JP3823432B2 - 内燃機関のノッキング防止装置 - Google Patents

内燃機関のノッキング防止装置 Download PDF

Info

Publication number
JP3823432B2
JP3823432B2 JP9560297A JP9560297A JP3823432B2 JP 3823432 B2 JP3823432 B2 JP 3823432B2 JP 9560297 A JP9560297 A JP 9560297A JP 9560297 A JP9560297 A JP 9560297A JP 3823432 B2 JP3823432 B2 JP 3823432B2
Authority
JP
Japan
Prior art keywords
water temperature
internal combustion
combustion engine
knocking
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9560297A
Other languages
English (en)
Other versions
JPH10288138A (ja
Inventor
直樹 永田
京彦 黒田
英樹 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP9560297A priority Critical patent/JP3823432B2/ja
Publication of JPH10288138A publication Critical patent/JPH10288138A/ja
Application granted granted Critical
Publication of JP3823432B2 publication Critical patent/JP3823432B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrical Control Of Ignition Timing (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関のノッキング防止装置に関するもので、特に、内燃機関の負荷に応じて冷却水温を変更自在な水温制御機構を具備するものにおける内燃機関のノッキング防止装置に関するものである。
【0002】
【従来の技術】
従来、内燃機関のノッキング防止装置に関連する先行技術文献としては、実開昭58−20379号公報にて開示されたものが知られている。このものでは、内燃機関の冷却水温を低負荷走行時には高く維持して摩擦ロスを少なくし燃費を向上すると共に、高負荷走行時には低く維持して内燃機関のノッキングを防止する水温制御機構(冷却装置)を具備するものであって、低負荷走行から高負荷走行への移行直後の所定時間、点火時期を遅角させ内燃機関のノッキングを防止する技術が示されている。
【0003】
【発明が解決しようとする課題】
ところで、前述のものでは、内燃機関の負荷に応じて水温制御し、低負荷走行から高負荷走行に移行した直後に予め決められたタイミングで予め決められた期間だけ遅角制御を行うと、時として出力不足に起因するドライバビリティ(Drivability)の悪化を招くという不具合があった。
【0004】
そこで、この発明はかかる不具合を解決するためになされたもので、内燃機関の負荷に応じて冷却水温を変更自在な水温制御機構による水温制御状態及び負荷の変動を考慮して適応制御することでドライバビリティの悪化を招くことなく内燃機関のノッキングを防止可能な内燃機関のノッキング防止装置の提供を課題としている。
【0005】
課題を解決するための手段】
請求項の内燃機関のノッキング防止装置によれば、水温制御機構で高水温制御されているときには、冷却ファン制御手段で冷却ファンが積極的に制御されラジエータの出口水温が低水温制御時の冷却水温より低くなるように冷却される。これにより、低水温制御にいつ移行されても低い冷却水温を用いて直ちに内燃機関が効率よく冷却できるため、ドライバビリティの悪化を招くことなく、ノッキングを防止することができる。
【0006】
請求項の内燃機関のノッキング防止装置によれば、水温制御機構で高水温制御時高負荷走行であるときには、吸気充填効率制御手段でスロットルバルブの開弁速度が遅くされ、内燃機関における吸気充填効率が低下されることで、ドライバビリティの悪化を招くことなく、ノッキングを防止することができる。
【0007】
請求項の内燃機関のノッキング防止装置によれば、水温制御機構で高水温制御時高負荷走行であるときには、吸気充填効率制御手段で吸気バルブの閉タイミングが早められ、内燃機関における吸気充填効率が低下されることで、ドライバビリティの悪化を招くことなく、ノッキングを防止することができる。
【0008】
請求項の内燃機関のノッキング防止装置によれば、水温制御機構で高水温制御時高負荷走行、かつ、ノッキング検出手段でノッキングが検出されると、点火時期を遅角する遅角制御手段が含む遅角量変更手段で点火時期に対する遅角量が低水温制御時より大きく変更されたのち徐々に元に戻される。これにより、ドライバビリティの悪化を招くことなく、ノッキングを防止することができる。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態を実施例に基づいて説明する。
【0010】
説明事例1
図1は本発明の実施の形態の技術説明のための内燃機関のノッキング防止装置の全体構成を示す概略図である。
【0011】
図1において、内燃機関1には吸気通路2と排気通路3とが接続されている。吸気通路2内の最上流側にはエアクリーナ4、その下流側にはスロットルバルブ5が配設され、吸気通路2の途中にはサージタンク6が設けられている。また、吸気通路2には内燃機関1の各気筒に燃料を供給するインジェクタ(燃料噴射弁)7が配設されている。そして、吸気通路2から吸気バルブ8を通って内燃機関1の燃焼室9内に導入された混合気は点火プラグ10の火花点火により燃焼されたのち、排気バルブ11を通って排気通路3側に排出される。この点火プラグ10には内燃機関1のクランクシャフト(図示略)の回転位置に対応してイグナイタ12で発生された高電圧を供給するディストリビュータ13が接続されている。更に、スロットルバルブ5はアクセル操作量等に基づき駆動されるアクチュエータであるDCモータ14と接続され、『電子スロットルシステム』と称するスロットル制御機構が構成されている。また、吸気バルブ8のカムシャフト15には周知の可変バルブタイミング制御機構16が接続され、後述のクランク角センサ36からのクランク角信号とカムシャフト15に配設されたカム角センサ(図示略)からのカム角信号に基づき内燃機関1の潤滑油を作動油としてスプールバルブ等の流量制御バルブ17を介して可変バルブタイミング制御機構16が駆動され内燃機関1のクランクシャフト(図示略)の回転角に対応するカムシャフト15の相対回転角が変更される。
【0012】
また、内燃機関1内の冷却水はウォータポンプ21により往流路22を介してラジエータ23側に送出され、ラジエータ23にて冷却されたのち復流路24を介して内燃機関1に戻されることで所定温度に保持される。ここで、ラジエータ23には冷却ファン25が設けられており、必要に応じて駆動される。また、往流路22の途中には流路切替バルブ26が配設されており、内燃機関1の冷却水温を所定の温度に保持するためウォータポンプ21により送出される冷却水のうちの所定量がラジエータ23を通ることなく適宜バイパス流路27を介して内燃機関1側に戻される。
【0013】
吸気通路2の上流側のエアクリーナ4の直後には吸気温センサ31が配設され、この吸気温センサ31により吸気通路2内に導入される吸入空気の吸気温が検出される。また、スロットルバルブ5にはスロットル開度センサ32が配設され、このスロットル開度センサ32によりスロットルバルブ5のスロットル開度が検出される。そして、サージタンク6には吸気圧センサ33が配設され、この吸気圧センサ33により吸気通路2内の吸気圧が検出される。更に、内燃機関1には水温センサ34が配設され、この水温センサ34により内燃機関1の機関内水温(冷却水温)が検出される。また、ラジエータ23の出口側には水温センサ35が配設され、この水温センサ35によりラジエータ23の出口側のラジエータ出口水温が検出される。
【0014】
また、ディストリビュータ13にはクランク角センサ36、気筒判別センサ37が配設され、クランク角センサ36により内燃機関1の機関回転速度、気筒判別センサ37により内燃機関1の所定気筒タイミングが判別される。また、内燃機関1にはノックセンサ38が配設され、ノックセンサ38により内燃機関1からのノック信号が検出される。そして、排気通路3には酸素濃度センサ39が配設され、排気ガス中の酸素濃度が検出される。
【0015】
そして、吸気温センサ31からの吸気温信号、スロットル開度センサ32からのスロットル開度信号、吸気圧センサ33からの吸気圧信号、水温センサ34からの機関内水温信号、水温センサ35からのラジエータ出口水温信号、クランク角センサ36からの機関回転速度信号、気筒判別センサ37からの気筒判別信号、ノックセンサ38からのノック信号及び酸素濃度センサ39からの酸素濃度信号等の各種センサ信号がECU(Electronic Control Unit:電子制御装置)40に入力される。
【0016】
ECU40は、周知の中央処理装置としてのCPU41、制御プログラムを格納したROM42、各種データを格納するRAM43、B/U(バックアップ)RAM44等を中心に論理演算回路として構成され、各種センサからの検出信号を入力すると共に各種アクチュエータに制御信号を出力する入出力回路45等に対しバス46を介して接続されている。そして、ECU40からは入力された各種センサ信号に基づき、インジェクタ7に対して燃料噴射信号、イグナイタ12に対して点火時期信号、流量制御バルブ16に対して相対回転角フィードバック信号、冷却ファン25に対して駆動信号及び流路切替バルブ26に対して流路切替信号等がそれぞれ出力される。
【0017】
次に、図1にかかる内燃機関のノッキング防止装置で使用されているECU40内のCPU41における遅角量制御の処理手順を示す図2のフローチャートに基づき、図3のタイムチャートを参照して説明する。なお、この遅角量制御ルーチンは所定時間毎にCPU41にて繰返し実行される。
【0018】
図2において、まず、ステップS101で冷却水温が予め設定された所定値α以上であるかが判定される。ステップS101の判定条件が成立し、冷却水温が所定値α以上と高水温側に維持され高水温制御時であるとき(図3の時刻t1以前に実線で示す)にはステップS102に移行し、内燃機関の負荷が予め設定された所定値β以上であるかが判定される。ここで、内燃機関の負荷の大きさは例えば、加速によるスロットル開度センサ32からのスロットル開度信号や吸気圧センサ33からの吸気圧信号等に基づき知ることができる。
【0019】
ステップS102の判定条件が成立し、内燃機関の負荷が所定値β以上と高負荷走行であると判定されるとき(図3の時刻t1〜時刻t2)には、ステップS103に移行し、遅角量拡大制御判定フラグXKCSHが「0」であるかが判定される。ステップS103の判定条件が成立し、遅角量拡大制御が実行されていないときには、ステップS104に移行し、遅角量がγだけ大きくされ(図3の時刻t1〜時刻t2に実線で示す)、かつその遅角量を元に戻すための遅角減衰量がδだけ小さくされる(図3の時刻t2〜時刻t4に実線で示す)。次にステップS105に移行して、遅角量の変更の最大許容量である遅角量MAXガード値がそのときの冷却水温に基づくマップ等から算出される。次にステップS106に移行して、遅角量拡大制御判定フラグXKCSHが「1」とされ、本ルーチンを終了する。ここで、ステップS103の判定条件が成立せず、既に遅角量拡大制御が実行されているときには何もすることなく本ルーチンを終了する。
【0020】
一方、ステップS101またはステップS102の判定条件が成立しないときにはステップS107に移行し、遅角量拡大制御判定フラグXKCSHが「1」であるかが判定される。ステップS107の判定条件が成立し、既に遅角量拡大制御が実行されているときにはステップS108に移行し、遅角量がγだけ小さく、かつ遅角減衰量がδだけ大きくされる。次にステップS109に移行して、遅角量MAXガード値が元の値εに戻される。次にステップS110に移行して、遅角量拡大制御判定フラグXKCSHが「0」とされ、本ルーチンを終了する。ここで、ステップS107の判定条件が成立せず、遅角量拡大制御が実行されていないときには、何もすることなく本ルーチンを終了する。なお、図3に破線で示すように、通常の遅角制御では遅角量拡大制御時のように遅角量が大きく変更されず、その遅角量を元に戻すための遅角減衰量も大きくされる。
【0021】
してみれば、本実施例の内燃機関のノッキング防止装置は、内燃機関1の負荷に応じてラジエータ23に導入する冷却水量を増減し、内燃機関1に対する冷却水温を低負荷走行時には高く、高負荷走行時には低く維持するため各種センサとしての水温センサ34,35、これらの信号が入力されるECU40、ECU40からの出力信号により制御されるアクチュエータとしての流路切替バルブ26等にて構成される水温制御機構と、前記水温制御機構で内燃機関1に対する冷却水温を高水温側に維持する高水温制御時に高負荷走行に移行したときには冷却水温を低水温側に維持する低水温制御時より点火時期に対する遅角量を大きく変更したのち徐々に元に戻すECU40にて達成される遅角量変更手段とを具備する構成とすることができる。
【0022】
即ち、水温制御機構で高水温制御されているときに加速等により高負荷走行に移行すると遅角量変更手段を達成するECU40にて点火時期に対する遅角量が低水温制御時より大きく変更されたのち徐々に元に戻される。これにより、ドライバビリティの悪化を招くことなく、ノッキングを防止することができる。
【0023】
また、図2のフローチャートで制御する内燃機関のノッキング防止装置は、ECU40にて達成される遅角量変更手段が点火時期に対する遅角量を変更する際の最大許容量を冷却水温が高いときほど大きく設定するものである。つまり、冷却水温が高いときほど内燃機関1でノッキングが起き易いため、遅角量が大きく変更できるように最大許容量が大きく設定される。このように、点火時期に対する遅角量変更の最大許容量が冷却水温に対応して適切に設定され、ドライバビリティの悪化を招くことなく、ノッキングを防止することができる。
【0024】
図4は、ノックセンサ38によるノッキング検出に基づく点火時期遅角制御を示すフローチャートである。
【0025】
図4において、まず、ステップS201でノッキングが発生しているかが判定される。ここで、ノッキング有無の判定は、例えば、特開平5−264405号公報に記載されているように、ノックセンサ38により検出されたノッキング信号が所定の判定値以上のときにノッキングが発生していると判定する。ステップS201でノッキングが発生しているときにはステップS202に移行し、図2で算出された遅角量に基づいて点火時期が遅角され、本ルーチンを終了する。一方、ステップS201でノッキングが発生していないときにはステップS203に移行し、点火時期を所定量進角させ、本ルーチンを終了する。
【0026】
このように、図4のフローチャートで制御する内燃機関のノッキング防止装置は、内燃機関1の負荷に応じてラジエータ23に導入する冷却水量を増減し、内燃機関1に対する冷却水温を低負荷走行時には高く、高負荷走行時には低く維持するため各種センサとしての水温センサ34,35、これらの信号が入力されるECU40、ECU40からの出力信号により制御されるアクチュエータとしての流路切替バルブ26等にて構成される水温制御機構と、内燃機関1に発生したノッキングを検出するノッキング検出手段としてのノックセンサ38と、ノックセンサ38でノッキングが検出されたとき、点火時期を所定の遅角量、遅角するECU40にて達成される遅角制御手段とを備え、前記遅角制御手段は、前記水温制御機構で内燃機関1に対する冷却水温を高水温側に維持する高水温制御時に高負荷走行に移行し、かつ、ノックセンサ38でノッキングが検出されたとき、冷却水温を低水温側に維持する低水温制御時より点火時期に対する遅角量を大きく変更したのち徐々に元に戻す遅角量変更手段を備えるものである。
【0027】
即ち、水温制御機構で高水温制御時高負荷走行、かつ、ノックセンサ38でノッキングが検出されると、点火時期を遅角する遅角制御手段を達成するECU40が含む遅角量変更手段で点火時期に対する遅角量が低水温制御時より大きく変更されたのち徐々に元に戻される。これにより、ドライバビリティの悪化を招くことなく、ノッキングを防止することができる。
【0028】
ところで、上記事例では、点火時期に対する遅角量を大きく変更したのち徐々に元に戻すため遅角減衰量を小さくするようにしているが、遅角減衰時間を長くすることで徐々に戻してもよい。
【0029】
なお、本事例においては、ノッキングをノックセンサ38の出力を用いて判定しているが、例えば、特開昭58−7536号公報に記載されているようなイオン電流を用いて判定するようにしてもよい。
【0030】
説明事例2
図5は説明事例にかかる内燃機関のノッキング防止装置で使用されているECU40内のCPU41における高水温化禁止の処理手順を示すフローチャートである。なお、この高水温化禁止ルーチンは所定時間毎にCPU41にて繰返し実行される。また、本実施例にかかる内燃機関のノッキング防止装置の構成は上述の事例における図1の概略図と同一であるためその詳細な説明を省略する。
【0031】
図5において、まず、ステップS301で内燃機関1の負荷が予め設定された所定値α以上であるかが判定される。ステップS301の判定条件が成立せず、内燃機関1の負荷が所定値α未満と低負荷走行であるときにはステップS302に移行し、スロットル開度センサ32で検出されたスロットル開度が予め設定された所定値β以上であるかが判定される。ステップS302の判定条件が成立せず、スロットル開度が所定値β未満と低開度状態であるときにはステップS303に移行し、車速が予め設定された所定値γ以上であるかが判定される。ステップS303の判定条件が成立せず、車速が所定値γ未満と低速状態であるときにはステップS304に移行し、水温制御機構による内燃機関1に対する冷却水温の高水温側への移行を禁止する高水温化禁止フラグXTHWHが「0」であるかが判定される。ステップS304の判定条件が成立せず、高水温化禁止中でないときにはステップS305に移行し、高水温化を許可する処理が実行される。この高水温化が許可されると、流路切替バルブ26によりラジエータ23側を迂回しバイパス流路27を通過する冷却水の割合が多くされることで内燃機関1に対する冷却水温が高く維持される。次にステップS306に移行して、高水温化禁止フラグXTHWHが「0」とされ、本ルーチンを終了する。ここで、ステップS304の判定条件が成立し、高水温化が禁止されているときには何もすることなく本ルーチンを終了する。
【0032】
一方、ステップS301またはステップS302またはステップS303の判定条件が成立するときにはステップS307に移行し、高水温化禁止フラグXTHWHが「1」であるかが判定される。ステップS307の判定条件が成立せず、高水温化禁止中であるときにはステップS308に移行し、高水温化を禁止する処理が実行される。この高水温化が禁止されると、流路切替バルブ26によりラジエータ23側へ送出される冷却水の割合が多くされることで内燃機関1に対する冷却水温が低く維持される。次にステップS309に移行して、高水温化禁止フラグXTHWHが「1」とされ、本ルーチンを終了する。ここで、ステップS307の判定条件が成立し、高水温化が禁止されていないときには何もすることなく本ルーチンを終了する。
【0033】
このように、説明事例の内燃機関のノッキング防止装置は、内燃機関1の負荷に応じてラジエータ23に導入する冷却水量を増減し、内燃機関1に対する冷却水温を低負荷走行時には高く、高負荷走行時には低く維持するため各種センサとしての水温センサ34,35、これらの信号が入力されるECU40、ECU40からの出力信号により制御されるアクチュエータとしての流路切替バルブ26等にて構成される水温制御機構と、登坂走行または高速走行と判定したときには前記水温制御機構による内燃機関1に対する冷却水温の高水温側への移行を禁止するECU40にて達成される高水温化禁止手段とを具備するものである。
【0034】
即ち、内燃機関1の負荷が高く、このときのスロットル開度が大きく、車速が高くて登坂走行または高速走行と判定されたときには、高水温化禁止手段を達成するECU40で水温制御機構による高水温側への移行が禁止される。これにより、ドライバビリティの悪化を招くことなく、ノッキングを防止することができる。
【0035】
ところで、上記説明事例では、登坂走行または高速走行の判定を内燃機関1の負荷、スロットル開度、車速にて行っているが、本発明を実施する場合には、これに限定されるものではなく、図示しないエアフローメータ等で検出される吸気量(吸入空気量)、インジェクタ7からの燃料噴射量、変速機のギヤ位置及び機関回転速度等により行ってもよい。
【0036】
実施例1
図6は本発明の実施の形態の第1実施例にかかる内燃機関のノッキング防止装置で使用されているECU40内のCPU41におけるラジエータ23の冷却ファン制御の処理手順を示すフローチャートであり、図7のタイムチャートを参照して説明する。なお、この冷却ファン制御は所定時間毎にCPU41にて繰返し実行される。また、本実施例にかかる内燃機関のノッキング防止装置の構成は上述の図1の概略図と同一であるためその詳細な説明を省略する。
【0037】
図6において、まず、ステップS401で内燃機関1内の冷却水温である機関内水温が予め設定された所定値α以上であるかが判定される。ここで、ステップS401の判定条件が成立せず、機関内水温が所定値α未満と低水温状態であるときには何もすることなく本ルーチンを終了する。一方、ステップS401の判定条件が成立し、機関内水温が高いときにはステップS402に移行し、ラジエータ出口水温が予め設定された所定値β以上であるかが判定される。ステップS402の判定条件が成立し、ラジエータ出口水温が所定値β以上と高水温状態であるとき(図7の時刻t11)にはステップS403に移行し、冷却ファン駆動フラグXRFANHが「0」であるかが判定される。ステップS403の判定条件が成立し、冷却ファン駆動中でないときにはステップS404に移行し、ラジエータ23の冷却ファン25がON(駆動)される(図7の時刻t11〜時刻t12)。次にステップS405に移行して、冷却ファン駆動フラグXRFANHが「1」とされ、本ルーチンを終了する。ここで、ステップS403の判定条件が成立せず、既に冷却ファン駆動中であるときには何もすることなく本ルーチンを終了する。
【0038】
一方、ステップS402の判定条件が成立せず、ラジエータ出口水温が所定値β未満と低水温状態であるときにはステップS406に移行し、更に、ラジエータ出口水温が予め設定された所定値γ以上であるかが判定される。ステップS406の判定条件が成立せず、ラジエータ出口水温が所定値γ未満と低水温状態であるとき(図7の時刻t12)にはステップS407に移行し、ラジエータ23の冷却ファン25がOFF(停止)される(図7の時刻t11以前、時刻t12〜時刻t13)。次にステップS408に移行して、冷却ファン駆動フラグXRFANHが「0」とされ、本ルーチンを終了する。ここで、ステップS406の判定条件が成立し、ラジエータ出口水温が所定値γ以上であって所定値β未満であるときには適温状態であるため何もすることなく本ルーチンを終了する。
【0039】
このように、本実施例の内燃機関のノッキング防止装置は、内燃機関1の負荷に応じてラジエータ23に導入する冷却水量を増減し、内燃機関1に対する冷却水温を低負荷走行時には高く、高負荷走行時には低く維持するため各種センサとしての水温センサ34,35、これらの信号が入力されるECU40、ECU40からの出力信号により制御されるアクチュエータとしての流路切替バルブ26等にて構成される水温制御機構と、前記水温制御機構で内燃機関1に対する冷却水温を高水温側に維持する高水温制御時にはラジエータ23の出口水温が内燃機関1に対する冷却水温を低水温側に維持するときより低くなるように、ラジエータ23の冷却ファン25を制御するECU40にて達成される冷却ファン制御手段とを具備するものである。
【0040】
即ち、内燃機関1の冷却水温が水温制御機構で高水温制御されているときには、冷却ファン制御手段を達成するECU40で冷却ファン25が積極的に制御されラジエータ23の出口水温が低水温制御時の冷却水温より低くなるように冷却される。これにより、低水温制御にいつ移行されても低い冷却水温を用いて直ちに内燃機関1を効率よく冷却できるため、ドライバビリティの悪化を招くことなく、ノッキングを防止することができる。
【0041】
ところで、上記実施例では、ラジエータ23の出口水温に基づき冷却ファン25を制御するとしたが、内燃機関1への入口水温を検出して冷却ファン25を制御してもよい。
【0042】
実施例2
図8は本発明の実施の形態の第2実施例にかかる内燃機関のノッキング防止装置で使用されているECU40内のCPU41における吸気充填効率低下制御の処理手順を示すフローチャートである。なお、この吸気充填効率低下制御は所定時間毎にCPU41にて繰返し実行される。また、本実施例にかかる内燃機関のノッキング防止装置の構成は上述の図1の概略図と同一であるためその詳細な説明を省略する。
【0043】
図8において、まず、ステップS501で内燃機関1内の冷却水温が予め設定された所定値α以上であるかが判定される。ステップS501の判定条件が成立し、冷却水温が所定値α以上と高水温側に維持され高水温制御時であるときにはステップS502に移行し、スロットル開度変化量が予め設定された所定値β以上であるかが判定される。ここで、スロットル開度変化量の大きさは、所定時間当たりのスロットル開度センサ32からのスロットル開度信号の所定時間当たりの偏差に基づき知ることができる。ステップS502の判定条件が成立し、スロットル開度変化量が所定値β以上と高開度変化量であるときにはステップS503に移行し、吸気充填効率低下制御中フラグXTASHが「0」であるかが判定される。ステップS503の判定条件が成立し、吸気充填効率低下制御中でないときにはステップ504に移行し、DCモータ14によるスロットルバルブ5のスロットル開度制御によりスロットル開度変化量がγだけ小さく、または流量制御バルブ17により可変バルブタイミング制御機構16が駆動されカムシャフト15の相対回転角が変更され吸気バルブ閉タイミングがδだけ大きくされる。次にステップS505に移行して、吸気充填効率低下制御中フラグXTASHが「1」とされ、本ルーチンを終了する。ここで、ステップS503の判定条件が成立し、既に吸気充填効率低下制御中であるときには何もすることなく本ルーチンを終了する。
【0044】
一方、ステップS501またはステップS502の判定条件が成立しないときには、ステップS506に移行し、吸気充填効率低下制御中フラグXTASHが「1」であるかが判定される。ステップS506の判定条件が成立し、吸気充填効率低下制御中であるときにはステップS507に移行し、スロットル開度変化量がγだけ大きく、または吸気バルブ閉タイミングがδだけ小さくされ元のスロットル開度変化量または吸気バルブ閉タイミングに戻される。次にステップS508に移行して、吸気充填効率低下制御中フラグXTASHが「0」とされ、本ルーチンを終了する。ここで、ステップS506の判定条件が成立し、吸気充填効率低下制御中でないときには何もすることなく本ルーチンを終了する。
【0045】
このように、本第2実施例の内燃機関のノッキング防止装置は、内燃機関1の負荷に応じてラジエータ23に導入する冷却水量を増減し、内燃機関1に対する冷却水温を低負荷走行時には高く、高負荷走行時には低く維持するため各種センサとしての水温センサ34,35、これらの信号が入力されるECU40、ECU40からの出力信号により制御されるアクチュエータとしての流路切替バルブ26等にて構成される水温制御機構と、前記水温制御機構で内燃機関1に対する冷却水温を高水温側に維持する高水温制御時に高負荷走行と判定したときにはスロットルバルブ5の開弁速度を遅くし、吸気充填効率を低下するECU40にて達成される吸気充填効率制御手段とを具備するものである。
【0046】
即ち、水温制御機構で高水温制御時で高負荷走行であるときには、吸気充填効率制御手段を達成するECU40でスロットルバルブ5の開弁速度を遅く即ち、スロットル開度変化量が小さくされ、内燃機関1における吸気充填効率が低下されることで、ドライバビリティの悪化を招くことなく、ノッキングを防止することができる。
【0047】
また、本実施例の内燃機関のノッキング防止装置は、内燃機関1の負荷に応じてラジエータ23に導入する冷却水量を増減し、内燃機関1に対する冷却水温を低負荷走行時には高く、高負荷走行時には低く維持するため各種センサとしての水温センサ34,35、これらの信号が入力されるECU40、ECU40からの出力信号により制御されるアクチュエータとしての流路切替バルブ26等にて構成される水温制御機構と、前記水温制御機構で内燃機関1に対する冷却水温を高水温側に維持する高水温制御時に高負荷走行と判定したときには吸気バルブ8の閉タイミングを早め、吸気充填効率を低下するECU40にて達成される吸気充填効率制御手段とを具備するものである。
【0048】
即ち、水温制御機構で高水温制御時で高負荷走行であるときには、吸気充填効率制御手段を達成するECU40で吸気バルブ8の閉タイミングが可変バルブタイミング制御機構16を用いて早められ、内燃機関1における吸気充填効率が低下されることで、ドライバビリティの悪化を招くことなく、ノッキングを防止することができる。
【図面の簡単な説明】
【図1】 図1は本発明の実施の形態の技術説明事例及び第1実施例乃至第2実施例にかかる内燃機関のノッキング防止装置の全体構成を示す概略図である。
【図2】 図2は図1にかかる内燃機関のノッキング防止装置で使用されているECU内のCPUにおける遅角量制御の処理手順を示すフローチャートである。
【図3】 図3は図1にかかる内燃機関のノッキング防止装置における遅角量制御のタイムチャートである。
【図4】 図4は図1にかかる内燃機関のノッキング防止装置で使用されているECU内のCPUにおけるノッキング検出に基づく点火時期遅角制御の処理手順を示すフローチャートである。
【図5】 図5は本発明の実施の形態の技術説明事例2にかかる内燃機関のノッキング防止装置で使用されているECU内のCPUにおける高水温化禁止の処理手順を示すフローチャートである。
【図6】 図6は本発明の実施の形態の第実施例にかかる内燃機関のノッキング防止装置で使用されているECU内のCPUにおけるラジエータの冷却ファン制御の処理手順を示すフローチャートである。
【図7】 図7は本発明の実施の形態の第実施例にかかる内燃機関のノッキング防止装置におけるラジエータの冷却ファン制御のタイムチャートである。
【図8】 図8は本発明の実施の形態の第実施例にかかる内燃機関のノッキング防止装置で使用されているECU内のCPUにおける吸気充填効率低下制御の処理手順を示すフローチャートである。
【符号の説明】
1 内燃機関
5 スロットルバルブ
8 吸気バルブ
14 DCモータ
16 可変バルブタイミング制御機構
23 ラジエータ
25 冷却ファン
26 流路切替バルブ
32 スロットル開度センサ
33 吸気圧センサ
38 ノックセンサ
40 ECU(電子制御装置)

Claims (4)

  1. 内燃機関の負荷に応じてラジエータに導入する冷却水量を増減し、前記内燃機関に対する冷却水温を低負荷走行時には高く、高負荷走行時には低く維持する水温制御機構と、前記水温制御機構で前記内燃機関に対する冷却水温を高水温側に維持する高水温制御時には前記ラジエータの出口水温が前記内燃機関に対する冷却水温を低水温側に維持するときより低くなるように、前記ラジエータの冷却ファンを制御する冷却ファン制御手段とを具備することを特徴とする内燃機関のノッキング防止装置。
  2. 内燃機関の負荷に応じてラジエータに導入する冷却水量を増減し、前記内燃機関に対する冷却水温を低負荷走行時には高く、高負荷走行時には低く維持する水温制御機構と、前記水温制御機構で前記内燃機関に対する冷却水温を高水温側に維持する高水温制御時に高負荷走行と判定したときにはスロットルバルブの開弁速度を遅くし、吸気充填効率を低下する吸気充填効率制御手段とを具備することを特徴とする内燃機関のノッキング防止装置。
  3. 内燃機関の負荷に応じてラジエータに導入する冷却水量を増減し、前記内燃機関に対する冷却水温を低負荷走行時には高く、高負荷走行時には低く維持する水温制御機構と、前記水温制御機構で前記内燃機関に対する冷却水温を高水温側に維持する高水温制御時に高負荷走行と判定したときには吸気バルブの閉タイミングを早め、吸気充填効率を低下する吸気充填効率制御手段とを具備することを特徴とする内燃機関のノッキング防止装置。
  4. 内燃機関の負荷に応じてラジエータに導入する冷却水量を増減し、前記内燃機関に対する冷却水温を低負荷走行時には高く、高負荷走行時には低く維持する水温制御機構と、前記内燃機関に発生したノッキングを検出するノッキング検出手段と、前記ノッキング検出手段でノッキングが検出されたとき、点火時期を所定の遅角量、遅角する遅角制御手段とを備え、前記遅角制御手段は、前記水温制御機構で前記内燃機関に対する冷却水温を高水温側に維持する高水温制御時に高負荷走行に移行し、かつ、前記ノッキング検出手段でノッキングが検出されたとき、冷却水温を低水温側に維持する低水温制御時より点火時期に対する遅角量を大きく変更したのち徐々に元に戻す遅角量変更手段を備えることを特徴とする内燃機関のノッキング防止装置。
JP9560297A 1997-04-14 1997-04-14 内燃機関のノッキング防止装置 Expired - Fee Related JP3823432B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9560297A JP3823432B2 (ja) 1997-04-14 1997-04-14 内燃機関のノッキング防止装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9560297A JP3823432B2 (ja) 1997-04-14 1997-04-14 内燃機関のノッキング防止装置

Publications (2)

Publication Number Publication Date
JPH10288138A JPH10288138A (ja) 1998-10-27
JP3823432B2 true JP3823432B2 (ja) 2006-09-20

Family

ID=14142111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9560297A Expired - Fee Related JP3823432B2 (ja) 1997-04-14 1997-04-14 内燃機関のノッキング防止装置

Country Status (1)

Country Link
JP (1) JP3823432B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5481867B2 (ja) * 2009-01-27 2014-04-23 日産自動車株式会社 エンジン用冷却システム
JP6056519B2 (ja) * 2013-02-05 2017-01-11 マツダ株式会社 火花点火式エンジンの制御装置
KR101536337B1 (ko) * 2013-11-21 2015-07-13 ㈜에코플러스 이종연료엔진의 흡기온도조절을 위한 제어시스템

Also Published As

Publication number Publication date
JPH10288138A (ja) 1998-10-27

Similar Documents

Publication Publication Date Title
JPS6166839A (ja) 内燃機関の過回転防止燃料カツト制御装置
JP3823432B2 (ja) 内燃機関のノッキング防止装置
JP2003129848A (ja) 内燃機関
JPH02298642A (ja) 自動変速機付車両用エンジンの制御装置
JP6296430B2 (ja) エンジンの制御装置
JP2004340065A (ja) 水素エンジン用制御装置
JP2004143969A (ja) 内燃機関の冷却制御装置
JP3265999B2 (ja) 筒内噴射型内燃機関のノック制御装置
JP3089907B2 (ja) 内燃機関のアイドル回転数制御装置
JP2008297930A (ja) 内燃機関の制御装置
JP2976583B2 (ja) 内燃機関の空燃比制御装置
JP4110534B2 (ja) 内燃機関の可変バルブ制御装置
JP3726445B2 (ja) 内燃機関の制御装置
JP4285086B2 (ja) 内燃機関の2次空気供給制御装置
JP2010230044A (ja) 過給機付き内燃機関の制御装置
JP3435760B2 (ja) 内燃機関のアイドル制御装置
JP3213091B2 (ja) エンジンの燃料制御装置
JPH0526939B2 (ja)
JP2004346905A (ja) エンジンのノック制御装置
JP2007085199A (ja) 内燃機関のアイドル回転制御装置
JPS61155638A (ja) アイドル回転数制御方法
JPH0742876B2 (ja) 内燃機関の電子制御装置
JP3273658B2 (ja) エンジンの燃焼制御装置
JPH094490A (ja) 内燃機関の吸気制御装置
JPH0561468B2 (ja)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060619

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees