JP3914287B2 - スパッタ装置及びコリメータ付着物の処理方法 - Google Patents

スパッタ装置及びコリメータ付着物の処理方法 Download PDF

Info

Publication number
JP3914287B2
JP3914287B2 JP24209296A JP24209296A JP3914287B2 JP 3914287 B2 JP3914287 B2 JP 3914287B2 JP 24209296 A JP24209296 A JP 24209296A JP 24209296 A JP24209296 A JP 24209296A JP 3914287 B2 JP3914287 B2 JP 3914287B2
Authority
JP
Japan
Prior art keywords
collimator
target
gas
plasma
sputtering apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24209296A
Other languages
English (en)
Other versions
JPH1088337A (ja
Inventor
洋一郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Priority to JP24209296A priority Critical patent/JP3914287B2/ja
Publication of JPH1088337A publication Critical patent/JPH1088337A/ja
Application granted granted Critical
Publication of JP3914287B2 publication Critical patent/JP3914287B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、コリメータを有するスパッタ装置に関し、特に、コリメータに付着した付着物の剥離を防止する手段に関するものである。
【0002】
【従来の技術】
近年の半導体デバイスの高集積化、微細化の進展に伴い、金属配線形成技術の分野においては多層配線構造の採用が急速に進んでいる。例えば、アルミニウム膜を配線層とした場合、その下地層として窒化チタン膜(TiN膜)を形成するのが一般的となっている。
【0003】
TiN膜の成膜は、通常、反応性スパッタ技術を用いて行っている。すなわち、真空処理チャンバ内にアルゴン(Ar)と窒素(N2)の混合ガスを導入し、チタン(Ti)製のターゲットからスパッタされたTiを処理チャンバ内のN2と反応させてTiNを形成し、このTiNを半導体ウェハ上に堆積させて成膜を行うこととしている。
【0004】
また、金属配線形成技術においては、近年のデザインルールの細線化に伴い、十分なボトムカバレッジ率を確保すべく、ターゲットと半導体ウェハとの間にコリメータと呼ばれる多数の孔を有する円板を設置する方法、いわゆるコリメーションスパッタ法が採用される傾向にある。コリメーションスパッタ法は、スパッタ粒子をコリメータの孔に通すことで、本来無指向性であるスパッタ粒子に指向性をもたせ、半導体ウェハ上に主として垂直方向成分のスパッタ粒子のみを堆積するようにしたものである。
【0005】
ところで、上述したような成膜技術を用いてTiN膜を半導体ウェハ上に形成する際、スパッタ粒子は半導体ウェハのみならず、真空処理チャンバ内のシールドやコリメータ等にも付着してTiN膜を形成する。半導体ウェハ以外に形成されたTiN膜は発塵源となるため、従来一般には、連続したTiNの成膜プロセスの間にTiのみを成膜するペースティングプロセスを入れ、シールド等に付いたTiN膜をTi膜で封じ込めることとしていた。
【0006】
【発明が解決しようとする課題】
従来のTiによるペースティングは、ターゲットに対向する面に形成されたTiN膜の剥離防止手段としては簡便な方法であり、効果的なものである。しかしながら、コリメータの下面(ターゲットとは反対側の面)に形成されたTiN膜に対しては十分な剥離防止効果がないという問題点があった。これは、コリメータ下面のTiN膜及びTi膜がいずれも、ガス中の拡散のみにて付着して形成される膜であるため、付着力が弱く不安定な膜となっているからである。また、粒子が付着した際に膜中の表面拡散が殆ど起こらないため、膜中に空孔等が生じ、低密度で脆弱な膜となっていることにも原因があると考えられる。このため、従来においては、ペースティングを繰り返し行っていくと、コリメータ上面のTiN膜は完全に封じ込まれた状態であるにも拘らず、コリメータ下面のTiN膜が剥離する恐れが出てくるため、早期にコリメータを交換する必要があった。
【0007】
本発明はかかる事情に鑑みてなされたものであり、その目的はコリメータ下面の付着物の剥離を効果的に防止する手段を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するための本発明によるスパッタ装置は、真空チャンバと、この真空チャンバ内で基板を支持するための支持手段と、支持手段により支持された基板の表面に対向するように設けられたターゲットと、ターゲット及び前記支持手段の間の空間にプロセスガスを供給するガス供給手段と、前記空間に供給されるプロセスガスをプラズマ化するプラズマ化手段と、ターゲット及び支持手段の間に配置されたコリメータと、コリメータを負に電荷する電荷手段とを備えることを特徴としている。
【0009】
かかる構成において、ターゲットと支持手段との間にプラズマを発生させ、コリメータを負に電荷すると、プラズマ中の正のイオン、例えばArイオンがコリメータに衝突し、TiN膜等の付着物を下地に対して押し付けることとなる。これにより、特にコリメータの裏面において、付着物の付着力が増し、また、付着物中で拡散が生じて空孔が埋められ、付着物の剥離が防止されることとなる。
【0010】
前記の電荷手段としては、コリメータを真空チャンバ、支持手段及びターゲットに対して電気的に絶縁状態とする手段が考えられる。コリメータをこのような絶縁状態、いわゆるフローティング状態とした場合、プロセスガスを流し、プラズマを立てると、コリメータに自己バイアスが発生することになる。また、コリメータに直流電源を接続して、所望の電位としてもよい。
【0011】
一方、コリメータに衝撃するイオンのエネルギが大きい場合には、正イオンは一旦付着物内に吸収され、エッチングを行うようになる。従って、本発明は、コリメータに正イオンが高エネルギで衝突するような形でプラズマを発生させ、コリメータ付着物をプラズマエッチングする方法も特徴としている。
【0012】
【発明の実施の形態】
以下、図面を参照して本発明の好適な実施形態について詳細に説明する。なお、図中、同一又は相当部分には同一符号を付することとする。
【0013】
図1は、本発明が適用されたスパッタ装置10を示す断面部分図であり、図2は、図1のスパッタ装置10におけるガス系統及び電気系統を示す概略図である。このスパッタ装置10は、TiN膜成膜用のものであり、真空チャンバ12と、その上部開口部に配置されたTi製のターゲット14とを備えている。真空チャンバ12の内部には、ターゲット14と同軸に基板支持手段たるペディスタル16が配置されている。ペディスタル16は、その上面で被処理基板である半導体ウェハ18を支持するよう構成されている。また、ペディスタル16は導電性材料から成り、好ましくは、TiN成膜プロセスに対して融和性の高いTiから作られている。このペディスタル16は、リフト機構(図示せず)により、成膜処理が行われる処理位置(図1において実線で示す位置)と、その下方の非処理位置(図1において二点鎖線で示す位置)との間で上下動可能となっている。
【0014】
真空チャンバ12は、基本的には、導電性材料のチャンバ本体20と、その上部に配置されるプロセスキット22とから構成されている。プロセスキット22は、チャンバ本体20の上部フランジ24に着脱可能に取り付けられた環状の下部アダプタ26と、この下部アダプタ26の上面に着脱可能に取り付けられた環状の上部アダプタ28とを備えている。これらのアダプタ26,28は導電性材料から成り、通常はステンレス鋼やアルミニウム(Al)、Ti等から作られている。上部アダプタ28の上面には、石英やアルミナ等から成る絶縁リング30を介して、ターゲット14の周フランジ32が載置され、着脱可能に固定されている。なお、図1において、符号34,36,38,40は、部材間の気密性を保つためのOリングである。
【0015】
また、図示実施形態のプロセスキット22はコリメータ42を有している。このコリメータ42は、断面六角形の孔43を蜂の巣状に有する従来から知られた型式の円板状プレートであり、Tiから作られている。コリメータ42は、下部アダプタ26の内周面から内方に突出する内フランジ44に載置されたサポートアセンブリ46により支持されている。より詳細に述べるならば、サポートアセンブリ46は、下部アダプタ26の内フランジ44に載置されるステンレス鋼、Al或はTi等の導電性材料から成るアウタサポートリング48と、このアウタサポートリング48の内周面の内フランジ50に載置される石英或はアルミナ等の絶縁材料から成るインナサポートリング52とから構成されている。そして、コリメータ42は、インナサポートリング52の内周面下縁から内方に延びる突出部54に載置され、これにより、ターゲット14とペディスタル16との間に平行に配置されるようになっている。
【0016】
プロセスキット22には、更に、チャンバ内壁面がスパッタ粒子でコーティングされるのを防止するためのシールドが設けられている。図示実施形態においては、上部アダプタ28とコリメータ42との間のチャンバ内壁面を保護する環状の上部シールド56と、コリメータ42と処理位置にあるペディスタル16との間のチャンバ内壁面を保護する環状の下部シールド58とが設けられている。これらのシールド56,58は導電性材料から成り、好ましくはTiから作られている。上部シールド56は、上部アダプタ28の下面にねじ止めされ、コリメータ42の上部外周縁の近傍まで延びており、その下縁部はコリメータ42から一定の間隙をもって離隔されている。また、下部シールド58は、下部アダプタ26の下面にねじ止めされ、処理位置のペディスタル16の外周面の近傍まで延びている。
【0017】
下部シールド58の自由縁部は上方に折り返されており、この部分60は、ペディスタル16が非処理位置に下降された際、クランプリング62を支持するようになっている。クランプリング62は、ペディスタル16が処理位置に上昇されたときに半導体ウェハ18をペディスタル16に押え付け、ウェハ18の裏面に、ガス加熱のため、圧力が均等に加わるようにするためのものである。
【0018】
上記説明から理解されるように、チャンバ本体20、上下のアダプタ26,28、上下のシールド56,58及びアウタサポートリング48は互いに電気的に接続されており、また、ペディスタル16もチャンバ本体20に電気的に絶縁されている。一方、ターゲット14は絶縁リング30によりチャンバ本体20等から絶縁されている。図2に示すように、ターゲット14には直流電源64の負端子が接続されており、直流電源64の正端子はチャンバ本体20に接続されると共に接地されている。更に、コリメータ42は、絶縁材料から成るインナサポートリング52によりチャンバ本体20等から絶縁されているが、コリメータ42とチャンバ本体20等との間は、スイッチ66が介接された電気配線68により接続されている。
【0019】
チャンバ本体20には、更に、プロセスガスの供給手段としてArガス供給源70及びN2ガス供給源72が接続されており、また、チャンバ12内を真空とするための真空ポンプ74が接続されている。
【0020】
このような構成のスパッタ装置10において、半導体ウェハ18の表面にTiN膜を反応性スパッタ法により成膜する場合、まず、真空ポンプ74を作動させて真空チャンバ20内を所定の真空度まで減圧した後、Arガス供給源70及びN2ガス供給源72から所定流量でArガスとN2ガスを供給して混合ガスとし、真空チャンバ12内に導入する。次いで、ペディスタル16の上面に半導体ウェハ18を載置し、ペディスタル16を上昇させて処理位置に配置する。そして、スイッチ66を閉じた状態とし、直流電源64を投入してターゲット14に負のバイアスをかけると、ターゲット14とペディスタル16との間、より詳細にはターゲット14とコリメータ42との間にプラズマが発生し、プラズマ中の正のArイオンが、負に電荷しているターゲット14を衝撃する。Arイオンがターゲット14に衝突すると、ターゲット14からターゲット原子、すなわちTi粒子がはじき出される。このTiは真空チャンバ12内のN2と反応してTiNとなり、半導体ウェハ18上に堆積されTiN膜を形成する。
【0021】
この成膜プロセスにおいて、ターゲット14とペディスタル16との間には、接地されたコリメータ42が配置されているため、ターゲット14からペディスタル16に向かうTiN粒子のうち実質的に垂直方向に進む粒子のみがコリメータ42の孔43を通過する。従って、半導体ウェハ18上に成膜されたTiN膜は、ボトムカバレッジ率の高いものとなる。
【0022】
一方、垂直方向成分以外のTiN粒子はコリメータ42の上面42aや孔43の内面42bに付着してTiN膜を形成する。また、ガスの拡散により、コリメータ42の下面42cにもTiN粒子は付着する。かかるコリメータ42に形成されたTiN膜は発塵源となる可能性がある。特に、コリメータ42の下面42cに形成されたTiN膜は、前述したように付着力が弱く、低密度で脆弱な膜となっているため、剥離し易い。
【0023】
そこで、上記の成膜プロセスが連続して所定回数行われたならば、コリメータ42に形成されたTiN膜の剥離を防止するためのプロセスを引続き行う。このTiN膜剥離防止プロセスでは、まず、従来と同様にしてTiによるペースティングを行う。すなわち、ArとN2の混合ガスの導入を停止し、真空チャンバ12内を清浄化すべく真空引きを行った後、Arガスのみを真空チャンバ12内に導入する。また、ペディスタル16上に半導体ウェハ18と同一形状のシャッタディスク(図示せず)を載置し、ペディスタル16を処理位置に上昇させる。この後、スイッチ66が閉じられていることを確認し、直流電源64を投入してターゲット14とコリメータ42との間にプラズマを発生させると、プラズマ中のArイオンがターゲット14に衝撃してTi粒子がスパッタされ、シャッタディスクの上面はもとより、コリメータ42やシールド56,58、クランプリング62等の表面に形成されたTiN膜上に堆積する。ターゲット14からスパッタされたTi粒子が直接コリメータ42の上面等に付着する場合、そのTi粒子の持つエネルギが大きいので、形成されるTi膜は高密度で安定した膜となり、下層となるTiN膜の剥離が防止される。
【0024】
Tiによるペースティングを開始して一定時間経過したならば、次に、直流電源64をオンの状態としたまま、スイッチ66を切る。これにより、コリメータ42は、チャンバ本体20及びターゲット14等から電気的に分離した浮遊(フローティング)状態となり、負の浮遊電位が与えられる。従って、プラズマ中に存するArイオンの一部が、負の電位を持つコリメータ42に向い、コリメータ42上の膜に衝撃する。このプロセスでは、プラズマはペディスタル16とターゲット14との間で生じ、コリメータ42の下側の領域にもプラズマが存在する。このため、コリメータ42の下面側もArイオンの衝撃を受ける。
【0025】
コリメータ42の下面42c側のTiN膜及びTi膜は、ガス中の拡散により飛来する粒子から形成されているため、付着力が弱く、空孔も多い。かかる膜がArイオンの衝撃を受けた場合、押し固められて下地に対する付着力を増す。また、イオン衝撃により膜中で拡散が起こり、空孔がTiN又はTiにより埋まり、Ti膜及びTiN膜はじん性を有する高密度の膜となる。既に有効にペースティングがなされているコリメータ42の上面42a側の膜についても同様な作用を受ける。このようにして、コリメータ42の表面に形成されたTiN膜は全体的にTi膜によりしっかりとペースティングされた状態となり、剥離が防止される。なお、コリメータ42の負の浮遊電位はターゲット14の負の電位よりも相当に高いため、コリメータ42に向うArイオンのエネルギは低く、エッチング作用が生ずることはない。
【0026】
スイッチ66を切ってから所定時間経過したならば、すなわちコリメータ42にイオンを低エネルギで衝撃させるプロセス(以下、「イオン衝撃プロセス」という)が終了したならば、直流電源64をオフにして、一連のTiN膜剥離防止プロセスを完了する。
【0027】
上記のTiN膜剥離防止プロセスでは、Tiによるペースティングプロセスの後に、スイッチ66を切ってイオン衝撃プロセスを行うこととしているが、直流電源64の投入と同時にスイッチ66を切り、イオン衝撃プロセスのみを行うことも考えられる。イオン衝撃プロセスにおいても、ターゲット14からTiがスパッタされてコリメータ42上に付着するが、Tiによるペースティング効果よりもむしろ、Arイオンの衝撃に起因する膜の稠密化、付着力の増大化による膜剥離防止効果の方が顕著となる。
【0028】
図3は、本発明の第2実施形態を示す概略図である。上記の第1実施形態では、膜剥離防止プロセスにおいてコリメータ42を真空チャンバ12及びターゲット14から電気的に絶縁することで、浮遊電位を与える構成としているが、第2実施形態は、コリメータ42に第2の直流電源76により負の電位を与えるよう構成されている。より詳細には、コリメータ42は、切換えスイッチ78により第2の直流電源76の負端子側又は接地側のいずれかに選択的に接続可能とされており、第2の直流電源76の正端子は接地されている。その他の構成については、第1実施形態と同様であり、その説明は省略する。
【0029】
このような構成において、通常の成膜プロセス及びペースティングプロセスでは、第1実施形態の場合と同様に、コリメータ42は接地された状態に維持される。また、膜剥離防止のためのイオン衝撃プロセスも前述とほぼ同じ手順で行われるが、スイッチ78を切り換えてコリメータ42を第2の直流電源76の負端子に接続する点で相違する。コリメータ42に直流電源76が接続されると、コリメータ42は直流電源76により規定される負の電位となる。従って、ペディスタル16とターゲット14との間で生成されたプラズマ中のArイオンの一部はコリメータ42に向い、コリメータ42上のTi膜或はTiN膜を叩く。その結果として、コリメータ42上の膜は下地に対して付着力を増し、また、膜中の空孔が埋められて高密度で安定した膜となる。
【0030】
ここで、第2の直流電源76により与えられるコリメータ42の電位は、Arイオン衝撃による付着力の増大化ないしは高密度化という効果が有効に発揮される電位であればいかなる値でもよい。例えば、真空チャンバ12内の圧力が1〜5mTorr、ターゲット14の電位が−400〜600Vである場合、コリメータ42の電位は−10〜−100V程度とするのが好適である。
【0031】
なお、コリメータ42に向うArイオンのエネルギが或るしきい値を超えた場合には、膜の高密度化ではなく、コリメータ42上の膜に吸収されてエッチングを行うようになる。かかるエッチングは、発塵源となる膜そのものを除去するものであり、結果的に膜の剥離防止となる。エッチングを行う場合、図3に示すように、第2の直流電源76に代えて高周波電源80をコリメータ42に接続し、プラズマで自己バイアスを発生すればよい。この場合、成膜プロセスの終了後、排気しArガスのみを真空チャンバ12内に供給し、高周波電源を投入して、コリメータ42とペディスタル16との間でプラズマを生成させることとなる。これにより、プラズマ中のArイオンがコリメータ42の下面42c側に衝突し、付着しているTiN膜をスパッタエッチングすることが可能となる。
【0032】
以上、本発明の好適な実施形態について詳細に説明したが、本発明は上記実施形態に限定されないことはいうまでもない。例えば、上記実施形態では、剥離防止の対象はTiN膜であるが、他の材料、例えばタングステンから成る膜の剥離を防止するようにしてもよい。
【0033】
【発明の効果】
以上述べたように、本発明によれば、コリメータ上の付着物の剥離が容易に起こらない状態とすることができ、或はまた、付着物そのものを除去することができる。従って、コリメータ上の付着物が原因となる汚染粒子が生ずる可能性が低減され、製造される半導体デバイス等の歩留りが向上する。
【0034】
また、長期にわたり、コリメータを交換せずに成膜プロセスを実施することが可能となる。コリメータを交換する場合、真空チャンバを開放する必要があり、また、再度チャンジ内を所定の真空度まで減圧するには相当な時間を要するため、スパッタ装置の稼働停止時間が長くなり、生産効率が低下するが、本発明によれば、コリメータの交換回数が減るため、生産性、コスト・オブ・オーナーシップが格段に向上する。
【図面の簡単な説明】
【図1】本発明によるスパッタ装置の一実施形態を示す断面部分図である。
【図2】第1実施形態におけるスパッタ装置のガス系統及び電気系統を示す概略図である。
【図3】第2実施形態におけるスパッタ装置のガス系統及び電気系統を示す概略図である。
【図4】第3実施形態におけるスパッタ装置のガス系統及び電気系統を示す概略図である。
【符号の説明】
10…スパッタ装置、12…真空チャンバ、14…ターゲット、16…ペディスタル、18…半導体ウェハ、20…チャンバ本体、22…プロセスキット、42…コリメータ、64…直流電源、66…スイッチ、70…Arガス供給源、72…N2ガス供給源、76…第2の直流電源、78…切換えスイッチ、80…高周波電源。

Claims (9)

  1. 真空チャンバと、
    前記真空チャンバ内で基板を支持するための支持手段と、
    前記支持手段により支持された基板の表面に対向するように設けられたターゲットと、
    前記ターゲット及び前記支持手段の間の空間にプロセスガスを供給するガス供給手段と、
    前記空間に供給されるプロセスガスをプラズマ化するプラズマ化手段と、
    前記ターゲット及び前記支持手段の間に配置されたコリメータと、
    前記コリメータに前記プラズマガスの正イオンを衝撃させ前記コリメータ上の付着物を高密度化すべく前記コリメータを負に電荷するための、前記コリメータに接続された直流電源と、
    を備えるスパッタ装置。
  2. 前記プラズマ化手段が、前記ターゲットと前記支持手段との間に接続された直流電源である請求項1に記載のスパッタ装置。
  3. 前記プロセスガスがアルゴンガスである請求項1又は2に記載のスパッタ装置。
  4. 前記ターゲットがチタンであり、前記ガス供給手段が、アルゴンガス及び窒素ガスの混合ガス又はアルゴンガスをプロセスガスとして選択的に供給できるようになっている、請求項1〜3のいずれか1項に記載のスパッタ装置。
  5. 真空チャンバと、前記真空チャンバ内で基板を支持するための支持手段と、前記支持手段により支持された基板の表面に対向するように設けられたターゲットと、前記ターゲット及び前記支持手段の間に配置されたコリメータとを有するスパッタ装置において、前記コリメータ上の付着物の剥離を防止するための処理方法であって、
    前記真空チャンバ内にプロセスガスを供給するステップと、
    前記ターゲットと前記支持手段との間でプラズマを生成するステップと、
    前記プラズマ中に存在するプロセスガス成分の正イオンを前記コリメータに衝撃させ前記コリメータ上の付着物を高密度化すべく、前記コリメータに直流電源を接続することにより前記コリメータを負に電荷するステップと、
    を備えるコリメータ付着物の処理方法。
  6. 前記プラズマを生成するステップは、前記ターゲットと前記支持手段との間に直流電源を接続することにより行われる請求項5に記載のコリメータ付着物の処理方法。
  7. 前記プロセスガスがアルゴンガスである請求項5又は6に記載のコリメータ付着物の処理方法。
  8. 前記付着物が窒化チタンである請求項5〜7のいずれか1項に記載のコリメータ付着物の処理方法。
  9. 前記コリメータを負に電荷するステップに先立ち、前記付着物である窒化チタンの上にチタンを堆積させペースティングを行う請求項8に記載のコリメータ付着物の処理方法。
JP24209296A 1996-09-12 1996-09-12 スパッタ装置及びコリメータ付着物の処理方法 Expired - Fee Related JP3914287B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24209296A JP3914287B2 (ja) 1996-09-12 1996-09-12 スパッタ装置及びコリメータ付着物の処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24209296A JP3914287B2 (ja) 1996-09-12 1996-09-12 スパッタ装置及びコリメータ付着物の処理方法

Publications (2)

Publication Number Publication Date
JPH1088337A JPH1088337A (ja) 1998-04-07
JP3914287B2 true JP3914287B2 (ja) 2007-05-16

Family

ID=17084185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24209296A Expired - Fee Related JP3914287B2 (ja) 1996-09-12 1996-09-12 スパッタ装置及びコリメータ付着物の処理方法

Country Status (1)

Country Link
JP (1) JP3914287B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9147558B2 (en) * 2013-01-16 2015-09-29 Applied Materials, Inc. Finned shutter disk for a substrate process chamber
US9831074B2 (en) 2013-10-24 2017-11-28 Applied Materials, Inc. Bipolar collimator utilized in a physical vapor deposition chamber
US9953813B2 (en) * 2014-06-06 2018-04-24 Applied Materials, Inc. Methods and apparatus for improved metal ion filtering

Also Published As

Publication number Publication date
JPH1088337A (ja) 1998-04-07

Similar Documents

Publication Publication Date Title
EP3920210B1 (en) Biasable flux optimizer/collimator for pvd sputter chamber
KR100296484B1 (ko) 시준기를구비한물리기상증착챔버및그클리닝방법
JP5889894B2 (ja) 高アスペクト比の特徴要素に金属を堆積する方法
US5202008A (en) Method for preparing a shield to reduce particles in a physical vapor deposition chamber
US5460689A (en) High pressure plasma treatment method and apparatus
US5985102A (en) Kit for electrically isolating collimator of PVD chamber, chamber so modified, and method of using
JPH10195644A (ja) スパッタチャンバ及びスッパタターゲット
US8563428B2 (en) Methods for depositing metal in high aspect ratio features
JPH08321491A (ja) ウエハ清浄化スパッタリングプロセス
KR100284248B1 (ko) 스퍼터링장치
EP0446657B1 (en) Method for preparing a shield to reduce particles in a physical vapor deposition chamber
KR20010043965A (ko) 예비 세정 챔버용 페디스틀 절연체
JP3914287B2 (ja) スパッタ装置及びコリメータ付着物の処理方法
JP7509790B2 (ja) パルスpvdにおけるプラズマ改質によるウエハからの粒子除去方法
JPH06136527A (ja) スパッタリング用ターゲットおよびそれを用いたスパッタリング装置とスパッタリング法
JP3905584B2 (ja) スパッタ装置及びコリメータ付着物の処理方法
EP0480504B1 (en) Method of reducing particle contamination during sputtering
JPH0892764A (ja) スパッタ装置
JPH10176267A (ja) スパッタ装置
JP5265309B2 (ja) スパッタリング方法
JP4364335B2 (ja) スパッタリング装置
JP4526139B2 (ja) 基板処理装置及びスパッタリング装置
JP3116904B2 (ja) 半導体装置の成膜処理装置、半導体装置の製造方法及び半導体の薄膜形成方法
JPH08203828A (ja) スパッタリング方法およびその装置
JPH11140640A (ja) 選択スパッタリング装置、及び薄膜形成方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees