JP3837541B2 - Method for producing carbon nanotube - Google Patents

Method for producing carbon nanotube Download PDF

Info

Publication number
JP3837541B2
JP3837541B2 JP2003096295A JP2003096295A JP3837541B2 JP 3837541 B2 JP3837541 B2 JP 3837541B2 JP 2003096295 A JP2003096295 A JP 2003096295A JP 2003096295 A JP2003096295 A JP 2003096295A JP 3837541 B2 JP3837541 B2 JP 3837541B2
Authority
JP
Japan
Prior art keywords
organic solvent
carbon nanotubes
carbonyl
solvent solution
catalytic metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003096295A
Other languages
Japanese (ja)
Other versions
JP2004299987A (en
Inventor
浩樹 吾郷
哲 大嶋
守雄 湯村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003096295A priority Critical patent/JP3837541B2/en
Publication of JP2004299987A publication Critical patent/JP2004299987A/en
Application granted granted Critical
Publication of JP3837541B2 publication Critical patent/JP3837541B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、カーボンナノチューブの製造方法に関するものである。
【0002】
【従来の技術】
カーボンナノチューブは、ディスプレイ、ナノデバイス、センサー、水素貯蔵材等数多くの応用が期待される材料である。このカーボンナノチューブの製造法として、アーク放電法、レーザー蒸発法、化学蒸着法の3種の方法が広く用いられている。アーク放電法とレーザー蒸発法は高価な装置が必要であり、また大量に合成することは困難である。また、これらの3種の方法はいずれも気相中の反応である。
化学蒸着法は遷移金属の超微粒子の存在下で、有機炭素原料を熱分解してカーボンナノチューブを合成する方法であり、大量合成に適していると考えられている。ただし、合成温度は1000℃前後であり、最低でも650℃以上の温度が必要とされる。これは、単層カーボンナノチューブの製造には大きな電力が必要とされることを意味する。また、製造温度が高くなればなるほど、有機炭素原料の無触媒熱分解反応が起こりやすく、アモルファス炭素などの副生成物ができるという問題点があった。一方、反応を低温で行うとカーボンナノチューブの結晶性が低く、欠陥を生じやすいという問題もあった。
【0003】
【発明が解決しようとする課題】
本発明は、低温で結晶性が高く、かつ炭素不純物の少ないカーボンナノチューブを簡便に合成する方法を提供することをその課題とする。
【0004】
本発明者らは、前記課題を解決すべく鋭意研究を重ねた結果、本発明を完成するに至った。
即ち、本発明によれば、以下に示すカーボンナノチューブが提供される。
(1)反応容器内に充填した触媒金属カルボニルを溶解状態で含む有機溶媒溶液を、水素を含む雰囲気下で加熱して該触媒金属カルボニルを分解させることを特徴とするカーボンナノチューブの製造方法。
(2)該有機溶媒溶液が界面活性剤を含有することを特徴とする前記(1)に記載の方法。
(3)該有機溶媒溶液を溶媒の沸点以下の温度で加熱することを特徴とする前記(1)〜(2)のいずれかに記載の方法。
(4)該有機溶媒溶液に一酸化炭素を連続的または間欠的に供給して、カーボンナノチューブを連続的に製造することを特徴とする前記(1)〜(3)のいずれかに記載の方法。
【0005】
【発明の実施の形態】
本発明で用いる触媒金属カルボニルにおいて、その触媒金属は、カーボンナノチューブを化学蒸着法で製造する際に用いられる触媒金属であり、遷移金属が一般的に用いられる。このような触媒金属としては、Fe、Ni、Co、Mo、Ca、Se、Ti、V、Cr、Mn、Cu、Sr、Y、Zr、Ni、Ru、Rh、Pd、Hf、Ta等が挙げられる。
本発明で用いる触媒金属カルボニルは、有機溶媒可溶性のものであればよく、従来公知の各種のものを用いることができる。このようなものには、例えば、鉄カルボニル(Fe(CO)5、Fe(CO)、Fe(CO)12等)、ニッケルカルボニル(Ni(CO)4等)、コバルトカルボニル([Co(CO)42、[Co(CO3)]4等)、モリブデンカルボニル(Mo(CO)6等)等が包含される。これらの触媒金属カルボニルは単独もしくは複数で利用してもよい。本発明は必要に応じ助触媒を用いることができる。このような助触媒としては、アルカリ金属、アルカリ土類金属などの金属塩、有機金属錯体、無機結晶粉末などを用いることが出来る。その具体例としては、例えば、水酸化カリウム、水酸化アルミニウム、フタロシアニン、チオフェン、硫黄粉末等が挙げられる。
【0006】
本発明で用いる有機溶媒は、触媒金属カルボニルに対して溶解性を示すものであればよい。このようなものには、一般的に、炭化水素系溶媒、アルコール系溶媒、フェノール系溶媒、エーテル系溶媒、ケトン系溶媒、エステル系溶媒、アミン系溶媒の他、複素環系溶媒等が包含される。本発明で用いる有機溶媒において、その沸点は、100〜550℃、好ましくは200〜400℃である。
【0007】
前記有機溶媒は、具体的に用いる触媒金属カルボニルに対応して適宜のものが選定される。例えば、触媒金属カルボニルが鉄カルボニル(Fe(CO))の場合、炭素数8以上の炭化水素基(アルキル基、アルケニル基等)を有するアルコール、エーテル、アミン、ケトン、カルボン酸、及びエステル等の他、ビピリジン等の有機溶媒を用いることができる。さらに、室温下で固体である炭素数の多い飽和炭化水素、不飽和炭化水素、アルコール、エーテル、アミン、ケトン、カルボン酸及びエステル等は加熱して溶融させることにより、溶媒として利用することが可能である。
その他、ニッケルカルボニルやコバルトカルボニル、モリブデンカルボニルの場合にも同様の有機溶媒を用いることができる。
【0008】
本発明で用いる触媒カルボニルを溶解する有機溶媒溶液において、その触媒カルボニルの濃度は、通常、0.1重量%以上、好ましくは1重量%以上である。その上限値は、その有機溶媒に対する触媒金属カルボニルの飽和溶解度である。
【0009】
触媒金属カルボニルを含む有機溶媒溶液には、必要に応じ、生成するカーボンナノチューブの有機溶媒中での分散を促進させるために、界面活性剤を添加することができる。この場合、界面活性剤としては、従来公知の各種のカチオン系、アニオン系、ノニオン系及び両性の界面活性剤を用いることができる。その含有量は、有機溶媒溶液中、0.1〜20重量%、好ましくは1〜5重量%である。
【0010】
本発明を実施するには、触媒金属カルボニルを含む有機溶媒溶液を反応容器に入れ、水素を含む雰囲気下で、常圧下又は加圧下で該触媒金属カルボニルが分解する温度に加熱する。触媒金属カルボニルの分解温度は、その種類にもよるが、一般的には150℃以上、好ましくは200℃以上であり、その上限値は、その圧力下における有機溶媒の沸点未満の温度である。有機溶媒の沸点は、該有機溶媒溶液を充填した反応容器内の圧力により調節することができる。
【0011】
本発明では、該有機溶媒溶液を充填した反応容器内雰囲気には、水素ガスを不活性ガスに共存させるとカーボンナノチューブの生成量が向上する。この場合の不活性ガスは、アルゴン、窒素、ヘリウム等が挙げられる。また水素ガスの割合は、容器内雰囲気ガス中の体積%で、0.1〜100体積%、好ましくは10〜50体積%である。
【0012】
反応容器内に対する水素ガスの供給は、反応容器内に所定圧力の水素ガスを流通させる方法や、反応容器内に所定圧力の水素ガスを圧入する方法等があり、特に制約されない。
【0013】
本発明によれば、前記した反応操作により、有機溶媒中には、カーボンナノチューブが生成される。このカーボンナノチューブは、通常、単層又は多層のカーボンナノチューブであり、その直径は、0.8〜3nmの範囲にあり、多くは1〜2nm程度であり、その長さは、0.5〜10μmの範囲にあり、多くは1〜5μm程度である。このカーボンナノチューブは、高品質のもので、その結晶性は高く、アモルファス炭素付着のほとんどないものである。
【0014】
【実施例】
次に、本発明を実施例によりさらに詳細に説明する。
【0015】
実施例1
二口ナスフラスコに有機溶媒としてのオクチルエーテル20g、界面活性剤としてのオレイン酸5g、及び鉄カルボニル(Fe(CO))を500mg加える。このナスフラスコの上部に冷却管を設置し、もう一つの口からは石英管でカバーした温度計を溶液中に挿入する。水素を10%含むアルゴンガスを流しながら、マントルヒーターを用いてナスフラスコに入った溶液を毎分8℃の昇温速度でオクチルエーテルの沸点である273℃まで加熱する。この加熱に伴い鉄カルボニルの熱分解が起こり、オレイン酸で囲まれた直径3nmの酸化鉄ナノ粒子と、その凝集体と考えられる10nmの酸化鉄ナノ粒子ができ、黒色を示すようになる。昇温中に鉄の超微粒子上で一酸化炭素を炭素源とする触媒反応が起こり、単層カーボンナノチューブが生成したものと考えられる。この単層カーボンナノチューブは、不要なアモルファス炭素の付着がなく結晶性も高かった。
【0016】
【発明の効果】
本発明によれば、結晶性が高く、炭素不純物の少ない単層又は多層カーボンナノチューブをきわめて低温で生産することができる。しかも、その原料は安価で、生産設備は構造上簡単なものでよいことから、工業生産に適している。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing carbon nanotubes.
[0002]
[Prior art]
Carbon nanotubes are materials that are expected to have many applications such as displays, nanodevices, sensors, and hydrogen storage materials. As a method for producing the carbon nanotube, three kinds of methods such as an arc discharge method, a laser evaporation method, and a chemical vapor deposition method are widely used. The arc discharge method and the laser evaporation method require expensive equipment and are difficult to synthesize in large quantities. Moreover, all of these three methods are reactions in the gas phase.
The chemical vapor deposition method is a method of thermally decomposing an organic carbon raw material in the presence of ultrafine particles of a transition metal to synthesize carbon nanotubes, and is considered suitable for mass synthesis. However, the synthesis temperature is around 1000 ° C., and a temperature of at least 650 ° C. is required. This means that large power is required for the production of single-walled carbon nanotubes. Further, the higher the production temperature, the easier the non-catalytic thermal decomposition reaction of the organic carbon raw material occurs, and there is a problem that a by-product such as amorphous carbon is formed. On the other hand, when the reaction is performed at a low temperature, the crystallinity of the carbon nanotubes is low, and there is a problem that defects are easily generated.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for easily synthesizing a carbon nanotube having high crystallinity at a low temperature and low carbon impurities.
[0004]
As a result of intensive studies to solve the above problems, the present inventors have completed the present invention.
That is, according to the present invention, the following carbon nanotubes are provided.
(1) A method for producing carbon nanotubes, comprising decomposing catalytic metal carbonyl by heating an organic solvent solution containing catalytic metal carbonyl charged in a reaction vessel in a dissolved state in an atmosphere containing hydrogen.
(2) The method according to (1), wherein the organic solvent solution contains a surfactant.
(3) The method according to any one of (1) to (2) , wherein the organic solvent solution is heated at a temperature not higher than the boiling point of the solvent.
(4) The method according to any one of (1) to (3) above, wherein carbon monoxide is continuously or intermittently supplied to the organic solvent solution to continuously produce carbon nanotubes. .
[0005]
DETAILED DESCRIPTION OF THE INVENTION
In the catalytic metal carbonyl used in the present invention, the catalytic metal is a catalytic metal used for producing carbon nanotubes by chemical vapor deposition, and a transition metal is generally used. Examples of such catalytic metals include Fe, Ni, Co, Mo, Ca, Se, Ti, V, Cr, Mn, Cu, Sr, Y, Zr, Ni, Ru, Rh, Pd, Hf, and Ta. It is done.
The catalyst metal carbonyl used in the present invention is not particularly limited as long as it is soluble in an organic solvent, and various conventionally known ones can be used. For example, iron carbonyl (Fe (CO) 5 , Fe 2 (CO) 9 , Fe 3 (CO) 12, etc.), nickel carbonyl (Ni (CO) 4, etc.), cobalt carbonyl ([Co (CO) 4 ] 2 , [Co (CO 3 )] 4 etc.), molybdenum carbonyl (Mo (CO) 6 etc.) and the like. These catalytic metal carbonyls may be used alone or in combination. In the present invention, a cocatalyst can be used as necessary. As such a cocatalyst, metal salts such as alkali metals and alkaline earth metals, organometallic complexes, inorganic crystal powders and the like can be used. Specific examples thereof include potassium hydroxide, aluminum hydroxide, phthalocyanine, thiophene, sulfur powder and the like.
[0006]
The organic solvent used in the present invention only needs to be soluble in the catalytic metal carbonyl. Such solvents generally include hydrocarbon solvents, alcohol solvents, phenol solvents, ether solvents, ketone solvents, ester solvents, amine solvents, heterocyclic solvents, and the like. The In the organic solvent used in the present invention, the boiling point is 100 to 550 ° C, preferably 200 to 400 ° C.
[0007]
The organic solvent is appropriately selected according to the catalyst metal carbonyl specifically used. For example, when the catalytic metal carbonyl is iron carbonyl (Fe (CO) 5 ), alcohols, ethers, amines, ketones, carboxylic acids, and esters having a hydrocarbon group having 8 or more carbon atoms (alkyl group, alkenyl group, etc.) In addition, an organic solvent such as bipyridine can be used. Furthermore, saturated hydrocarbons, unsaturated hydrocarbons, alcohols, ethers, amines, ketones, carboxylic acids, and esters that are solid at room temperature and have a high carbon number can be used as solvents by heating and melting. It is.
In addition, the same organic solvent can be used in the case of nickel carbonyl, cobalt carbonyl, and molybdenum carbonyl.
[0008]
In the organic solvent solution for dissolving the catalyst carbonyl used in the present invention, the concentration of the catalyst carbonyl is usually 0.1% by weight or more, preferably 1% by weight or more. The upper limit is the saturated solubility of the catalytic metal carbonyl in the organic solvent.
[0009]
If necessary, a surfactant can be added to the organic solvent solution containing the catalytic metal carbonyl in order to promote dispersion of the produced carbon nanotubes in the organic solvent. In this case, various conventionally known cationic, anionic, nonionic and amphoteric surfactants can be used as the surfactant. The content is 0.1 to 20% by weight, preferably 1 to 5% by weight, in the organic solvent solution.
[0010]
In order to carry out the present invention, an organic solvent solution containing catalytic metal carbonyl is placed in a reaction vessel and heated to a temperature at which the catalytic metal carbonyl decomposes under atmospheric pressure or pressure in an atmosphere containing hydrogen. Although the decomposition temperature of the catalytic metal carbonyl depends on the type, it is generally 150 ° C. or higher, preferably 200 ° C. or higher, and the upper limit is a temperature lower than the boiling point of the organic solvent under the pressure. The boiling point of the organic solvent can be adjusted by the pressure in the reaction vessel filled with the organic solvent solution.
[0011]
In the present invention, when hydrogen gas is allowed to coexist with an inert gas in the reaction vessel atmosphere filled with the organic solvent solution, the amount of carbon nanotubes produced is improved. In this case, examples of the inert gas include argon, nitrogen, helium and the like. Moreover, the ratio of hydrogen gas is the volume% in the atmosphere gas in a container, and is 0.1-100 volume%, Preferably it is 10-50 volume%.
[0012]
There are no particular restrictions on the supply of hydrogen gas into the reaction vessel, such as a method of circulating hydrogen gas at a predetermined pressure in the reaction vessel or a method of injecting hydrogen gas at a predetermined pressure into the reaction vessel.
[0013]
According to the present invention, carbon nanotubes are generated in the organic solvent by the reaction operation described above. This carbon nanotube is usually a single-walled or multi-walled carbon nanotube, its diameter is in the range of 0.8 to 3 nm, most is about 1 to 2 nm, and its length is 0.5 to 10 μm. In most cases, it is about 1 to 5 μm. These carbon nanotubes are of high quality, have high crystallinity, and have almost no amorphous carbon adhesion.
[0014]
【Example】
Next, the present invention will be described in more detail with reference to examples.
[0015]
Example 1
To the two-necked eggplant flask, 20 g of octyl ether as an organic solvent, 5 g of oleic acid as a surfactant, and 500 mg of iron carbonyl (Fe (CO) 5 ) are added. A cooling tube is installed on the top of the eggplant flask, and a thermometer covered with a quartz tube is inserted into the solution from the other end. While flowing an argon gas containing 10% of hydrogen, the solution in the eggplant flask is heated to 273 ° C., which is the boiling point of octyl ether, at a rate of 8 ° C. per minute using a mantle heater. With this heating, thermal decomposition of iron carbonyl occurs, and iron oxide nanoparticles having a diameter of 3 nm surrounded by oleic acid and iron oxide nanoparticles having a diameter of 10 nm considered to be an aggregate thereof are formed and become black. It is considered that a catalyst reaction using carbon monoxide as a carbon source occurred on iron ultrafine particles during the temperature rise, and single-walled carbon nanotubes were generated. The single-walled carbon nanotubes had high crystallinity without unnecessary amorphous carbon adhesion.
[0016]
【The invention's effect】
According to the present invention, single-walled or multi-walled carbon nanotubes having high crystallinity and few carbon impurities can be produced at an extremely low temperature. Moreover, since the raw materials are inexpensive and the production facilities may be simple in structure, they are suitable for industrial production.

Claims (4)

反応容器内に充填した触媒金属カルボニルを溶解状態で含む有機溶媒溶液を、水素を含む雰囲気下で加熱して該触媒金属カルボニルを分解させることを特徴とするカーボンナノチューブの製造方法。A method of producing carbon nanotubes, comprising decomposing catalytic metal carbonyl by heating an organic solvent solution containing catalytic metal carbonyl in a dissolved state filled in a reaction vessel in an atmosphere containing hydrogen. 該有機溶媒溶液が界面活性剤を含有することを特徴とする請求項1に記載の方法。The method according to claim 1, wherein the organic solvent solution contains a surfactant. 該有機溶媒溶液を溶媒の沸点以下の温度で加熱することを特徴とする請求項1〜のいずれかに記載の方法。The method of any of claims 1-2 for the organic solvent solution, wherein the heating at a temperature below the boiling point of the solvent. 該有機溶媒溶液に一酸化炭素を連続的または間欠的に供給して、カーボンナノチューブを連続的に製造することを特徴とする請求項1〜のいずれかに記載の方法。The method according to any one of claims 1 to 3 , wherein carbon nanotubes are continuously produced by continuously or intermittently supplying carbon monoxide to the organic solvent solution.
JP2003096295A 2003-03-31 2003-03-31 Method for producing carbon nanotube Expired - Lifetime JP3837541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003096295A JP3837541B2 (en) 2003-03-31 2003-03-31 Method for producing carbon nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003096295A JP3837541B2 (en) 2003-03-31 2003-03-31 Method for producing carbon nanotube

Publications (2)

Publication Number Publication Date
JP2004299987A JP2004299987A (en) 2004-10-28
JP3837541B2 true JP3837541B2 (en) 2006-10-25

Family

ID=33408404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003096295A Expired - Lifetime JP3837541B2 (en) 2003-03-31 2003-03-31 Method for producing carbon nanotube

Country Status (1)

Country Link
JP (1) JP3837541B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005033007A1 (en) * 2003-09-30 2005-04-14 Techno Network Shikoku Co., Ltd. Method and apparatus for producing carbon nanotube
AU2006336412A1 (en) * 2005-05-03 2007-08-02 Nanocomp Technologies, Inc. Nanotube composite materials and methods of manufacturing same
CN102527695A (en) * 2012-01-05 2012-07-04 中国科学院生态环境研究中心 Method for preparing nano iron/carbon compound material by kitchen waste
CN107287003A (en) * 2017-06-26 2017-10-24 苏州工业职业技术学院 A kind of carbon mano-tube composite for filling lubricating additive and preparation method thereof, application

Also Published As

Publication number Publication date
JP2004299987A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
Nyamori et al. The use of organometallic transition metal complexes in the synthesis of shaped carbon nanomaterials
JP4837932B2 (en) Method for producing carbon nanotube
EP1481946B1 (en) Process for producing single-walled carbon nanotube, single-walled carbon nanotube, and composition containing single-walled carbon nanotube
Liu et al. The Fe (CO) 5 catalyzed pyrolysis of pentane: carbon nanotube and carbon nanoball formation
Maghsoodi et al. A novel continuous process for synthesis of carbon nanotubes using iron floating catalyst and MgO particles for CVD of methane in a fluidized bed reactor
US20060245996A1 (en) Method of synthesizing single walled carbon nanotubes
JP5106123B2 (en) Synthesis method of carbon nanohorn carrier and carbon nanotube
Yardimci et al. The effects of catalyst pretreatment, growth atmosphere and temperature on carbon nanotube synthesis using Co–Mo/MgO catalyst
JP3755662B2 (en) Method for producing carbon nanotube
KR100746311B1 (en) A preparing method of carbon nanotube from liquid phased-carbon source
Liang et al. Carbon nanotubes filled partially or completely with nickel
JP3837541B2 (en) Method for producing carbon nanotube
Niu et al. Effect of temperature for synthesizing single-walled carbon nanotubes by catalytic chemical vapor deposition over Mo-Co-MgO catalyst
KR100596677B1 (en) Massive synthesis method of double-walled carbon nanotubes using the vapor phase growth
Qian et al. The formation mechanism of the coaxial carbon–metal nanowires in a chemical vapor deposition process
JP4977351B2 (en) Method for producing carbon nanotube
KR20120116232A (en) Method of fabricating metal catalyst for synthesizing carbon nanotubes and synthesizing carbon nanotubes using thereof
Yang et al. High-pressure synthesis of carbon nanotubes with a variety of morphologies
JP2018083169A (en) Catalyst substrate for production of carbon nanotube assembly, and method for producing carbon nanotube assembly
EP2590765B1 (en) Metal nanoparticles
Han et al. Small-sized Ag nanocrystals: high yield synthesis in a solid–liquid phase system, growth mechanism and their successful application in the Sonogashira reaction
Yu et al. Efficient synthesis of carbon nanotubes over rare earth zeolites by thermal chemical vapor deposition at low temperature
Shaijumon et al. Single step process for the synthesis of carbon nanotubes and metal/alloy-filled multiwalled carbon nanotubes
WO2003037792A1 (en) Large-scale synthesis of single-walled carbon nanotubes by group viiib catalysts promoted by group vib metals
WO2004007361A2 (en) Method of synthesis of carbon nanomaterials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

R150 Certificate of patent or registration of utility model

Ref document number: 3837541

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term