JP3849506B2 - 窒化物半導体成長基板および保護膜を用いた窒化物半導体基板の成長方法 - Google Patents

窒化物半導体成長基板および保護膜を用いた窒化物半導体基板の成長方法 Download PDF

Info

Publication number
JP3849506B2
JP3849506B2 JP2001359857A JP2001359857A JP3849506B2 JP 3849506 B2 JP3849506 B2 JP 3849506B2 JP 2001359857 A JP2001359857 A JP 2001359857A JP 2001359857 A JP2001359857 A JP 2001359857A JP 3849506 B2 JP3849506 B2 JP 3849506B2
Authority
JP
Japan
Prior art keywords
nitride semiconductor
protective film
semiconductor layer
grown
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001359857A
Other languages
English (en)
Other versions
JP2002231647A (ja
Inventor
仁志 前川
真尚 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2001359857A priority Critical patent/JP3849506B2/ja
Publication of JP2002231647A publication Critical patent/JP2002231647A/ja
Application granted granted Critical
Publication of JP3849506B2 publication Critical patent/JP3849506B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は窒化物半導体(InAlGa1−x−yN、0≦X、0≦Y、X+Y≦1)から成る半導体素子を成長させる窒化物半導体成長基板および保護膜を用いた窒化物半導体基板の成長方法に関する。
【0002】
【従来の技術】
近年、LED及びLD等に利用される窒化物半導体基板をバルク状の単結晶で得るのは困難であるため、異種基板を用い、その上に窒化物半導体を成長させる方法が検討されている。この異種基板上に窒化物半導体を成長させる場合、異種基板と窒化物半導体との格子定数不整や熱膨張係数差により窒化物半導体を異種基板上に成長させると、結晶欠陥が発生する問題がある。そのため、このような異種基板を用いる場合には、バッファー層を介するなどして窒化物半導体を成長させる方法が報告されているが、得られた窒化物半導体には貫通転位等の結晶欠陥が高密度に存在していた。
【0003】
そこで、窒化物半導体を基板に対して横方向に成長させる方法(以下、ELOG成長法(Epitaxially Lateral OverGrowth GaN)と示す)が検討されており、この方法によると、窒化物半導体が成長する領域において、発生した結晶欠陥は、保護膜の窓部(開口部)より窒化物半導体の成長と共に縦方向にのみ進行するため、保護膜上に横方向成長した範囲の窒化物半導体は結晶欠陥が少なく、低欠陥の窒化物半導体基板を得ることができる。
【0004】
例えば、Jpn.J.Appl.Phys.Vol.37(1998)pp.L309-L312には、サファイア基板上に成長させた窒化ガリウム上にSiO等の保護膜を部分的に形成し、この上に窒化ガリウムを成長させることが開示されている。SiOの保護膜上には窒化ガリウムが直接成長しないため、保護膜のない部分から成長した窒化ガリウムの横方向への成長により保護膜上に低欠陥密度の窒化ガリウムを成長させることができる。
【0005】
上記のELOG成長によれば、従来のバッファ層を用いて成長させた窒化物半導体に比べ、低欠陥領域の欠陥密度を2桁以上減少させることができる。そのため、連続発振が長時間の寿命特性を有する窒化物半導体レーザ等を達成することができる。
【0006】
【発明が解決しようとする課題】
しかしながら、上記の方法では、保護膜は窒化物半導体が成長しないか成長しにくい酸化ケイ素や窒化ケイ素などの特定の材質からなるものであり、可視光を含む広い波長域の光に対して透明である。また保護膜は、その上に窒化物半導体を横方向に成長させるためには、膜厚を薄く形成する必要があるため、認識が可能なほどの膜厚にすることはできない。そのため、保護膜上に窒化物半導体層が成長した後に、保護膜の正確な位置を認識することが困難となる。ここで認識とは後のデバイス工程での位置確認であり、例えばリッジストライプの形成範囲を正確に位置づけができる程度とする。
【0007】
上記の理由から、保護膜を用いた窒化物半導体基板の成長方法において、保護膜上に窒化物半導体を成長させた後、窒化物半導体層内に埋め込まれた状態にある保護膜を正確に認識することができず、後の工程において、レーザ素子を形成するためのマーカー認識が困難となり、例えば、ストライプ形状の保護膜上部の結晶性のよい領域に窒化物半導体素子を成長させることができない等の問題が生じていた。つまり、保護膜は窒化物半導体層を成長させた後の工程における基準には成り得ていなかった。ここで、マーカー認識とは、マーカー部分とそれ以外領域とを反射光のコントラスト又は形状で区別し、ウェーハにおけるマーカーの位置を正確に認識するものである。
【0008】
そこで、本発明は、保護膜上に窒化物半導体を横方向成長させた後の窒化物半導体基板であって、保護膜と窒化物半導体を露出した窓部との正確な位置認識を容易にし、特に該基板上にLD、LED又は受光素子等の窒化物半導体素子を成長させる製造工程において好ましい基準となる保護膜を有する窒化物半導体成長基板および保護膜を用いた窒化物半導体基板の成長方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
即ち、本発明の目的は、以下に示す構成によって達成することができる。窒化物半導体成長基板は、窒化物半導体が成長可能な異種基板と、前記異種基板上に設けられた下地層となる第1の窒化物半導体層と、前記第1の窒化物半導体層の上に設けられ、誘電体から成る多層膜、又は誘電体と融点1200℃以上の金属とから成る多層膜からなり、窓部を有する保護膜と、前記保護膜上に横方向成長させた第3の窒化物半導体層と、前記第3の窒化物半導体層を形成した前記保護膜の一部が保護膜の縦方向又は保護膜の表面から除去されて空洞を形成してなり、かつこの状態から前記第3の窒化物半導体を成長核として成長される第2の窒化物半導体層とを備える。
また、他の窒化物半導体成長基板は、前記保護膜の中央部が縦方向に除去された結果、前記保護膜の表面と略垂直な縦方向の空洞が形成され、前記縦方向の空洞において前記第1の窒化物半導体層を露出させている。
さらに他の窒化物半導体成長基板は、前記保護膜の表面が除去された結果、前記保護膜の上方で横方向成長された前記第3の窒化物半導体と前記表面が除去された保護膜の表面との間で、前記保護膜の表面に沿った水平方向に空洞が形成されている。
一方窒化物半導体成長基板は、窒化物半導体が成長可能な異種基板上に、下地層となる第1の窒化物半導体層、その上に窓部を有する保護膜が設けられ、前記保護膜は、誘電体多層膜からなるミラー構造を有し、保護膜上に横方向成長させた第2の窒化物半導体層を有する。
【0010】
前記保護膜が紫外光〜赤外光から選ばれる波長光において特定の波長光以外の波長光については透過させることなく反射させるミラー特性を有する保護膜である。
【0011】
前記特定の波長光が可視光であり、好ましくは380nm〜480nmである。
【0012】
前記保護膜が、酸化ケイ素、窒化ケイ素、窒化酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化アルミニウム、窒化アルミニウムから成る誘電体、又は融点1200℃以上の金属から成る群から選択された少なくとも2種以上から成る多層膜であって、好ましくは酸化ケイ素と窒化ケイ素とからなる誘電体多層膜である。
【0013】
前記保護膜は、1ペア以上5ペア以下の積層構造を有する誘電体多層膜である。また保護膜の形状は、ストライプ状、格子状等の平行線を有するマスクパターンとして形成される。
【0014】
前記保護膜が凹凸を有する窒化物半導体層の凹部及び/又は凸部に形成されており、好ましくは、前記窒化物半導体層の凹部は異種基板が露出されている。さらに、前記保護膜は最上層が酸化ケイ素であることが好ましい。
【0015】
前記異種基板が(0001)面を主面とするサファイアであり、前記保護膜はそのサファイアの(112−0)面に対して垂直なストライプ形状を有するか、若しくは前記異種基板が(112−0)面を主面とするサファイアであり、前記保護膜はそのサファイアの(11−02)面に対して垂直なストライプ形状を有する。
【0016】
前記異種基板が(111)面を主面とするスピネルであり、前記保護膜は、そのスピネルの(110)面に対して垂直なストライプ形状を有するものである。その他には、シリコン、炭化珪素、砒化ガリウム、又は、酸化亜鉛を用いることができる。
【0017】
前記保護膜はλを透過光とし、λを反射光とする任意の波長λ、λ(λ<λ)において、n=n/nであり、nは高屈折率材料の屈折率、nは低屈折率材料の屈折率とすれば、
【式3】
Figure 0003849506
なる上記式3で示される多層膜である。
【0018】
前記多層膜はλを透過光とし、λを反射光とする任意の波長λ、λ(λ>λ)において、n=n/nであり、nは高屈折率材料の屈折率、nは低屈折率材料の屈折率とすれば、
【式4】
Figure 0003849506
なる上記式4で示される多層膜である。
【0019】
前記λの波長は窒化物半導体レーザの発振波長領域であり、好ましくは350〜520nmである。また前記λはλとの波長差が20nm以上である。
一方、本発明の保護膜を用いた窒化物半導体基板の成長方法は、窒化物半導体が成長可能な異種基板上に、下地層となる第1の窒化物半導体層を成長させるステップと、前記第1の窒化物半導体層の上に、誘電体から成る多層膜、又は誘電体と融点1200℃以上の 金属とから成る多層膜からなる保護膜を成長させ、かつ前記保護膜の一部に窓部を形成するステップと、前記保護膜の窓部より第3の窒化物半導体層を前記保護膜上で横方向成長させ、前記保護膜上で前記第3の窒化物半導体同士が接合する前に成長を止めるステップと、前記保護膜上で前記第3の窒化物半導体同士が接合しない部分から前記保護膜の一部を保護膜の縦方向又は保護膜の表面から除去し空洞を形成し、その後前記第3の窒化物半導体を成長核として第2の窒化物半導体層を成長させるステップとを有する。
【0020】
つまり、本発明の窒化物半導体基板における保護膜は、誘電体多層膜からなるミラー構造を有するため、この保護膜上に窒化物半導体層を横方向成長させた後の工程においてもマーカー認識を正確に行うことができる。これは、保護膜を誘電体多層膜とすることにより、特定の発光波長(例えば、410nm)のみ透過させ、それ以外の波長光は反射させるためである。また、本発明において、窓部とは、保護膜を取り除き窒化物半導体を露出させた部分、又は保護膜及び下地である第1の窒化物半導体層を取り除き異種基板を露出させた部分を示し、ストライプ形状等である場合、窓部の幅とは保護膜と保護膜との間の距離を意味する。
【0021】
本発明における保護膜は、上記の材質から成る誘電体多層膜にすることで、これらの保護膜は窒化物半導体が成長しないか又は、成長しにくい性質を有するため、保護膜の窓部より成長した窒化物半導体を横方向に成長させることができる。
【0022】
上記式3、4及び図5について説明する。光学薄膜ユーザーズハンドブック(日刊工業新聞社、James D.Rancourt著)に書かれている高反射率帯(阻止帯)を表す近似式
【式5】
Figure 0003849506
この式5を用い、式3、4を導出する。まず、高反射率帯の中心波長をλとし、式5を用いると高反射率帯の波長幅は以下の式6になる。
【式6】
Figure 0003849506
次に、高反射率帯のどこにλが存在するか、シミュレーションにより求める。図5は中心波長λに対するシミュレーションであって、λに対して最も近傍の長、短波長帯の透過率が1%となる点をエッジとした場合、エッジ間を100%とすればλは短波長側のエッジから40%±5%の位置にあることがわかる。これを用い以下の式を導く。まず、λ<λの場合には式6に0.4を掛けた値が、λからλを引いた値より小さければλが高反射率帯の外にあるため目的を満足することができる。それを関係式で示すと以下のようになる。
【式7】
Figure 0003849506
次に、λ>λの場合にはλ<λの場合と同様にすることにより以下の関係式が成り立つ。
【式8】
Figure 0003849506
このシュミレーション条件は、基板をGaN、低屈折率材料をSiO、高屈折率材料をTiOとし、またλを波長550nmとした。具体的には基板の屈折率n=2.5、n=1.48、n=2.75を保護膜として、膜厚はn=930Å、n=500Å、ペア数を14ペアとした場合の実施結果である。
【0023】
ここで、横方向成長を利用した窒化物半導体成長基板を以下に示す。まず第1の成長基板としては、異種基板、又は異種基板上にバッファ層を形成したもの、その他に異種基板上に窒化物半導体を形成したもの、異種基板上にバッファ層を介して窒化物半導体を形成したものを準備する。その上に部分的に誘電体多層膜から成る保護膜を形成する。その後、保護膜の窓部(開口部)より露出した異種基板や窒化物半導体を成長核として窒化物半導体を成長させる。上記に示すように本発明で使用する保護膜は窒化物半導体が成長しにくいものであるため、保護膜上には窒化物半導体は成長をせずに前記成長核より成長した窒化物半導体が保護膜上を横方向成長することとなる。さらに、隣り合う窒化物半導体同士がこの横方向成長を続けることにより保護膜上で接合し、平坦化することで窒化物半導体基板となる。このような窒化物半導体基板を図1に示す。また、図2に示すように窒化物半導体に凹凸の段差を有し、平面部に保護膜を形成するものであって、保護膜は凹部底面か凸部上面のどちらか一方に形成されていればよい。
【0024】
第2の成長基板としては、異種基板、又は異種基板上にバッファ層を形成したもの、その他に異種基板上に窒化物半導体を形成したもの、異種基板上にバッファ層を介して窒化物半導体を形成したものを準備する。その上に部分的に誘電体多層膜から成る保護膜を形成する。その後、保護膜の窓部(開口部)より露出した異種基板や窒化物半導体を成長核として窒化物半導体を成長させる。この窒化物半導体を保護膜上で横方向成長させるが、保護膜上での接合をする前に成長を止める。その後、保護膜を除去する。さらに、窒化物半導体を再成長させることで平坦な窒化物半導体基板となる。ここで、保護膜の除去とは図3に示すような縦方向の除去や図4に示すように多層膜の上層の一部を除去するものである。これは、保護膜上での窒化物半導体同士の接合を避けるためである。保護膜上で窒化物半導体を成長させれば応力が発生するため、接合部に段差やチルトが発生してしまう。これでは窒化物半導体基板として使用した場合に、この上に成長させる発光素子や受光素子の寿命特性や歩留まりを低下させてしまう。そこで、ここに示す第2の成長基板では、保護膜上での窒化物半導体同士の接合を避けることで接合部に発生する段差やチルトを抑制する。つまり、接合部の下には空洞を設けるものである。第1の成長基板であっても第2の成長基板であっても保護膜、及び窓部の幅は特に限定されない。
【0025】
また、保護膜を形成する材質及びそのペア数、膜厚等の組み合わせにより光の反射率を調整することができ、これにより、特定波長のみ透過させ他の光を反射させることができる。具体例としては、レーザ素子を積層した窒化物半導体基板において、活性層から発光した迷光(例えばレーザ光)を透過させ、その他の光は反射させるものである。そのため、保護膜を形成したことによる発光効率の低下等の問題はなくなる。
【0026】
【発明の実施の形態】
以下、本発明の実施形態について図面を参照しながら説明する。
【0027】
本発明の窒化物半導体成長基板は、図1に示すように、異種基板1上に第1の窒化物半導体層2を下地層として成長し、その後、窒化物半導体が成長しないか、若しくは成長しにくい材料からなり窓部を有する保護膜3を形成し、この保護膜の窓部より第2の窒化物半導体4を成長させたものである。この保護膜3は、誘電体多層膜からなるミラー構造を有するため、保護膜と窓部とは視覚的にも光学的にも識別することが可能である。
【0028】
