JP3866406B2 - Coagulation sedimentation apparatus and operation method thereof - Google Patents

Coagulation sedimentation apparatus and operation method thereof Download PDF

Info

Publication number
JP3866406B2
JP3866406B2 JP05797698A JP5797698A JP3866406B2 JP 3866406 B2 JP3866406 B2 JP 3866406B2 JP 05797698 A JP05797698 A JP 05797698A JP 5797698 A JP5797698 A JP 5797698A JP 3866406 B2 JP3866406 B2 JP 3866406B2
Authority
JP
Japan
Prior art keywords
water
filler
treated
tank
sedimentation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05797698A
Other languages
Japanese (ja)
Other versions
JPH11253704A (en
Inventor
和彦 清水
寿昭 落合
雅博 川端
友明 宮ノ下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP05797698A priority Critical patent/JP3866406B2/en
Publication of JPH11253704A publication Critical patent/JPH11253704A/en
Application granted granted Critical
Publication of JP3866406B2 publication Critical patent/JP3866406B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Filtration Of Liquid (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、被処理水中の懸濁物(SS)を凝集沈殿させる装置及びその運転方法に係わり、詳しくは、被処理水に砂等の不溶性粒状物を添加して高い沈降速度で効率的に凝集沈澱処理を行わせることができるSSの除去装置に関する。
【0002】
【従来技術】
微細な有機,無機等の懸濁物(SS)を除去する方法として知られる凝集沈澱法は、一般に、凝集沈澱処理における凝集およびフロック形成過程において生成した多数のフロックに粒径や密度の分布があるため、各フロックの沈降速度に大小の違いがあり、微細なフロック(以下「微フロック」という)を除去するには水面積負荷(上昇流速)を1m/h程度にする必要があって、単純には沈澱槽が極端に大きくなることが知られている。
【0003】
そこで、処理量や処理時間を効率化するための対策が従来からいくつか提案されていて、その一つに、生成フロックの粒径や密度分布を極力なくすために反応槽を多段に設置し、徐々に攪拌槽の攪拌強度を減少させるテーパードフロキュレーション法が知られている。しかしこの方法は、攪拌装置や槽数が多くなるという欠点がある。
【0004】
また他に、微細なフロックがある程度生じてしまう反応槽でも高い上昇流速が採れる方法として、スラッジブランケット法やスラッジブランケットと傾斜板との併用法が知られている。このスラッジブランケット法は、フロックをブランケットに接触させて吸合させるため、フロック形成層で比較的小さく、沈降速度が遅いフロックが生成しても、上昇流速を高くできるという特徴がある。しかし、実際の操作においては、供給装置の影響による短絡流や温度の影響による密度流によつて被処理水の流れに乱れが生ずる場合があり、このためブランケットから小さなフロックが離脱したり短絡し、処理水を悪化させる問題が避けられない。そこで更に、傾斜板を設置してこれらのリークしたフロックを再度沈降させるようにした方法も知られている。この傾斜板は、沈降面積を増大させる作用をなすものであり、例えば沈降面積を5〜10倍程度に増大させて小さなフロックを沈降させ、また上記の被処理水の乱れを防止する作用も果たして処理水の悪化を防止・改善することができる。
【0005】
しかし、上述したいずれの方法も、フロックを自然沈降で高速に分離することができないので、処理量や処理時間を効率化するには限界がある。
【0006】
これらに代わり、被処理水中のSSの迅速な沈澱分離を実現する方法として、砂等の不溶性粒状物と凝集剤を添加し、不溶性粒状物の懸濁状態下でSS凝集物の生成、フロックの成長を行わせ、これによりフロックに不溶性粒状物を含ませて沈降速度を向上させ、15〜150m/hのような高流速,高流量の通水を実現する方法も提案されている(特許2634230号公報、特開平9847606号公報)。またスラッジブランケット法において不溶性粒状物を含むフロックを形成させる方法も提案されている(特開平9−141006号公報)。
【0007】
【発明が解決しようとする課題】
しかしこれらの方法においても、生成されるフロックは様々であって粒度分布が生ずることは避けられない。例えば、粒径の大きいものでは不溶性粒状物を巻き込んで粒径が1〜4mm程度と大きく、沈降速度が100〜500m/hに達するものもあるが、一方において、粒径が100〜200μm程度と小さいために不溶性粒状物と結合できず沈降速度が0.5〜2m/h程度の微フロックも生成する。なお微フロック生成の要因としては、例えば有機性排水等の原水のSS成分の性質、原水流量の変動、原水水質の変動による凝集剤添加量の不適等が挙げられる。
【0008】
したがって、上記のような15〜150m/hの高流速で処理をすると、これらの微フロックは容易にリークして処理水を悪化させる結果となる。またこの装置に傾斜板を付設しても、傾斜板により得られる沈降面積の増大は5〜10倍程度であって、上述の微フロックの沈降速度から分かるようにこれがリークしてしまう問題は解消できない。また、傾斜板は、その形状がゆえに種々の形の槽に設置するには手間がかかり、沈降面積の増大を大きくするために設置間隔を狭めるとフロックで閉塞し易くなるという問題がある。一般に閉塞した傾斜板の洗浄は容易でないことが知られている。
【0009】
ところで、沈降,沈澱の作用に基づく上述した凝集沈澱法とは異なり、主にろ過の作用を利用した凝集沈澱処理法が知られている(特開平6−304411号公報)。この処理法は、小さな充填材(接触材)を集積して充填材充填層を形成させ、これに被処理水を上昇流速200〜800m/d(8.3〜33.3m/h)程度の上向流で流し、充填材がその上向流を部分的に制約することで充填材の流れの裏側(下流側)によどみを形成させて、このよどみ部分で微フロックを滞留させるようにして微フロックの成長、沈降を行わせる方法である。この処理方法は、上述した不溶性粒状物を添加する処理方法とは全く異質な技術であるが、本発明者がこのろ過作用を有する充填材充填層を上記の不溶性粒状物を添加する処理方法と組合せて試験を行ったところ、高速,高流量の処理と、高清澄の処理水が同時に実現できるという極めて驚くべき結果が得られることを見い出した。すなわち、上記の充填材充填層を用いる方法は、上昇流速をあまり高くすると、微フロックだけでなくフロックの多くが充填材充填層に上昇して沈殿してしまい、比較的短時間のうちにフロックのリークを招くことになるため高い頻度で洗浄が必要になる。このため従来は、実施に際して考えられる流速はあまり高く設定することができないと考えられており、数十m/h〜200m/hのような高流速でこの充填材充填層に上向流を通水する試みはされていない。
【0010】
ところが、上記不溶性粒状物を添加する凝集沈澱法と、充填材充填層による凝集沈澱の処理とを組合せた場合、高速処理の場合であっても成長度合は異なるものの微フロックの滞留が起こって処理水側にこれがリークしないことを本発明者は見い出し、同時に、高清澄度の処理水が得られることも併せて知見したのである。しかもこれに加えて、上昇流速を高速としても従来のような充填材充填層に堆積するフロックが多量になるという問題がなく、洗浄頻度は従来の充填材充填層を用いる方法に比べて大幅に低減できることが確認されたのである。洗浄頻度の大小は工業的には極めて大きな意味をもち、洗浄頻度が高いと洗浄排水量が増大し、また洗浄時間(洗浄と洗浄後の装置立上げ)の間処理を中断せねばならず装置の稼働率が低下するという問題を招く。
【0011】
本発明者は以上のような知見に基づいて本発明をなすに至った。
【0012】
【課題を解決するための手段】
本願請求項1の凝集沈澱装置の発明は、被処理水に不溶性粒状物及び凝集剤を添加し、懸濁状態下で被処理水中の懸濁物の凝集とフロック成長を行わせる凝集槽と、この凝集槽から導入された流出水から不溶性粒状物を含むフロックを沈降させて水と分離する沈降槽とを備えた凝集沈澱装置において、多数の充填材がランダムに集積することでろ過及び凝集の作用を行う充填材充填層を上記沈降槽内の上部側に設け、上記フロックが沈降分離された被処理水を充填材充填層に上向流で通して沈降槽上部から処理水を排出することを特徴とする。
【0013】
上記構成において、不溶性粒状物は通常砂が用いられるが、砂に限定されるものではなく、粒径10〜200μm程度の砂、あるいは砂に近似する比重を有する無機又は有機の粒状物を用いることが好ましい。
【0014】
凝集剤としてはポリ塩化アルミニウム(PAC)、塩化第二鉄、硫酸第二鉄等の無機凝集剤と、アニオン性高分子凝集剤、両性高分子凝集剤等の高分子凝集剤が併用される。無機凝集剤は主に被処理水中の懸濁物(SS)を凝集させ、高分子凝集剤は主にこれらの凝集物や不溶性粒状物(以下「砂」で総称する)を大きなフロックに成長させる。
【0015】
凝集槽において懸濁物の凝集とフロック成長を行わせる懸濁状態は、比重の大きな砂が沈殿しない程度に例えば攪拌機で攪拌することにより与えられる。また、被処理水に砂及び凝集剤を添加する方法は、凝集槽が一槽式の場合はこれらを該一槽に添加する方法、凝集槽への被処理水の導入配管の途中で無機凝集剤を添加し、槽内に砂と高分子凝集剤を添加する方法のいずれであってもよい。また、凝集槽を二槽形式にして初段の槽で砂と無機凝集剤と添加して凝集を行わせ、次段の槽に高分子凝集剤を添加してフロックの成長を行わせるようにしてもよいし、初段の槽に無機凝集剤を添加して凝集を行わせ、次段の槽で砂と高分子凝集剤を添加してフロックの成長を行わせるようにしてもよい。二槽形式の場合には懸濁状態を与える攪拌の強さを初段に比べて次段の槽において弱くすることもできる。また凝集槽は二槽以上の多槽としてもよい。
【0016】
砂を含むフロックを沈降させて水と分離する沈降槽は、一般的には凝集槽から下降流で被処理水を導入するように構成される。沈降槽に導入された被処理水中に含まれるフロックは、粒径が大きく比重が大きいために沈降速度の大きなフロックは迅速に該沈降槽の底部に沈降する。これにより被処理水中に含まれる大部分の懸濁物(SS)は沈降するフロックに含まれて水と分離される。一方、水は該沈降槽の上部から、例えば溢流形式で外部に排出されるが、この際、本発明においては沈降槽の上部側に設けられた充填材充填層を通ることで、沈降せずに水と共に沈降槽の上部側に流れる微フロックがこの充填材充填層で捕捉される。沈降沈殿したフロックは、汚泥引抜きポンプ等の引抜き手段で装置外に排出され、必要に応じて、上述した特許2634230号公報、特開平9847606号公報、特開平9−141006号公報に記載されているように、引抜いた汚泥からサイクロン等の分離器を用いて砂を分離し再利用することもできる。
【0017】
上記構成において、沈降槽の上部側に設けられる充填材充填層は、多数の充填材(接触材)がランダムに集積することで上向流を部分的に制約して充填材の流れの裏側によどみを形成し、このよどみ部分で微フロックを滞留させて微フロックの成長、沈降凝集というろ過の作用を行う。このような充填材充填層は、例えば直径4〜12mm程度で長さが15〜20mm程度のプラスチック製の短尺チューブ型小片を充填材として、これをランダムに集積させることで形成することができるが、特にこれに限定されるものではなく、内部中空の球体の球面に多数の孔を穿った充填材、あるいはテラレットパッキン等を用いることもできる。なお、この充填材充填層は、高流速の上向流を通す通水路として機能する必要があるから、層全体としてできるだけ高い空隙率を有していながら、上向流に対してよどみ部分を形成するために大きな表面積をもつことができる大きさ、形状の充填材が好ましく選択して使用される。
【0018】
本発明によれば、例えば30〜300m/hという高流速での被処理水の通水を行いながら、被処理水中の大部分の懸濁物(SS)は砂と凝集剤の添加で形成された粒径が大きく沈降速度が大きいフロックとして沈降槽で迅速に沈降させることができ、一方、粒径等の分布があるために生成が避けられない微フロックについては、上記の高流速の処理でありながら充填材充填層のろ過作用で確実に捕捉することができて処理水中へのリークを防ぐことができ、しかも、充填材の集積部内で通水に対して多数ランダムによどみ部分が存在するため、通水中に含まれる微フロックは充填材表面に沈着ないしその周囲に浮遊して他の微小フロックと邂逅結合しフロック成長する。そして、被処理水中のSSの大部分は上述のようにフロックとして沈降分離されるために微フロックの量自体が少なく、洗浄頻度を低くできる利点が得られる。
【0019】
請求項3の発明は、上記の各発明において、充填材充填層が、充填材流出防止ネットを上部に有し、充填材は上向流の通水状態でこのネットの下側に浮上して集積するようにしたことを特徴とする。
【0020】
この発明によれば、充填材を洗浄する際に上向流の通水を止め、洗浄水または洗浄空気を使用することで該充填材を振動、遊動させて、蓄積したフロックを沈降させることが容易になり、洗浄操作が簡単になる。この発明のために用いられる充填材としては、例えば真比重が1前後のものが好ましく用いられる。
【0021】
請求項4の発明は、上記請求項1又は2の発明において、充填材充填層を上向流の通水時に固定する手段を有するようにしたことを特徴とする。
【0022】
充填材充填層を固定する手段は、例えば充填材充填層の上・下に充填材が通過できない網目のネットを一対に配置し、該ネットにより充填材充填層を上下からサンドイッチするように構成してもよいし、充填材が水に浮く場合は、上部のみにネットを配置することもできる。なお、充填材充填層の洗浄のためには、上記一対のネットを用いる場合は、通水処理時には実質的に遊動しないが、洗浄時においては洗浄水もしくは洗浄空気により充填材が振動、遊動ができるような充填密度とすることがよい。
【0023】
請求項5の凝集沈澱装置の運転方法の発明は、被処理水に砂及び凝集剤を添加し、攪拌状態下で被処理水中の懸濁物の凝集とフロック成長を行わせる凝集槽と、この凝集槽から導入された流出水から砂を含むフロックを沈降させて水と分離する沈降槽とを備え、この沈降槽内の上部側に多数の充填材がランダムに集積されてろ過及び凝集の作用を行う充填材充填層を設けた凝集沈澱装置において、前記充填材充填層に30〜300m/h、好ましくは50〜200m/h、最適には80〜150m/hの通水速度で上向流で被処理水を通して、沈降槽上部から処理水を排出することを特徴とする。
【0024】
この発明によれば、30m/h以上という高流速で凝集沈殿の処理を行いながら、同時に清澄度の高い処理水を得ることができる。
【0025】
本発明の装置及び運転方法は、種々の用途に用いられる被処理水の処理のために適用することができ、例えば河川水,湖沼水,地下水等から家庭用水、工業用水、農業用水に利用する処理水を得ることに用いられ、必要に応じて凝集沈殿処理の後段でこれらに適した処理が行われる。また下水,種々の工業廃水を処理して自然環境に排出することにも適用するできる。
【0026】
【発明の実施の形態】
実施形態1
図1は、本発明の凝集沈殿装置の構成概要一例を示した図であり、被処理原水(以下単に「原水」という)は、原水供給配管1から一槽式の凝集槽2に供給される。またこの原水供給配管1の途中には、無機凝集剤添加配管3が接続されて無機凝集剤を原水に添加するようになっている。4は凝集槽2に高分子凝集剤を供給するための高分子凝集剤添加配管であり、5は同じく凝集槽2に砂を供給するための砂添加配管である。
【0027】
6は凝集槽2に設けられた攪拌装置であり、攪拌羽根601は、モータ602によって、該凝集槽2に供給された砂が沈殿せずに懸濁状態に保たれる所定の攪拌速度で回転される。
【0028】
以上のように構成された凝集槽2において、この凝集槽2に供給された原水に含まれている懸濁物(SS)の大部分は、砂,無機凝集剤及び高分子凝集剤が添加された被処理水中で砂を含んだ凝集体となり、フロックを形成して成長することで、粒径が大きくかつ沈降速度が大きなフロック(以下便宜的に「大フロック」という)となる。しかし一方において、上述のように粒度にある程度の分布が生ずることは避けられないために、粒径が小さく、沈降速度の小さい微フロックも生成する。
【0029】
7は沈降槽であり、凝集槽2との隔壁201の上部を越えて被処理水が下降流で導入されるようになっていると共に、底部は逆円錐形に設けられて沈降沈殿したフロックの逆円錐形頂部からの抜出しを容易とするように構成されている。すなわち、上記の大フロックと微フロックを含む被処理水が上記凝集槽2からこの沈降槽7に下降流で導入されると、大フロックはこれが大きな沈降速度をもつ性質のものであるために迅速に槽底部に沈降し、底部に接続された汚泥引抜配管701を介して汚泥引抜ポンプ702によって引き抜かれる。703はこの汚泥引抜きの作業を効率化するための掻寄せ器であり、モータ7031により掻寄せ羽根7032を回転させるようになっている。なお本例では、上記汚泥引抜ポンプ702で引抜かれた汚泥は返送管704を介して分離器であるサイクロン501に送られ、汚泥から分離した砂は上述した砂添加配管5から凝集槽2に供給するというリサイクル方式を採用している。砂と分離された汚泥は、汚泥排出管502を通して系外に排出される。
【0030】
8は上記沈降槽7の上部側に設けられた充填材充填層であり、本例では、上下に一対をなすネット(充填材が通過できない網目をもつ)801,802によって、直径4〜12mm程度、長さ15〜20mm程度のプラスチック製の短尺チューブ型構造の充填材803の多数を通水処理時に実質的に遊動できないサンドイッチ状態に保持するようにして形成されている。そして沈降槽7の充填材充填層8の更に上方には、溢流形式で処理水を排出する溢流樋705が設けられ、処理水排出配管706から処理水が排出される。
【0031】
上記構成の沈降槽7によれば、大部分の大フロックはその底部に迅速に沈降するが、被処理水が高流速であるために沈降しない微フロックはその高流速の流れに乗って排出側に流れ、充填材充填層8を通ることになる。その際に、図2に模式的に示したように、集積された充填材803はその姿勢がランダムであるために図2の垂直上方に流れる上向流を妨げる作用を示し、その流れの下流側(充填材の裏側)によどみが発生することになる。このよどみ部分では上向流の流れに比べて微フロックを流れの下流側に流す力が弱いため、微フロックは滞留し、あるいは充填材の表面に沈降して蓄積される。またそのような複数の微フロックが邂逅し、結合してフロックがより大きなものに成長する。
【0032】
したがって、微フロックが溢流樋705から処理水排出配管706を通して直接リークする虞れは大幅に低減されることになり、高清澄な処理水を得ることができる。
【0033】
また後述する実施例から分かるように、一般に、ろ過方式で高流速の処理を行った場合には短時間のうちにろ過層が目詰まりするのが普通であるのに対し、本例の装置においては、充填材充填層に蓄積するフロックの洗浄を行う頻度を著しく少なくすることができて工業的に極めて有利な利益を得ることができる。
【0034】
【実施例】
実施例1
図1の装置を簡略化した試験装置を図3のように構成した。すなわち、図1の凝集槽2と実質的に同じ凝集槽12に対し、原水供給配管11、無機凝集剤添加配管13、高分子凝集剤添加配管14、砂添加配管15を接続し、攪拌装置16を設けた。また、縦筒型の槽17の底部から汚泥引抜ポンプ1702により汚泥を引抜き、上部に充填材充填層18を設けた沈降槽17の充填材充填層下方位置に上記凝集槽12の上部から流出した被処理水を導入するように配管19を接続して装置を構成した。なお、1601は攪拌羽根、1602はモータ、1701は汚泥引抜配管、1702汚泥引抜ポンプ、1704は返送管、1706は処理水排出配管、1501はサイクロン、1502は汚泥排出管である。
【0035】
以上の概要で説明されるように構成した装置を用いて、以下の具体的な装置仕様と実施条件によって凝集沈殿処理を行った。
【0036】
また比較のために、砂の添加を行わないようにした図4の装置を構成して、同様に以下の具体的な装置仕様と実施条件によって比較例1の凝集沈殿処理を行った。
【0037】
〈装置の仕様〉
実施例1(図3の装置)
凝集槽12:200リットル
沈降槽17:200mmφ×2500mmH
充填材 :4mmφ×6mm短尺チューブ型構造品(ポリプロピレン製)
充填材充填層:314リットル(充填層高=1000mmH)
比較例1(図4の装置)
凝集槽 :80リットル
沈降槽 :200mmφ×2500mmH
充填材 :4mmφ×6mm短尺チューブ型構造品(ポリプロピレン製)
充填材充填層:314リットル(充填層高=1000mmH)
上記装置仕様のうちの凝集槽12の容量が実施例1と比較例1とで異なっているのは、それぞれの方式に最適な被処理水流速で試験を行うためである。
【0038】
〈実施条件〉
原水濁度:20度(水道水にカオリンを添加して人工濁水を調製した)
原水供給流量:
実施例1:2.51m3 /h(LV=80m/h)
比較例1:(1) 0.94m3 /h(LV=30m/h)
(2) 0.47m3 /h(LV=15m/h)
無機凝集剤:ポリ塩化アルミニウム
添加量:15mg/l
高分子凝集剤:ポリアクリルアミド系アニオン性高分子凝集剤
添加量:1mg/l
上記において原水供給流量をこれの実施例1と比較例1の間で違えているのは、図4に示した比較例1の装置形式ではLV=30m/hを越えた流速での実施が困難な場合が多いのに対し、実施例1ではより高流速の範囲で容易に実施でき、これによって両者装置の差異を明瞭に示すためである。
【0039】
以上の装置仕様と実施条件の下で、洗浄のために装置を停止する処理水濁度の目安を3度とし、濁度が3度以上になったところで処理を停止するようにして実施した結果を図5に示した。
【0040】
この図5から明らかであるように、図4の装置で通水流速LV=30m/hで行った比較例1(1) では約18時間という極めて短時間で装置停止が必要な濁度3度に至り、また、通水流速を小さく(LV=15m/h)した比較例1(2) においても約28時間で装置を停止する限界(濁度3度)に達してしまった。
【0041】
これに対し、図3の本発明装置では、LV=80m/hという比較例1に比べてはるかに高流速の処理を行いながら、約9日間停止することなく装置を運転することができ、洗浄頻度を著しく低減できることが確認された。
【0042】
実施例2
本発明の装置によって、凝集沈殿処理を高流速で行いつつ、同時に高清澄な処理水が得られかつ洗浄頻度が小さくてすむことを示すために、以下の試験を行った。
【0043】
すなわち、本発明の試験としては、実施例1と同じ仕様の装置を用い、実施条件を以下のようにして行った。
【0044】
また比較のために、図3の充填材充填層18に代えて傾斜板装置9を付設した図6の構成の装置を用いた他は同様にして比較例2の凝集沈殿処理を行った。
結果を下記表1に示す。
【0045】
結果を下記表1に示す。
【0046】
〈装置の仕様〉
実施例2:実施例1と同じ
比較例2
凝集槽 :200リットル
沈降槽 :200mmφ×2500mmH(傾斜板高さ1000mmを含む)
傾斜板 :50mmピッチ×3枚(有効面積約4300cm2
〈実施条件〉
原水濁度:20度(水道水にカオリンを添加して人工濁水を調製した)
原水供給流量:
実施例2:(1) 1.26m3 /h(LV=50m/h)
(2) 2.51m3 /h(LV=80m/h)
比較例2:(1) 1.26m3 /h(LV=50m/h)
(2) 2.51m3 /h(LV=80m/h)
無機凝集剤:ポリ塩化アルミニウム
添加量:15mg/l
高分子凝集剤:ポリアクリルアミド系アニオン性高分子凝集剤
添加量:1mg/l
なお、各装置の実施条件での処理水濁度は、運転開始より48時間までの平均値とした。
【0047】
【表1】

Figure 0003866406
【0048】
以上の結果から分かるように、実施例2の装置では、処理水に現れる微フロックのリークが少ないだけでなく、被処理水の流通速度が50m/hから80m/hに変わっても大きな変化が認められないのに対し、比較例2の装置では、もともと本発明例に比べて大きなリークが処理水に現れるだけでなく、被処理水の流速を大きく(LV=80m/h)すると濁度の低下が著しく、微フロックのリークが極めて大きくなっていることが分かる。
【0049】
【発明の効果】
本願の請求項1の発明によれば、例えば30〜300m/hという高流速での被処理水の通水を行いながら、被処理水中の大部分の懸濁物(SS)は、砂と凝集材の添加で形成された粒径が大きく沈降速度が大きいフロックとなって沈降槽で迅速に沈降し、一方、粒径等の分布があるために生成が避けられない微フロックは、高流速の処理でありながら充填材充填層のろ過作用で確実に捕捉することができて処理水中へのリークを防ぐことができる。また、充填材充填層に捕捉される微フロックの量は、SSの大部分がフロックと共に沈降分離されるために少なく、洗浄頻度が低くなるという効果が奏される。
【0050】
また、傾斜板のように設置する手間が必要なく、洗浄も容易に行えるという効果が得られる。
【0051】
請求項3又は4の発明によれば、充填材充填層を洗浄する際に充填材を振動、遊動させて、蓄積したフロックを容易に沈降させることができ、洗浄操作が簡単に行えるという効果が奏される。
【0052】
請求項5の発明によれば、30〜300m/hという高流速で凝集沈殿の処理を行いながら、同時に清澄度の高い処理水を得ることができる。
【図面の簡単な説明】
【図1】本発明の凝集沈澱装置の構成概要一例を示した図。
【図2】図1の充填材充填層に集積された充填材と、ここに上向流で流れる被処理水の流れの状態を説明するための図。
【図3】図1の装置と実質的に同じ構成の実施試験に用いた凝集沈澱装置の構成概要を示した図。
【図4】図3の装置において、砂の添加を行わないようにした比較試験のための装置の構成概要を示した図。
【図5】図3及び図4の装置を用いて行った試験の結果を示した図。
【図6】図3の装置において、充填材充填層に代えて傾斜板装置を付設した比較試験のための装置の構成概要を示した図。
【符号の説明】
1・・・原水供給配管
2・・・凝集槽
201・・・隔壁
3・・・無機凝集剤添加配管
4・・・高分子凝集剤添加配管
5・・・砂添加配管
501・・・サイクロン
502汚泥排出管
6・・・攪拌装置
601・・・攪拌羽根
602モータ
7・・・沈降槽
701・・・汚泥引抜配管
702・・・汚泥引抜ポンプ
703・・・掻寄せ器
7031・・・モータ
7032・・・掻寄せ羽根
704・・・返送管
705・・・溢流樋
706・・・処理水排出配管
8・・・充填材充填層
801,802・・・ネット
803・・・充填材
9・・・傾斜板装置
11・・・原水供給配管
12・・・凝集槽
13・・・無機凝集剤添加配管
14・・・高分子凝集剤添加配管
15・・・砂添加配管
1501・・・サイクロン
1502汚泥排出管
16・・・攪拌装置
1601・・・攪拌羽根
1602モータ
17・・・沈降槽
1701・・・汚泥引抜配管
1702・・・汚泥引抜ポンプ
1704・・・返送管
1706・・・処理水排出配管
18・・・充填材充填層
1803・・・充填材
19・・・配管[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for coagulating and precipitating suspension (SS) in water to be treated and a method for operating the apparatus. Specifically, insoluble particulate matter such as sand is added to the water to be treated, and efficiently at a high sedimentation rate. The present invention relates to an SS removing apparatus capable of performing a coagulation precipitation treatment.
[0002]
[Prior art]
The aggregation precipitation method known as a method for removing fine organic and inorganic suspensions (SS) generally has a particle size and density distribution in a large number of flocs generated in the aggregation and floc formation process in the aggregation precipitation treatment. Therefore, there is a difference in the settling speed of each floc, and in order to remove fine flocs (hereinafter referred to as “fine floc”), it is necessary to make the water area load (rising flow velocity) about 1 m / h, Simply, it is known that the precipitation tank becomes extremely large.
[0003]
Therefore, several measures have been proposed in the past to improve the throughput and processing time, and one of them is to install reaction vessels in multiple stages in order to minimize the particle size and density distribution of the generated floc, A tapered flocculation method for gradually decreasing the stirring strength of the stirring tank is known. However, this method has the disadvantage that the number of stirring devices and tanks increases.
[0004]
In addition, a sludge blanket method and a combination method of a sludge blanket and an inclined plate are known as methods for obtaining a high ascending flow rate even in a reaction tank in which fine flocs are generated to some extent. This sludge blanket method is characterized in that the floc is brought into contact with the blanket to be absorbed, so that the rising flow rate can be increased even if a floc forming layer produces a floc that is relatively small and has a slow sedimentation speed. However, in actual operation, the flow of water to be treated may be disturbed by a short-circuit flow due to the influence of the supply device or a density flow due to the influence of temperature, so that a small flock is detached from the blanket or short-circuited. The problem of worsening the treated water is inevitable. Therefore, a method is also known in which an inclined plate is installed so that these leaked flocs are allowed to settle again. This inclined plate serves to increase the sedimentation area. For example, it increases the sedimentation area by about 5 to 10 times to settle small flocs, and also serves to prevent the above-described disturbance of the water to be treated. Deterioration of treated water can be prevented and improved.
[0005]
However, none of the above-described methods can separate flocs at high speed by natural sedimentation, so that there is a limit to increasing the amount of processing and processing time.
[0006]
Instead of these, in order to achieve rapid precipitation separation of SS in the water to be treated, insoluble particulates such as sand and aggregating agent are added, and SS agglomerates are generated and suspended in the suspended state of insoluble particulates. There has also been proposed a method of allowing growth to be performed, thereby improving the sedimentation speed by including insoluble particulate matter in the floc, and realizing water flow with a high flow rate and high flow rate such as 15 to 150 m / h (Patent 2634230). No., JP 9847606 A). In addition, a method of forming flocs containing insoluble particulate matter in the sludge blanket method has also been proposed (Japanese Patent Laid-Open No. 9-141006).
[0007]
[Problems to be solved by the invention]
However, even in these methods, the generated flocs vary, and it is inevitable that a particle size distribution occurs. For example, some of the particles having a large particle size involve an insoluble granular material and the particle size is as large as about 1 to 4 mm, and the sedimentation speed reaches 100 to 500 m / h. On the other hand, the particle size is about 100 to 200 μm. Since it is small, it cannot bind to insoluble particulate matter, and fine flocs with a sedimentation speed of about 0.5 to 2 m / h are also generated. Examples of the cause of the generation of fine flocs include the nature of the SS component of raw water such as organic waste water, fluctuations in the raw water flow rate, and inappropriateness of the amount of flocculant added due to fluctuations in the raw water quality.
[0008]
Therefore, when processing is performed at a high flow rate of 15 to 150 m / h as described above, these fine flocks easily leak and result in deterioration of the treated water. In addition, even if an inclined plate is attached to this device, the increase in the sedimentation area obtained by the inclined plate is about 5 to 10 times, and the problem that this leaks as seen from the above-mentioned sedimentation speed of the fine flock is solved. Can not. In addition, because of the shape of the inclined plate, it takes time to install it in various types of tanks, and there is a problem that if the installation interval is reduced in order to increase the sedimentation area, the inclined plate is easily blocked by a flock. In general, it is known that it is not easy to clean a closed inclined plate.
[0009]
By the way, unlike the above-described coagulation precipitation method based on the action of sedimentation and precipitation, an aggregation precipitation treatment method mainly utilizing the action of filtration is known (JP-A-6-304411). In this treatment method, small fillers (contact materials) are accumulated to form a filler-filled layer, and water to be treated is increased in flow rate of 200 to 800 m / d (8.3 to 33.3 m / h). The stagnation is caused to flow in the upward flow, and the filler partially restricts the upward flow to form stagnation on the back side (downstream side) of the flow of the filler, so that the fine floc is retained in this stagnation portion. This is a method for causing the growth and sedimentation of fine flocs. This processing method is a technique that is completely different from the above-described processing method of adding insoluble particulate matter, but the inventor has added the above insoluble particulate matter to the filler-filled layer having this filtering action. When combined tests were performed, it was found that extremely surprising results were obtained that high-speed, high-flow treatment and high-clarity treated water could be realized simultaneously. That is, in the above method using the filler packed bed, if the rising flow velocity is too high, not only fine flocs but also many of the flocs rise and settle in the filler packed bed, and the flocs are relatively short. Therefore, cleaning is necessary at a high frequency. For this reason, in the past, it was considered that the flow rate considered for implementation could not be set too high, and the upward flow was passed through this filler packed bed at a high flow rate of several tens m / h to 200 m / h. No attempt has been made to water.
[0010]
However, when the coagulation sedimentation method in which the above insoluble particulate matter is added and the coagulation sedimentation treatment using the filler-filled layer are combined, even if high-speed treatment, the degree of growth is different but the treatment is caused by the retention of fine flocs. The inventor found out that this does not leak to the water side, and at the same time, also found out that treated water with high clarity could be obtained. In addition to this, there is no problem of increasing the amount of floc deposited on the filler-filled layer as in the prior art even if the rising flow rate is high, and the cleaning frequency is significantly higher than that of the conventional method using the filler-filled layer. It was confirmed that it could be reduced. The frequency of cleaning has a very large industrial significance. If the frequency of cleaning is high, the amount of cleaning wastewater increases, and processing must be interrupted during the cleaning time (starting up the device after cleaning and cleaning). This causes a problem that the operating rate is lowered.
[0011]
The present inventor has made the present invention based on the above findings.
[0012]
[Means for Solving the Problems]
The invention of the flocculation / precipitation apparatus according to claim 1 of the present invention is a flocculation tank in which insoluble particulate matter and a flocculating agent are added to the water to be treated, and the flocculation and floc growth of the suspension in the water to be treated are performed in a suspended state; In a coagulation sedimentation apparatus equipped with a sedimentation tank that settles flocs containing insoluble particulates from the effluent introduced from this coagulation tank and separates it from the water, filtration and coagulation are carried out by collecting a large number of fillers at random. A filler packed bed that performs the action is provided on the upper side in the settling tank, and the treated water from which the floc is settled and separated is passed upward through the filler packed bed and the treated water is discharged from the upper part of the settling tank. It is characterized by.
[0013]
In the above configuration, sand is usually used as the insoluble particulate material, but it is not limited to sand, and sand having a particle size of about 10 to 200 μm or an inorganic or organic particulate material having a specific gravity similar to sand is used. Is preferred.
[0014]
As the aggregating agent, an inorganic aggregating agent such as polyaluminum chloride (PAC), ferric chloride, and ferric sulfate and a polymer aggregating agent such as an anionic polymer aggregating agent and an amphoteric polymer aggregating agent are used in combination. The inorganic flocculant mainly aggregates the suspension (SS) in the water to be treated, and the polymer flocculant mainly grows these aggregates and insoluble particulates (hereinafter collectively referred to as “sand”) into large flocs. .
[0015]
The suspension state in which the suspension is agglomerated and flocked in the aggregating tank is given by, for example, stirring with a stirrer to such an extent that sand having a large specific gravity does not precipitate. In addition, the method of adding sand and flocculant to the water to be treated is the method of adding these to one tank when the coagulation tank is a single tank type, and the inorganic coagulation in the middle of the pipe for introducing the water to be treated into the coagulation tank Any of the methods of adding an agent and adding sand and a polymer flocculant into the tank may be used. In addition, the agglomeration tank is made into a two-tank form so that the agglomeration is performed by adding sand and an inorganic aggregating agent in the first stage, and the floc is grown by adding the polymer aggregating agent to the next stage. Alternatively, an inorganic flocculant may be added to the first tank to cause aggregation, and sand and a polymer flocculant may be added to the next tank to cause floc growth. In the case of the two-tank type, the strength of stirring that gives a suspended state can be weakened in the next-stage tank as compared to the first stage. The aggregation tank may be a multi-tank of two or more tanks.
[0016]
A sedimentation tank that sediments flocs containing sand and separates it from water is generally configured to introduce water to be treated from a coagulation tank in a downward flow. Since the floc contained in the water to be treated introduced into the settling tank has a large particle size and a large specific gravity, the floc having a large settling speed quickly settles at the bottom of the settling tank. As a result, most of the suspension (SS) contained in the water to be treated is contained in the sedimented floc and separated from the water. On the other hand, water is discharged from the upper part of the settling tank to the outside, for example, in the form of an overflow. In this case, in the present invention, the water is settling by passing through the filler-filled layer provided on the upper side of the settling tank. Instead, fine flocs that flow with the water to the upper side of the settling tank are captured by this filler-filled bed. The flocs that have settled and settled are discharged out of the apparatus by a drawing means such as a sludge drawing pump, and are described in Japanese Patent No. 2634230, Japanese Patent Laid-Open No. 9847606, and Japanese Patent Laid-Open No. 9-141006 as necessary. As described above, sand can be separated from the extracted sludge using a separator such as a cyclone and reused.
[0017]
In the above configuration, the filler-filled layer provided on the upper side of the settling tank has a large amount of fillers (contact materials) accumulated at random, partially restricting the upward flow and on the back side of the flow of the filler. A stagnation is formed, and the fine flocs are retained in the stagnation part, so that the fine flocs grow and settle and aggregate. Such a filler-filled layer can be formed by, for example, using plastic short tube-shaped pieces having a diameter of about 4 to 12 mm and a length of about 15 to 20 mm as a filler, and randomly collecting them. However, the present invention is not particularly limited to this, and it is also possible to use a filler in which a large number of holes are formed in the spherical surface of an inner hollow sphere, or terralet packing. In addition, this packed material packed bed needs to function as a water flow path for the upward flow of the high flow rate, so that the entire layer has a porosity as high as possible, but forms a stagnation part with respect to the upward flow. Therefore, a filler having a size and shape that can have a large surface area is preferably selected and used.
[0018]
According to the present invention, most of the suspension (SS) in the water to be treated is formed by adding sand and a flocculant while passing the water to be treated at a high flow rate of, for example, 30 to 300 m / h. Flocs with large particle size and high sedimentation speed As On the other hand, fine flocs, which can be quickly settled in a settling tank and cannot be avoided due to the distribution of particle size etc., can be reliably obtained by the filtration action of the packed bed packed with the above high flow rate. In order to prevent leakage into the treated water, and because there are many stagnation parts with respect to the water flow in the filler accumulation part, the fine flocs contained in the water are filled. It deposits on the surface of the material or floats around it, and flocculates with other micro flocs to grow. And since most SS in to-be-processed water is settled-separated as a floc as mentioned above, the quantity of fine floc itself is small and the advantage which can make a washing frequency low can be acquired.
[0019]
According to the invention of claim 3, in each of the above-mentioned inventions, the filler-filled layer has a filler outflow prevention net in the upper part, and the filler floats below the net in a state of upward flow of water. It is characterized by being accumulated.
[0020]
According to the present invention, when the filler is washed, the upward flow is stopped, and the filler is vibrated and idled by using washing water or washing air, so that the accumulated flocs are allowed to settle. It becomes easy and cleaning operation becomes simple. As the filler used for the present invention, for example, those having a true specific gravity of around 1 are preferably used.
[0021]
The invention of claim 4 is characterized in that, in the invention of claim 1 or 2, it has means for fixing the filler-filled layer when water flows upward.
[0022]
The means for fixing the filler packing layer is configured, for example, by arranging a pair of mesh nets through which the filler cannot pass above and below the filler packing layer and sandwiching the filler packing layer from above and below by the net. Alternatively, when the filler floats on water, the net can be arranged only at the top. In the case of using the above-described pair of nets for cleaning the filler-packed layer, the filler does not substantially move during the water flow treatment, but during the cleaning, the filler is vibrated and moved by the cleaning water or the cleaning air. It is preferable that the packing density is as high as possible.
[0023]
The invention of the operation method of the coagulating sedimentation apparatus according to claim 5 is a coagulation tank in which sand and coagulant are added to the water to be treated, and the suspension in the water to be coagulated and floc growth are performed under stirring. A settling tank that separates the flocs containing sand from the effluent introduced from the coagulation tank and separates it from the water, and a large number of fillers are randomly accumulated on the upper side of the settling tank to effect filtration and coagulation. In the coagulating sedimentation apparatus provided with a filler packed bed for performing upward flow at a water flow rate of 30 to 300 m / h, preferably 50 to 200 m / h, optimally 80 to 150 m / h. Then, the treated water is discharged from the upper part of the settling tank through the treated water.
[0024]
According to this invention, it is possible to obtain treated water with a high degree of clarification at the same time while performing the coagulation sedimentation treatment at a high flow rate of 30 m / h or more.
[0025]
The apparatus and operation method of the present invention can be applied for treatment of water to be used for various purposes, for example, from river water, lake water, ground water, etc. to household water, industrial water, and agricultural water. It is used for obtaining treated water, and if necessary, treatment suitable for these is performed after the coagulation sedimentation treatment. It can also be applied to the treatment and discharge of sewage and various industrial wastewater into the natural environment.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1
FIG. 1 is a diagram showing an example of a schematic configuration of a coagulation sedimentation apparatus according to the present invention. Raw water to be treated (hereinafter simply referred to as “raw water”) is supplied from a raw water supply pipe 1 to a single tank coagulation tank 2. . An inorganic flocculant addition pipe 3 is connected in the middle of the raw water supply pipe 1 so that the inorganic flocculant is added to the raw water. 4 is a polymer flocculant addition pipe for supplying the polymer flocculant to the flocculant tank 2, and 5 is a sand addition pipe for supplying sand to the flocculant tank 2.
[0027]
6 is a stirring device provided in the coagulation tank 2, and the stirring blade 601 is rotated by a motor 602 at a predetermined stirring speed at which the sand supplied to the coagulation tank 2 is kept in a suspended state without being settled. Is done.
[0028]
In the coagulation tank 2 configured as described above, most of the suspension (SS) contained in the raw water supplied to the coagulation tank 2 is added with sand, inorganic coagulant and polymer coagulant. In the water to be treated, agglomerates containing sand become flocs and grow to form flocs having a large particle size and a high sedimentation rate (hereinafter referred to as “large flocs” for convenience). However, on the other hand, since it is inevitable that a certain degree of distribution occurs in the particle size as described above, fine flocs having a small particle size and a low sedimentation rate are also generated.
[0029]
7 is a settling tank, in which the water to be treated is introduced in a downward flow beyond the upper part of the partition wall 201 with the coagulation tank 2, and the bottom part is provided in an inverted conical shape and the flocs settled and settled. It is configured to facilitate extraction from the inverted conical top. That is, when the water to be treated containing the large flocs and the fine flocs is introduced from the coagulation tank 2 into the settling tank 7 in a downward flow, the large flocs have a high sedimentation speed, so that Then, the liquid settles on the bottom of the tank and is extracted by the sludge extraction pump 702 through the sludge extraction pipe 701 connected to the bottom. Reference numeral 703 denotes a scraper for increasing the efficiency of the sludge extraction work, and the scraper blade 7032 is rotated by a motor 7031. In this example, the sludge extracted by the sludge extraction pump 702 is sent to a cyclone 501 as a separator through a return pipe 704, and the sand separated from the sludge is supplied to the coagulation tank 2 from the above-described sand addition pipe 5. Recycling method is used. The sludge separated from the sand is discharged out of the system through the sludge discharge pipe 502.
[0030]
8 is a filler-filled layer provided on the upper side of the settling tank 7, and in this example, a diameter of about 4 to 12 mm is formed by a pair of upper and lower nets (having a mesh through which the filler cannot pass) 801,802. A large number of fillers 803 having a short tube-type structure made of plastic having a length of about 15 to 20 mm are formed so as to be held in a sandwich state in which they cannot substantially float during water treatment. Further, an overflow trough 705 for discharging the treated water in an overflow form is provided above the filler packed bed 8 of the settling tank 7, and the treated water is discharged from the treated water discharge pipe 706.
[0031]
According to the settling tank 7 configured as described above, most of the large flocs quickly settle to the bottom, but the fine floc that does not settle due to the high flow rate of the water to be treated rides the flow of the high flow rate and is on the discharge side. To pass through the filler-filled layer 8. At this time, as schematically shown in FIG. 2, the accumulated filler 803 exhibits an action that hinders the upward flow flowing vertically upward in FIG. Stagnation occurs on the side (the back side of the filler). In this stagnation part, since the force to flow the fine flocs downstream of the flow is weaker than the upward flow, the fine flocs stay or accumulate on the surface of the filler. Moreover, such a plurality of fine flocs are combined and grown to a larger floc.
[0032]
Therefore, the possibility that the fine floc leaks directly from the overflow slag 705 through the treated water discharge pipe 706 is greatly reduced, and highly purified treated water can be obtained.
[0033]
In addition, as can be seen from the examples described later, in general, when a high flow rate treatment is performed by a filtration method, the filtration layer is usually clogged in a short time, whereas in the apparatus of this example, Can remarkably reduce the frequency of cleaning the floc accumulated in the filler-filled layer, thereby obtaining a very advantageous advantage industrially.
[0034]
【Example】
Example 1
A test apparatus in which the apparatus in FIG. 1 is simplified is configured as shown in FIG. That is, the raw water supply pipe 11, the inorganic flocculant addition pipe 13, the polymer flocculant addition pipe 14, and the sand addition pipe 15 are connected to the coagulation tank 12 substantially the same as the coagulation tank 2 of FIG. Was provided. Further, the sludge is extracted from the bottom of the vertical cylindrical tank 17 by the sludge extraction pump 1702, and flows out from the upper part of the aggregation tank 12 to the lower position of the filler packed bed of the settling tank 17 provided with the filler packed bed 18 on the upper part. The apparatus was configured by connecting the piping 19 so as to introduce the water to be treated. Reference numeral 1601 is a stirring blade, 1602 is a motor, 1701 is a sludge extraction pipe, 1702 sludge extraction pump, 1704 is a return pipe, 1706 is a treated water discharge pipe, 1501 is a cyclone, and 1502 is a sludge discharge pipe.
[0035]
Using the apparatus configured as described in the above outline, the coagulation sedimentation treatment was performed according to the following specific apparatus specifications and implementation conditions.
[0036]
For comparison, the apparatus of FIG. 4 in which the addition of sand was not performed was configured, and the coagulation sedimentation process of Comparative Example 1 was similarly performed according to the following specific apparatus specifications and implementation conditions.
[0037]
<Device specifications>
Example 1 (apparatus of FIG. 3)
Coagulation tank 12 : 200 liters
Settling tank 17 : 200mmφ × 2500mmH
Filling material: 4mmφ × 6mm short tube type structure (polypropylene)
Filler packed bed: 314 liters (filled bed height = 1000 mmH)
Comparative Example 1 (apparatus in FIG. 4)
Coagulation tank: 80 liters
Sedimentation tank: 200mmφ × 2500mmH
Filling material: 4mmφ × 6mm short tube type structure (polypropylene)
Filler packed bed: 314 liters (filled bed height = 1000 mmH)
The reason why the capacity of the coagulation tank 12 in the apparatus specifications is different between the first embodiment and the first comparative example is that the test is performed at a water flow rate optimum for each method.
[0038]
<Conditions for implementation>
Raw water turbidity: 20 degrees (artificial turbid water was prepared by adding kaolin to tap water)
Raw water supply flow rate:
Example 1: 2.51 m Three / H (LV = 80m / h)
Comparative Example 1: (1) 0.94 m Three / H (LV = 30m / h)
(2) 0.47m Three / H (LV = 15m / h)
Inorganic flocculant: polyaluminum chloride
Addition amount: 15 mg / l
Polymer flocculant: Polyacrylamide anionic polymer flocculant
Amount added: 1 mg / l
In the above, the raw water supply flow rate is Example 1 and Comparative Example 1 4 is different from that of the device type of Comparative Example 1 shown in FIG. 4 in many cases in that it is difficult to carry out at a flow rate exceeding LV = 30 m / h, whereas in Example 1, a higher flow rate is used. This is because the difference between the two apparatuses can be clearly shown.
[0039]
Under the above equipment specifications and implementation conditions, the result of the treatment was carried out by setting the treatment water turbidity for stopping the equipment for cleaning to 3 degrees and stopping the treatment when the turbidity reached 3 degrees or more. Is shown in FIG.
[0040]
As is clear from FIG. 5, in Comparative Example 1 (1) performed at the water flow velocity LV = 30 m / h with the apparatus of FIG. 4, the turbidity of 3 degrees, which requires the apparatus to be stopped in an extremely short time of about 18 hours. In Comparative Example 1 (2) in which the water flow rate was reduced (LV = 15 m / h), the limit for stopping the apparatus (turbidity 3 degrees) was reached in about 28 hours.
[0041]
On the other hand, in the apparatus of the present invention shown in FIG. 3, the apparatus can be operated without stopping for about 9 days while performing processing at a much higher flow rate than that of Comparative Example 1 with LV = 80 m / h, It was confirmed that the frequency can be significantly reduced.
[0042]
Example 2
In order to show that the apparatus of the present invention can perform coagulation sedimentation treatment at a high flow rate, and at the same time, obtain a high-clarity treated water and reduce the frequency of washing, the following tests were conducted.
[0043]
That is, as a test of the present invention, an apparatus having the same specifications as in Example 1 was used, and the execution conditions were as follows.
[0044]
For comparison, the filler filling layer of FIG. 18 The coagulation sedimentation treatment of Comparative Example 2 was performed in the same manner except that the apparatus having the configuration shown in FIG.
The results are shown in Table 1 below.
[0045]
The results are shown in Table 1 below.
[0046]
<Device specifications>
Example 2: Same as Example 1
Comparative Example 2
Coagulation tank: 200 liters
Settling tank: 200 mmφ × 2500 mmH (including inclined plate height of 1000 mm)
Inclined plate: 50 mm pitch x 3 (effective area approximately 4300 cm) 2 )
<Conditions for implementation>
Raw water turbidity: 20 degrees (artificial turbid water was prepared by adding kaolin to tap water)
Raw water supply flow rate:
Example 2: (1) 1.26 m Three / H (LV = 50m / h)
(2) 2.51m Three / H (LV = 80m / h)
Comparative Example 2: (1) 1.26m Three / H (LV = 50m / h)
(2) 2.51m Three / H (LV = 80m / h)
Inorganic flocculant: polyaluminum chloride
Addition amount: 15 mg / l
Polymer flocculant: Polyacrylamide anionic polymer flocculant
Amount added: 1 mg / l
In addition, the treated water turbidity in the implementation conditions of each apparatus was taken as the average value until 48 hours from the start of operation.
[0047]
[Table 1]
Figure 0003866406
[0048]
As can be seen from the above results, the apparatus of Example 2 not only has a slight floc leak that appears in the treated water, but also changes greatly even if the flow rate of the treated water changes from 50 m / h to 80 m / h. In contrast, in the apparatus of Comparative Example 2, not only a large leak originally appeared in the treated water compared to the example of the present invention, but also the turbidity of the treated water increased (LV = 80 m / h). It can be seen that the decrease is remarkable and the leak of the fine flock is extremely large.
[0049]
【The invention's effect】
According to the first aspect of the present invention, for example, most of the suspended solids (SS) in the water to be treated are aggregated with sand while the water to be treated is passed at a high flow rate of 30 to 300 m / h. The flocs formed by the addition of the material have a large particle size and a large sedimentation rate, and settle quickly in the sedimentation tank. Although it is a treatment, it can be reliably captured by the filtering action of the filler-filled layer, and leakage into the treated water can be prevented. In addition, the amount of fine flocs trapped in the filler packed bed is small because most of the SS is settled and separated together with the flocs, and the washing frequency is low. Become The effect is played.
[0050]
Further, there is no need for installation like an inclined plate, and the effect that cleaning can be performed easily is obtained.
[0051]
According to the invention of claim 3 or 4, when the filler-filled layer is washed, the filler can be vibrated and loosened, and the accumulated floc can be easily settled, and the washing operation can be easily performed. Played.
[0052]
According to the invention of claim 5, treated water with high clarification can be obtained at the same time while coagulating sedimentation is performed at a high flow rate of 30 to 300 m / h.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of a schematic configuration of a coagulation sedimentation apparatus of the present invention.
2 is a diagram illustrating a filler accumulated in the filler-filled layer of FIG. This The figure for demonstrating the state of the flow of the to-be-processed water which flows by an upward flow here.
3 is a diagram showing an outline of the configuration of a coagulation sedimentation apparatus used in an implementation test having substantially the same configuration as the apparatus of FIG.
4 is a diagram showing a schematic configuration of an apparatus for a comparative test in which no sand is added in the apparatus of FIG.
FIG. 5 is a diagram showing the results of tests performed using the apparatus of FIGS. 3 and 4;
6 is a diagram showing a schematic configuration of an apparatus for a comparative test in which an inclined plate device is provided instead of the filler-filled layer in the apparatus of FIG.
[Explanation of symbols]
1 ... Raw water supply piping
2 ... Coagulation tank
201 ... partition wall
3 ... Inorganic flocculant added piping
4 ... Polymer flocculant-added piping
5 ... Sand added piping
501 ... Cyclone
502 sludge discharge pipe
6 ... Agitator
601 ... stirring blade
602 motor
7 ... Sedimentation tank
701 ... Sludge extraction piping
702 ... Sludge extraction pump
703 ... scraper
7031 ... Motor
7032 ... scraping blade
704 ... Return tube
705 ... Overflow
706 ... treated water discharge pipe
8 ... Filler packed bed
801,802 ... Net
803 ... Filler
9 ... Inclined plate device
11 ... Raw water supply piping
12 ... Coagulation tank
13 ... Inorganic flocculant added piping
14 ... Piping for adding polymer flocculant
15 ... Sand addition piping
1501 ... Cyclone
1502 sludge discharge pipe
16: Stirring device
1601 ... stirring blade
1602 motor
17 ... Sedimentation tank
1701 ... Sludge extraction piping
1702 ... Sludge extraction pump
1704 ... Return tube
1706 ... treated water discharge pipe
18 ... Filled material packed bed
1803 ... Filler
19 ... Piping

Claims (5)

被処理水に不溶性粒状物及び凝集剤を添加し、懸濁状態下で被処理水中の懸濁物の凝集とフロック成長を行わせる凝集槽と、この凝集槽から導入された流出水から不溶性粒状物を含むフロックを沈降させて水と分離する沈降槽とを備えた凝集沈澱装置において、多数の充填材がランダムに集積することでろ過及び凝集の作用を行う充填材充填層を上記沈降槽内の上部側に設け、上記フロックが沈降分離された被処理水を充填材充填層に上向流で通して沈降槽上部から処理水を排出することを特徴とする凝集沈澱装置。An insoluble particulate matter and a flocculant are added to the water to be treated, and the suspension in the water to be treated is agglomerated and floc grown in a suspended state. In a coagulating sedimentation apparatus equipped with a sedimentation tank that settles flocs containing substances and separates them from water, a filler packed bed that performs the function of filtration and aggregation by randomly collecting a large number of fillers in the above sedimentation tank A coagulating sedimentation apparatus characterized in that the water to be treated from which the floc is settled and separated is passed upward through the filler-filled bed and the treated water is discharged from the upper part of the sedimentation tank. 請求項1において、充填材は、短尺チューブ型の構造であることを特徴とする凝集沈澱装置。2. The coagulating sedimentation apparatus according to claim 1, wherein the filler has a short tube type structure. 請求項1又は2において、充填材充填層は充填材流出防止ネットを上部に有し、充填材は上向流の通水状態でこのネットの下側に浮上して集積するものであることを特徴とする凝集沈澱装置。3. The filler filling layer according to claim 1 or 2, wherein the filler filling layer has a filler outflow prevention net at an upper portion, and the filler floats and accumulates under the net in an upward flow state. A characteristic coagulation sedimentation apparatus. 請求項1又は2において、充填材充填層を上向流の通水時に固定する手段を有することを特徴とする凝集沈澱装置。3. The coagulating sedimentation apparatus according to claim 1, further comprising means for fixing the filler-filled layer when water flows upward. 被処理水に不溶性粒状物及び凝集剤を添加し、攪拌状態下で被処理水中の懸濁物の凝集とフロック成長を行わせる凝集槽と、この凝集槽から導入された流出水から不溶性粒状物を含むフロックを沈降させて水と分離する沈降槽とを備え、この沈降槽内の上部側に多数の充填材がランダムに集積されてろ過及び凝集の作用を行う充填材充填層を設けた凝集沈澱装置において、前記充填材充填層に30〜300m/hの通水速度で上向流で被処理水を通し、沈降槽上部から処理水を排出することを特徴とする凝集沈澱装置の運転方法。An insoluble particulate matter and a flocculant are added to the water to be treated, and the agglomeration tank in which the suspension in the water to be treated is agglomerated and floc grown under stirring, and the insoluble particulate matter from the effluent water introduced from the agglomeration tank. A settling tank that settles flocs containing water and separates it from water, and agglomeration provided with a filler packed layer that performs filtration and agglomeration by collecting a large number of fillers randomly on the upper side of the settling tank A method for operating a coagulating sedimentation apparatus, characterized in that in the sedimentation apparatus, water to be treated is passed through the filler packed bed in an upward flow at a water flow rate of 30 to 300 m / h, and the treated water is discharged from the upper part of the sedimentation tank. .
JP05797698A 1998-03-10 1998-03-10 Coagulation sedimentation apparatus and operation method thereof Expired - Fee Related JP3866406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05797698A JP3866406B2 (en) 1998-03-10 1998-03-10 Coagulation sedimentation apparatus and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05797698A JP3866406B2 (en) 1998-03-10 1998-03-10 Coagulation sedimentation apparatus and operation method thereof

Publications (2)

Publication Number Publication Date
JPH11253704A JPH11253704A (en) 1999-09-21
JP3866406B2 true JP3866406B2 (en) 2007-01-10

Family

ID=13071046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05797698A Expired - Fee Related JP3866406B2 (en) 1998-03-10 1998-03-10 Coagulation sedimentation apparatus and operation method thereof

Country Status (1)

Country Link
JP (1) JP3866406B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001120909A (en) * 1999-10-21 2001-05-08 Japan Organo Co Ltd Flocculating and settling device
JP2002085907A (en) * 2000-09-14 2002-03-26 Japan Organo Co Ltd Flocculating and settling apparatus
JP4336754B1 (en) * 2009-03-05 2009-09-30 壽昭 落合 Aggregation method
WO2021020030A1 (en) * 2019-07-29 2021-02-04 パナソニックIpマネジメント株式会社 Water treatment system
KR102631865B1 (en) * 2023-04-28 2024-01-31 주식회사 세움이앤씨 건축사사무소 Eco-friendly food processing system for apartment buildings

Also Published As

Publication number Publication date
JPH11253704A (en) 1999-09-21

Similar Documents

Publication Publication Date Title
JP3640285B2 (en) Coagulation sedimentation equipment
JPH11319414A (en) Coagulator
JP3866406B2 (en) Coagulation sedimentation apparatus and operation method thereof
JP4135341B2 (en) Coagulation precipitation method and precipitation apparatus
JPH11244870A (en) Flocculating and settling device for sewage and cleaning method thereof
JP2002126788A (en) Suspension treatment apparatus
JP2011140003A (en) Turbid water treatment apparatus and turbid water treatment method
JPH06304411A (en) Cohesive sedimentation and treatment apparatus therefor
JPH11244868A (en) Coagulating sedimentation apparatus for sewage
JP2005125177A (en) Flocculating and settling apparatus and method for treating water to be treated by using the same
JP2003265905A (en) Flocculating and settling apparatus
JP7142540B2 (en) Water purification method and water purification device
KR101889546B1 (en) Filtering Apparatus Containing Floating Media and Filtering Method
JP3419640B2 (en) Filtration device and filtration method
JP2002001011A (en) Flocculation and precipitation apparatus
JP2017159213A (en) Flocculation treatment method and apparatus
JP3387696B2 (en) Suspension clarification equipment
JP3148721B2 (en) Turbid water treatment equipment
JP3883596B2 (en) Turbid water treatment method
RU2317129C1 (en) Device used for purification of the natural waters and sewage
JPH10202010A (en) Water treatment device
KR101787078B1 (en) Filtering Apparatus Containing Floating Media and Filtering Method
JP2854543B2 (en) Dredging wastewater treatment method and device
JPH10202281A (en) Waste water treating device
JPH08318105A (en) Turbidity removing filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061005

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees