導体記憶装置
US7184315B2 (en) * 2003-11-04 2007-02-27 Micron Technology, Inc. NROM flash memory with self-aligned structural charge separation
KR100513309B1 (ko) * 2003-12-05 2005-09-07 삼성전자주식회사 비연속적인 전하 트랩 사이트를 갖는 비휘발성 메모리소자의 소거 방법들
JP4429036B2 (ja) * 2004-02-27 2010-03-10 富士通マイクロエレクトロニクス株式会社 半導体装置の製造方法
JP4546117B2 (ja) * 2004-03-10 2010-09-15 ルネサスエレクトロニクス株式会社 不揮発性半導体記憶装置
JP4640918B2 (ja) * 2004-03-11 2011-03-02 ルネサスエレクトロニクス株式会社 不揮発性半導体記憶装置及びその製造方法
KR101068136B1 (ko) * 2004-04-02 2011-09-27 매그나칩 반도체 유한회사 반도체 장치의 게이트 전극 형성 방법
US20050275008A1 (en) * 2004-06-14 2005-12-15 Erh-Kun Lai [non-volatile memory and fabrication thereof]
JP5007017B2 (ja) * 2004-06-30 2012-08-22 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
KR100602119B1 (ko) 2004-08-16 2006-07-19 동부일렉트로닉스 주식회사 비휘발성 메모리 소자 및 그 제조 방법
US7638850B2 (en) 2004-10-14 2009-12-29 Saifun Semiconductors Ltd. Non-volatile memory structure and method of fabrication
US20060084268A1 (en) * 2004-10-15 2006-04-20 Martin Verhoeven Method for production of charge-trapping memory cells
WO2006045278A1 (de) * 2004-10-29 2006-05-04 Infineon Technologies Ag Halbleiterschaltungsanordnung und verfahren zum herstellen einer halbleiterschaltungsanordnung
US7238974B2 (en) 2004-10-29 2007-07-03 Infineon Technologies Ag Semiconductor device and method of producing a semiconductor device
KR100652384B1 (ko) 2004-11-08 2006-12-06 삼성전자주식회사 2비트 형태의 불휘발성 메모리소자 및 그 제조방법
CN100346470C (zh) * 2004-12-15 2007-10-31 旺宏电子股份有限公司 非易失性存储单元及其制造方法
US8053812B2 (en) 2005-03-17 2011-11-08 Spansion Israel Ltd Contact in planar NROM technology
JP2006302985A (ja) * 2005-04-18 2006-11-02 Renesas Technology Corp 不揮発性半導体装置の製造方法
US7804126B2 (en) 2005-07-18 2010-09-28 Saifun Semiconductors Ltd. Dense non-volatile memory array and method of fabrication
US7668017B2 (en) 2005-08-17 2010-02-23 Saifun Semiconductors Ltd. Method of erasing non-volatile memory cells
WO2007043157A1 (en) 2005-10-03 2007-04-19 Nscore Inc. Nonvolatile memory device storing data based on change in transistor characteristics
KR100678318B1 (ko) * 2005-12-16 2007-02-02 동부일렉트로닉스 주식회사 풀리실리사이드 게이트 형성 방법
US7808818B2 (en) 2006-01-12 2010-10-05 Saifun Semiconductors Ltd. Secondary injection for NROM
US8253452B2 (en) 2006-02-21 2012-08-28 Spansion Israel Ltd Circuit and method for powering up an integrated circuit and an integrated circuit utilizing same
US7692961B2 (en) 2006-02-21 2010-04-06 Saifun Semiconductors Ltd. Method, circuit and device for disturb-control of programming nonvolatile memory cells by hot-hole injection (HHI) and by channel hot-electron (CHE) injection
US7760554B2 (en) 2006-02-21 2010-07-20 Saifun Semiconductors Ltd. NROM non-volatile memory and mode of operation
JP4799229B2 (ja) * 2006-03-14 2011-10-26 Okiセミコンダクタ株式会社 半導体記憶装置の製造方法
US7847335B2 (en) * 2006-04-11 2010-12-07 Taiwan Semiconductor Manufacturing Company, Ltd. Non-volatile memory device having a generally L-shaped cross-section sidewall SONOS
US7701779B2 (en) 2006-04-27 2010-04-20 Sajfun Semiconductors Ltd. Method for programming a reference cell
DE102006019836B4 (de) * 2006-04-28 2016-09-01 Globalfoundries Inc. Verfahren zum Reduzieren von Siliziddefekten durch Entfernen von Kontaminationsstoffen vor der Drain/Source-Aktivierung
US8283263B2 (en) * 2006-07-05 2012-10-09 Globalfoundries Singapore Pte. Ltd. Integrated circuit system including nitride layer technology
WO2008008672A2 (en) * 2006-07-10 2008-01-17 Great Wall Semiconductor Corporation Bi-directional mosfet power switch with single metal layer
US7795644B2 (en) * 2007-01-04 2010-09-14 Taiwan Semiconductor Manufacturing Co., Ltd. Integrated circuits with stress memory effect and fabrication methods thereof
US7483290B2 (en) 2007-02-02 2009-01-27 Nscore Inc. Nonvolatile memory utilizing hot-carrier effect with data reversal function
US7518917B2 (en) 2007-07-11 2009-04-14 Nscore Inc. Nonvolatile memory utilizing MIS memory transistors capable of multiple store operations
US7542341B2 (en) 2007-08-20 2009-06-02 Nscore, Inc. MIS-transistor-based nonvolatile memory device with verify function
US7460400B1 (en) 2007-08-22 2008-12-02 Nscore Inc. Nonvolatile memory utilizing MIS memory transistors with bit mask function
US7463519B1 (en) 2007-08-22 2008-12-09 Nscore Inc. MIS-transistor-based nonvolatile memory device for authentication
US7511999B1 (en) 2007-11-06 2009-03-31 Nscore Inc. MIS-transistor-based nonvolatile memory with reliable data retention capability
US7630247B2 (en) 2008-02-25 2009-12-08 Nscore Inc. MIS-transistor-based nonvolatile memory
US7639546B2 (en) 2008-02-26 2009-12-29 Nscore Inc. Nonvolatile memory utilizing MIS memory transistors with function to correct data reversal
KR20090120119A (ko) 2008-05-19 2009-11-24 삼성전자주식회사 미세 소노스 트랜지스터 및 그 제조 방법
US7733714B2 (en) 2008-06-16 2010-06-08 Nscore Inc. MIS-transistor-based nonvolatile memory for multilevel data storage
US7821806B2 (en) 2008-06-18 2010-10-26 Nscore Inc. Nonvolatile semiconductor memory circuit utilizing a MIS transistor as a memory cell
JP5405066B2 (ja) * 2008-07-28 2014-02-05 スパンション エルエルシー 半導体装置の製造方法
US7791927B1 (en) 2009-02-18 2010-09-07 Nscore Inc. Mis-transistor-based nonvolatile memory circuit with stable and enhanced performance
US8213247B2 (en) 2009-11-16 2012-07-03 Nscore Inc. Memory device with test mechanism
US8259505B2 (en) 2010-05-28 2012-09-04 Nscore Inc. Nonvolatile memory device with reduced current consumption
US8451657B2 (en) 2011-02-14 2013-05-28 Nscore, Inc. Nonvolatile semiconductor memory device using MIS transistor
TWI469269B (zh) * 2011-11-18 2015-01-11 Winbond Electronics Corp 嵌入式快閃記憶體之字元線的製造方法
US9159404B2 (en) 2014-02-26 2015-10-13 Nscore, Inc. Nonvolatile memory device
JP2016009745A (ja) * 2014-06-24 2016-01-18 富士通株式会社 電子部品、電子部品の製造方法及び電子装置
JP6400547B2 (ja) * 2015-09-14 2018-10-03 東芝メモリ株式会社 メモリデバイス
US9484072B1 (en) 2015-10-06 2016-11-01 Nscore, Inc. MIS transistors configured to be placed in programmed state and erased state
US9966141B2 (en) 2016-02-19 2018-05-08 Nscore, Inc. Nonvolatile memory cell employing hot carrier effect for data storage
CN110854184B (zh) * 2018-08-03 2023-04-07 联华电子股份有限公司 半导体元件及其制造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3472313B2 (ja) * 1992-05-25 2003-12-02 ローム株式会社 不揮発性記憶装置
US5408115A (en) * 1994-04-04 1995-04-18 Motorola Inc. Self-aligned, split-gate EEPROM device
US5467308A (en) * 1994-04-05 1995-11-14 Motorola Inc. Cross-point eeprom memory array
JP3630491B2 (ja) 1996-03-18 2005-03-16 株式会社東芝 半導体装置
US5838041A (en) * 1995-10-02 1998-11-17 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device having memory cell transistor provided with offset region acting as a charge carrier injecting region
US5969383A (en) * 1997-06-16 1999-10-19 Motorola, Inc. Split-gate memory device and method for accessing the same
JP3973819B2 (ja) * 1999-03-08 2007-09-12 株式会社東芝 半導体記憶装置およびその製造方法
TW488064B (en) * 1999-03-08 2002-05-21 Toshiba Corp Nonvolatile semiconductor device and manufacturing method, nonvolatile semiconductor memory device and manufacturing method, and semiconductor memory device mixed with nonvolatile and volatile semiconductor memory devices and manufacturing method
JP3430084B2 (ja) * 1999-10-22 2003-07-28 富士通株式会社 不揮発性半導体記憶装置の製造方法
US6248633B1 (en) * 1999-10-25 2001-06-19 Halo Lsi Design & Device Technology, Inc. Process for making and programming and operating a dual-bit multi-level ballistic MONOS memory
JP4899241B2 (ja) * 1999-12-06 2012-03-21 ソニー株式会社 不揮発性半導体記憶装置およびその動作方法

Also Published As

Publication number Publication date
TW497228B (en) 2002-08-01
US6927133B2 (en) 2005-08-09
EP1231646A2 (en) 2002-08-14
US20040046212A1 (en) 2004-03-11
KR100864860B1 (ko) 2008-10-23
JP2002237540A (ja) 2002-08-23
US6642586B2 (en) 2003-11-04
EP1231646A3 (en) 2007-05-09
KR20020065858A (ko) 2002-08-14
US20020105037A1 (en) 2002-08-08

Similar Documents

Publication Publication Date Title
JP3930256B2 (ja) 半導体装置及びその製造方法
US6559500B2 (en) Non-volatile semiconductor memory and its driving method
KR100235274B1 (ko) 반도체 기억장치와 그 제조방법
US6670671B2 (en) Nonvolatile semiconductor memory device and manufacturing method thereof
JP3967193B2 (ja) 不揮発性半導体記憶装置及びその製造方法
JP4152598B2 (ja) 半導体装置の製造方法
JP3397903B2 (ja) 不揮発性半導体記憶装置の製造方法
JP2003332469A (ja) 不揮発性半導体記憶装置及びその製造方法
US8154070B2 (en) Semiconductor memory device and method of manufacturing the same
US20060133146A1 (en) Semiconductor device and a method of manufacturing the same
KR20050017582A (ko) 부분 소노스 형 게이트 구조체를 제조하는 방법 및 그것을갖는 비휘발성 메모리 셀 제조 방법
JP4217409B2 (ja) 不揮発性メモリ素子及びその製造方法
US20030127683A1 (en) Nonvolatile memory devices and methods for fabricating the same
KR100605508B1 (ko) 활성영역들과 자기정렬된 부유게이트들을 갖는 플래쉬메모리 소자들 및 그 제조방법들
KR100573328B1 (ko) 불휘발성 반도체 기억 장치
KR0183484B1 (ko) 과소거 동작 보상용으로서 측벽 분할 게이트를 갖는 비휘발성 반도체 장치
US6534817B2 (en) Contactless channel write/erase flash memory cell and its fabrication method
US20070205440A1 (en) Semiconductor device and method for producing the same
US6608348B2 (en) Nonvolatile semiconductor memory array with skewed array arrangement
US6864545B2 (en) Semiconductor device including low-resistance wires electrically connected to impurity layers
TWI513007B (zh) 記憶體元件以及製造與操作記憶體元件的方法
KR100789409B1 (ko) 이이피롬 소자 및 그 제조방법
JP4428109B2 (ja) 半導体記憶装置及びその製造方法
KR20000011189A (ko) 불휘발성반도체기억장치및그제조방법
JP3274785B2 (ja) 不揮発性メモリの製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051018

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060522

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070308

R150 Certificate of patent or registration of utility model

Ref document number: 3930256

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees