JP2004340065A - 水素エンジン用制御装置 - Google Patents

水素エンジン用制御装置 Download PDF

Info

Publication number
JP2004340065A
JP2004340065A JP2003138931A JP2003138931A JP2004340065A JP 2004340065 A JP2004340065 A JP 2004340065A JP 2003138931 A JP2003138931 A JP 2003138931A JP 2003138931 A JP2003138931 A JP 2003138931A JP 2004340065 A JP2004340065 A JP 2004340065A
Authority
JP
Japan
Prior art keywords
hydrogen engine
engine
hydrogen
combustion temperature
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003138931A
Other languages
English (en)
Inventor
Tomoyoshi Tsujimura
知祥 辻村
Yasuo Hirata
靖雄 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003138931A priority Critical patent/JP2004340065A/ja
Publication of JP2004340065A publication Critical patent/JP2004340065A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

【課題】水素エンジンにおけるEGR(排気ガス再循環)によるバックファイア等の発生を防止しつつ、NOx を低減し燃費を向上すること。
【解決手段】水素エンジン10の燃焼温度が低いと判定されたときには、内部EGR量が増加されると同時に点火時期補正量が進角側に設定される(ステップS101〜ステップS104)。これにより、水素エンジン10における点火速度の低下と相まってバックファイア等の発生を防止しつつ、NOx の低減と共に、燃費を向上することができる。一方、水素エンジン10の燃焼状態の悪化が判定されたときには、内部EGR量が減少されると同時に点火時期補正量が遅角側に設定される(ステップS105〜ステップS108)。これにより、水素エンジン10における過度なEGR量の供給を抑え、バックファイア等によるドライバビリティの悪化を未然に防止することができる。
【選択図】 図2

Description

【0001】
【発明の属する技術分野】
本発明は、水素燃料を用いる水素エンジンにおける排気ガスを再循環させる水素エンジン用制御装置に関するものである。
【0002】
【従来の技術】
従来、水素燃料を用いる水素エンジンにおいては、水素燃料が高温状態となった燃焼室内の壁面(例えば、吸気バルブ)等に触れることで着火したり、また、点火する以前に着火してしまうことでバックファイア等が起き易いという現象がある。これは、水素燃料がガソリン燃料と比較して高希薄燃焼限界及び最小点火エネルギが極めて小さいという性質によるものである。このため、NOx (窒素酸化物)の低減を目的とした、ガソリンエンジンで周知である排気ガス再循環(Exhaust Gas Recirculation;以下、単に『EGR』と記す)は難しく、通常、実施されていないのが現状であった。
【0003】
【発明が解決しようとする課題】
ところで、ガソリンエンジンにおけるEGRでは、低負荷・低回転領域でEGR量を少なく設定し、高負荷・高回転でEGR量を増量するような設定となっている。これは、ガソリンが低希薄燃焼限界であるという性質により、低負荷・低回転でEGR量を増量すると燃焼状態の悪化を招き、ドライバビリティの悪化につながるからである。
【0004】
しかしながら、水素エンジンで使用される水素燃料は、前述のように、ガソリン燃料と比べ高希薄燃焼限界であるため、多量のEGRが可能であり、NOx の低減と燃費の向上のためEGRを実施したいという要望が強かった。
【0005】
このような要望を満足するためには、前述の早期着火によるバックファイア等を起こさないようにしなければならないという問題があった。
【0006】
そこで、この発明はかかる不具合を解決するためになされたもので、水素エンジンにおけるEGR(排気ガス再循環)によるバックファイア等の発生を防止しつつ、NOx を低減し燃費を向上可能な水素エンジン用制御装置の提供を課題としている。
【0007】
【課題を解決するための手段】
請求項1の水素エンジン用制御装置によれば、燃焼温度判定手段により水素エンジンの燃焼温度が低いと判定されたときには、再循環制御手段によってEGR(排気ガス再循環)が行われるため、バックファイア等の発生を防止しつつ、NOx の低減と共に、燃費が向上される。
【0008】
請求項2の水素エンジン用制御装置によれば、燃焼温度判定手段により水素エンジンの燃焼温度が低いと判定されたときには、再循環制御手段によってEGRと同時に点火時期制御手段により点火時期も進角されることで、点火速度の低下と相まってバックファイア等の発生が防止され、NOx の低減と共に、燃費が向上される。
【0009】
請求項3の水素エンジン用制御装置における燃焼温度判定手段では、負荷検出手段により低負荷、かつ回転速度検出手段により低回転が検出されたときには、水素エンジンにおける燃焼温度が低いと判定される。これにより、水素エンジンにおける燃焼温度の高/低判定ができるため実際の燃焼温度を検出するセンサ等が省略でき、構成が簡単で安価なシステムが構築できる。
【0010】
請求項4の水素エンジン用制御装置における再循環制御手段では、負荷検出手段により所定期間以上の高負荷または回転速度検出手段により所定期間以上の高回転のうち少なくとも一方の運転条件が検出されたのち、負荷検出手段により低負荷、かつ回転速度検出手段により低回転が検出されても、水素エンジンにおけるEGRが所定期間禁止される。つまり、水素エンジンの所定期間以上の高負荷、所定期間以上の高回転直後では、燃焼温度が高くなっていると考えられ、この際、所定期間EGRが禁止されることで確実に燃焼温度が低くなったときに再度EGRが開始されることとなるため、バックファイア等によるドライバビリティの悪化が未然に防止される。
【0011】
請求項5の水素エンジン用制御装置における再循環制御手段では、可変バルブタイミング制御機構による吸気バルブ及び排気バルブのバルブオーバラップ量を可変することで、水素エンジンにおける内部EGR量が必要に応じて簡単に変更できる。
【0012】
請求項6の水素エンジン用制御装置における再循環制御手段では、燃焼状態判定手段により水素エンジンの燃焼状態の悪化が判定されたときには、水素エンジンにおけるEGR量が減少される。これにより、過度なEGR量の供給が抑えられ、バックファイア等によるドライバビリティの悪化が未然に防止される。
【0013】
請求項7の水素エンジン用制御装置における燃焼状態判定手段では、回転速度速度検出手段による水素エンジンの機関回転速度の変動量に基づき燃焼状態の悪化が判定される。このように、水素エンジンの燃焼状態の悪化が簡単に判定できるため、安価なシステムが構築できる。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態を実施例に基づいて説明する。
【0015】
図1は本発明の実施の形態の一実施例にかかる水素エンジン用制御装置が適用された水素エンジン及びその周辺機器を示す概略構成図である。
【0016】
図1において、10は水素を燃料とする4サイクル4気筒からなる水素エンジンであり、水素エンジン10の吸気通路11に導入される空気は、上流側からエアクリーナ12にて清浄され、エアフローメータ13にて計測され、スロットルバルブ14にて調整されたのちインテークマニホルド17を通って、各気筒に対応するインジェクタ18a〜18dから噴射供給される水素燃料と混合され、所定の混合気としてそれぞれの気筒に供給され、所定タイミングにて点火燃焼される。ここで、各気筒の点火系統については省略されている。なお、スロットルバルブ14のスロットル開度はスロットル開度センサ15にて検出され、スロットルバルブ14の下流側の吸気通路11における吸気圧が吸気圧センサ16にて検出される。
【0017】
水素エンジン10の各気筒に配設された吸気バルブ19は、吸気側カムシャフト20により開閉される。この吸気側カムシャフト20には吸気側可変バルブタイミング制御機構21が配設されている。また、水素エンジン10の各気筒に配設された排気バルブ24は、排気側カムシャフト25により開閉される。この排気側カムシャフト25には排気側可変バルブタイミング制御機構26が配設されている。なお、22は吸気側カムポジションセンサ、23はクランクポジションセンサ、27は排気側カムポジションセンサである。そして、水素エンジン10の各気筒からの排気ガスは、エキゾーストマニホルド28から排気通路29を通り、その途中に配設された触媒コンバータ30によりNOx 等が浄化されたのち排出される。
【0018】
高圧燃料タンク31内に貯留された水素燃料は、燃料遮断弁33を介して減圧レギュレータ34にて低圧燃料とされ、燃料調節機構35により調節され、インテークマニホルド17内との差圧により開閉されるインジェクタ18a〜18dによって各気筒に噴射供給される。なお、高圧燃料タンク31内の燃圧は燃圧センサ32にて検出される。
【0019】
ECU(Electronic Control Unit:電子制御ユニット)40は、周知の各種演算処理を実行する中央処理装置としてのCPU、制御プログラムや制御マップ等を格納したROM、各種データ等を格納するRAM、B/U(バックアップ)RAM、入力回路、出力回路及びそれらを接続するバスライン等からなる論理演算回路として構成されている。
【0020】
ここで、各種センサとして、エアフローメータ13からの吸入空気量、スロットル開度センサ15からのスロットル開度、吸気圧センサ16からの吸気圧、吸気側カムポジションセンサ22からの吸気側カムシャフト20のカムポジション、クランクポジションセンサ23からのクランクシャフト(図示略)のクランクポジション、排気側カムポジションセンサ27からの排気側カムシャフト25のカムポジション、燃圧センサ32からの高圧燃料タンク31内の燃圧等の検出信号がECU40の入力回路に入力されている。そして、ECU40の出力回路から各種アクチュエータとして吸気側可変バルブタイミング制御機構21、排気側可変バルブタイミング制御機構26、燃料遮断弁32、減圧レギュレータ33、燃料調節機構34等に制御信号が出力されている。
【0021】
吸気側可変バルブタイミング制御機構21によって、クランクポジションセンサ23に対する吸気側カムポジションセンサ22の偏差が所定クランク角〔°CA(Crank Angle)〕となるよう吸気側カムシャフト20が変位され、吸気バルブ19の開閉タイミングが進角/遅角される。また、排気側可変バルブタイミング制御機構26によって、クランクポジションセンサ23に対する排気側カムポジションセンサ27の偏差が所定クランク角〔°CA〕となるよう排気側カムシャフト25が変位され、排気バルブ24の開閉タイミングが進角/遅角される。そして、吸気側可変バルブタイミング制御機構21による吸気バルブ19の開閉タイミングと排気側可変バルブタイミング制御機構26による排気バルブ24の開閉タイミングとに基づくバルブオーバラップ量によって後述の内部EGR量が設定される。
【0022】
次に、本発明の実施の形態の一実施例にかかる水素エンジン用制御装置で使用されているECU40におけるEGR制御の処理手順を示す図2のフローチャートに基づき、図5を参照して説明する。ここで、図5は図2、後述の図3及び図4の処理に対応する各種センサ信号や各種制御量等の遷移状態を示すタイムチャートである。なお、このEGR制御ルーチンは所定時間毎にECU40にて繰返し実行される。
【0023】
図2において、まず、ステップS101にて、後述の燃焼温度判定処理が実行される。次にステップS102に移行して、燃焼温度が低いかが判定される。ステップS102の判定条件が成立、即ち、水素エンジン10における燃焼温度が低いと判定されたとき(図5に示す時刻t0 〜時刻t3 、時刻t6 以降)にはステップS103に移行し、吸気側可変バルブタイミング制御機構21及び排気側可変バルブタイミング制御機構26による内部EGR量が所定量だけ増加される。次にステップS104に移行して、ステップS103で増加された内部EGR量に応じて点火時期補正量として現在の点火時期から進角側への補正量が設定される。
【0024】
次にステップS105に移行して、後述の燃焼状態判定処理が実行される。次にステップS106に移行して、燃焼状態が悪化しているかが判定される。ステップS106の判定条件が成立、即ち、水素エンジン10における燃焼状態が悪化していると判定されたとき(図5に示す時刻t1 〜時刻t2 )にはステップS107に移行し、吸気側可変バルブタイミング制御機構21及び排気側可変バルブタイミング制御機構26による内部EGR量が所定量だけ減少される。次にステップS108に移行して、ステップS107で減少された内部EGR量に応じて点火時期補正量として現在の点火時期から遅角側への補正量が設定される。
【0025】
一方、ステップS102の判定条件が成立せず、即ち、水素エンジン10における燃焼温度が高いと判定されたとき、またはステップS106の判定条件が成立せず、即ち、水素エンジン10における燃焼状態が良好と判定されたときには、何もすることなく本ルーチンを終了する。
【0026】
次に、図2における燃焼温度判定の処理手順を示す図3のフローチャートに基づき、図5を参照して説明する。
【0027】
図3において、ステップS201で、水素エンジン10の負荷としての吸気圧センサ16にて検出された吸気圧PM〔kPa〕が所定値Aを越えているかが判定される。ステップS201の判定条件が成立、即ち、水素エンジン10の負荷としての吸気圧PMが所定値Aを越え大きいとき(図5に示す時刻t4 〜時刻t5 )にはステップS202に移行し、カウンタTi が「+1」インクリメントされる。次にステップS203に移行して、カウンタTi が所定値Bを越えているかが判定される。ステップS203の判定条件が成立、即ち、カウンタTi が所定値Bを越え大きいときにはステップS204に移行し、水素エンジン10が所定期間、高負荷状態にあり、燃焼温度が高いと判定され、本ルーチンを終了する。
【0028】
一方、ステップS201の判定条件が成立せず、即ち、水素エンジン10の負荷としての吸気圧PMが所定値A以下と小さいとき(図5に示す時刻t4 以前、時刻t5 以降)、またはステップS203の判定条件が成立せず、即ち、カウンタTi が所定値B以下と小さいときにはステップS205に移行する。ステップS205では、クランクポジションセンサ23からのクランクポジション信号に基づく機関回転速度Ne〔rpm〕が所定値Cを越えているかが判定される。ステップS205の判定条件が成立、即ち、水素エンジン10の機関回転速度Neが所定値Cを越え高いとき(図5に示す時刻t3 〜時刻t5 )にはステップS206に移行し、カウンタSi が「+1」インクリメントされる。次にステップS207に移行して、カウンタSi が所定値Dを越え大きいときにはステップS204に移行し、水素エンジン10が所定期間、高回転状態にあり、燃焼温度が高いと判定され、本ルーチンを終了する。
【0029】
一方、ステップS205の判定条件が成立せず、即ち、水素エンジン10の機関回転速度Neが所定値C以下と低いとき(図5に示す時刻t3 以前、時刻t5 以降)、またはステップS207の判定条件が成立せず、即ち、カウンタSi が所定値D以下と小さいときにはステップS208に移行する。ステップS208では、以前の燃焼温度高判定後、所定時間以上経過しているかが判定される。ステップS208の判定条件が成立、即ち、以前に燃焼温度が高いと判定されたのち所定時間以上が経過しているときにはステップS209に移行し、燃焼温度が低いと判定され、本ルーチンを終了する。一方、ステップS208の判定条件が成立せず、即ち、以前に燃焼温度が高いと判定されたのち所定時間以上が経過していないときには、何もすることなく本ルーチンを終了する。
【0030】
このように、機関回転速度Neが一旦所定値Cを越え、または吸気圧PMが一旦所定値Aを越えたのち、両方共に所定値以下となっても、直ちに燃焼温度低判定とされることなく所定時間としてのディレイ時間(図5に示す時刻t5 〜時刻t6 )が経過するまで、即ち、実際の燃焼温度が低くなったと考えられるまでEGRが禁止されるよう、燃焼温度低判定が行われない。
【0031】
次に、図2における燃焼状態判定の処理手順を示す図4のフローチャートに基づき、図5を参照して説明する。
【0032】
図4において、ステップS301で、クランクポジションセンサ23からのクランクポジション信号に基づく今回の機関回転速度Ne(i)から前回の機関回転速度Ne(i−1)が減算され機関回転速度変動量ΔNe〔rpm〕が算出される。次にステップS302に移行して、ステップS301で算出された機関回転速度変動量ΔNeが所定値Eを越えているかが判定される。ステップS302の判定条件が成立、即ち、機関回転速度変動量ΔNeが所定値Eを越え大きいとき(図5に示す時刻t1 〜時刻t2 )にはステップS303に移行し、燃焼状態が悪化していると判定され、本ルーチンを終了する。一方、ステップS302の判定条件が成立せず、即ち、機関回転速度変動量ΔNeが所定値E以下と小さいときにはステップS304に移行し、燃焼状態が良好と判定され、本ルーチンを終了する。
【0033】
このように、本実施例の水素エンジン用制御装置は、水素を燃料とする水素エンジン10と、水素エンジン10の燃焼温度を判定するECU40にて達成される燃焼温度判定手段と、水素エンジン10の点火時期を制御するECU40にて達成される点火時期制御手段と、前記燃焼温度判定手段により燃焼温度が低いと判定されたときには、水素エンジン10のEGR(排気ガス再循環)させると同時に、前記点火時期制御手段により点火時期も進角させるECU40にて達成される再循環制御手段とを具備するものである。
【0034】
つまり、水素エンジン10の燃焼温度が低いと判定されたときには、EGRが行われると同時に点火時期も進角される。これにより、水素エンジンにおける点火速度の低下と相まってバックファイア等の発生を防止しつつ、NOx の低減と共に、燃費を向上することができる。
【0035】
また、本実施例の水素エンジン用制御装置は、水素エンジン10の負荷として吸気圧PMを検出する負荷検出手段としての吸気圧センサ16と、水素エンジン10の機関回転速度Neを検出する回転速度検出手段としてのクランクポジションセンサ23とを具備し、ECU40にて達成される燃焼温度判定手段は、吸気圧センサ16により低負荷、かつクランクポジションセンサ23により低回転が検出されたときには、燃焼温度が低いと判定するものである。これにより、水素エンジン10における燃焼温度の高/低判定ができ、実際の燃焼温度を検出するセンサ等が省略できるため、構成が簡単で安価なシステムを構築することができる。
【0036】
そして、本実施例の水素エンジン用制御装置のECU40にて達成される再循環制御手段は、吸気圧センサ16による吸気圧PMが所定期間としてカウンタTi が所定値Bを越える高負荷、即ち、高吸気圧またはクランクポジションセンサ23による機関回転速度Neが所定期間としてカウンタSi が所定値Dを越える高回転のうち少なくとも一方の運転条件が検出されたのち、吸気圧センサ16による低吸気圧、かつクランクポジションセンサ23による低回転が検出されても、EGRを所定期間としてディレイ時間、禁止するものである。つまり、水素エンジン10の所定期間以上の高吸気圧、所定期間以上の高回転直後では、燃焼温度が高くなっていると考えられ、この際、ディレイ時間だけEGRが禁止されることで確実に燃焼温度が低くなったときに再度EGRが開始されることとなるため、バックファイア等によるドライバビリティの悪化を未然に防止することができる。
【0037】
更に、本実施例の水素エンジン用制御装置は、水素エンジン10の駆動軸としてのクランクシャフト(図示略)から吸気バルブ19及び排気バルブ24を開閉する従動軸としての吸気側カムシャフト20及び排気側カムシャフト25に駆動力を伝達する駆動力伝達系に設けられ、吸気バルブ19及び排気バルブ24の開閉タイミングを変更自在な吸気側可変バルブタイミング制御機構21及び排気側可変バルブタイミング制御機構26を具備し、ECU40にて達成される再循環制御手段は、吸気側可変バルブタイミング制御機構21及び排気側可変バルブタイミング制御機構26によるバルブオーバラップ量を可変することで内部EGRさせるものである。これにより、水素エンジン10における内部EGR量を必要に応じて簡単に変更することができる。
【0038】
更にまた、本実施例の水素エンジン用制御装置は、水素エンジン10の燃焼状態を判定するECU40にて達成される燃焼状態判定手段を具備し、ECU40にて達成される再循環制御手段が、前記燃焼状態判定手段により燃焼状態の悪化が判定されたときには、EGR量を減少させるものである。これにより、水素エンジン10における過度なEGR量の供給を抑え、バックファイア等によるドライバビリティの悪化を未然に防止することができる。
【0039】
加えて、本実施例の水素エンジン用制御装置は、水素エンジン10の機関回転速度Neを検出する回転速度検出手段としてのクランクポジションセンサ23を具備し、ECU40にて達成される燃焼状態判定手段が、クランクポジションセンサ23による機関回転速度変動量ΔNeに基づき燃焼状態の悪化を判定するものである。これにより、水素エンジン10の燃焼の悪化が簡単に判定でき、安価なシステムを構築することができる。
【0040】
ところで、上記実施例では、EGR制御として吸気側可変バルブタイミング制御機構21及び排気側可変バルブタイミング制御機構26を用いて水素エンジン10に対する内部EGR量を増加/減少させているが、本発明を実施する場合には、これに限定されるものではなく、周知の外部EGR機構を用いて排気通路側から吸気通路側へ外部EGR量を増加/減少させることもでき、上述の実施例と同様の作用・効果が期待できる。
【0041】
また、上記実施例では、EGR制御としてEGR量の増加/減少と同時に、点火時期の進角側/遅角側への補正量も設定されているが、本発明を実施する場合には、これに限定されるものではなく、EGR量の増加/減少のみであってもよい。
【0042】
そして、上記実施例では、水素エンジン10の負荷として吸気圧センサ16により検出される吸気圧PMを用いているが、本発明を実施する場合には、これに限定されるものではなく、エアフローメータ13により検出される吸入空気量等を用いることもできる。
【図面の簡単な説明】
【図1】図1は本発明の実施の形態の一実施例にかかる水素エンジン用制御装置が適用された水素エンジン及びその周辺機器を示す概略構成図である。
【図2】図2は本発明の実施の形態の一実施例にかかる水素エンジン用制御装置で使用されているECUにおけるEGR制御の処理手順を示すフローチャートである。
【図3】図3は図2における燃焼温度判定の処理手順を示すフローチャートである。
【図4】図4は図2における燃焼状態判定の処理手順を示すフローチャートである。
【図5】図5は図2乃至図4の処理に対応する各種センサ信号や各種制御量等の遷移状態を示すタイムチャートである。
【符号の説明】
10 水素エンジン
16 吸気圧センサ
19 吸気バルブ
20 吸気側カムシャフト
21 吸気側可変バルブタイミング制御機構
22 吸気側カムポジションセンサ
23 クランクポジションセンサ
24 排気バルブ
25 排気側カムシャフト
26 排気側可変バルブタイミング制御機構
27 排気側カムポジションセンサ
40 ECU(電子制御ユニット)

Claims (7)

  1. 水素を燃料とする水素エンジンと、
    前記水素エンジンの燃焼温度を判定する燃焼温度判定手段と、
    前記燃焼温度判定手段により燃焼温度が低いと判定されたときには、前記水素エンジンの排気ガスを再循環させる再循環制御手段と
    を具備することを特徴とする水素エンジン用制御装置。
  2. 水素を燃料とする水素エンジンと、
    前記水素エンジンの燃焼温度を判定する燃焼温度判定手段と、
    前記水素エンジンの点火時期を制御する点火時期制御手段と、
    前記燃焼温度判定手段により燃焼温度が低いと判定されたときには、前記水素エンジンの排気ガスを再循環させると同時に、前記点火時期制御手段により点火時期も進角させる再循環制御手段と
    を具備することを特徴とする水素エンジン用制御装置。
  3. 前記水素エンジンの負荷を検出する負荷検出手段と、
    前記水素エンジンの機関回転速度を検出する回転速度検出手段とを具備し、
    前記燃焼温度判定手段は、前記負荷検出手段により低負荷、かつ前記回転速度検出手段により低回転が検出されたときには、前記燃焼温度が低いと判定することを特徴とする請求項1または請求項2に記載の水素エンジン用制御装置。
  4. 前記再循環制御手段は、前記負荷検出手段による所定期間以上の高負荷または前記回転速度検出手段による所定期間以上の高回転のうち少なくとも一方の運転条件が検出されたのち、前記負荷検出手段により低負荷、かつ前記回転速度検出手段により低回転が検出されても、前記排気ガスの再循環を所定期間禁止することを特徴とする請求項3に記載の水素エンジン用制御装置。
  5. 前記水素エンジンの駆動軸から吸気バルブまたは排気バルブの少なくとも何れか一方を開閉する従動軸に駆動力を伝達する駆動力伝達系に設けられ、前記吸気バルブまたは前記排気バルブの開閉タイミングまたはリフト量を変更自在な可変バルブタイミング制御機構を具備し、
    前記再循環制御手段は、前記可変バルブタイミング制御機構によるバルブオーバラップ量を可変することで前記排気ガスを再循環させることを特徴とする請求項1または請求項2に記載の水素エンジン用制御装置。
  6. 前記水素エンジンの燃焼状態を判定する燃焼状態判定手段を具備し、
    前記再循環制御手段は、前記燃焼状態判定手段により燃焼状態の悪化が判定されたときには、前記排気ガスの再循環量を減少させることを特徴とする請求項1または請求項2に記載の水素エンジン用制御装置。
  7. 前記水素エンジンの機関回転速度を検出する回転速度検出手段を具備し、
    前記燃焼状態判定手段は、前記回転速度検出手段による機関回転速度の変動量に基づき燃焼状態の悪化を判定することを特徴とする請求項6に記載の水素エンジン用制御装置。
JP2003138931A 2003-05-16 2003-05-16 水素エンジン用制御装置 Pending JP2004340065A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003138931A JP2004340065A (ja) 2003-05-16 2003-05-16 水素エンジン用制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003138931A JP2004340065A (ja) 2003-05-16 2003-05-16 水素エンジン用制御装置

Publications (1)

Publication Number Publication Date
JP2004340065A true JP2004340065A (ja) 2004-12-02

Family

ID=33528162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003138931A Pending JP2004340065A (ja) 2003-05-16 2003-05-16 水素エンジン用制御装置

Country Status (1)

Country Link
JP (1) JP2004340065A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1754874A1 (en) 2005-08-18 2007-02-21 Mazda Motor Corporation Method and apparatus for controlling an internal combustion engine
JP2007077891A (ja) * 2005-09-14 2007-03-29 Mazda Motor Corp デュアルフューエルエンジンの燃料切換制御装置
JP2007085295A (ja) * 2005-09-26 2007-04-05 Mazda Motor Corp デュアルフューエルエンジンの燃料切換制御装置
JP2007211608A (ja) * 2006-02-07 2007-08-23 Mazda Motor Corp 水素エンジンの制御装置
JP2008240704A (ja) * 2007-03-28 2008-10-09 Denso Corp 内燃機関の制御装置
JP2016130506A (ja) * 2015-01-15 2016-07-21 マツダ株式会社 多種燃料エンジンの燃料制御装置
JP2017194052A (ja) * 2016-04-19 2017-10-26 ヤマハ発動機株式会社 エンジンユニットおよび鞍乗型車両
CN107687388A (zh) * 2016-08-05 2018-02-13 现代自动车株式会社 用于防止发动机的回火的设备和使用该设备的方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1754874A1 (en) 2005-08-18 2007-02-21 Mazda Motor Corporation Method and apparatus for controlling an internal combustion engine
JP2007077891A (ja) * 2005-09-14 2007-03-29 Mazda Motor Corp デュアルフューエルエンジンの燃料切換制御装置
JP2007085295A (ja) * 2005-09-26 2007-04-05 Mazda Motor Corp デュアルフューエルエンジンの燃料切換制御装置
JP4600231B2 (ja) * 2005-09-26 2010-12-15 マツダ株式会社 デュアルフューエルエンジンの燃料切換制御装置
JP2007211608A (ja) * 2006-02-07 2007-08-23 Mazda Motor Corp 水素エンジンの制御装置
JP4618150B2 (ja) * 2006-02-07 2011-01-26 マツダ株式会社 水素エンジンの制御装置
JP2008240704A (ja) * 2007-03-28 2008-10-09 Denso Corp 内燃機関の制御装置
JP2016130506A (ja) * 2015-01-15 2016-07-21 マツダ株式会社 多種燃料エンジンの燃料制御装置
JP2017194052A (ja) * 2016-04-19 2017-10-26 ヤマハ発動機株式会社 エンジンユニットおよび鞍乗型車両
CN107687388A (zh) * 2016-08-05 2018-02-13 现代自动车株式会社 用于防止发动机的回火的设备和使用该设备的方法
US10260476B2 (en) 2016-08-05 2019-04-16 Hyundai Motor Company Device for preventing back fire of engine and method using the same
CN107687388B (zh) * 2016-08-05 2020-08-28 现代自动车株式会社 用于防止发动机的回火的设备和使用该设备的方法

Similar Documents

Publication Publication Date Title
US7287500B2 (en) Start controller for internal combustion engine
JP5779331B2 (ja) 筒内噴射式ガソリン機関の制御装置
JP2005351215A (ja) 内燃機関の制御装置
JP2010059921A (ja) 内燃機関のegr制御装置
JP3680259B2 (ja) ディーゼル機関の燃料噴射装置
JPWO2004018869A1 (ja) 内燃機関の始動制御装置および始動制御方法
JP2008208741A (ja) 内燃機関の制御装置
JP2006291939A (ja) エンジンの制御装置
US7063056B2 (en) Valve timing control apparatus for engine
JP2004340065A (ja) 水素エンジン用制御装置
JP2004027971A (ja) 内燃機関の制御装置
JP2006291940A (ja) エンジンの制御装置
JP2010236398A (ja) 触媒暖機制御される内燃機関
JP4415864B2 (ja) 内燃機関の制御装置
US20160369729A1 (en) Control apparatus and control method for internal combustion engine
JP2010168931A (ja) 火花点火式内燃機関の点火時期制御装置
JP2007077842A (ja) 内燃機関の制御装置
JP2006132399A (ja) 過給機付エンジンの制御装置および制御方法
JP2004183581A (ja) 内燃機関の排気浄化装置
JP2005016396A (ja) 内燃機関の触媒暖機システム
JP2008232095A (ja) 内燃機関の制御装置
JP4415803B2 (ja) 内燃機関の制御装置
JP2006132400A (ja) 内燃機関の燃料噴射制御方法
JP2011099399A (ja) 内燃機関の制御方法及び制御装置
JP2001098964A (ja) 火花点火式直噴エンジンの制御装置