上記異種基板1と第1の窒化物半導体層2との間にバッファ層(図示していない。)を形成してもよく、成長温度は200℃〜900℃の低温であり、AlGa1−xN(0≦X≦1)で示される。またInを含んだ窒化物でもよく、その他にはMgOやZnOが用いられる。また、膜厚は0.5μm〜10オングストロームの膜厚で成長する。窒化物半導体の成長方法や基板の種類によってはバッファ層は省略することもできる。バッファ層には異種基板1と第1の窒化物半導体層2との格子定数不整や熱膨張係数の違いを緩和する作用効果を有する。
【0029】
ここで、第1の窒化物半導体層2、及び第2の窒化物半導体層4は、いずれも一般式InAlGa1−x−yN(0≦x、0≦y、x+y≦1)によって表される組成を有する。但し、これらは互いに異なる組成であってもよい。
【0030】
本発明において、形成される保護膜の形状としては、ストライプ状、格子状、又は階段型等、特に限定する必要はないが、後の工程でマーカー認識できるように平行線を有するマスクパターンであることが望ましい。
【0031】
以下に、本発明の実施形態における窒化物半導体成長基板の成長方法及び好適な材料について詳細に説明する。
【0032】
まず、異種基板1上に、下地層として第1の窒化物半導体層2を成長させる。本発明において、異種基板1としては、例えば、C面、R面、及びA面のいずれかを主面とするサファイア(Al)、スピネル(MgAl)のような絶縁性基板、SiC(6H、4H、3Cを含む)、ZnS、ZnO、GaAs、Si、及び窒化物半導体と格子接合する酸化物基板を用いることができる。
【0033】
異種基板としては、成長させる窒化物半導体に対して、格子定数及び熱膨張係数ができるだけ近いことが望ましく、それによって転位などの欠陥の発生が少なくなり、また、クラック等がより生じ難くなる。また、保護膜や窒化物半導体層を成長させる際の高熱やエッチング等の加工工程に対して耐えられるものが望ましい。
【0034】
次に、第1の窒化物半導体層2としては、アンドープの窒化物半導体、n型不純物としてSi、Ge、Sn及びS等の少なくとも1種類をドープしたGaN等の窒化物半導体を用いることができ、このn型不純物濃度を1×1017/cm以下とすることができる。また、p型不純物としてMg、Zn等の少なくとも1種類をドープしたGaN等の窒化物半導体についても用いることができる。この第1の窒化物半導体層2は、バッファ層よりも高温で、900℃〜1100℃、好ましくは、1050℃程度で成長させる。第1の窒化物半導体層2の膜厚としては、特に限定されず1〜30μm、好ましくは2〜20μmである。
【0035】
次に、第1の窒化物半導体層2の表面上に保護膜3を形成する。この保護膜は異種基板上に直接成長させてもよく、又は、異種基板上に薄膜であるバッファ層のみを成長させた後、保護膜を成長させてもよい。
【0036】
この保護膜3の形状としては、保護膜の窓部(開口部)より窒化物半導体が横方向に成長する形状であればよくストライプ状、格子状及び、島状など特に限定されない。さらに、保護膜上に成長させる窒化物半導体の結晶欠陥を減らすには階段型または傾斜角度を有するものが好ましい。
【0037】
保護膜3の材料としては、屈折率差を有する誘電体多層膜を形成するものが好ましく、低屈折率と高屈折率との材質の組み合わせにすることにより保護膜を形成することができる。具体例としては、低屈折材質にはSiO(550nmにおける屈折率1.46、以下同様)、Al(1.77)、MgO(1.74)、MgF(1.39)、SiON(1.46〜2.0)等が挙げられ、高屈折率材質にはSiN(2.03)、AlN(2.1)、ZrO(2.1)、TiO(2.5)、Y(1.94)、HfO(2.06)、Ta(2.07)、Nb(2.39)等が挙げられる。また、1200℃以上の融点を有する金属であれば、用いることができる。膜厚は、それぞれの波長λより膜厚=λ/4nの計算式から求めることができる。
【0038】
保護膜のペア数としては、特に限定されないが保護膜の上に窒化物半導体層が横方向成長する膜厚の範囲であればよく、1ペア〜5ペア以上の成膜が可能である。
【0039】
保護膜3の窓部(開口部)の幅としては、保護膜の幅よりも小さく形成されていればよく、保護膜3の大きさとしては、特に限定されないが、例えばストライプで形状した場合、好ましい保護膜のストライプ幅は5〜200μm、より好ましくは10〜50μmである。また、保護膜が形成されていない窓部(開口部)幅は、保護膜のストライプ幅よりも狭くすることが望ましく、好ましい窓部(開口部)幅は20μm以下、より好ましくは0.5〜10μmである。
【0040】
また、保護膜の膜厚は、特に限定されないが、保護膜の膜厚を厚くすると後の工程において窒化物半導体が埋まらず鏡面が得られない。そのため、好ましい誘電体多層膜の膜厚は0.2〜3μm、より好ましくは0.3〜1μmである。ここで、保護膜3は、例えば、CVD法、ECRプラズマCVD法、蒸着又はスパッタ等を用いて成膜させることができる。この保護膜3は所定形状のフォトレジストを形成することで、所定の領域に選択的に形成することができる。
【0041】
次に、保護膜3上を横方向成長させることで、基板全面に第2の窒化物半導体層4を成長させる。第2の窒化物半導体4は、一般式InAlGa1−x−yN(0≦x、0≦y、x+y≦1)によって表される組成を有し、具体例としてはGaN、AlGaN、InGaN等が挙げられる。また、第2の窒化物半導体4としては、例えば、アンドープGaNの他に、Si等のn型不純物を1×1017/cm以下の範囲でドープしたGaN、又はMg等のp型不純物をドープしたGaNを用いることができる。第2の窒化物半導体4の膜厚としては、最上面が鏡面になれば特に限定されず1〜50μm、好ましくは5〜30μmとする。
【0042】
ここで、第2の窒化物半導体層4は保護膜上で横方向成長する第3の窒化物半導体5を形成した後、保護膜の一部を除去する。その後、第3の窒化物半導体5を成長核として第2の窒化物半導体層4を成長させる。以上より表面が平坦な窒化物半導体成長基板となる。第3の窒化物半導体5は保護膜上で接合することなく、成長を止める。これは保護膜上で窒化物半導体を接合させれば、応力より段差が形成され平坦化できないためである。また、第2の窒化物半導体層4を第3の窒化物半導体5の上面、上面及び側面より成長させるため、接合部には欠陥転位が集中しない。このため、レーザ素子を形成する領域は拡大され歩留まりの向上が期待できる。ここで、保護膜の除去とは図3に示すように縦方向の除去や、図4に示す表面除去がある。
【0043】
第2の窒化物半導体層4の最上面が鏡面になるまで成長した後、レーザ等の窒化物半導体素子を成長させるが、前記横方向成長については、何回繰り返し行ってもよく、最後の横方向成長における保護膜のみがミラー特性を有する誘電体多層膜であってもよい。
【0044】
その他の実施の形態としては第1の窒化物半導体層に凹凸を形成し、凹部面及び/又は凸部面に誘電体多層膜からなる保護膜を形成し、第2の窒化物半導体層4を成長させたものである。これは、異種基板1上に成長させた第1の窒化物半導体層2にエッチング等により凹凸を形成後、ミラー特性を有する保護膜3を成長させ、その後、第2の窒化物半導体層4を成長させるものである。第2の窒化物半導体層4は第1の窒化物半導体層の側面を成長核として横方向成長するため、欠陥転位を大幅に低減することができる。
【0045】
また、異種基板1上に第1の窒化物半導体層2を成長後、パターン形状を有する保護膜3を形成し、エッチング等により形成された凹部底面に保護膜を成長させ、その後、第2の窒化物半導体層4を成長させることもできる。この窒化物半導体成長基板において、凹部底面に形成する保護膜は無くてもよい。
【0046】
以上より得られた第2の窒化物半導体層4は、横方向成長により形成された表面領域をカソードルミネッセンス(CL)により観測すると、窒化物半導体の接合部以外にはほとんど結晶欠陥が見られなくなる。また、第3の窒化物半導体5を形成し、保護膜上で成長を止めた後、さらに第2の窒化物半導体層4を成長させることで窒化物半導体基板とする実施形態では接合部の結晶欠陥も低減されることとなる。
【0047】
本発明の窒化物半導体の成長方法において、第1の窒化物半導体層、第2の窒化物半導体層等の窒化物半導体を成長させる方法としては、特に限定されないが、MOVPE(有機金属気相成長法)、HVPE(ハライド気相成長法)、MBE(分子線エピタキシー法)、MOCVD(有機金属化学気相成長法)等の方法を適用できる。
【0048】
また、上記に示す実施の形態において窒化物半導体に凹凸を形成する場合のエッチング方法としては、ウェットエッチング、ドライエッチング等の方法があり、平滑な面を形成するには、好ましくはドライエッチングを用いる。ドライエッチングには、例えば反応性イオンエッチング(RIE)、反応性イオンビームエッチング(RIBE)、電子サイクロトロンエッチング(ECR)等の装置があり、いずれもエッチングガスを適宜選択することにより、窒化物半導体をエッチングすることができる。
【0049】
【実施例】
以下に本発明の実施例を図1〜図4に示すが本発明はこれに限定されない。
[実施例1]図1に示すように、異種基板1として、C面を主面、オリフラ面をA面とするサファイア基板を用い、反応容器内にセットし、温度を510℃にして、キャリアガスに水素、原料ガスにアンモニアとTMG(トリメチルガリウム)とを用い、サファイア基板上にGaNよりなるバッファ層(図示されていない)を200オングストロームの膜厚で成長させる。
【0050】
次に、バッファ層成長後、TMGのみ止めて、温度を1050℃まで上昇させ、1050℃になったら、原料ガスにTMG、アンモニアを用い、アンドープGaNよりなる第1の窒化物半導体層2を2.5μmの膜厚で成長させる。
【0051】
第1の窒化物半導体層2成長後、ウェーハを反応容器から取り出し、この第1の窒化物半導体層2の表面に、ECRスパッタ装置によりSiOを942オングストローム、SiNを677オングストローム成膜するのを1ペアとして3ペア成膜し、保護膜の膜厚を4857オングストロームとする。この保護膜をストライプ幅14μm、ストライプの窓部(開口部)幅6μmとし、MOVPE装置に移動させる。
【0052】
ウェーハを再度、MOVPEの反応容器にセット後、温度を1050℃にして、アンモニアを0.27mol/min、TMGを225μmol/min(V/III比=1200)でアンドープGaNよりなる第2の窒化物半導体層4を20μmの膜厚で成長させる。
【0053】
得られた第2の窒化物半導体層4の表面は、窒化物半導体同士の接合部以外はほとんど結晶欠陥が見られず、マーカー認識が正確かつ容易にできる窒化物半導体成長基板を提供することができた。
【0054】
[実施例2]実施例1において、保護膜に用いる材質は同様にSiOとSiNとを用い、それぞれの膜厚をSiOが942オングストローム、SiNが677オングストロームとし、2ペアからなる誘電体多層膜とする他は同様にして行った。得られた窒化物半導体成長基板は実施例1と同様に良好な結果が得られた。
【0055】
[実施例3]
図2に示すように、異種基板1として、C面を主面、オリフラ面をA面とするサファイア基板を用い、反応容器内にセットし、温度を510℃にして、キャリアガスに水素、原料ガスにアンモニアとTMG(トリメチルガリウム)とを用い、サファイア基板上にGaNよりなるバッファ層(図示されていない)を200オングストロームの膜厚で成長させる。
【0056】
次に、バッファ層成長後、TMGのみ止めて、温度を1050℃まで上昇させ、1050℃になったら、原料ガスにTMG、アンモニアを用い、アンドープGaNよりなる第1の窒化物半導体層2を2.5μmの膜厚で成長させる。
【0057】
第1の窒化物半導体層2成長後、ウェーハを反応容器から取り出し、この第1の窒化物半導体2の表面に、ECRスパッタ装置によりSiOを942オングストローム、SiNを677オングストローム成膜するのを1ペアとして3ペア成膜し、保護膜の膜厚を4857オングストロームとする。この保護膜をストライプ幅14μm、ストライプ窓部(開口部)幅6μmとし、その後、エッチングにより凹凸を形成後、凹部にも3ペアの保護膜3を成膜し、MOVPE装置に移動させる。
【0058】
ウェーハを再度、MOVPEの反応容器にセット後、温度を1050℃にして、アンモニアを0.27mol/min、TMGを225μmol/min(V/III比=1200)でアンドープGaNよりなる第2の窒化物半導体層4を20μmの膜厚で成長させる。
【0059】
得られた窒化物半導体基板の第2の窒化物半導体層4の表面は、実施例1と同様に窒化物半導体同士の接合部以外はほとんど結晶欠陥が見られず、マーカー認識が正確かつ容易にできる窒化物半導体成長基板を提供することができる。
【0060】
[実施例4]
実施例3において、ストライプ形状の保護膜3を形成後、保護膜の窓部よりエッチングする工程で異種基板1が露出するまでエッチングを行い、その後、凹部には保護膜を成膜せずに第2の窒化物半導体層4を成長させる他は実施例1と同様にして窒化物半導体基板を成長する。得られる窒化物半導体成長基板は実施例1と同様な結果が得られる。
【0061】
[実施例5]
図3に示すように、異種基板1として、C面を主面、オリフラ面をA面とするサファイア基板を用い、反応容器内にセットし、温度を510℃にして、キャリアガスに水素、原料ガスにアンモニアとTMG(トリメチルガリウム)とを用い、サファイア基板上にGaNよりなるバッファ層(図示されていない)を200オングストロームの膜厚で成長させる。次に、バッファ層成長後、TMGのみ止めて、温度を1050℃まで上昇させ、1050℃になったら、原料ガスにTMG、アンモニアを用い、アンドープGaNよりなる第1の窒化物半導体層2を2.5μmの膜厚で成長させる。
【0062】
第1の窒化物半導体層2成長後、ウェーハを反応容器から取り出し、この第1の窒化物半導体層2の表面に、ECRスパッタ装置によりSiOを942オングストローム、SiNを677オングストローム成膜するのを1ペアとして3ペア成膜し、保護膜の膜厚を4857オングストロームとする。この保護膜をストライプ幅14μm、ストライプの窓部(開口部)幅6μmとし、MOVPE装置に移動させる。
【0063】
ウェーハを再度、MOVPEの反応容器にセット後、温度を1050℃にして、アンモニアを0.27mol/min、TMGを225μmol/min(V/III比=1200)でアンドープGaNよりなる第3の窒化物半導体5を保護膜上に横方向成長させる。その後、保護膜上で第3の窒化物半導体同士が接合する前に成長を止める。次に、第2の窒化物半導体層4を膜厚20μmで成長させる。
【0064】
得られた第2の窒化物半導体層4の表面は、窒化物半導体同士の接合部にも結晶欠陥が見られず、マーカー認識が正確かつ容易にできる窒化物半導体成長基板を提供することができた。また、この窒化物半導体成長基板上に形成した窒化物半導体レーザ素子において、迷光を逃がすことでレーザ光のノイズ成分を低減することができる。
【0065】
[実施例6]
実施例5において、第3の窒化物半導体を成長後、図3に示すように保護膜を中央部のみ除去する。その他の条件は実施例1と同様とする。これにより、窒化物半導体成長基板には空洞を有するためエアギャップ効果により基板の反りを緩和することができる。
【0066】
[実施例7]
実施例5において、第3の窒化物半導体を成長後、図4に示すように保護膜を表面の1ペアのみ除去する。その他の条件は実施例1と同様とする。これにより、上記実施例の効果だけでなく窒化物半導体成長基板には空洞を有するためエアギャップ効果により基板の反りを緩和することができる。
【0067】
[実施例8]
実施例5において、第3の窒化物半導体を成長後、保護膜を除去することで第1の窒化物半導体層を露出する。次に、第3の窒化物半導体、及び第1の窒化物半導体層から第2の窒化物半導体層を成長させて平坦な窒化物半導体成長基板とする。得られた第2の窒化物半導体層4の表面は、窒化物半導体同士の接合部にも結晶欠陥が見られず、マーカー認識が正確かつ容易にできる窒化物半導体成長基板となる。
【0068】
【発明の効果】
本発明における窒化物半導体成長基板および保護膜を用いた窒化物半導体基板の成長方法は、保護膜を誘電体多層膜から成るミラー構造とすることにより、窒化物半導体層の成長後においても窒化物半導体層内にある保護膜がミラー特性を有するため正確かつ容易に保護膜と窓部の位置認識をすることができる。そのため、後の工程の管理や加工工程での精度や歩留まりの向上が可能となり、更に、横方向成長を利用した窒化物半導体基板であるから、結晶欠陥の転位を減少させた低欠陥である結晶性のよい窒化物半導体基板を提供することができる。
【図面の簡単な説明】
【図1】本発明の窒化物半導体成長基板を模式的に示す断面図である。
【図2】本発明の窒化物半導体成長基板を模式的に示す断面図である。
【図3】本発明の窒化物半導体成長基板を模式的に示す断面図である。
【図4】本発明の窒化物半導体成長基板を模式的に示す断面図である。
【図5】本発明における一実施形態のシミュレーション図である。
【符号の簡単な説明】
1・・・異種基板
2・・・第1の窒化物半導体層
3・・・保護膜
4・・・第2の窒化物半導体層
5・・・第3の窒化物半導体

Claims (10)

  1. 窒化物半導体が成長可能な異種基板と、
    前記異種基板上に設けられた下地層となる第1の窒化物半導体層と、
    前記第1の窒化物半導体層の上に設けられ、誘電体から成る多層膜、又は誘電体と融点1200℃以上の金属とから成る多層膜からなり、窓部を有する保護膜と、
    前記保護膜上に横方向成長させた第3の窒化物半導体層と、
    前記第3の窒化物半導体層を形成した前記保護膜の一部が保護膜の縦方向から除去、又は保護膜の表面から除去されて空洞を形成してなり、かつ前記第3の窒化物半導体を成長核として成長される第2の窒化物半導体層と、
    を備えることを特徴とする窒化物半導体成長基板。
  2. 前記保護膜の中央部が縦方向に除去された結果、前記保護膜の表面と略垂直な縦方向の空洞が形成され、前記縦方向の空洞において前記第1の窒化物半導体層を露出させてなることを特徴とする請求項1に記載の窒化物半導体成長基板。
  3. 前記保護膜の表面が除去された結果、前記保護膜の上方で横方向成長された前記第3の窒化物半導体と前記表面が除去された保護膜の表面との間で、前記保護膜の表面に沿った水平方向に空洞が形成されてなることを特徴とする請求項1に記載の窒化物半導体成長基板。
  4. 前記保護膜はλを透過光とし、λを反射光とする任意の波長λ、λ(λ<λ)において、n=n/nであり、nは高屈折率材料の屈折率、nは低屈折率材料の屈折率とすれば、
    【式1】
    Figure 0003849506
    なる上記式1で示される多層膜であることを特徴とする請求項1から3のいずれかに記載の窒化物半導体成長基板。
  5. 前記多層膜はλを透過光とし、λを反射光とする任意の波長λ、λ(λ>λ)において、n=n/nであり、nは高屈折率材料の屈折率、nは低屈折率材料の屈折率とすれば、
    【式2】
    Figure 0003849506
    なる上記式2で示される多数膜であることを特徴とする請求項1から3のいずれかに記載の窒化物半導体成長基板。
  6. 前記λの波長は窒化物半導体レーザの発振波長領域であることを特徴とする請求項4又は5に記載の窒化物半導体成長基板。
  7. 前記λの波長は350〜520nmであることを特徴とする請求項4から6のいずれかに記載の窒化物半導体成長基板。
  8. 前記λはλとの波長差が20nm以上であることを特徴とする請求項4から7のいずれかに記載の窒化物半導体成長基板。
  9. 前記保護膜は最上層が酸化ケイ素であることを特徴とする請求項1から8のいずれかに記載の窒化物半導体成長基板。
  10. 窒化物半導体が成長可能な異種基板上に、下地層となる第1の窒化物半導体層を成長させるステップと、
    前記第1の窒化物半導体層の上に、誘電体から成る多層膜、又は誘電体と融点1200℃以上の金属とから成る多層膜からなる保護膜を成長させ、かつ前記保護膜の一部に窓部を形成するステップと、
    前記保護膜の窓部より第3の窒化物半導体層を前記保護膜上で横方向成長させ、前記保護膜上で前記第3の窒化物半導体同士が接合する前に成長を止めるステップと、
    前記保護膜上で前記第3の窒化物半導体同士が接合しない部分から前記保護膜の一部を保護膜の縦方向又は保護膜の表面から除去し空洞を形成し、その後前記第3の窒化物半導体を成長核として第2の窒化物半導体層を成長させるステップと、
    を有することを特徴とする保護膜を用いた窒化物半導体基板の成長方法。
JP2001359857A 2000-11-28 2001-11-26 窒化物半導体成長基板および保護膜を用いた窒化物半導体基板の成長方法 Expired - Fee Related JP3849506B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001359857A JP3849506B2 (ja) 2000-11-28 2001-11-26 窒化物半導体成長基板および保護膜を用いた窒化物半導体基板の成長方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-361733 2000-11-28
JP2000361733 2000-11-28
JP2001359857A JP3849506B2 (ja) 2000-11-28 2001-11-26 窒化物半導体成長基板および保護膜を用いた窒化物半導体基板の成長方法

Publications (2)

Publication Number Publication Date
JP2002231647A JP2002231647A (ja) 2002-08-16
JP3849506B2 true JP3849506B2 (ja) 2006-11-22

Family

ID=26604743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001359857A Expired - Fee Related JP3849506B2 (ja) 2000-11-28 2001-11-26 窒化物半導体成長基板および保護膜を用いた窒化物半導体基板の成長方法

Country Status (1)

Country Link
JP (1) JP3849506B2 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4797257B2 (ja) * 2001-02-22 2011-10-19 ソニー株式会社 半導体素子の作製方法
JP2005064492A (ja) * 2003-07-28 2005-03-10 Kyocera Corp 単結晶サファイア基板とその製造方法及び半導体発光素子
KR100960278B1 (ko) 2007-12-31 2010-06-04 주식회사 에피밸리 3족 질화물 반도체 발광소자 및 그 제조방법
JP2011066073A (ja) * 2009-09-15 2011-03-31 Showa Denko Kk 半導体発光素子
KR101654340B1 (ko) * 2009-12-28 2016-09-06 서울바이오시스 주식회사 발광 다이오드
JP2011223017A (ja) * 2011-06-10 2011-11-04 Sony Corp 半導体素子の作製方法
KR101337351B1 (ko) * 2011-11-23 2013-12-06 주식회사 아이브이웍스 질화물계 반도체소자의 제조방법
WO2013095037A1 (ko) * 2011-12-23 2013-06-27 서울옵토디바이스(주) 발광다이오드 및 그 제조 방법
KR101377970B1 (ko) 2012-08-22 2014-03-25 엘지전자 주식회사 질화물계 발광 소자 및 그 제조방법
KR102426231B1 (ko) * 2016-08-08 2022-07-29 미쯔비시 케미컬 주식회사 도전성 C면 GaN 기판
CN113604885B (zh) * 2016-08-08 2024-02-02 三菱化学株式会社 C面GaN基板和氮化物半导体器件的制造方法
JP7074168B2 (ja) * 2020-09-03 2022-05-24 三菱ケミカル株式会社 C面GaN基板

Also Published As

Publication number Publication date
JP2002231647A (ja) 2002-08-16

Similar Documents

Publication Publication Date Title
JP3436128B2 (ja) 窒化物半導体の成長方法及び窒化物半導体素子
JP3346735B2 (ja) 窒化物半導体発光素子及びその製造方法
JP3791246B2 (ja) 窒化物半導体の成長方法、及びそれを用いた窒化物半導体素子の製造方法、窒化物半導体レーザ素子の製造方法
JP3491538B2 (ja) 窒化物半導体の成長方法及び窒化物半導体素子
JP4033644B2 (ja) 窒化ガリウム系発光素子
JP5140962B2 (ja) 窒化物半導体基板の製造方法
JPH11251253A (ja) 窒化物半導体基板の製造方法および窒化物半導体基板
JP2000277437A (ja) 窒化物半導体の成長方法及び窒化物半導体素子
JP3849506B2 (ja) 窒化物半導体成長基板および保護膜を用いた窒化物半導体基板の成長方法
JP3613197B2 (ja) 窒化物半導体基板の成長方法
JP3395631B2 (ja) 窒化物半導体素子及び窒化物半導体素子の製造方法
JP4106516B2 (ja) 窒化物半導体基板の成長方法
JP3645994B2 (ja) GaN系半導体発光素子
JP4518746B2 (ja) GaN基板
JP4165040B2 (ja) 窒化物半導体基板の製造方法
JP4043193B2 (ja) 窒化物半導体基板及びその製造方法
JP3906739B2 (ja) 窒化物半導体基板の製造方法
JP4784012B2 (ja) 窒化物半導体基板、及びその製造方法
JP2008034862A (ja) 窒化物半導体の成長方法
JP2000058972A (ja) 窒化物半導体レーザ素子
JP3698061B2 (ja) 窒化物半導体基板及びその成長方法
JP3870869B2 (ja) 窒化物半導体基板の製造方法
JP4637503B2 (ja) 窒化物半導体レーザ素子の製造方法
JP3589185B2 (ja) 窒化物半導体の成長方法と窒化物半導体基板
KR100537242B1 (ko) 질화물반도체의성장방법및그를이용한질화물반도체기판및질화물반도체소자

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040407

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060821

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees