JP3861899B2 - Carbon fiber - Google Patents

Carbon fiber Download PDF

Info

Publication number
JP3861899B2
JP3861899B2 JP2004326458A JP2004326458A JP3861899B2 JP 3861899 B2 JP3861899 B2 JP 3861899B2 JP 2004326458 A JP2004326458 A JP 2004326458A JP 2004326458 A JP2004326458 A JP 2004326458A JP 3861899 B2 JP3861899 B2 JP 3861899B2
Authority
JP
Japan
Prior art keywords
pitch
fiber
carbon fiber
crack
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004326458A
Other languages
Japanese (ja)
Other versions
JP2005089960A (en
Inventor
巌 山本
明彦 葭谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2004326458A priority Critical patent/JP3861899B2/en
Publication of JP2005089960A publication Critical patent/JP2005089960A/en
Application granted granted Critical
Publication of JP3861899B2 publication Critical patent/JP3861899B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

本発明は、ピッチ系炭素繊維に関わるものである。本発明によるピッチ系炭素繊維は、それ自体著しく高い熱伝導率を示す炭素繊維であり、かかる高熱伝導率の炭素繊維は高い寸法安定性、耐熱衝撃性の要求される宇宙用構造材料や、高エネルギー密度エレクトロニックデバイスの放熱材料等に好適に使用される。   The present invention relates to pitch-based carbon fibers. The pitch-based carbon fiber according to the present invention is a carbon fiber that exhibits a remarkably high thermal conductivity. Such a high-thermal conductivity carbon fiber is a structural material for space that requires high dimensional stability and thermal shock resistance. It is suitably used as a heat dissipation material for energy density electronic devices.

高性能の炭素繊維はポリアクリロニトリル(PAN)を原料とするPAN系炭素繊維と、ピッチ類を原料とするピッチ系炭素繊維に大別され、それぞれ高比強度、高比弾性率という特徴を生かして、航空機用材料、スポーツ用品用材料、建築用材料等として広く用いられている。   High-performance carbon fibers are broadly divided into PAN-based carbon fibers made from polyacrylonitrile (PAN) and pitch-based carbon fibers made from pitches, making use of the features of high specific strength and high specific modulus. Widely used as aircraft materials, sports equipment materials, building materials, etc.

また、大きな温度分布の下での寸法安定性や、耐熱衝撃性の要求される宇宙用材料や、高エネルギー密度化の進み続けるエレクトロニックデバイスの放熱用材料等の用途では、上述の機械的性質の他に高い熱伝導率が要求され、これまでも炭素繊維の熱伝導率を向上させるために多くの検討がなされてきた。
しかし、市販されているPAN系炭素繊維の熱伝導率は通常200W/m・Kよりも小さく、電気比抵抗は6μΩmよりも大きい。
一方、ピッチ系炭素繊維は一般にPAN系炭素繊維に比べて高熱伝導率、低電気比抵抗を達成しやすいと認識されているが、市販されているピッチ系炭素繊維の熱伝導率は通常700W/m・Kよりも小さく、電気比抵抗は2μΩmよりも大きい。
Also, in applications such as space materials that require dimensional stability under a large temperature distribution, thermal shock resistance, and heat dissipation materials for electronic devices that continue to increase in energy density, the mechanical properties described above are required. In addition, high thermal conductivity is required, and many studies have been made so far to improve the thermal conductivity of carbon fibers.
However, commercially available PAN-based carbon fibers usually have a thermal conductivity of less than 200 W / m · K and an electrical resistivity of more than 6 μΩm.
On the other hand, pitch-based carbon fibers are generally recognized to have higher thermal conductivity and lower electrical resistivity than PAN-based carbon fibers, but the thermal conductivity of commercially available pitch-based carbon fibers is usually 700 W / It is smaller than m · K, and its electrical resistivity is larger than 2 μΩm.

最近のこの分野の改善技術として、例えば特許文献1においてはピッチの軟化点、紡糸温度、不融化方法、焼成温度を特定することにより、低電気比抵抗の炭素繊維を製造する方法が提案されている。しかし、高軟化点のピッチを、高い温度で紡糸をしていること、硝酸を用いるという特殊な不融化方法を採用していること、また実質的に3200℃を超える非常に高い温度で黒鉛化していることから、工業的に生産するには不十分な技術であった。また、高温で紡糸を行う為に分解ガスに起因する欠陥を繊維中に含みやすく強度的には低いものであった。   As a recent improvement technique in this field, for example, Patent Document 1 proposes a method for producing a carbon fiber having a low electrical resistivity by specifying a pitch softening point, a spinning temperature, an infusibility method, and a firing temperature. Yes. However, a high softening point pitch is spun at a high temperature, a special infusibilization method using nitric acid is used, and graphitization at a very high temperature substantially exceeding 3200 ° C. Therefore, the technology was insufficient for industrial production. Further, since spinning at a high temperature, defects caused by cracked gas are likely to be contained in the fiber, and the strength is low.

特許文献2においては、非常に複雑な多段の延伸処理を行いながらの不融化、炭化、黒鉛化処理を行うことにより、高い熱伝導率を示す炭素繊維が得られている。しかし熱伝導率を1000W/m・K以上としたときの圧縮強度は26kg/mm2 と低いものであった。
また、特許文献3においては、ピッチのガラス転移温度幅、光学異方性割合、キノリン不溶分量を特定することにより、高い熱伝導率を有する炭素繊維を得ることが提案されているが、その熱伝導率は860W/m・Kと充分に高いものではなかった。
特開平2−242919号公報 特開平4−163319号公報 特開平6−257020号公報
In Patent Document 2, carbon fibers exhibiting high thermal conductivity are obtained by performing infusibilization, carbonization, and graphitization while performing a very complicated multi-stage drawing process. However, when the thermal conductivity was 1000 W / m · K or more, the compressive strength was as low as 26 kg / mm 2 .
In Patent Document 3, it is proposed to obtain carbon fibers having high thermal conductivity by specifying the glass transition temperature width of pitch, the optical anisotropy ratio, and the amount of quinoline insoluble matter. The conductivity was not as high as 860 W / m · K.
JP-A-2-242919 JP-A-4-163319 JP-A-6-257020

上記のように、超高熱伝導率の炭素繊維は、工業的な生産性を半ば犠牲にした形の技術を確立することにより開発されつつある。しかし、従来のものは機械的物性、特に圧縮強度が低いために、応用分野での強度不足が指摘され、使用が制限されていると共に改良が要求されていた。
そこで、非常に高い熱伝導率、低い電気比抵抗、高い引張弾性率を有していながら、かつ高い圧縮強度を有する炭素繊維、具体的には熱伝導率1000W/m・K以上、電気抵抗1.2μΩm以下であり、かつ引張弾性率が95ton/mm2 以上、圧縮強度が30kg/mm2 以上の炭素繊維及びその工業的な製造方法の開発が望まれていた。
As described above, ultra-high thermal conductivity carbon fibers are being developed by establishing a technology that sacrifices the industrial productivity. However, since the conventional ones have low mechanical properties, particularly compressive strength, it is pointed out that the strength is insufficient in application fields, and their use is restricted and improvement is required.
Therefore, a carbon fiber having a very high thermal conductivity, a low electrical resistivity, a high tensile elastic modulus and a high compressive strength, specifically a thermal conductivity of 1000 W / m · K or more, an electrical resistance of 1 Development of a carbon fiber having a tensile modulus of 95 ton / mm 2 or more and a compressive strength of 30 kg / mm 2 or more and an industrial production method thereof has been desired.

本発明者らは、高い熱伝導率、低い電気比抵抗を得るためには炭素繊維の結晶構造を出来るだけ大きくして、黒鉛単結晶に近付ける必要があり、また、高強度を得るためには炭素繊維の欠陥を可能な限り減らす必要があると考えて、鋭意検討を行った。
その結果、炭素繊維の断面構造において、クラックを有しない繊維とクラックを有する繊維の割合を一定範囲にすることにより、高熱伝導率と高強度を両立させうること、また、そのような炭素繊維は、光学的異方性ピッチを紡糸ノズル直前で、特定粘度の下、特定の時間、静置し、ピッチ液晶のドメインサイズ(液晶組織の大きさ)を大きく成長させ、その状態のまま、再び分断するような剪断力を与えることなく直接ノズル孔より吐出させ、炭素繊維の前駆体であるピッチ繊維を得、このピッチ繊維を不融化後、炭化、黒鉛化することにより得られることを見出し、本発明に到達した。
In order to obtain high thermal conductivity and low electrical resistivity, the present inventors need to enlarge the crystal structure of the carbon fiber as close as possible to a graphite single crystal, and in order to obtain high strength We thought that it was necessary to reduce the defects of carbon fibers as much as possible, and conducted intensive studies.
As a result, in the cross-sectional structure of the carbon fiber, it is possible to achieve both high thermal conductivity and high strength by keeping the ratio of the fiber having no crack and the fiber having a crack within a certain range. The optically anisotropic pitch is allowed to stand for a specific time under a specific viscosity immediately before the spinning nozzle, and the domain size of the pitch liquid crystal (the size of the liquid crystal structure) grows large, and in that state, it is divided again. It is found that the pitch fiber, which is a carbon fiber precursor, is obtained by discharging the carbon fiber directly from the nozzle hole without applying a shearing force, and then carbonizing and graphitizing the pitch fiber. The invention has been reached.

即ち、本発明は、室温で測定された熱伝導率が1000〜1150W/m・K、電気比抵抗が1.06〜1.2μΩm、引張弾性率が95ton/mm2 以上、圧縮強度が30kg/mm2 以上であり、繊維断面にクラックを有しない繊維(クラック無し)とクラックを有する繊維(クラック有り)の割合が、クラック無し/クラック有り=5/95〜30/70であることを特徴とするピッチ系炭素繊維に関するものである。 That is, the present invention has a thermal conductivity measured at room temperature of 1000 to 1150 W / m · K, an electrical resistivity of 1.06 to 1.2 μΩm, a tensile elastic modulus of 95 ton / mm 2 or more, and a compressive strength of 30 kg / and mm 2 or more, and wherein the proportion of fibers (cracks there) having a crack fibers having no cracks in the fiber cross section (no cracks) is a crack no / cracks Yes = 5/95 to 30/70 It relates to pitch-based carbon fibers.

本発明によれば、従来無かった超高熱電導率、かつ高強度の炭素繊維を提供することができる。
このような高性能の炭素繊維は、スポーツ・レジャー分野のみならず、特に航空・宇宙分野で用いられる繊維強化プラスチックの強化繊維として好適に使用することができ、工業上非常に有用である。
According to the present invention, it is possible to provide an ultrahigh thermal conductivity and high-strength carbon fiber that has never existed before.
Such a high-performance carbon fiber can be suitably used as a reinforcing fiber for fiber-reinforced plastics used not only in the sports / leisure field but also in the aerospace field, and is very useful industrially.

以下、本発明をより詳細に説明する。
本発明で用いられる紡糸ピッチの出発原料としては、石炭系のコールタール、コールタールピッチ、石炭液化物、石油系の重質油、タール、ピッチ等が挙げられる。これらの出発原料のうち、石炭系のコールタール、コールタールピッチが、それらを構成する分子の芳香族性が高く、黒鉛結晶の発達しやすい紡糸ピッチを得られるという点から好適に用いられる。
Hereinafter, the present invention will be described in more detail.
Examples of the starting material for the spinning pitch used in the present invention include coal-based coal tar, coal tar pitch, coal liquefied product, petroleum-based heavy oil, tar, pitch and the like. Among these starting materials, coal-based coal tar and coal tar pitch are preferably used from the viewpoint that a spinning pitch in which the molecules constituting them are highly aromatic and graphite crystals are easy to develop can be obtained.

これらの炭素質原料中にはフリーカーボン、未溶解石炭、灰分、触媒等の不純物が含まれているが、これらの不純物は濾過、遠心分離、あるいは溶剤を使用する静置沈降分離等の周知の方法で予め除去しておくことが望ましい。また、前記炭素質材料を、例えば加熱処理後に特定溶剤で可溶分を抽出する方法、あるいは水素供与性溶媒、水素ガスの存在下に水添処理する方法等により予備処理を行っておいてもよい。   These carbonaceous raw materials contain impurities such as free carbon, undissolved coal, ash, and catalysts. These impurities are well-known such as filtration, centrifugation, or stationary sedimentation separation using a solvent. It is desirable to remove in advance by a method. Further, the carbonaceous material may be pretreated by, for example, a method of extracting a soluble component with a specific solvent after heat treatment, or a method of hydrogenating in the presence of a hydrogen-donating solvent or hydrogen gas. Good.

本発明における紡糸ピッチである、光学的異方性ピッチの光学的異方性割合は、70%以上、好ましくは90%以上、更に好ましくは100%である。光学的異方性割合が70%より低いと、黒鉛化した後の炭素繊維の黒鉛結晶性が低く、高い熱伝導率が得られない。
また、メトラー法により求めた軟化点は260℃以上340℃以下、好ましくは280℃以上320℃以下、更に好ましくは290℃以上310℃以下である。軟化点が260℃より低いと、紡糸後の不融化の際に繊維同士の融着が生じやすく、開繊性の悪い炭素繊維束となりやすい。また、340℃より高いと紡糸の際にピッチの熱分解が生じ、分解ガスによる紡糸ノズル内での気泡発生により紡糸性が著しく低下する。
The optical anisotropy ratio of the optical anisotropic pitch, which is the spinning pitch in the present invention, is 70% or more, preferably 90% or more, and more preferably 100%. If the optical anisotropy ratio is lower than 70%, the carbon fiber after graphitization has low graphite crystallinity, and high thermal conductivity cannot be obtained.
The softening point determined by the Mettler method is 260 ° C. or higher and 340 ° C. or lower, preferably 280 ° C. or higher and 320 ° C. or lower, more preferably 290 ° C. or higher and 310 ° C. or lower. When the softening point is lower than 260 ° C., the fibers tend to be fused at the time of infusibilization after spinning, and a carbon fiber bundle having poor openability is likely to be formed. On the other hand, when the temperature is higher than 340 ° C., thermal decomposition of the pitch occurs during spinning, and the spinning property is remarkably lowered due to generation of bubbles in the spinning nozzle by the decomposition gas.

所望の光学的異方性割合、メトラー軟化点の光学的異方性ピッチを得るために、前述の炭素質原料、あるいは予備処理を行った炭素質原料を必要に応じて、通常350〜500℃、好ましくは380〜450℃で、2分〜50時間、好ましくは5分〜5時間、窒素、アルゴン、水蒸気等の不活性ガス雰囲気下、あるいは吹き込み下に加熱処理を行ってもよい。   In order to obtain a desired optical anisotropy ratio and an optically anisotropic pitch of the Mettler softening point, the above-mentioned carbonaceous raw material or a carbonaceous raw material subjected to pretreatment is usually 350 to 500 ° C., if necessary. The heat treatment may be performed at 380 to 450 ° C. for 2 minutes to 50 hours, preferably 5 minutes to 5 hours, under an inert gas atmosphere such as nitrogen, argon, water vapor, or the like.

本発明においては、溶融した前記光学的異方性ピッチを50〜1000poise、好ましくは100〜500poiseの粘度において、20〜300分間、好ましくは40〜150分間静置した後に、ピッチドメインを分断するような剪断力を与えることなく直接ノズル孔に導入し紡糸を行うことが重要である。
ここでいう“静置”とは、ピッチの熱による自然対流以上の流速を与えないことであり、その線速は2cm/分以下である。連続的に紡糸を行うためには、紡糸装置内にピッチを連続的に供給する必要があるが、そのときの流速は線速として2cm/分以下であることが必要となる。
In the present invention, the melted optically anisotropic pitch is allowed to stand at a viscosity of 50 to 1000 poise, preferably 100 to 500 poise for 20 to 300 minutes, preferably 40 to 150 minutes, and then the pitch domain is divided. It is important to carry out the spinning by introducing it directly into the nozzle hole without giving any shearing force.
“Standing” as used herein refers to not giving a flow velocity higher than natural convection due to heat of the pitch, and the linear velocity is 2 cm / min or less. In order to perform spinning continuously, it is necessary to continuously supply the pitch into the spinning device, and the flow velocity at that time needs to be 2 cm / min or less as the linear velocity.

更に具体的に述べると、通常、ピッチ繊維を紡糸する際には、紡糸ピッチ中に含まれる不純物やゲル状の重質化物を処理、除去、または均質化をするために、ノズル孔の上流部にメッシュ状フィルター、ガラスビーズ、金属パウダー、焼結金属フィルター等を設置している。しかしながら、このような充填物がピッチ液晶の流路にあると、そこを通過する際にピッチ液晶が充填物の空隙の単位で分断され、ドメインサイズが小さくなる。このような状態のピッチをノズル孔に導入し紡糸を行うと、微細な結晶単位を有するピッチ繊維が得られ、このピッチ繊維から得られる炭素繊維の熱伝導率は低いものとなる。   More specifically, normally, when spinning pitch fibers, in order to treat, remove, or homogenize impurities or gel-like heavy matters contained in the spinning pitch, the upstream portion of the nozzle hole is used. Are equipped with mesh filters, glass beads, metal powder, sintered metal filters, etc. However, if such a filler is present in the pitch liquid crystal flow path, the pitch liquid crystal is divided in units of voids in the filler when passing therethrough, and the domain size is reduced. When the pitch in such a state is introduced into the nozzle holes and spinning is performed, pitch fibers having fine crystal units are obtained, and the thermal conductivity of carbon fibers obtained from the pitch fibers is low.

本発明によると、一度分断され、微細化したピッチ液晶を前述の特定条件下で静置することにより、再びピッチドメインを成長させ、その後、再びピッチドメインが分断されるような剪断力を与えることなく、即ち、ピッチ液晶を前述したような充填物を通過させずに直接ノズル孔に導入し、紡糸することにより、大きなドメインサイズを有するピッチ繊維が得られる。このピッチ繊維の断面構造は、一般的に知られている“ラジアル型”と異なっている。“ラジアル型”は、「高温処理によって半径方向に亀裂が入り、扇形の断面を示す」(大谷杉郎等著、炭素繊維 近代編集(1983)p197〜198)が、本発明により得られたピッチ繊維は、組織構造が大きいために焼成した後、一定の割合でクラックの発生を生じない炭素繊維が得られる。   According to the present invention, a pitch liquid crystal once split and refined is allowed to stand under the above-mentioned specific conditions to grow a pitch domain again, and then a shearing force is applied so that the pitch domain is split again. In other words, pitch fibers having a large domain size can be obtained by introducing the pitch liquid crystal directly into the nozzle holes without passing through the filler as described above and spinning. The cross-sectional structure of this pitch fiber is different from the generally known “radial type”. The “radial type” is a pitch obtained by the present invention, in which a crack is generated in the radial direction by high-temperature treatment and shows a fan-shaped cross section (written by Suguro Otani et al., Carbon Fiber Modern Editing (1983) p197-198) Since the fiber has a large tissue structure, carbon fiber that does not generate cracks at a constant rate after firing is obtained.

なお、ピッチドメインとはピッチ液晶の配向状態の繰り返しの一つの単位を指し、これは、偏光顕微鏡下で、青、紫、黄色の色調の変化で観察することが出来る。連続した色調の部分を一つのドメインとみなす。またドメインサイズとはある断面について、ピッチ液晶の配向方向に対して垂直方向に測定した、一つのドメインの幅を示す。充填物を通過した後の光学的異方性ピッチの偏光顕微鏡写真ではピッチドメインが分断されてドメインサイズが小さくなった様子が観察できる(図6参照)。充填物通過後、100poiseの粘度で60分間静置した後の光学的異方性ピッチの偏光顕微鏡写真では、ピッチドメインが成長してドメインサイズが大きくなった様子が観察できる(図7参照)。   Note that the pitch domain refers to one unit of repetition of the alignment state of the pitch liquid crystal, and this can be observed with a change in color tone of blue, purple, and yellow under a polarizing microscope. A continuous tone portion is regarded as one domain. The domain size indicates the width of one domain measured in a direction perpendicular to the alignment direction of the pitch liquid crystal for a certain cross section. In the polarization micrograph of the optically anisotropic pitch after passing through the packing, it can be observed that the pitch domain is divided and the domain size is reduced (see FIG. 6). In the polarization micrograph of the optically anisotropic pitch after standing for 60 minutes at a viscosity of 100 poise after passing through the packing, it can be observed that the pitch domain has grown and the domain size has increased (see FIG. 7).

静置時の粘度が1000poiseよりも高いと、ドメインを大きく成長させるためには長時間を要し効率が落ちること、また、50poiseよりも低いと、粘度を維持するために必要な温度が高くなる為に、静置中のピッチの熱分解により分解ガスが発生し、安定した紡糸が行えなくなることから好ましくない。
また、静置時間を20分より短くするとピッチドメインの成長が充分でないため、また、300分より長くすると、保持中のピッチの熱分解により分解ガスが発生し、安定した紡糸が行えなくなることから好ましくない。
If the viscosity at standing is higher than 1000 poise, it takes a long time to grow the domain greatly, and the efficiency is lowered. If it is lower than 50 poise, the temperature necessary for maintaining the viscosity becomes high. For this reason, it is not preferable because decomposition gas is generated by thermal decomposition of the pitch during standing, and stable spinning cannot be performed.
Also, if the standing time is shorter than 20 minutes, the growth of the pitch domain is not sufficient, and if it is longer than 300 minutes, decomposition gas is generated due to thermal decomposition of the pitch being held, and stable spinning cannot be performed. It is not preferable.

本発明においては、ノズルの形状については特に制約はないが、図3に示すようなノズル孔導入角αが70°よりも大きく、ノズル孔の長さLと孔径Dの比L/Dが3よりも小さいものが好ましく用いられ、更に好ましくはαが100°よりも大きく、L/Dは1.5よりも小さいものが用いられる。
紡糸時のノズルの温度についても特に制約はなく、安定した紡糸状態が維持できる温度、即ち、紡糸ピッチの粘度が20〜800poise、好ましくは50〜300poiseになる温度であればよい。
In the present invention, the shape of the nozzle is not particularly limited, but the nozzle hole introduction angle α as shown in FIG. 3 is larger than 70 °, and the ratio L / D of the nozzle hole length L to the hole diameter D is 3. Is preferably used, more preferably α is larger than 100 ° and L / D is smaller than 1.5.
The temperature of the nozzle at the time of spinning is not particularly limited, and may be a temperature at which a stable spinning state can be maintained, that is, a temperature at which the spinning pitch viscosity is 20 to 800 poise, preferably 50 to 300 poise.

このようにして得られたピッチ繊維は一般的な方法により不融化し、所望の温度で炭化及び/または黒鉛化、表面処理を行うことにより、本発明の炭素繊維を得ることが出来る。この際、炭化及び黒鉛化の温度が高いほど、また炭化及び黒鉛化の時間が長いほど黒鉛結晶子が大きく成長し、熱伝導率の高い炭素繊維が得られる。
不融化処理は通常空気、オゾン、二酸化窒素等の酸化性雰囲気下、または極希に硝酸等を用いての酸化性液中で行われるが、最も簡便な方法である空気中で行うことができる。
The pitch fiber thus obtained is infusible by a general method, and the carbon fiber of the present invention can be obtained by performing carbonization and / or graphitization and surface treatment at a desired temperature. At this time, the higher the temperature of carbonization and graphitization and the longer the time of carbonization and graphitization, the larger the crystallites grow, and carbon fibers with high thermal conductivity can be obtained.
The infusibilization treatment is usually performed in an oxidizing atmosphere such as air, ozone or nitrogen dioxide, or in an oxidizing liquid using nitric acid or the like, but it can be performed in air, which is the simplest method. .

不融化繊維は、所望の物性の炭素繊維を得るために必要な温度で炭化及び/または黒鉛化された後、表面処理を行う。この際に張力を付加しても良く、また、付加しなくともよい。
具体的にはピッチ繊維を酸化性ガス雰囲気中で、300〜380℃で加熱処理することにより、不融化繊維トウを得る。更にこの不融化繊維トウを窒素、アルゴン等の不活性ガス雰囲気中通常、800〜3500℃で炭化、黒鉛化される。この際の炭化、黒鉛化処理は得られた炭化又は黒鉛化繊維の炭素含有率が97%以上になる温度、好ましくは99%以上になる温度で処理されると好ましい。この様な温度で処理しておくと、炭素繊維の炭素化収縮による寸法変化を極力小さく抑制し、糸傷みによる炭素繊維強度の低下を未然に防止することが出来る。
The infusible fiber is carbonized and / or graphitized at a temperature necessary to obtain a carbon fiber having desired physical properties, and then subjected to a surface treatment. At this time, tension may or may not be added.
Specifically, the infusible fiber tow is obtained by heat-treating the pitch fiber in an oxidizing gas atmosphere at 300 to 380 ° C. Further, the infusible fiber tow is usually carbonized and graphitized at 800 to 3500 ° C. in an inert gas atmosphere such as nitrogen and argon. The carbonization and graphitization treatment at this time is preferably performed at a temperature at which the carbonization or graphitized fiber obtained has a carbon content of 97% or more, preferably 99% or more. By treating at such a temperature, it is possible to suppress the dimensional change due to carbonization shrinkage of the carbon fiber as much as possible, and to prevent the carbon fiber strength from being lowered due to thread damage.

次に通常の方法で表面処理したのちサイジング剤を繊維に対し0.2〜10重量%、好ましくは0.5〜7重量%添着し炭素繊維を得る。
サイジング剤としては通常用いられる任意のものが使用でき、具体的にはエポキシ化合物、水溶性ポリアミド化合物、飽和又は不飽和ポリエステル、酢酸ビニル、水又はアルコール、グリコール単独又はこれらの混合物があげられる。
Next, after surface treatment by a usual method, a sizing agent is added to the fiber in an amount of 0.2 to 10% by weight, preferably 0.5 to 7% by weight to obtain a carbon fiber.
Any commonly used sizing agent can be used, and specific examples include epoxy compounds, water-soluble polyamide compounds, saturated or unsaturated polyesters, vinyl acetate, water or alcohols, glycols alone or mixtures thereof.

更に本発明では炭化若しくは黒鉛化された炭素繊維、又はその炭素繊維を用いた織物を、予め黒鉛化処理されたパッキングコークスとともに黒鉛製のルツボの中に入れ高黒鉛化処理すると好ましい。
黒鉛製のルツボは上記の炭素繊維又は炭素繊維織物を所望の量入れることが出来るものであるならば大きさ形状に特に制約はないが、黒鉛化処理中又は冷却中に焼成炉内の酸化性のガス又は炭素蒸気との反応による炭素繊維又は炭素繊維織物の損傷を防ぐために、フタ付きの、気密性の高いものが好まれる。
Furthermore, in the present invention, carbonized carbonized or graphitized carbon or a fabric using the carbon fiber is preferably placed in a graphite crucible together with packing coke that has been previously graphitized to perform high graphitization.
The graphite crucible is not particularly limited in size and shape as long as a desired amount of the above-mentioned carbon fiber or carbon fiber woven fabric can be put in, but the oxidation property in the firing furnace during graphitization or cooling is not limited. In order to prevent damage to the carbon fiber or the carbon fiber fabric due to the reaction with the gas or carbon vapor, a highly airtight one with a lid is preferred.

炭素繊維又は炭素繊維織物は黒鉛製のボビン又は芯材に巻きつけて黒鉛ルツボに充填される。黒鉛ルツボに一緒に充填されるパッキングコークスは予め黒鉛化処理しておいたものを用い、該黒鉛化温度はパッキングコークスの脱揮発分が達成される温度以上であることが必要であり、1400℃以上3500℃以下、好ましくは2500℃以上3500℃以下で黒鉛化処理されたものである。
パッキングコークスの粒径は平均粒径で0.1mm以上100mm以下、好ましくは5mm以上30mm以下のものを用いる。高黒鉛化処理は2500℃以上3500℃以下、好ましくは2800℃以上3300℃以下、より好ましくは2900℃以上3100℃以下の温度で行なわれる。
The carbon fiber or the carbon fiber fabric is wound around a graphite bobbin or a core material and filled in a graphite crucible. The packing coke packed together in the graphite crucible is pre-graphitized, and the graphitization temperature must be equal to or higher than the temperature at which devolatilization of the packing coke is achieved. It is graphitized at a temperature of 3500 ° C. or lower, preferably 2500 ° C. or higher and 3500 ° C. or lower.
The average particle size of the packing coke is 0.1 mm to 100 mm, preferably 5 mm to 30 mm. The high graphitization treatment is performed at a temperature of 2500 ° C. to 3500 ° C., preferably 2800 ° C. to 3300 ° C., more preferably 2900 ° C. to 3100 ° C.

又高黒鉛化処理する設備としては生産効率の面からアチソン抵抗加熱炉を用いるのが特に好ましいが、2500℃以上の温度で処理することが出来るもので、上述の黒鉛ルツボを加熱炉内部に設置出来るものであるならば特に制約はない。高黒鉛化処理時間は2500℃以上の温度で存する時間が30分以上300日以下、好ましくは1時間以上30日以内である。   As the equipment for high graphitization treatment, it is particularly preferable to use an Atchison resistance heating furnace from the viewpoint of production efficiency, but it can be processed at a temperature of 2500 ° C. or more, and the above graphite crucible is installed inside the heating furnace. There is no particular limitation as long as it is possible. The high graphitization time is 30 minutes to 300 days, preferably 1 hour to 30 days, at a temperature of 2500 ° C. or higher.

炭素繊維の強度を支配する一つの要因として、繊維束の開繊性が挙げられる。開繊性が良い状態、すなわち束の中で炭素繊維が一本一本独立に存在しうることが、特に複合材としての強度、例えば圧縮強度等を発揮するためには重要である。   One factor that governs the strength of carbon fibers is the spreadability of the fiber bundle. It is important to exhibit the strength as a composite material, for example, the compressive strength, in particular, that carbon fibers can be present independently in the bundle in a state with good openability.

開繊性を良くするためには、不融化時の繊維同士の融着を防止することが必要であり、その為には不融化時の昇温速度を遅くする方法、ピッチ繊維を収束する際に無機微粒子等のスペーサーを入れ物理的に接触を避ける方法、二酸化窒素等の酸化性ガスを用いて低温で不融化する方法等が採られる。また、不融化時に融着した繊維を、炭化時に水蒸気、二酸化炭素等の酸化性ガスを混合した雰囲気中で焼成することにより、化学的に除去する方法も採られる。   In order to improve the spreadability, it is necessary to prevent the fibers from fusing together at the time of infusibilization. For that purpose, a method of slowing the heating rate at the time of infusibilization, when converging pitch fibers For example, a method of avoiding physical contact by inserting a spacer such as inorganic fine particles into the substrate, a method of infusible at a low temperature using an oxidizing gas such as nitrogen dioxide, and the like are employed. Further, a method of chemically removing the fiber fused at the time of infusibilization by firing in an atmosphere in which an oxidizing gas such as water vapor or carbon dioxide is mixed at the time of carbonization is also employed.

このようにして得られた炭素繊維は、(1) 室温で測定された熱伝導率が1000W/m・K以上、好ましくは1050W/m・K以上、(2) 電気抵抗が1.2μΩm以下、好ましくは1.15μΩm以下、(3) 引張弾性率が95ton/mm2 以上、(4) 圧縮強度が30kg/mm2 以上、という物性を合わせ持つ、超高熱伝導率かつ高圧縮強度の炭素繊維となる。また、この炭素繊維の断面形状は繊維断面にクラックを有しない繊維(クラック無し)とクラックを有する繊維(クラック有り)の割合が、クラック無し/クラック有り=5/95〜30/70であることを特徴としている。 The carbon fiber thus obtained has (1) a thermal conductivity measured at room temperature of 1000 W / m · K or more, preferably 1050 W / m · K or more, (2) an electrical resistance of 1.2 μΩm or less, Preferably, carbon fiber with ultra-high thermal conductivity and high compressive strength, which has the physical properties of 1.15 μΩm or less, (3) tensile elastic modulus of 95 ton / mm 2 or more, and (4) compressive strength of 30 kg / mm 2 or more Become. The cross-sectional shape of the carbon fiber is such that the ratio of the fiber having no crack in the fiber cross section (no crack) and the fiber having a crack (with crack) is 5/95 to 30/70. It is characterized by.

クラック無し/クラック有りの比が5/95より小さいと圧縮強度が充分でなく、また30/70を超えると充分に高い熱伝導率が得られない。
ここで、クラックとは前述の大谷らの著書に示されている、高温処理によって生ずる亀裂のことを示す。
本発明による製造方法により得られた炭素繊維は、配向性の高い光学的異方性ピッチを、ピッチドメインを充分に成長させた状態で、その後剪断を与えることなく紡糸されるために、特に繊維断面の中心部において大きな組織構造をとっている。その組織構造の大きさは、繊維断面の走査型電子顕微鏡(SEM)による4000〜10000倍での観察により確かめることが出来る。それによると、この組織構造は長さ0.1μ〜1μm以上積層した結晶子から構成されていることがわかった。
If the ratio of no crack / crack is less than 5/95, the compressive strength is insufficient, and if it exceeds 30/70, a sufficiently high thermal conductivity cannot be obtained.
Here, the crack indicates a crack caused by high-temperature treatment, which is shown in the above-mentioned book by Otani et al.
The carbon fiber obtained by the production method according to the present invention is particularly suitable because the optically anisotropic pitch with high orientation is spun in the state in which the pitch domain is sufficiently grown, and then without shearing. A large tissue structure is taken at the center of the cross section. The size of the tissue structure can be confirmed by observing the cross section of the fiber at 4000 to 10,000 times with a scanning electron microscope (SEM). According to this, it was found that this structure is composed of crystallites having a length of 0.1 μm to 1 μm or more.

図1にSEMにより8000倍の倍率で観察した、本発明の炭素繊維の中の、クラックを有しない炭素繊維の断面写真を示す。この断面は引張破断後の面であるが、繊維中央部から、外周部にかけて長さ1μ以上に発達した結晶子が観察される。
図2にSEMにより8000倍の倍率で観察した、本発明の炭素繊維の中の、クラックを有する炭素繊維の断面写真を示す。この断面は鋭利なナイフによる切断面であるが、いわゆる“ラジアル型”と異なり、大きな組織構造を採っていることが観察される。
FIG. 1 shows a cross-sectional photograph of carbon fibers having no cracks in the carbon fibers of the present invention, observed at a magnification of 8000 times by SEM. Although this cross section is a surface after tensile fracture, a crystallite developed to a length of 1 μm or more is observed from the center of the fiber to the outer periphery.
FIG. 2 shows a cross-sectional photograph of a carbon fiber having cracks in the carbon fiber of the present invention, which was observed by SEM at a magnification of 8000 times. This cross section is a cut surface by a sharp knife, but it is observed that it has a large tissue structure, unlike the so-called “radial type”.

一般に「切り欠きをもつラジアル組織のファイバーが黒鉛化度P1も高く、結晶子も大きく成長している。しかし、切り欠きをもたないラジアル組織のファイバーの黒鉛化度は低く、結晶子の成長も顕著でない。」(稲垣道夫等著、ニューカーボン材料(技報堂出版)、52頁)とされている。ここでいう切り欠きとはクラックと同意である。この現象はクラックを生じることにより、黒鉛化時における黒鉛結晶の積層方向への収縮により生じる応力が緩和され、自由な状態で黒鉛結晶の成長が行われることによるものである。本発明の炭素繊維はラジアル配向とは基本的に異なる構造を採っているものの、95〜70%の繊維がクラックを有しており、黒鉛結晶性の発達した組織構造を有している。   In general, “radial fibers with notches have a high graphitization degree P1 and crystallites are growing greatly. However, radial fibers with no notches have a low graphitization degree and the growth of crystallites. Is not remarkable. ”(Michio Inagaki et al., New Carbon Materials (Gihodo Publishing), p. 52). The notches here are cracks and consent. This phenomenon is due to the fact that, by generating cracks, the stress caused by the shrinkage in the stacking direction of the graphite crystals during graphitization is relieved, and the graphite crystals are grown in a free state. Although the carbon fiber of the present invention has a structure fundamentally different from the radial orientation, 95 to 70% of the fibers have cracks and have a textured structure with developed graphite crystallinity.

また、本発明の炭素繊維には従来黒鉛化度が低く結晶子の成長も顕著でないとされていたクラックを有しない炭素繊維が5〜30%含まれているが、ドメインを充分に成長させたピッチを紡糸しているため(図7参照)に、焼成時に結晶子が発達しやすく、黒鉛結晶性の発達した、大きな組織構造を採ることが出来る。このために本発明の炭素繊維は非常に高い熱伝導率、低い電気比抵抗を示す。   The carbon fiber of the present invention contains 5 to 30% of carbon fiber having no cracks, which has been conventionally considered to have a low degree of graphitization and crystal growth is not remarkable, but the domain is sufficiently grown. Since the pitch is spun (see FIG. 7), crystallites are easily developed at the time of firing, and a large structure having developed graphite crystallinity can be obtained. For this reason, the carbon fiber of the present invention exhibits very high thermal conductivity and low electrical resistivity.

また、クラックを有する繊維は黒鉛化度が高く、高い熱伝導率を得るためには好適であるが、反面、強度の低下を生じさせていた。
しかし本発明の炭素繊維は、前述の通り特に中心部において大きな結晶構造をとっており、繊維中央を中心とするラジアル構造とは異なった構造を採っているために、クラックの発生が抑制されており、断面形状が実質的に円形の繊維が5〜30%含まれているため、従来の超高熱伝導率の炭素繊維に比べて圧縮強度が高いものとなる。
すなわち、クラック無し/クラック有りの繊維の割合を特定すること、また、クラック無しの繊維においても、組織構造を大きなものとし、黒鉛結晶子を発達しやすくさせることにより超高熱伝導率と、高圧縮強度を両立させうることが出来るのである。
Further, the fiber having cracks has a high degree of graphitization and is suitable for obtaining a high thermal conductivity, but on the other hand, it causes a decrease in strength.
However, the carbon fiber of the present invention has a large crystal structure particularly at the center as described above, and has a structure different from the radial structure centered on the center of the fiber. In addition, since the fiber having a substantially circular cross section is included in an amount of 5 to 30%, the compressive strength is higher than that of the conventional carbon fiber having ultrahigh thermal conductivity.
In other words, it is necessary to specify the ratio of uncracked / cracked fibers, and even in the case of non-cracked fibers, by making the structure large and facilitating the development of graphite crystallites, ultrahigh thermal conductivity and high compression It is possible to achieve both strengths.

以下、本発明を実施例により更に詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。
なお、以下の諸例において各測定は次の方法により行った。
(1)光学的異方性割合
ピッチ試料を数mm角に粉砕したものを、常法に従って2cm直径の樹脂のほぼ全面に埋め込み、表面を研磨後、表面全体をくまなく偏光顕微鏡(100〜600倍)下で観察し試料の全面積に占める光学的異方性部分の面積の割合を測定することによって求めた。
EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited to a following example, unless the summary is exceeded.
In the following examples, each measurement was performed by the following method.
(1) Optical anisotropy ratio A pitch sample pulverized to several millimeters square is embedded in almost the entire surface of a resin having a diameter of 2 cm in accordance with a conventional method, and after polishing the surface, the entire surface is all covered with a polarizing microscope (100 to 600). And the ratio of the area of the optically anisotropic portion in the total area of the sample was measured.

(2)軟化点
メトラー軟化点測定装置を用いて測定した。スタート温度を(予測軟化点−20℃)とし、1℃/分の昇温速度で昇温した。
(3)圧縮強度
ASTM D3410法により測定した。なお測定値は炭素繊維の体積分率(Vf)60%に換算した値である。
(4)層間剪断強度
ASTM D2344法に準拠して行った。ショートビーム3点曲げ試験であり、試験体の寸法は幅10mm、厚さ2mm、長さ12mmとした。
(2) Softening point It measured using the Mettler softening point measuring apparatus. The start temperature was (predicted softening point −20 ° C.), and the temperature was increased at a rate of temperature increase of 1 ° C./min.
(3) Compressive strength Measured by the ASTM D3410 method. The measured value is a value converted to a volume fraction (Vf) of carbon fiber of 60%.
(4) Interlaminar shear strength It was performed in accordance with ASTM D2344 method. This is a short beam three-point bending test, and the dimensions of the specimen were 10 mm width, 2 mm thickness, and 12 mm length.

(5)繊維断面形状観察
約4000本の炭素繊維を樹脂に埋め込み、表面を研磨後、顕微鏡(500倍)下にて繊維の断面形状を観察し、断面形状が実質的に円形である繊維の本数の全体の中での割合を「クラック無し」の割合として、その他を「クラック有り」の割合として求めた。
(6)電気比抵抗
4端子法により測定した。抵抗の測定距離は500mmとした。
(7)熱伝導率
炭素繊維を直径10mm、厚さ3〜6mmの円板状一方向炭素繊維強化プラスチック(CFRP)とし、真空理工(株)製レーザーフラッシュ法熱定数測定装置TC−3000によって、該CFRPの比熱と熱拡散率を測定し、次式によって算出した。
K=Cp・α・ρ/Vf
(5) Fiber cross-sectional shape observation About 4000 carbon fibers are embedded in resin, the surface is polished, the cross-sectional shape of the fiber is observed under a microscope (500 times), and the cross-sectional shape of the fiber is substantially circular. The ratio of the total number was determined as the ratio of “no crack” and the other as the ratio of “with crack”.
(6) Electrical specific resistance It measured by the 4-terminal method. The measurement distance of resistance was 500 mm.
(7) Thermal conductivity The carbon fiber is a disc-shaped unidirectional carbon fiber reinforced plastic (CFRP) having a diameter of 10 mm and a thickness of 3 to 6 mm, and by means of a laser flash method thermal constant measuring device TC-3000 manufactured by Vacuum Riko Co., Ltd. The specific heat and thermal diffusivity of the CFRP were measured and calculated by the following formula.
K = Cp · α · ρ / Vf

ここで、Kは炭素繊維の熱伝導率、CpはCFRPの比熱、αはCFRPの熱拡散率、ρはCFRPの密度、VfはCFRP中に含まれる炭素繊維の体積分率を表す。
CFRPの厚さは、炭素繊維の熱伝導率に応じて変え、熱伝導率の大きい試料は厚く、小さい試料は薄くした。具体的には、レーザー照射後、試料背面の温度が上昇し、最高温度に到達するには数10msecを要するが、その際の温度上昇巾ΔTmの1/2だけ温度が上昇するまでの時間t1/2が10msec以上(最高15msec)となるようにCFRPの厚さを調節した(図4参照)。
Here, K is the thermal conductivity of the carbon fiber, Cp is the specific heat of CFRP, α is the thermal diffusivity of CFRP, ρ is the density of CFRP, and Vf is the volume fraction of the carbon fiber contained in CFRP.
The thickness of CFRP was changed according to the thermal conductivity of the carbon fiber, and the sample having a large thermal conductivity was thick and the small sample was thin. Specifically, after laser irradiation, the temperature on the back surface of the sample rises, and it takes several tens of milliseconds to reach the maximum temperature, but the time t1 until the temperature rises by ½ of the temperature rise width ΔTm at that time. The thickness of CFRP was adjusted so that / 2 was 10 msec or more (maximum 15 msec) (see FIG. 4).

比熱は、試料前面に受光板としてグラッシーカーボンを貼付け、レーザー照射後の温度上昇を試料背面中央に接着したR熱電対によって測定することにより求めた。また、測定値は、サファイアを標準試料として校正した。
熱拡散率は、試料の両面にカーボンスプレーによってちょうど表面が見えなくなるまで皮膜を付け、赤外線検出器によって、レーザ照射後の試料背面の温度変化を測定し求めた。
The specific heat was determined by pasting glassy carbon as a light receiving plate on the front surface of the sample and measuring the temperature rise after laser irradiation with an R thermocouple bonded to the center of the back surface of the sample. The measured values were calibrated using sapphire as a standard sample.
The thermal diffusivity was determined by applying a film on both sides of the sample until the surface was completely invisible with carbon spray, and measuring the temperature change on the back of the sample after laser irradiation with an infrared detector.

なお、炭素繊維の熱伝導率は、炭素繊維の熱伝導率と電気比抵抗の間の非常に良い相関関係を利用して、電気比抵抗の値から次式によって推算することもできる。
K=1272.4/ER−49.4
ここでKは炭素繊維の熱伝導率〔W/m・K〕、ERは炭素繊維の電気比抵抗〔μΩm〕を表す。
Note that the thermal conductivity of the carbon fiber can be estimated from the value of the electrical resistivity by the following equation using a very good correlation between the thermal conductivity of the carbon fiber and the electrical resistivity.
K = 1272.4 / ER-49.4
Here, K represents the thermal conductivity [W / m · K] of the carbon fiber, and ER represents the electrical specific resistance [μΩm] of the carbon fiber.

実施例1
コールタールピッチを出発原料とした光学的異方性割合が100%、軟化点が300℃の紡糸ピッチを連続的に目開き325meshのフィルターを通して、不純物及び未溶解物を除去した後に、孔数525の紡糸ノズル(導入角α=150°、ノズル孔の長さLと径Dの比L/D=1)を有するスピンパック(図5の1)にフィードした。該ピッチはスピンパック内上部に設置された空間部(図5の2)において、0.1cm/分の線速のもとに、55分間静置した後、直径3mmの流路を有する整流板(図5の3)、ノズル導入部(図5の4)を通して、ノズル孔(図5の5)にフィードした。紡糸は安定しており、15000m以上の連続紡糸が可能であった。スピンパック内でのピッチの粘度は250poiseであった。
Example 1
After removing impurities and undissolved material through a filter with a mesh opening of 325 mesh through a spinning pitch having an optical anisotropy ratio of 100% and a softening point of 300 ° C. starting from coal tar pitch, the number of pores is 525. Was fed to a spin pack (1 in FIG. 5) having a spinning nozzle (introduction angle α = 150 °, ratio L / D = 1 of the nozzle hole length L to diameter D). The pitch is a rectifying plate having a flow path having a diameter of 3 mm after standing for 55 minutes at a linear velocity of 0.1 cm / min in a space portion (2 in FIG. 5) installed in the upper part of the spin pack. (3 in FIG. 5), the feed was made to the nozzle hole (5 in FIG. 5) through the nozzle introduction part (4 in FIG. 5). Spinning was stable and continuous spinning of 15000 m or more was possible. The pitch viscosity in the spin pack was 250 poise.

得られたピッチ繊維を、空気中、段階的に380℃まで昇温し不融化処理を行った後、最終的にアルゴンガス中2500℃まで連続的に黒鉛化を行った。次に得られた繊維を黒鉛性のボビンに巻きとり、これをあらかじめ黒鉛化処理をされたパッキングコークス中に埋め込むようにして黒鉛るつぼ中にいれアチソン抵抗加熱炉で3000℃で黒鉛化処理した。3000℃での滞留時間は1時間であった。冷却後、得られた炭素繊維を黒鉛ボビンから連続的に繰り出しながら、電解酸化を行って表面処理し、エポキシ系のサイジング剤を2%添着した。   The obtained pitch fiber was heated to 380 ° C. stepwise in air and infusibilized, and finally graphitized continuously to 2500 ° C. in argon gas. Next, the obtained fiber was wound around a graphite bobbin, and this was embedded in a pre-graphitized packing coke, placed in a graphite crucible, and graphitized at 3000 ° C. in an Acheson resistance heating furnace. The residence time at 3000 ° C. was 1 hour. After cooling, the resulting carbon fiber was surface-treated by electrolytic oxidation while being continuously drawn out from the graphite bobbin, and 2% of an epoxy sizing agent was added.

得られた炭素繊維の電気比抵抗は1.13μΩmであり、電気比抵抗値より求めた熱伝導率は1080W/m・Kであった。またこのもののストランド引張強度は350kg/mm2 、引張弾性率は95ton/mm2 、圧縮強度は31kg/mm2 、層間剪断強度は3.5kg/mm2 であった。
繊維断面構造を観察した結果、クラック無し/クラック有りの割合は15/85であった。
The obtained carbon fiber had an electrical resistivity of 1.13 μΩm, and the thermal conductivity obtained from the electrical resistivity was 1080 W / m · K. The strand tensile strength of this product was 350 kg / mm 2 , the tensile modulus was 95 ton / mm 2 , the compressive strength was 31 kg / mm 2 , and the interlaminar shear strength was 3.5 kg / mm 2 .
As a result of observing the fiber cross-sectional structure, the ratio of no crack / crack was 15/85.

実施例2
スピンパック内でのピッチの粘度を150poise、滞留時間を45分としたこと以外は実施例1と同様にして、炭素繊維を調製した。
得られた炭素繊維の電気比抵抗は1.06μΩmであり、電気比抵抗値より求めた熱伝導率は1150W/m・Kであった。またこのもののストランド引張強度は350kg/mm2 、引張弾性率は96ton/mm2 、圧縮強度は31kg/mm2 であった。
繊維断面構造を観察した結果、クラック無し/クラック有りの割合は10/90であった。
Example 2
Carbon fibers were prepared in the same manner as in Example 1 except that the pitch viscosity in the spin pack was 150 poise and the residence time was 45 minutes.
The obtained carbon fiber had an electrical resistivity of 1.06 μΩm, and the thermal conductivity obtained from the electrical resistivity was 1150 W / m · K. The strand tensile strength of this product was 350 kg / mm 2 , the tensile modulus was 96 ton / mm 2 , and the compressive strength was 31 kg / mm 2 .
As a result of observing the fiber cross-sectional structure, the ratio of no crack / crack was 10/90.

実施例3
スピンパック内でのピッチの粘度を300poise、滞留時間を80分としたこと以外は実施例1と同様にして、炭素繊維を調製した。
得られた炭素繊維の電気比抵抗は1.10μΩmであり、電気比抵抗値より求めた熱伝導率は1110W/m・Kであった。またこのもののストランド引張強度は380kg/mm2 、引張弾性率は95ton/mm2 、圧縮強度は32kg/mm2 であった。
繊維断面構造を観察した結果、クラック無し/クラック有りの割合は25/75であった。
Example 3
Carbon fibers were prepared in the same manner as in Example 1, except that the pitch viscosity in the spin pack was 300 poise and the residence time was 80 minutes.
The obtained carbon fiber had an electrical resistivity of 1.10 μΩm, and the thermal conductivity obtained from the electrical resistivity was 1110 W / m · K. The strand tensile strength of this product is 380 kg / mm 2, tensile modulus 95ton / mm 2, a compressive strength of 32 kg / mm 2.
As a result of observing the fiber cross-sectional structure, the ratio of no crack / crack was 25/75.

比較例1
光学的異方性ピッチを目開き325meshのフィルターを通して、不純物及び未溶解物を除去した後、スピンパック内での静置時間を5分とした以外は実施例1と全く同様にして炭素繊維を調製した。
得られた炭素繊維の電気比抵抗は1.17μΩmであり、電気比抵抗値より求めた熱伝導率は1040W/m・Kであった。しかし、このもののストランド引張強度は300kg/mm2 、引張弾性率は90ton/mm2 、圧縮強度は27kg/mm2 と低いものであった。
繊維断面構造を観察した結果、クラック無し/クラック有りの割合は0/100であった。
Comparative Example 1
After removing impurities and undissolved material through a filter having an optical anisotropic pitch of 325 mesh, the carbon fiber was treated in the same manner as in Example 1 except that the standing time in the spin pack was 5 minutes. Prepared.
The obtained carbon fiber had an electrical resistivity of 1.17 μΩm, and the thermal conductivity obtained from the electrical resistivity was 1040 W / m · K. However, the strand tensile strength was 300 kg / mm 2 , the tensile modulus was 90 ton / mm 2 , and the compressive strength was 27 kg / mm 2 .
As a result of observing the fiber cross-sectional structure, the ratio of no crack / crack was 0/100.

比較例2
ノズル孔直前に500meshのフィルターを設置した以外は実施例1と全く同様にして炭素繊維を調製した。500meshのフィルターからノズル孔までの時間は2秒であった。即ち、一度静置した光学的異方性ピッチを、ノズル孔直前で、再びドメインを分断するような剪断力を与えてその状態で紡糸を行った。得られた炭素繊維の電気比抵抗は1.90μΩmであり、電気比抵抗値より求めた熱伝導率は620W/m・Kと低いものであった。
繊維断面構造を観察した結果、クラック無し/クラック有りの割合は97/3であった。
Comparative Example 2
Carbon fibers were prepared in exactly the same manner as in Example 1 except that a 500 mesh filter was installed immediately before the nozzle holes. The time from the 500 mesh filter to the nozzle holes was 2 seconds. That is, the optically anisotropic pitch once allowed to stand was subjected to spinning in such a state by applying a shearing force to divide the domain again immediately before the nozzle hole. The obtained carbon fiber had an electrical resistivity of 1.90 μΩm, and the thermal conductivity obtained from the electrical resistivity was as low as 620 W / m · K.
As a result of observing the fiber cross-sectional structure, the ratio of no crack / crack was 97/3.

比較例3
スピンパック内でのピッチの粘度を20poise、静置時間を50分とした以外は実施例1と同様にして紡糸を試みた。しかし、ノズル孔吐出直後のピッチ繊維の延伸過程で分解ガスに起因する気泡切れが発生し連続した紡糸が行えなかった。
Comparative Example 3
Spinning was attempted in the same manner as in Example 1 except that the pitch viscosity in the spin pack was 20 poise and the standing time was 50 minutes. However, in the process of drawing the pitch fiber immediately after discharging the nozzle holes, bubbles were cut out due to the decomposition gas, and continuous spinning could not be performed.

比較例4
スピンパック内でのピッチの粘度を150poise、静置時間を360分とした以外は実施例1と同様にして紡糸を試みた。しかし、比較例3と同様、ノズル孔吐出直後のピッチ繊維の延伸過程で分解ガスに起因する気泡切れが発生し連続した紡糸が行えなかった。
Comparative Example 4
Spinning was attempted in the same manner as in Example 1 except that the pitch viscosity in the spin pack was 150 poise and the standing time was 360 minutes. However, as in Comparative Example 3, bubbles were cut out due to decomposition gas during the pitch fiber drawing process immediately after nozzle hole discharge, and continuous spinning could not be performed.

比較例5
市販のピッチ系炭素繊維のうち最も高熱伝導率のアモコ(Amoco)社製「THORNEL K1100X」の物性を本実施例の測定方法に従い測定したところ、電気比抵抗1.16μΩmM、熱伝導率1050W/mK、引張強度300kg/mm2 、引張弾性率98ton/mm2 であったが、圧縮強度が27kg/mm2 と低かった。又、繊維断面形状を観察すると、クラック無し/クラック有りの比が0/100であった。
Comparative Example 5
The physical properties of “THORNEL K1100X” manufactured by Amoco with the highest thermal conductivity among commercially available pitch-based carbon fibers were measured according to the measurement method of this example. The tensile strength was 300 kg / mm 2 and the tensile modulus was 98 ton / mm 2 , but the compressive strength was as low as 27 kg / mm 2 . When the fiber cross-sectional shape was observed, the ratio of no crack / crack was 0/100.

SEMにより8000倍の倍率で観察した、本発明の炭素繊維の中の、クラックを有しない炭素繊維の断面形状を示す走査型電子顕微鏡写真である。It is a scanning electron micrograph which shows the cross-sectional shape of the carbon fiber which does not have a crack in the carbon fiber of this invention observed by 8000 times with SEM. SEMにより8000倍の倍率で観察した、本発明の炭素繊維の中の、クラックを有する炭素繊維の断面形状を示す走査型電子顕微鏡写真である。It is a scanning electron micrograph which shows the cross-sectional shape of the carbon fiber which has a crack in the carbon fiber of this invention observed by 8000 times with SEM. 本発明の炭素繊維の製造方法に用いる紡糸ノズルの断面説明図である。It is a section explanatory view of the spinning nozzle used for the manufacturing method of the carbon fiber of the present invention. 熱伝導率の求め方の説明図である。It is explanatory drawing of how to obtain | require thermal conductivity. 本発明の炭素繊維の製造方法に用いるスピンパックの断面説明図である。It is sectional explanatory drawing of the spin pack used for the manufacturing method of the carbon fiber of this invention. ドメインサイズが小さくなった様子を示す光学的異方性ピッチの液晶構造の偏光顕微鏡写真Polarized light micrograph of liquid crystal structure with optically anisotropic pitch showing domain size reduction ドメインサイズが大きくなった様子を示す光学的異方性ピッチの液晶構造の偏光顕微鏡写真Polarized light micrograph of a liquid crystal structure with an optically anisotropic pitch showing the increased domain size

符号の説明Explanation of symbols

1 スピンパック全体図
2 スピンパック空間部
3 整流板(直径3mmの複数の流路を有している。)
4 ノズル導入部
5 ノズル孔
DESCRIPTION OF SYMBOLS 1 Spin pack whole figure 2 Spin pack space part 3 Current plate (it has a several flow path of diameter 3mm)
4 Nozzle introduction part 5 Nozzle hole

Claims (2)

室温で測定された熱伝導率が1000〜1150W/m・K以上、電気比抵抗が1.06〜1.2μΩm以下、引張弾性率が95ton/mm2 以上、圧縮強度が30kg/mm2 以上であり、繊維断面にクラックを有しない繊維(クラック無し)とクラックを有する繊維(クラック有り)の割合が、クラック無し/クラック有り=5/95〜30/70であることを特徴とするピッチ系炭素繊維。 Thermal conductivity measured at room temperature is 1000 to 1150 W / m · K or more, electrical resistivity is 1.06 to 1.2 μΩm or less, tensile elastic modulus is 95 ton / mm 2 or more, and compressive strength is 30 kg / mm 2 or more. The pitch-based carbon is characterized in that the ratio of the fiber having no crack in the fiber cross section (no crack) and the fiber having a crack (crack) is no crack / crack = 5 / 95-30 / 70 fiber. 圧縮強度が30〜32kg/mm2 であることを特徴とする請求項1のピッチ系炭素繊維。 Pitch based carbon fibers according to claim 1, compressive strength, characterized in that a 30~32kg / mm 2.
JP2004326458A 1995-08-18 2004-11-10 Carbon fiber Expired - Lifetime JP3861899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004326458A JP3861899B2 (en) 1995-08-18 2004-11-10 Carbon fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP23344795 1995-08-18
JP2004326458A JP3861899B2 (en) 1995-08-18 2004-11-10 Carbon fiber

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP23144596A Division JP3648865B2 (en) 1995-08-18 1996-08-13 Carbon fiber manufacturing method

Publications (2)

Publication Number Publication Date
JP2005089960A JP2005089960A (en) 2005-04-07
JP3861899B2 true JP3861899B2 (en) 2006-12-27

Family

ID=34466506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004326458A Expired - Lifetime JP3861899B2 (en) 1995-08-18 2004-11-10 Carbon fiber

Country Status (1)

Country Link
JP (1) JP3861899B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5453614B2 (en) * 2008-12-19 2014-03-26 ポリマテック・ジャパン株式会社 Graphitized fiber and method for producing the same

Also Published As

Publication number Publication date
JP2005089960A (en) 2005-04-07

Similar Documents

Publication Publication Date Title
US9725829B2 (en) Magneto-carbonization method for production of carbon fiber, and high performance carbon fibers made thereby
JP3031197B2 (en) Pitch-based carbon fiber
US5721308A (en) Pitch based carbon fiber and process for producing the same
Newell et al. Direct carbonization of PBO fiber
JPH0660451B2 (en) Method for producing pitch-based graphite fiber
US5556608A (en) Carbon thread and process for producing it
JP3648865B2 (en) Carbon fiber manufacturing method
JP3861899B2 (en) Carbon fiber
EP0761848B1 (en) Carbon fibres and process for their production
JP2985455B2 (en) Carbon fiber and method for producing the same
JP4343312B2 (en) Pitch-based carbon fiber
Mohammad et al. The effect of modification of matrix on densification efficiency of pitch based carbon composites
JPS60252723A (en) Production of pitch based carbon fiber
JPS6045612A (en) Preparation of carbon yarn
JPH0718057B2 (en) Pitch-based fiber manufacturing method
JP2817232B2 (en) Method for producing high-performance carbon fiber
JP6407747B2 (en) Pitch-based carbon fiber and method for producing the same
JPS61186520A (en) Production of pitch carbon yarn
JP3406696B2 (en) Method for producing high thermal conductivity carbon fiber
Mochida et al. Structure and properties of mesophase pitch carbon fibre with a skin-core structure carbonized under strain
JPH0788604B2 (en) Method for manufacturing pitch-based carbon fiber
Bermudez Anomalous Effect of Spinning Conditions on the Mechanical and Transport Properties of Mesophase Pitch-Based Carbon Fibers
JP3698156B2 (en) Carbon fiber
Andrews et al. Nanotube Carbon-Carbon Composites
JPH0811844B2 (en) Method for producing pitch-based carbon fiber

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060918

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131006

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

EXPY Cancellation because of completion of term