JP3856314B2 - Coagulation sedimentation method and apparatus - Google Patents

Coagulation sedimentation method and apparatus Download PDF

Info

Publication number
JP3856314B2
JP3856314B2 JP2003157786A JP2003157786A JP3856314B2 JP 3856314 B2 JP3856314 B2 JP 3856314B2 JP 2003157786 A JP2003157786 A JP 2003157786A JP 2003157786 A JP2003157786 A JP 2003157786A JP 3856314 B2 JP3856314 B2 JP 3856314B2
Authority
JP
Japan
Prior art keywords
chamber
water
separated
floc
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003157786A
Other languages
Japanese (ja)
Other versions
JP2004358313A (en
Inventor
栄 小三田
良介 秦
宏年 日沼
建 鈴木
知一 藤橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Tokyo Metropolitan Government
Original Assignee
Ebara Corp
Tokyo Metropolitan Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Tokyo Metropolitan Government filed Critical Ebara Corp
Priority to JP2003157786A priority Critical patent/JP3856314B2/en
Priority to EP04745265A priority patent/EP1637205A1/en
Priority to CA002526524A priority patent/CA2526524A1/en
Priority to PCT/JP2004/006954 priority patent/WO2004103521A1/en
Publication of JP2004358313A publication Critical patent/JP2004358313A/en
Application granted granted Critical
Publication of JP3856314B2 publication Critical patent/JP3856314B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、凝集沈殿処理に係り、特に、下水、排水、汚濁の進んだ河川水、及び雨水の処理において、凝集剤を原水に添加して懸濁物質を凝集沈殿分離する上向流式凝集沈殿方法及び装置に関する。
【0002】
【従来の技術】
【特許文献1】
特公昭42−25986号公報
【非特許文献1】
水処理工学(第二版)、井出哲夫編(1995)、P59〜67
原水に含まれる懸濁物質を分離する方法の内、凝集剤を添加し汚濁物質を凝集させ、粗大粒子(フロック)にして沈降分離する方法は、凝集沈殿操作として広く用いられている。
従来の上向流式凝集沈殿方法における処理速度(ここでの処理速度は、被処理水の水量を槽断面積で除した流速)は、フロックの沈降速度の制約を受け、処理速度をフロックの沈降速度よりも速くすることはできない。処理速度が、フロックの沈降速度以下であっても、流速が不均一な場合には、フロックの沈降が阻止される。
特に、原水流入部近傍の上向流速は、処理速度よりも速く、フロックの沈降を阻害するばかりでなく、フロックの破砕を招く。このことは、処理過程においてブランケット層の形成を行うか否かに関わらず言えることである。
【0003】
ブランケット層の形成を伴う上向流式凝集沈殿処理では、微細なフロックや未凝集の濁度成分が、ブランケット層を通過する時に、ブランケット層を形成しているフロックと接触して捕捉される効果によって、除濁が促進されると共にフロックの沈降性が向上する。ブランケット層の形成を行って、フロックの沈降性を向上する場合、処理速度を速めると、ブランケット層の形成が阻害されてフロックの溢流が生じる。
一方、処理速度を一般の凝集沈殿処理よりも大きくした処理方式では、特公昭42−25986号公報に挙げた装置がある。本方式では、分離槽の下部に濃縮槽を配置し、分離槽で形成されたフロックは、フロック自体の沈降速度によって生じる密度流によりフロック移送管内を沈降し、濃縮槽へ移行した後に濃縮して排出される。濃縮により生じる分離水は、前記密度流の影響を受けて分離槽へ返流する。
【0004】
しかし、この方式は、ポリマーを使用していない例である。更には、分離槽から濃縮槽へのフロックと水の移送を、フロック事体の沈降により生じる密度流に依存しているため、分離槽から濃縮槽への移送水量の制御を任意に行うことはできず、処理速度は、フロックの沈降速度に依存せざるを得なかった。更に、濃縮槽の機能は、分離槽から流入したフロックを単に重力濃縮するのみであり、分離槽と同様に、フロックの固液分離を積極的に行うことで、清澄な分離水を得るという機能を有していない。
一方、本発明者らは、先に、第1室でフロックを成長させ固液分離を行い、成長したフロックを分離水の一部と共に、フロック移送管を通じて第1室下部の第2室へ強制的に流下させ、また、第2室ではフロックを濃縮し、濃縮した汚泥を排出すると共に、フロックの濃縮によって生じた分離水と、フロックを第1室から第2室へ流下させるために導いた分離水とを、第2室上部から引抜く方式を提案している。
【0005】
しかし、この方式の場合、第1室で形成されたフロックが、フロック移送管を通じて第2室へ流下するには、分離槽へ流入する被処理水を水平方向に均等に分散させる必要がある。しかし、被処理水を水平方向に均等に流入させるためには、枝管や整流板などの内装品が必要であり、装置の構造が複雑になる。また、移送管から第2室へ流下した分離水を回収するには、フロック移送管の隙間を通じて水平方向に均等に集水する必要がある。この場合にも、水平方向に均等に集水するためには、枝管や整流板が必要であり、装置の構造が複雑になる。
上向流式凝集沈殿方法における上記とは別の問題として、装置立ち上げ初期の除濁性能の低下が挙げられる。このことは、ブランケット層の形成を伴う処理方式においては極めて深刻な問題である。一旦ブランケットが形成されれば、微細なフロックは、ブランケットを形成する大きなフロックとの接触・合体によって除去されるが、そのようなブランケット層が形成されるまでには、微細なフロック同士が会合を重ねる必要がある。装置の立ち上げ時には、ブランケット層が存在しない状態から処理を開始するため、ブランケット層が形成されるまでの間は処理水質の悪化が生じる。
【0006】
【発明が解決しようとする課題】
本発明は、上記従来技術の問題点を解消し、処理速度がフロックの沈降速度よりも大きい状況においても、フロックの流出を防止すると共に、被処理水の均等流入及び分離水の均等集水のための内装品を用いずに整流を行い、装置立ち上げ初期においても除濁性能の低下が生じることのない、分離効率がよく、コンパクトな凝集沈殿方法と装置を提供することを課題とする。
【0007】
【課題を解決するための手段】
上記課題を解決するために、本発明では、被処理水に、無機凝集剤及び/又は有機高分子凝集剤を添加して、混合撹拌した液を分離槽で凝集沈殿する方法において、前記撹拌した液を分離槽の第1室に導き、フロックと分離水に固液分離して、かつ分離水を槽外に排出し、該第1室で成長したフロックと分離水の一部を、該第1室の水平方向の側壁に沿った領域を通じて、該第1室下部に設けた第2室の水平方向中心部へ流下させ、該第2室ではフロックを濃縮し、濃縮した汚泥を該第2室下部から排出すると共に、フロック濃縮後の分離水を、該第2室上部の水平方向の側壁に沿った領域を通じて、第2室分離水として引抜くこととしたものである。
【0008】
前記凝集沈殿方法において、第1室から第2室へのフロックと分離水との流下は、その流下量を前記第2室から引抜く分離水量を調整して制御することができ、また、前記第1室から第2室へのフロックと分離水との流下は、その流下速度が5m/分以下となるように、前記第2室の分離水と汚泥の排出の合計流量を調整し、第1室から第2室へ流下する分離水によって第2室底部に堆積した汚泥の巻き上がりを抑制することができ、また、第2室を引抜く分離水量は、第2室分離水の濁度或いは懸濁物質濃度を指標として自動制御することができる。
【0009】
また、本発明では、被処理水に、無機凝集剤及び/又は有機高分子凝集剤とを添加して、混合撹拌した液を分離槽で凝集沈殿する装置において、前記分離槽内に流入水受槽を設置し、該受槽の上部を第1室、下部を第2室とし、該流入水受槽の外周と分離槽の側壁とは水平方向に全周に渡って離れており、該流入水受槽の下方にロート状の整流板を配置し、該ロート状整流板は、上端が全周分離槽側壁に接し、下端は上端よりも径を狭くして分離槽側壁とは離れており、前記第1室には、上部に第1室分離水流出部、下部に被処理水流入部を有し、前記第2室には、前記分離槽の側壁とロート状整流板の隙間に第2室分離水流出部、下部に汚泥排出部を有すると共に、流入水受槽と分離槽との隙間及び流入水受槽とロート状整流板との隙間から成るフロック移送部は、第1室と第2室とを連通し、前記第2室分離水流出部には、該流出部から流出する水量を調整する手段を有する流路を接続することとしたものである。
前記凝集沈殿装置において、第1室内の上部には、浮上ろ材からなるろ材層を設けることができ、また、前記第1室には、水平方向に回転可能な撹拌翼を配備することができる。
【0010】
【発明の実施の形態】
本発明では、被処理水を分離槽上部の第1室に流入せしめて、被処理水中の汚濁物質を粗大フロックとすると共に、粗大となったフロックを、第1室の水平方向の側壁に沿った領域を通じて、下部の第2室の水平方向中心部へ強制的に移送することによって、第1室上部の上向流速を、フロックブランケット層が形成し得る流速、即ち粗大フロックの沈降速度未満にまでに低減して、第1室分離水を清澄化する。更に、第2室に移送されたフロックが沈降する範囲内で、第2室の上向流速を任意に調整することによって、第2室分離水をも清澄化するものである。
即ち、本発明は、槽を上下に二分割し、上部の第1室において、粗大フロックとフロックブランケット層との形成によって固液分離を行い、第1室分離水を清澄化すると共に、下部の第2室においても、第1室から移送されたフロックを固液分離して、第2室分離水を清澄化する凝集沈殿方法及び装置である。
【0011】
本発明の凝集沈殿装置においては、第1室での粗大フロックとフロックブランケット層との形成が不十分な場合においても、第1室内の上部にろ材層を配備することによって、汚濁物質をろ材層を通過することにより除去し、第1室分離水を清澄化する。ろ材層を配備する場合には、ろ材層を適宜洗浄し、捕捉したSSを剥離除去する操作を設ける。
粗大化したフロックが第1室から第2室へ移送される水流は、下向流であり、第2室へ移送された分離水は、反転して上向流となる。固液分離を良好に行うためには、上向流を整流して上向流速を均一にすることが重要である。一方、装置をコンパクト化するためには、整流に要する垂直距離を短くすることが望ましい。更に、上向流速を速くするには、第1室から第2室へ流入する水流によって、第2室底部に堆積しているフロックが巻き上がらないことが必要である。
【0012】
第1室から第2室へ流下する流速が遅いほど、第2室底部に堆積している汚泥の巻き上げは少ない。第1室から第2室へ流下する流速は、第2室分離水量と流下部分の断面積によって決まる。
第2室分離水量を一定としたままで、流下流速を遅くするには流下部の断面積を大きくする必要がある。しかし、流下部の断面積を大きくすることは、第2室の上向流部分の断面積を小さくすることになり、その結果、第2室の上向流流速を速くしてしまう。
すなわち、フロックの巻き上がりを抑えるために流下部の流速を下げすぎると、第2室上向流速を大きくし、フロックの巻き上がりを招く。本発明では、第2室底部に堆積したフロックの巻き上げが生じない条件として、第1室から第2室への流下する流速を5m/分以下とした。好ましくは2m/分以下とすることがよい。
フロックを緻密なペレットにすることによって、第1室上部の上向流速の増加が可能であり、併せて第2室上部の上向流速の増加も可能である。本発明では、第1室内の上部に撹拌翼を配備し、該撹拌翼を水平方向に回転させることで、フロックブランケット層内の粗大フロックの緻密化を行うことができる。
【0013】
次に、本発明を図面を用いて詳細に説明する。
図1、図2は、本発明の凝集沈殿方法及び装置の各例を示す断面構成図である。
図1及び図2において、1は分離槽、2は第1室、3は第2室、4は第1室分離水流出管、5は原水(被処理水)流入管、6は第2室分離水流出部、7は汚泥排出部、8は流入水受槽、9はロート状整流板、10は第2室整流板、11はろ材、12はろ材層、13はろ材流出防止クリーン、14はろ材受けスクリーン、15は掻寄機、16は掻寄機の回転軸である。また、図2の17はドラフトチューブである。
【0014】
本発明の実施の形態の一例を、図1に従って説明する。本発明の分離槽1は、流入水受槽8とロート状整流板9によって、槽上部に区画される第1室2と槽下部に区画される第2室3とに分割される。第1室2には、上部に第1室分離水即ち清澄水の流出管4、下部に原水(被処理水)流入管5を有する。第2室3には、上部に第2室分離水を流出するための第2室分離水流出部6、下部に堆積した汚泥を排出するための汚泥排出部7を有する。流入水受槽8は水平方向全周に渡って分離槽1と離れており、ロート状整流板9の上端は全周が分離槽1の側壁に接し、下端は全周が分離槽1とは離れている。流入水受槽8と分離槽1との隙間及び流入水受槽8とロート状整流板9との隙間は第1室2から第2室3ヘフロックが流下するフロック移送のためのスペースである。このフロック移送部の水平断面形状は、第1室2からの流入部分では分離槽1の側壁に沿った環状であり、流出部に近づくに従って環の径が狭くなり、第2室3への流出部では円形となる。フロック移送部では、フロックの破壊を防止するために、全域に渡って流下速度が大きく変化しないように、水平断面積がほぼ等しくなるようにしている。
【0015】
第2室分離水流出部6には、第2室分離水の流出水量を調整するための手段を講じる。この手段としては、ポンプ、弁、或いは可動堰による流出水量の制御が挙げられるが、方法を限定するものではない。
第1室2の上部には、浮上ろ材11で構成されるろ材層12、ろ材層12の上部水面下にろ材の流出防止スクリーン13、ろ材層12の下部にろ材受けスクリーン14が配備されている。
第2室分離水流出部6からの流出水量の調整を行うことで、第1室2上部の上向流速と第2室3上部の上向流速とが調整可能である。第2室3での固液分離を良好に維持し、第2室分離水の清澄化を行うために、第2室分離水の濁度を濁度計により連続測定し、それに基づいて第2室分離水の流量を自動制御する。
清澄化の指標は、濁度に限定されるものではなく、SSでもよい。また、流量の制御方法は限定されるものではなく、ポンプ、弁或いは可動堰でもよい。
【0016】
次に、図1を用いて凝集沈殿装置の運転操作について説明する。
予め、塩化第二鉄やPAC等の無機凝集剤とポリマーとが順次添加された原水21は、原水流入管5から第1室2の下部に流入され、流入水受槽8に衝突して分散すると共に反転して上向流となる。この一連の流れによる撹拌効果により被処理水中の汚濁物質はフロックとなり、第1室2を上昇する間にフロック同士の衝突、合体が進行し、フロックは徐々に粗大化すると共にその沈降速度が増加する。第2室分離水流出部6を通じて第2室3の上部の水を排出することにより、第1室2における被処理水の一部は、分離槽1の側壁に沿って環状に存在する流入水受槽8と分離槽1との隙間、及び流入水受槽8とロート状整流板9との隙間を通過して、第2室3へ移送される。流入水受槽8の上端よりも上部の上向流速は、処理速度(ここでの処理速度は、被処理水の水量を槽断面積で除した流速)よりも遅くなり、第2室分離水の流出量を調整することで、粗大フロックが沈降し得る流速にまで低減される。この結果、第1室2では、流入水受槽8の上部に、粗大フロックが滞留するフロックブランケット層が形成され、汚濁物が分離された水がろ材層12を上向流で通過し、清澄な第1室分離水22として第1室分離水流出管4から排出される。
【0017】
装置立ち上げ初期には、粗大フロックとフロックブランケット層の形成が不十分であり、沈降速度の遅いフロックは、処理水と共に第1室2の上部へ上昇する。
このように上昇するフロックは、ろ材層12によって分離、除去され、清澄となった第1室分離水22が、第1室分離水流出管4から排出される。
一方、第2室3へ降下したフロックは、第2室3の下部に沈降し、掻寄機15により集められて、汚泥排出部7から濃縮汚泥24として排出される。フロックが沈降、除去された水は、上向流となって第2室分離水流出部6から清澄な第2室分離水23として排出される。
第1室2から第2室3への下降流速が速いと、第2室下部に堆積したフロックを巻き上げてしまう。よって堆積フロックの巻き上げ防止のために、下降流速は5m/分以下、望ましくは2m/分以下となるように調整する。
図2は、本発明の凝集沈殿装置の他の例を示す断面構成図であり、図1との相違点は、原水がドラフトチューブ17を通って第1室2の下部に流入する点である。
【0018】
【実施例】
以下に、本発明を実施例により具体的に説明する。
実施例1
本実施例は、降雨時の合流式下水を被処理水とした場合の例である。本実施例では、寸法が内径2,000mm、高さ6,500mmの実験装置を用いた。
処理条件は次のとおりである。
装置流入水量 :176m/h
第1室分離水量 :97m/h
第2室分離水量 :61m/h
排泥水量 :18m/h
第1室水分離面積:2.93m
適用凝集剤 :塩化第2鉄、アニオン系高分子凝集剤
ろ材 :未使用
図3は、降雨時の合流式下水の最初沈殿池流入水を被処理水とし、図1の装置を配備した場合としない場合の処理水質の変化を示すグラフである。
従来の凝集沈殿処理においては、処理速度が35m/hを超えるような超高速処理では、フロックは沈降せずに上向流に随伴して処理水と共に溢流してしまう。
本発明の凝集沈殿方法では、処理速度が60m/hの場合であっても、第1室上部の上向流速を33m/h、第2室上部の上向流速を35m/hに調整することにより、第1室と第2室の両方において良好な固液分離を行っている。6時間のSSの平均値は、原水が364mg/Lであるのに対して、第1室分離水では47mg/L、第2室分離水では41mg/L、全体のSS除去率の平均値は88%であった。
【0019】
【発明の効果】
本発明によれば、前記のように、流入水受槽8とロート状整流板9とで分離槽1を第1室2と第2室3とに区分し、分離槽の側壁に沿った領域を通じて第1室から第2室へのフロック移動を行い、第1室と第2室との両者において固液分離を行う機構としたことにより、処理速度がフロックの沈降速度よりも大きい状況においてもフロックの流出を防止し、また、槽内に流入水を水平方向に均等流入させるための内装品を装備する必要が無く、かつ分離水を水平方向に均等集水するための内装品を装備する必要が無く、更に上部に浮上ろ材層を配備することにより、装置立ち上げ初期においても除濁性能の低下が生じることのない、分離効率のよいコンパクトな凝集沈殿方法と装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の凝集沈殿装置の一例を示す断面構成図。
【図2】本発明の凝集沈殿装置の他の例を示す断面構成図。
【図3】実施例1の処理水の結果を示すグラフ。
【符号の説明】
1:分離槽、2:第1室、3:第2室、4:第1室分離水流出管、5:原水(被処理水)流入管、6:第2室分離水流出部、7:汚泥排出部、8:流入水受槽、9:ロート状整流板、10:第2室整流板、11:ろ材、12:ろ材層、13:ろ材流出防止スクリーン、14:ろ材受けスクリーン、15:掻寄機、16:回転軸、17:ドラフトチューブ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a coagulation sedimentation treatment, and in particular, in the treatment of sewage, drainage, polluted river water, and rainwater, an upflow type coagulation in which suspended solids are coagulated by precipitation by adding a coagulant to raw water. The present invention relates to a precipitation method and apparatus.
[0002]
[Prior art]
[Patent Document 1]
Japanese Patent Publication No.42-25986 [Non-Patent Document 1]
Water treatment engineering (2nd edition), Tetsuo Ide (1995), P59-67
Among the methods for separating suspended substances contained in raw water, a method of adding a flocculant to agglomerate the pollutants and coarsening them into coarse particles (floc) is widely used as a coagulating sedimentation operation.
The processing speed in the conventional upward flow type coagulation sedimentation method (the processing speed here is the flow rate obtained by dividing the amount of water to be treated by the cross-sectional area of the tank) is limited by the floc sedimentation speed, and the processing speed is It cannot be faster than the settling rate. Even if the processing speed is lower than the floc settling speed, if the flow rate is not uniform, the floc settling is prevented.
In particular, the upward flow velocity in the vicinity of the raw water inflow portion is faster than the processing speed, and not only inhibits floc sedimentation but also causes floc crushing. This is true regardless of whether or not the blanket layer is formed in the process.
[0003]
In the upflow type coagulation sedimentation process with the formation of a blanket layer, fine flocs and unagglomerated turbidity components are trapped in contact with the flocs forming the blanket layer when passing through the blanket layer Thus, turbidity is promoted and floc sedimentation is improved. In the case where the formation of the blanket layer is performed to improve the sedimentation property of the floc, if the processing speed is increased, the formation of the blanket layer is hindered and the overflow of the floc occurs.
On the other hand, there is an apparatus described in Japanese Patent Publication No. 42-25986 as a processing method in which the processing speed is made larger than that of general coagulation sedimentation processing. In this method, a concentrating tank is arranged at the lower part of the separation tank, and the floc formed in the separation tank settles in the floc transfer pipe by the density flow generated by the sedimentation speed of the floc itself, and is concentrated after moving to the concentrating tank. Discharged. The separated water produced by the concentration is returned to the separation tank under the influence of the density flow.
[0004]
However, this method is an example in which no polymer is used. Furthermore, since the transfer of floc and water from the separation tank to the concentration tank depends on the density flow generated by the sedimentation of the floc material, it is possible to arbitrarily control the amount of water transferred from the separation tank to the concentration tank. The treatment speed was dependent on the floc sedimentation speed. Furthermore, the function of the concentrating tank is simply to concentrate the floc flowing from the separating tank by gravity, and like the separating tank, the function of obtaining clear separated water by actively performing the solid-liquid separation of the floc. Does not have.
On the other hand, the present inventors first performed solid-liquid separation by growing a floc in the first chamber, and forced the grown floc together with a part of the separated water to the second chamber below the first chamber through the floc transfer pipe. In addition, the floc was concentrated in the second chamber, the concentrated sludge was discharged, and the separated water generated by the floc concentration and the floc were led to flow from the first chamber to the second chamber. A method is proposed in which the separated water is extracted from the upper part of the second chamber.
[0005]
However, in the case of this system, in order for the floc formed in the first chamber to flow down to the second chamber through the floc transfer pipe, it is necessary to uniformly distribute the water to be treated flowing into the separation tank in the horizontal direction. However, in order to allow the water to be treated to flow evenly in the horizontal direction, interior parts such as branch pipes and rectifying plates are required, and the structure of the apparatus becomes complicated. Moreover, in order to collect the separated water that has flowed down from the transfer pipe to the second chamber, it is necessary to collect water evenly in the horizontal direction through the gaps of the flock transfer pipe. Also in this case, in order to collect water equally in the horizontal direction, branch pipes and rectifying plates are required, and the structure of the apparatus becomes complicated.
A problem different from the above in the upward flow type coagulation sedimentation method is a decrease in the turbidity removal performance at the start of the apparatus. This is a very serious problem in processing methods involving the formation of blanket layers. Once the blanket is formed, the fine flocs are removed by contact and coalescence with the large flocs that form the blanket, but by the time the blanket layer is formed, the fine flocs associate with each other. It is necessary to repeat. When the apparatus is started up, the treatment is started from the state where no blanket layer is present, so that the quality of the treated water is deteriorated until the blanket layer is formed.
[0006]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems of the prior art and prevents the floc from flowing out even in a situation where the treatment speed is larger than the floc sedimentation speed, and the uniform inflow of treated water and the equal collection of separated water. Therefore, it is an object of the present invention to provide a compact coagulation sedimentation method and apparatus that perform rectification without using an interior product and have good separation efficiency without causing deterioration of turbidity even in the initial stage of the apparatus startup.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, in the present invention, in the method of adding an inorganic flocculant and / or organic polymer flocculant to the water to be treated and aggregating and precipitating the mixed and stirred liquid in a separation tank, the stirring is performed. The liquid is guided to the first chamber of the separation tank, solid-liquid separated into floc and separated water, and the separated water is discharged out of the tank, and a part of the floc and separated water grown in the first chamber is removed from the first chamber. Through the region along the horizontal side wall of the one chamber, it is allowed to flow down to the center in the horizontal direction of the second chamber provided in the lower portion of the first chamber. In the second chamber, the floc is concentrated, and the concentrated sludge is added to the second chamber. In addition to discharging from the lower part of the chamber, the separated water after floc concentration is drawn out as second chamber separated water through a region along the horizontal side wall of the upper part of the second chamber.
[0008]
In the coagulation sedimentation method, the flow of floc and separated water from the first chamber to the second chamber can be controlled by adjusting the amount of separated water withdrawn from the second chamber. For the flow of floc and separated water from the first chamber to the second chamber, the total flow rate of the separated water and sludge discharge in the second chamber is adjusted so that the flow velocity is 5 m / min or less. The separation water flowing down from the first chamber to the second chamber can suppress the rolling up of the sludge accumulated at the bottom of the second chamber, and the amount of the separated water withdrawn from the second chamber is the turbidity of the second chamber separation water. Alternatively, it can be automatically controlled using the suspended substance concentration as an index.
[0009]
Further, in the present invention, in an apparatus for adding an inorganic flocculant and / or an organic polymer flocculant to the water to be treated and aggregating and precipitating the mixed and stirred liquid in the separation tank, the inflow water receiving tank is placed in the separation tank. The upper part of the receiving tank is the first chamber and the lower part is the second chamber, and the outer periphery of the inflow water receiving tank and the side wall of the separation tank are horizontally separated from each other in the horizontal direction. A funnel-shaped rectifying plate is disposed below, and the funnel-shaped rectifying plate has an upper end that is in contact with the entire circumference separation tank side wall, and a lower end that is narrower than the upper end and is separated from the separation tank side wall. The chamber has a first chamber separation water outflow portion at the upper portion and a treated water inflow portion at the lower portion, and the second chamber has a second chamber separation water in the gap between the side wall of the separation tank and the funnel-shaped rectifying plate. It has an outflow part, a sludge discharge part at the bottom, a gap between the inflow water receiving tank and the separation tank, and a gap between the inflow water receiving tank and the funnel-shaped rectifying plate The flock transfer unit is configured to connect the first chamber and the second chamber, and to the second chamber separated water outflow portion, a flow path having means for adjusting the amount of water flowing out from the outflow portion is connected. Is.
In the coagulation sedimentation apparatus, a filter medium layer made of a floating filter medium can be provided in the upper part of the first chamber, and a stirring blade capable of rotating in the horizontal direction can be arranged in the first chamber.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the water to be treated is caused to flow into the first chamber at the upper part of the separation tank to make the pollutant in the water to be treated coarse flocs, and the flocs that have become coarse along the side walls in the horizontal direction of the first chamber. The upward flow velocity of the upper portion of the first chamber is made lower than the flow velocity that can be formed by the flock blanket layer, that is, the settling velocity of the coarse floc. And the first chamber separation water is clarified. Further, the second chamber separation water is also clarified by arbitrarily adjusting the upward flow velocity of the second chamber within a range where the floc transferred to the second chamber settles.
That is, in the present invention, the tank is divided into two parts, and in the upper first chamber, solid-liquid separation is performed by forming a coarse flock and a flock blanket layer, and the first chamber separated water is clarified and the lower chamber is clarified. Also in the second chamber, the flocs transferred from the first chamber are separated into solid and liquid, and the second chamber separated water is clarified and the coagulation sedimentation method and apparatus.
[0011]
In the coagulation sedimentation apparatus of the present invention, even when the formation of the coarse floc and the floc blanket layer in the first chamber is insufficient, the filter medium layer is provided by disposing the filter medium layer on the upper part of the first chamber. And the first chamber separation water is clarified. When the filter medium layer is provided, an operation of cleaning the filter medium layer as appropriate and peeling and removing the captured SS is provided.
The water flow in which the coarse floc is transferred from the first chamber to the second chamber is a downward flow, and the separated water transferred to the second chamber is reversed and becomes an upward flow. In order to perform solid-liquid separation satisfactorily, it is important to rectify the upward flow and make the upward flow rate uniform. On the other hand, in order to make the device compact, it is desirable to shorten the vertical distance required for rectification. Furthermore, in order to increase the upward flow velocity, it is necessary that the floc accumulated at the bottom of the second chamber is not rolled up by the water flow flowing from the first chamber into the second chamber.
[0012]
The slower the flow velocity flowing down from the first chamber to the second chamber, the less the sludge is accumulated on the bottom of the second chamber. The flow velocity flowing down from the first chamber to the second chamber is determined by the amount of the second chamber separation water and the cross-sectional area of the flowing-down portion.
In order to slow down the flow velocity while keeping the second chamber separation water amount constant, it is necessary to increase the cross-sectional area of the lower portion. However, increasing the cross-sectional area of the flow lower part decreases the cross-sectional area of the upward flow portion of the second chamber, and as a result, increases the upward flow velocity of the second chamber.
That is, if the flow velocity in the lower part of the flow is lowered too much in order to prevent the floc from rolling up, the upward flow velocity in the second chamber is increased, and the floc is rolled up. In the present invention, as a condition for preventing the floc accumulated on the bottom of the second chamber from being raised, the flow velocity flowing from the first chamber to the second chamber is set to 5 m / min or less. Preferably it is 2 m / min or less.
By making the floc into dense pellets, the upward flow rate at the top of the first chamber can be increased, and at the same time, the upward flow rate at the top of the second chamber can be increased. In the present invention, the coarse floc in the flock blanket layer can be densified by disposing a stirring blade in the upper part of the first chamber and rotating the stirring blade in the horizontal direction.
[0013]
Next, the present invention will be described in detail with reference to the drawings.
1 and 2 are cross-sectional configuration diagrams showing examples of the coagulation sedimentation method and apparatus of the present invention.
1 and 2, 1 is a separation tank, 2 is a first chamber, 3 is a second chamber, 4 is a first chamber separation water outflow pipe, 5 is a raw water (treated water) inflow pipe, and 6 is a second chamber. Separation water outflow section, 7 is a sludge discharge section, 8 is an inflow water receiving tank, 9 is a funnel-shaped rectifier, 10 is a second chamber rectifier, 11 is a filter medium, 12 is a filter medium layer, 13 is a filter medium outflow prevention clean, 14 is A filter medium receiving screen, 15 is a scraper, and 16 is a rotating shaft of the scraper. 2 in FIG. 2 is a draft tube.
[0014]
An example of an embodiment of the present invention will be described with reference to FIG. The separation tank 1 of the present invention is divided into a first chamber 2 defined in the upper part of the tank and a second chamber 3 defined in the lower part of the tank by the inflow water receiving tank 8 and the funnel-shaped rectifying plate 9. The first chamber 2 has a first chamber separation water, that is, a clarified water outflow pipe 4 in the upper part, and a raw water (treated water) inflow pipe 5 in the lower part. The second chamber 3 has a second chamber separation water outflow portion 6 for flowing out the second chamber separation water in the upper portion and a sludge discharge portion 7 for discharging sludge accumulated in the lower portion. The inflow water receiving tank 8 is separated from the separation tank 1 over the entire circumference in the horizontal direction, the upper end of the funnel-shaped rectifying plate 9 is in contact with the side wall of the separation tank 1, and the lower end is separated from the separation tank 1 in the entire circumference. ing. The gap between the inflowing water receiving tank 8 and the separation tank 1 and the gap between the inflowing water receiving tank 8 and the funnel-shaped rectifying plate 9 are spaces for flock transfer from which the heftlock flows down from the first chamber 2 to the second chamber 3. The horizontal cross-sectional shape of this floc transfer part is an annular shape along the side wall of the separation tank 1 at the inflow portion from the first chamber 2, and the diameter of the ring becomes narrower as it approaches the outflow portion, and the outflow to the second chamber 3. The part is circular. In the flock transfer section, in order to prevent breakage of the flock, the horizontal cross-sectional areas are made substantially equal so that the flow speed does not change greatly over the entire area.
[0015]
The second chamber separated water outflow portion 6 is provided with means for adjusting the amount of outflow water of the second chamber separated water. Examples of this means include control of the amount of outflow water by a pump, a valve, or a movable weir, but the method is not limited.
In the upper part of the first chamber 2, a filter medium layer 12 composed of the floating filter medium 11, a filter medium outflow prevention screen 13 below the upper water surface of the filter medium layer 12, and a filter medium receiving screen 14 below the filter medium layer 12 are arranged. .
By adjusting the amount of the outflow water from the second chamber separated water outflow portion 6, the upward flow velocity at the top of the first chamber 2 and the upward flow velocity at the top of the second chamber 3 can be adjusted. In order to maintain the solid-liquid separation in the second chamber 3 well and to clarify the second chamber separation water, the turbidity of the second chamber separation water is continuously measured by a turbidimeter, and the second Automatically controls the flow rate of room separation water.
The clarification index is not limited to turbidity, and may be SS. Further, the flow rate control method is not limited and may be a pump, a valve, or a movable weir.
[0016]
Next, the operation of the coagulation sedimentation apparatus will be described with reference to FIG.
Raw water 21 to which an inorganic flocculant such as ferric chloride and PAC and a polymer are sequentially added in advance is introduced into the lower portion of the first chamber 2 from the raw water inflow pipe 5 and collides with the inflow water receiving tank 8 to be dispersed. It reverses with it and becomes an upward flow. Due to the stirring effect by this series of flows, the pollutants in the water to be treated become flocs, and the collision and coalescence of the flocs progress while ascending the first chamber 2, and the flocs gradually become coarser and their sedimentation speed increases. To do. By discharging the water in the upper part of the second chamber 3 through the second chamber separated water outflow part 6, part of the treated water in the first chamber 2 is inflowing water that exists in a ring shape along the side wall of the separation tank 1. It passes through the gap between the receiving tank 8 and the separation tank 1 and the gap between the incoming water receiving tank 8 and the funnel-shaped rectifying plate 9 and is transferred to the second chamber 3. The upward flow velocity above the upper end of the inflowing water receiving tank 8 becomes slower than the processing speed (the processing speed here is the flow speed obtained by dividing the amount of water to be treated by the tank cross-sectional area), and the second chamber separation water By adjusting the outflow amount, the flow rate is reduced to a flow rate at which coarse flocs can settle. As a result, in the first chamber 2, a floc blanket layer in which coarse floc stays is formed in the upper part of the inflow water receiving tank 8, and the water from which the pollutants are separated passes through the filter medium layer 12 in an upward flow, and is clarified. The first chamber separation water 22 is discharged from the first chamber separation water outflow pipe 4.
[0017]
At the initial stage of starting up the apparatus, formation of coarse flocs and floc blanket layers is insufficient, and flocs having a slow sedimentation speed rise to the upper portion of the first chamber 2 together with the treated water.
The flocs rising in this way are separated and removed by the filter medium layer 12, and the clarified first chamber separation water 22 is discharged from the first chamber separation water outflow pipe 4.
On the other hand, the floc descending to the second chamber 3 settles in the lower part of the second chamber 3, is collected by the scraper 15, and is discharged from the sludge discharge unit 7 as the concentrated sludge 24. The water from which the floc has settled and removed becomes an upward flow and is discharged from the second chamber separated water outflow portion 6 as a clear second chamber separated water 23.
If the descending flow velocity from the first chamber 2 to the second chamber 3 is fast, the flocs accumulated in the lower portion of the second chamber are wound up. Therefore, in order to prevent the piled floc from rolling up, the descending flow rate is adjusted to 5 m / min or less, preferably 2 m / min or less.
FIG. 2 is a cross-sectional configuration diagram showing another example of the coagulation sedimentation apparatus of the present invention. The difference from FIG. 1 is that raw water flows into the lower portion of the first chamber 2 through the draft tube 17. .
[0018]
【Example】
Hereinafter, the present invention will be specifically described by way of examples.
Example 1
The present embodiment is an example of a case where combined sewage during rain is treated water. In this example, an experimental apparatus having an inner diameter of 2,000 mm and a height of 6,500 mm was used.
The processing conditions are as follows.
System inflow volume: 176m 3 / h
1st chamber separation water volume: 97 m 3 / h
Second chamber separation water volume: 61 m 3 / h
Wastewater volume: 18m 3 / h
Room 1 water separation area: 2.93 m 2
Applicable flocculant: ferric chloride, anionic polymer flocculant filter medium: unused Figure 3 shows the case where the first settling basin influent water of the combined sewage at the time of rainfall is treated water and the apparatus of Figure 1 is deployed. It is a graph which shows the change of the treated water quality when not doing.
In the conventional coagulation sedimentation process, in the ultra high speed process in which the process speed exceeds 35 m / h, the floc does not settle but overflows with the treated water along with the upward flow.
In the coagulation sedimentation method of the present invention, the upward flow rate at the top of the first chamber is adjusted to 33 m / h and the upward flow rate at the top of the second chamber is adjusted to 35 m / h even when the processing speed is 60 m / h. Thus, good solid-liquid separation is performed in both the first chamber and the second chamber. The average value of SS for 6 hours is 364 mg / L for raw water, 47 mg / L for the first chamber separation water, 41 mg / L for the second chamber separation water, and the average SS removal rate is It was 88%.
[0019]
【The invention's effect】
According to the present invention, as described above, the separation tank 1 is divided into the first chamber 2 and the second chamber 3 by the inflow water receiving tank 8 and the funnel-shaped rectifying plate 9, and through the region along the side wall of the separation tank. Even if the processing speed is larger than the settling speed of the floc, the floc is moved from the first chamber to the second chamber and the solid-liquid separation is performed in both the first chamber and the second chamber. It is not necessary to equip interior parts to prevent the outflow of water and to allow the inflow water to flow evenly into the tank in the horizontal direction, and it is necessary to equip interior parts to uniformly collect the separated water in the horizontal direction. Further, by providing a floating filter medium layer on the upper part, it is possible to provide a compact coagulation sedimentation method and apparatus with good separation efficiency that does not cause a decrease in turbidity even at the initial stage of the apparatus startup.
[Brief description of the drawings]
FIG. 1 is a cross-sectional configuration diagram showing an example of a coagulation sedimentation apparatus of the present invention.
FIG. 2 is a cross-sectional configuration diagram showing another example of the coagulation sedimentation apparatus of the present invention.
FIG. 3 is a graph showing the results of treated water of Example 1.
[Explanation of symbols]
1: separation tank, 2: first chamber, 3: second chamber, 4: first chamber separation water outflow pipe, 5: raw water (treated water) inflow pipe, 6: second chamber separation water outflow section, 7: Sludge discharge section, 8: inflow water receiving tank, 9: funnel-shaped rectifying plate, 10: second chamber rectifying plate, 11: filter medium, 12: filter medium layer, 13: filter medium outflow prevention screen, 14: filter medium receiving screen, 15: scratch Machine, 16: rotating shaft, 17: draft tube

Claims (5)

被処理水に、無機凝集剤及び/又は有機高分子凝集剤を添加して、混合撹拌した液を分離槽で凝集沈殿する方法において、前記撹拌した液を分離槽の第1室に導き、フロックと分離水とに固液分離して、かつ分離水を槽外に排出し、該第1室で成長したフロックと分離水の一部を、該第1室の水平方向の側壁に沿った領域を通じて、該第1室下部に設けた第2室の水平方向中心部へ流下させ、該第2室ではフロックを濃縮し、濃縮した汚泥を該第2室下部から排出すると共に、フロック濃縮後の分離水を、該第2室上部の水平方向の側壁に沿った領域を通じて、第2室分離水として引抜くことを特徴とする凝集沈殿方法。In the method of adding an inorganic flocculant and / or organic polymer flocculant to the water to be treated and aggregating and precipitating the mixed and stirred liquid in the separation tank, the stirred liquid is guided to the first chamber of the separation tank, The solid water is separated into liquid and separated water, and the separated water is discharged out of the tank, and the flocs grown in the first chamber and a part of the separated water are separated along the horizontal side wall of the first chamber. Through the center of the second chamber provided in the lower portion of the first chamber, and the floc is concentrated in the second chamber, and the concentrated sludge is discharged from the lower portion of the second chamber, and after the floc is concentrated. A coagulating sedimentation method, wherein the separated water is drawn out as second chamber separated water through a region along the horizontal side wall at the top of the second chamber. 前記第1室から第2室へのフロックと分離水との流下は、その流下量を前記第2室から引抜く分離水量を調整して制御することを特徴とする請求項1記載の凝集沈殿方法。2. The coagulation sedimentation according to claim 1, wherein the flow of floc and separated water from the first chamber to the second chamber is controlled by adjusting the amount of separated water drawn from the second chamber. Method. 前記第1室から第2室へのフロックと分離水との流下は、その流下速度が5m/分以下となるように、前記第2室の分離水と汚泥の排出の合計流量を調整することを特徴とする請求項1記載の凝集沈殿方法。Adjust the total flow rate of the separation water and sludge discharge in the second chamber so that the flow speed of the floc and separation water from the first chamber to the second chamber is 5 m / min or less. The coagulation precipitation method of Claim 1 characterized by these. 前記第2室から引抜く分離水量は、第2室分離水の濁度或いは懸濁物質濃度を指標として自動制御することを特徴とする請求項1記載の凝集沈殿方法。The coagulation sedimentation method according to claim 1, wherein the amount of separated water withdrawn from the second chamber is automatically controlled by using the turbidity or suspended substance concentration of the second chamber separated water as an index. 被処理水に、無機凝集剤及び/又は有機高分子凝集剤とを添加して、混合撹拌した液を分離槽で凝集沈殿する装置において、前記分離槽内に流入水受槽を設置し、該受槽の上部を第1室、下部を第2室とし、該流入水受槽の外周と分離槽の側壁とは水平方向に全周に渡って離れており、該流入水受槽の下方にロート状の整流板を配置し、該ロート状整流板は、上端が全周分離槽側壁に接し、下端は上端よりも径を狭くして分離槽側壁とは離れており、前記第1室には、上部に第1室分離水流出部、下部に被処理水流入部を有し、前記第2室には、前記分離槽の側壁とロート状整流板の隙間に第2室分離水流出部、下部に汚泥排出部を有すると共に、前記流入水受槽と分離槽との隙間及び流入水受槽とロート状整流板との隙間から成るフロック移送部は、第1室と第2室とを連通し、前記第2室分離水流出部には、該流出部から流出する水量を調整する手段を有する流路を接続することを特徴とする凝集沈殿装置。In an apparatus for adding an inorganic flocculant and / or organic polymer flocculant to water to be treated and aggregating and precipitating the mixed and stirred liquid in a separation tank, an inflow water receiving tank is installed in the separation tank, and the receiving tank The first chamber is the upper chamber and the second chamber is the lower chamber, and the outer periphery of the inflow water receiving tank and the side wall of the separation tank are horizontally separated from each other in the horizontal direction. The funnel-shaped rectifying plate has an upper end that is in contact with the side wall of the entire separation tank, and a lower end that is narrower than the upper end and is separated from the separation tank side wall. The first chamber separated water outflow portion has a treated water inflow portion in the lower portion, the second chamber has a second chamber separated water outflow portion in the gap between the side wall of the separation tank and the funnel-shaped rectifying plate, and sludge in the lower portion. A floc having a discharge portion and comprising a gap between the inflow water receiving tank and the separation tank and a gap between the inflow water receiving tank and the funnel-shaped rectifying plate The sending section communicates the first chamber and the second chamber, and a flow path having means for adjusting the amount of water flowing out from the outflow section is connected to the second chamber separated water outflow section. Coagulation sedimentation equipment.
JP2003157786A 2003-05-22 2003-06-03 Coagulation sedimentation method and apparatus Expired - Lifetime JP3856314B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003157786A JP3856314B2 (en) 2003-06-03 2003-06-03 Coagulation sedimentation method and apparatus
EP04745265A EP1637205A1 (en) 2003-05-22 2004-05-21 Flocculaing settling device
CA002526524A CA2526524A1 (en) 2003-05-22 2004-05-21 Coagulation-sedimentation apparatus
PCT/JP2004/006954 WO2004103521A1 (en) 2003-05-22 2004-05-21 Flocculaing settling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003157786A JP3856314B2 (en) 2003-06-03 2003-06-03 Coagulation sedimentation method and apparatus

Publications (2)

Publication Number Publication Date
JP2004358313A JP2004358313A (en) 2004-12-24
JP3856314B2 true JP3856314B2 (en) 2006-12-13

Family

ID=34051390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003157786A Expired - Lifetime JP3856314B2 (en) 2003-05-22 2003-06-03 Coagulation sedimentation method and apparatus

Country Status (1)

Country Link
JP (1) JP3856314B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4937228B2 (en) * 2008-10-10 2012-05-23 オルガノ株式会社 Coagulation sedimentation equipment
JP5143762B2 (en) * 2009-02-10 2013-02-13 オルガノ株式会社 Coagulation sedimentation equipment
CZ303836B6 (en) * 2009-08-23 2013-05-22 Výzkumný ústav vodohospodárský T.G.Masaryka v. v. i. Pressure-type detritial continuous sampler for flowing water
JP5753702B2 (en) * 2011-02-23 2015-07-22 水ing株式会社 Formation method of initial mother floc in high speed coagulation sedimentation basin
CN102601515B (en) * 2012-03-29 2014-08-06 哈尔滨工业大学 Self-sustaining friction stir welding stirring head with irrotational lower shaft shoulder and welding method of stirring head
JP7045881B2 (en) * 2017-02-24 2022-04-01 オルガノ株式会社 Coagulation sedimentation device
CN107399885B (en) * 2017-08-24 2023-12-08 天津市水利科学研究院 Purification system with backwash coagulation cyclone filtration and method thereof
CN108046397B (en) * 2017-12-27 2023-06-16 山东佳星环保科技有限公司 Continuous separation sedimentation tank for sewage treatment
CN112794495A (en) * 2020-12-24 2021-05-14 连云港鹰游新立成纺织科技有限公司 Recycling treatment device for desizing wastewater in printing and dyeing technology and use method thereof
CN115140884A (en) * 2021-03-29 2022-10-04 烟台金正环保科技有限公司 High-speed reaction system and method for sewage and wastewater treatment
CN114314933B (en) * 2022-01-11 2022-10-28 深圳同道环保科技有限公司 Sewage advanced treatment unit based on circular tank body
CN115282645B (en) * 2022-08-11 2023-09-12 诸暨市蓝欣环保科技有限公司 Sedimentation tank convenient to subside
CN117180806B (en) * 2023-11-07 2024-02-20 维达纸业(中国)有限公司 Processing separator

Also Published As

Publication number Publication date
JP2004358313A (en) 2004-12-24

Similar Documents

Publication Publication Date Title
US6482320B2 (en) Solid-liquid separator
JP3856314B2 (en) Coagulation sedimentation method and apparatus
US4146471A (en) Liquid clarification apparatus and method
EP2583949A1 (en) Purification processing device of oil-containing sewage
CN105836932A (en) Method for treating wastewater containing sediment
US20040055961A1 (en) Method and plant for thickening sludge derived from water treatment by flocculation- decantation with ballasted floc
US6197190B1 (en) Tapered flocculation water treatment
WO2019092973A1 (en) Sedimentation tank
JP3856307B2 (en) Coagulation sedimentation method and apparatus
JP2010274180A (en) Water treatment method and water treatment system
US4330407A (en) Process for clarifying algae-laden waste water stream
JP3640285B2 (en) Coagulation sedimentation equipment
EP1197474A1 (en) Tapered flocculation water treatment
JP3922921B2 (en) Coagulation sedimentation equipment
JPH06304411A (en) Cohesive sedimentation and treatment apparatus therefor
CN108996770B (en) Quick high-efficient deoiling air supporting filtering pond
JP3274577B2 (en) Turbid water treatment equipment
JP3866406B2 (en) Coagulation sedimentation apparatus and operation method thereof
JP2003265905A (en) Flocculating and settling apparatus
JP3506724B2 (en) Thickener with built-in filter
JP2766881B2 (en) Water treatment equipment
JPH0215275B2 (en)
JP3872918B2 (en) Coagulation sedimentation apparatus and operation method thereof
JPH07289810A (en) Device for separating solid from liquid
JP3006148U (en) Settling tank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060907

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3856314

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term