JP3822145B2 - Method for producing Mn-Ir alloy sputtering target for magnetic thin film formation - Google Patents

Method for producing Mn-Ir alloy sputtering target for magnetic thin film formation Download PDF

Info

Publication number
JP3822145B2
JP3822145B2 JP2002202464A JP2002202464A JP3822145B2 JP 3822145 B2 JP3822145 B2 JP 3822145B2 JP 2002202464 A JP2002202464 A JP 2002202464A JP 2002202464 A JP2002202464 A JP 2002202464A JP 3822145 B2 JP3822145 B2 JP 3822145B2
Authority
JP
Japan
Prior art keywords
ppm
less
alloy
thin film
sputtering target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002202464A
Other languages
Japanese (ja)
Other versions
JP2003119561A (en
Inventor
裕一朗 新藤
恒男 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2002202464A priority Critical patent/JP3822145B2/en
Publication of JP2003119561A publication Critical patent/JP2003119561A/en
Application granted granted Critical
Publication of JP3822145B2 publication Critical patent/JP3822145B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【0001】
【発明の属する技術分野】
本発明は、磁性薄膜形成用Mn−Ir合金スパッタリングターゲットの製造方法に関する。
【0002】
【従来の技術】
コンピュータ用のハードディスクなどの磁気記録装置は、近年急速に小型大容量化が進み、数年後にはその記録密度は20Gb/inに達すると予想される。このため、再生ヘッドとしては従来の誘導型ヘッドが限界に近づき、磁気抵抗効果型(AMR)ヘッドが用いられ始めている。
磁気抵抗効果型ヘッドは、パソコン市場等の拡大に伴い世界的規模で今後急成長が見込まれている。そして、数年のうちには、さらに高密度が期待されている巨大磁気抵抗効果型(GMR)ヘッドが実用化されることが現実的となってきた。
GMRヘッドに使用されるスピンバルブ膜の反磁性膜としてMn合金が検討されている。
【0003】
【発明が解決しようとする課題】
スピンバルブ膜用の反磁性膜としてはMn合金、特にMn−貴金属合金、例えばMn−Ir合金が検討されている。これらは通常、焼結あるいは溶解によって製造される。しかし、従来のMn−Ir合金はスパッタリングの際の、ガスの放出やパーティクルの発生が多く、耐食性にも問題があった。また、磁気特性も満足すべきものではなかった。
本発明は、スパッタリングの際のガス放出やパーティクルの発生が少なく、耐食性に優れ、しかも磁気特性も良好な反磁性膜を形成するための手段を提供することを目的とした。
【0004】
【課題を解決するための手段】
上記の課題を解決するために本発明者らは鋭意研究を行った結果、Mn−Ir合金中の不純物元素、特に酸素、炭素、硫黄、水素がガス放出やパーティクルの発生、耐食性低下の原因であることを見いだした。さらに磁気特性は主に薄膜の結晶組織に依存し、結晶が粗大な柱状晶であるほど磁気特性が向上することを見いだした。
【0005】
本発明は、この知見に基づき、
1.原料Mnを1250〜1500°Cで予備溶解した後、1100〜1500°Cで真空蒸留することによって得た高純度Mn材料と、原料Ir粉末を1000〜1500°Cで脱ガス処理した後、電子ビーム溶解することによって得た高純度Ir材料とを溶解し合金化した後、鋳造することを特徴とする磁性薄膜形成用Mn−Ir合金スパッタリングターゲットの製造方法、を提供するものである。
【0006】
【発明の実施の形態】
本発明の製造方法によって得られる磁性薄膜形成用Mn−Ir合金スパッタリングターゲットは、Mnを30wt%以上含有するMn−Ir合金からなるものである。代表的にはMn−Irの2成分合金が上げられるが、さらにFe,Pt,Pd,Rh,Ru,Ni,Cr,Co などを合金成分として添加した合金も含まれる。
【0007】
本発明の製造方法によって得られるMn−Ir合金スパッタリングターゲットは、不純物すなわちMn,Ir及び合金成分以外の元素が低減されたものである。特に酸素、硫黄、炭素、水素が極力低減されたものである。
酸素、硫黄、炭素、水素は耐食性を悪化させ、パーティクル発生の原因となり、また、磁気的特性を悪化させる原因となるため、酸素含有量1000ppm以下、好ましくは100ppm以下、S含有量300ppm以下、好ましくは10ppm以下、炭素含有量100ppm以下、好ましくは50ppm以下、水素含有量1ppm以下、好ましくは0.5ppm以下にまで低減すべきである。
上記の含有量を超えるとパーティクル発生量の増大、耐食性の著しい低下、磁気特性不良が顕著になるため好ましくない。
【0008】
本発明者らはMn−Ir合金中の不純物が原料の電解Mn及びIrに起因するものであることから、原料となるMn及びIrのそれぞれについて高純度化を行った。
Mn原料の高純度化は、例えば下記のような方法を用いることによって行うことができる。すなわち、市販の粗Mnを1250〜1500°Cで予備溶解した後、1100〜1500°Cで真空蒸留を行うことにより不純物を除去する。
【0009】
原料である粗Mnとしては、市販の電解Mnを用いれば良い。そして、粗Mnは1250〜1500°Cで予備溶解を行う。予備溶解は、MgO,Al等のルツボを用いて不活性ガス雰囲気中、保持時間1時間以上で行う。
1250°C未満ではMnが溶解せず、1500°Cを超えるとルツボからの汚染及びMnの蒸発が激しくなるため好ましくない。また、保持時間1時間未満では未溶解Mnが残るため好ましくない。ここで、予備溶解を行うのは、揮発性の成分を除去するためである。
【0010】
予備溶解の後、1100〜1500°Cで真空蒸留を行う。1100°C未満では、蒸留時間が長くなり過ぎ、1500°Cを超えると蒸発速度が大きく不純物を巻き込みやすくなるため好ましくない。
【0011】
真空蒸留の際の真空度は5×10−5〜10Torrとする。5×10−5Torr未満では凝縮物が得られなくなり、10Torrを超えるとMnの蒸留にかかる時間が長くなるため好ましくない。
また、真空蒸留の際のルツボは、Al等の二重ルツボとするのが好ましい。なお、真空蒸留は、残留物が約50%以下となるまで行うのが好ましい。
【0012】
一方、Ir原料についてもできるだけ高純度のものを使用するのが望ましく、市販品を使用する場合には純度3N以上のガス成分不純物の少ない高純度品を用いるべきである。このようなIr原料に対して1000〜1500°Cで脱ガス処理した後、電子ビーム溶解を行いガス成分や揮発成分を除去する。
なお、脱ガス処理に先だってIrと低融点合金をつくり酸に溶解する金属を添加し低融点Ir合金を製造した後、該Ir合金を酸により浸出することによってIr以外の不純物成分を溶解除去することによってさらに高純度なIr原料を得ることができる。
【0013】
上記のような方法で得られた高純度Mnと高純度Irとを溶解し合金化した後、鋳造する。得られたMn−Ir合金インゴットを加工し、スパッタリングターゲット材とする。基本的には、ターゲットの純度はインゴットと同等である。
そして、ここで得られたスパッタリングターゲットをスパッタリングすることによって磁性薄膜を形成することが可能である。
【0014】
【実施例】
以下、実施例に基づいて説明するが、本発明はこれによって制限されるものではない。
【0015】
(実施例1)
原料となる電解MnをMgO 坩堝を用いて1300°Cで予備溶解した後、真空蒸留した。真空度は10−2Torr 、蒸留温度1400°C、保持時間30分とした。蒸留したMnは、酸素:100ppm、S:50ppm、C:100ppm、H:0.7ppmであった。
一方、市販の3NのIr粉末(酸素:1300ppm、S:<10ppm、C:760ppm、H:50ppm)をAr雰囲気下で1000°C、2hrの脱ガス処理を行った後、電子ビーム溶解して、Ir粉末(酸素:150ppm、S:<10ppm、C:10ppm、H:1ppm)を得た。
得られた高純度Mnと高純度Irとを1:1で、CaO坩堝で溶解し合金化した。その結果、酸素:150ppm、S:20ppm、C:20ppm、H:0.7ppmのMn−Ir 合金が得られた。
各原料及びMn−Ir合金の組成を表1に示す。
【0016】
【表1】

Figure 0003822145
【0017】
得られたMn−Ir合金の一部を約10mm角で切り出し、耐食性試験用のブロック試片とした。耐食性試験用のブロック試片は、観察面を鏡面研磨した後、温度35°C、湿度98%の湿潤試験器内に入れた。72時間後、試料を取り出し錆の発生状況を目視で観察した。
残りのMn−Ir合金は、機械加工を行い、直径50mm、厚さ5mmの円板状のスパッタリングターゲットとした。このスパッタリングターゲットを、In−Sn合金はんだを用いて銅製のバッキングプレートと接合し、マグネトロンスパッタ装置を用いてスパッタ試験を行い、3インチスライドガラス上にMn−Ir合金薄膜を15nm形成した。
この際のスライドガラス上に存在する直径0.3μm以上のパーティクル数を測定した。
また、薄膜の断面の組織観察を行った。
【0018】
(実施例2)
原料となる電解MnをAl 坩堝を用いて1400°Cで予備溶解した後、真空蒸留した。真空度は10−2Torr 、蒸留温度1300°C、保持時間30分とした。蒸留したMnは、酸素:30ppm、S:<10ppm、C:10ppm、H:0.8ppmであった。
一方、市販の3NのIr粉末(酸素:1300ppm、S:<10ppm、C:760ppm、H:50ppm)をAr雰囲気下で1400°C、2hrの脱ガス処理を行った後、電子ビーム溶解して、Ir粉末(酸素:40ppm、S:<10ppm、C:10ppm、H:1ppm)を得た。
得られた高純度Mnと高純度Irとを1:1で、CaO坩堝で溶解し合金化した。その結果、酸素:70ppm、S:10ppm、C:10ppm、H:0.2ppmのMn−Ir 合金が得られた。
各原料及びMn−Ir合金の組成を表2に示す。
【0019】
【表2】
Figure 0003822145
【0020】
実施例1と同様に耐食性試験を行い、さらにスパッタリングターゲットを作製してパーティクルの評価試験及び薄膜の組織観察を行った。
【0021】
(比較例1)
純度3Nの原料Mn粉末(酸素:1500ppm、S:600ppm、C:150ppm、H:120ppm)と、市販の純度3NのIr粉末(酸素:1300ppm、S:<10ppm、C:760ppm、H:50ppm)とを1:1で溶解し合金化した。
その結果、酸素:800ppm、S:310ppm、C:230ppm、H:2ppmのMn−Ir合金が得られた。
各原料及びMn−Ir合金の組成を表3に示す。
【0022】
【表3】
Figure 0003822145
【0023】
実施例と同様に耐食性試験を行い、さらにスパッタリングターゲットを作製してパーティクルの評価試験及び薄膜の組織観察を行った。
【0024】
(結果)
実施例1〜2及び比較例1の耐食性試験結果、スパッタ試験におけるパーティクル数測定結果、および薄膜の組織観察結果を表4に示す。
【0025】
【表4】
Figure 0003822145
【0026】
その結果、酸素含有量が1000ppm以下、S含有量が300ppm以下,C含有量が100ppm以下、水素含有量が1ppm以下であることを特徴とする本発明の製造方法によって得られたMn−Ir合金は比較例に比べて耐食性に優れていた。
また、本発明のターゲットを用いた場合には、スパッタの際に発生するパーティクル数も比較例に比べて格段に少ないものであった。
さらに、本発明の製造方法によって得られたMn−Ir合金スパッタリングターゲットをスパッタリングすることによって得たMn−Ir合金薄膜も、酸素含有量が1000pm以下、S含有量が300ppm以下,C含有量が100ppm以下、水素含有量が1ppm以下とターゲット組成と同様の高純度なものであり、その結晶組織は柱状晶であり、結晶組織の大きさも粗大なものを得ることができ、その磁気特性は良好なものであった。
これに対して、比較例のターゲットを用いて得られた薄膜は不純物含有量が多く、結晶組織は微細な等軸晶であり、その磁気特性は不満足なものであった。
【0027】
【発明の効果】
本発明の製造方法によって得られた酸素含有量が1000ppm以下、S含有量が300ppm以下,C含有量が100ppm以下、水素含有量が1ppm以下であることを特徴とする磁性薄膜形成用Mn−Ir合金スパッタリングターゲットを用いることによって、パーティクル発生が少なく、耐食性に優れ、磁気特性も良好な反磁性膜を形成することが可能であり、磁性薄膜形成用材料として有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a Mn—Ir alloy sputtering target for forming a magnetic thin film.
[0002]
[Prior art]
In recent years, magnetic recording apparatuses such as hard disks for computers have been rapidly reduced in size and capacity, and the recording density is expected to reach 20 Gb / in 2 in a few years. For this reason, conventional inductive heads are approaching the limit as reproducing heads, and magnetoresistive (AMR) heads are beginning to be used.
The magnetoresistive head is expected to grow rapidly on a global scale with the expansion of the personal computer market. In a few years, it has become practical that a giant magnetoresistive (GMR) head that is expected to have a higher density will be put into practical use.
Mn alloys have been studied as diamagnetic films for spin valve films used in GMR heads.
[0003]
[Problems to be solved by the invention]
As a diamagnetic film for a spin valve film, a Mn alloy, particularly a Mn-noble metal alloy such as a Mn-Ir alloy has been studied. These are usually produced by sintering or melting. However, the conventional Mn—Ir alloy has a large amount of gas emission and particle generation during sputtering, and has a problem in corrosion resistance. Also, the magnetic properties were not satisfactory.
An object of the present invention is to provide a means for forming a diamagnetic film with less outgassing and generation of particles during sputtering, excellent corrosion resistance, and good magnetic properties.
[0004]
[Means for Solving the Problems]
In order to solve the above problems, the present inventors have conducted intensive research, and as a result, impurity elements in the Mn-Ir alloy, particularly oxygen, carbon, sulfur, and hydrogen, are the cause of outgassing, generation of particles, and deterioration in corrosion resistance. I found something. Furthermore, we found that the magnetic properties mainly depend on the crystal structure of the thin film, and that the coarser the columnar crystals, the better the magnetic properties.
[0005]
The present invention is based on this finding,
1. After pre-dissolving the raw material Mn at 1250 to 1500 ° C., degassing the high-purity Mn material obtained by vacuum distillation at 1100 to 1500 ° C. and the raw material Ir powder at 1000 to 1500 ° C. The present invention provides a method for producing a magnetic thin film forming Mn—Ir alloy sputtering target, wherein a high-purity Ir material obtained by beam melting is melted and alloyed and then cast.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The Mn—Ir alloy sputtering target for forming a magnetic thin film obtained by the production method of the present invention is made of a Mn—Ir alloy containing 30 wt% or more of Mn. Typically, a two-component alloy of Mn—Ir is raised, but an alloy added with Fe, Pt, Pd, Rh, Ru, Ni, Cr, Co, etc. as an alloy component is also included.
[0007]
In the Mn—Ir alloy sputtering target obtained by the production method of the present invention, impurities, that is, elements other than Mn, Ir and alloy components are reduced. In particular, oxygen, sulfur, carbon, and hydrogen are reduced as much as possible.
Oxygen, sulfur, carbon, and hydrogen deteriorate corrosion resistance, cause generation of particles, and cause deterioration of magnetic properties. Therefore, the oxygen content is 1000 ppm or less, preferably 100 ppm or less, and the S content is 300 ppm or less, preferably Should be reduced to 10 ppm or less, carbon content 100 ppm or less, preferably 50 ppm or less, hydrogen content 1 ppm or less, preferably 0.5 ppm or less.
Exceeding the above content is not preferable because an increase in the amount of generated particles, a significant decrease in corrosion resistance, and a poor magnetic property become remarkable.
[0008]
Since the impurities in the Mn—Ir alloy are attributed to the electrolytic Mn and Ir of the raw material, the present inventors have made high purity for each of the raw material Mn and Ir.
The purification of the Mn raw material can be performed, for example, by using the following method. That is, after preliminarily dissolving commercially available crude Mn at 1250 to 1500 ° C., impurities are removed by performing vacuum distillation at 1100 to 1500 ° C.
[0009]
As raw Mn, which is a raw material, commercially available electrolytic Mn may be used. The crude Mn is preliminarily dissolved at 1250 to 1500 ° C. The preliminary dissolution is performed in a inert gas atmosphere using a crucible such as MgO or Al 2 O 3 for a holding time of 1 hour or longer.
If it is less than 1250 ° C, Mn does not dissolve, and if it exceeds 1500 ° C, contamination from the crucible and evaporation of Mn become violent. Further, if the retention time is less than 1 hour, undissolved Mn remains, which is not preferable. Here, the preliminary dissolution is performed in order to remove volatile components.
[0010]
After preliminary dissolution, vacuum distillation is performed at 1100-1500 ° C. If it is less than 1100 ° C., the distillation time becomes too long, and if it exceeds 1500 ° C., the evaporation rate is large and impurities are likely to be involved.
[0011]
The degree of vacuum during vacuum distillation is 5 × 10 −5 to 10 Torr. If it is less than 5 × 10 −5 Torr, no condensate can be obtained, and if it exceeds 10 Torr, it takes a long time to distill Mn.
Further, the crucible for vacuum distillation is preferably a double crucible such as Al 2 O 3 . The vacuum distillation is preferably performed until the residue is about 50% or less.
[0012]
On the other hand, it is desirable to use a highly pure Ir raw material as much as possible. When using a commercially available product, a high-purity product having a purity of 3N or more and having few gas component impurities should be used. After such an Ir raw material is degassed at 1000 to 1500 ° C., electron beam melting is performed to remove gas components and volatile components.
Prior to degassing, Ir and a low-melting-point alloy are produced, and a metal that dissolves in acid is added to produce a low-melting-point Ir alloy. Then, the Ir alloy is leached with an acid to dissolve and remove impurity components other than Ir. As a result, an Ir raw material with higher purity can be obtained.
[0013]
High purity Mn and high purity Ir obtained by the above method are melted and alloyed, and then cast. The obtained Mn—Ir alloy ingot is processed to obtain a sputtering target material. Basically, the purity of the target is equivalent to that of the ingot.
And it is possible to form a magnetic thin film by sputtering the sputtering target obtained here.
[0014]
【Example】
Hereinafter, although demonstrated based on an Example, this invention is not restrict | limited by this.
[0015]
Example 1
Electrolytic Mn as a raw material was preliminarily dissolved at 1300 ° C. using an MgO crucible and then vacuum distilled. The degree of vacuum was 10 −2 Torr, the distillation temperature was 1400 ° C., and the retention time was 30 minutes. Distilled Mn was oxygen: 100 ppm, S: 50 ppm, C: 100 ppm, H: 0.7 ppm.
On the other hand, a commercially available 3N Ir powder (oxygen: 1300 ppm, S: <10 ppm, C: 760 ppm, H: 50 ppm) was degassed at 1000 ° C. for 2 hours in an Ar atmosphere, and then melted with an electron beam. Ir powder (oxygen: 150 ppm, S: <10 ppm, C: 10 ppm, H: 1 ppm) was obtained.
The obtained high-purity Mn and high-purity Ir were melted and alloyed at a ratio of 1: 1 in a CaO crucible. As a result, an Mn—Ir alloy having oxygen: 150 ppm, S: 20 ppm, C: 20 ppm, and H: 0.7 ppm was obtained.
Table 1 shows the composition of each raw material and the Mn—Ir alloy.
[0016]
[Table 1]
Figure 0003822145
[0017]
A part of the obtained Mn—Ir alloy was cut out with a square of about 10 mm to obtain a block specimen for a corrosion resistance test. The block specimen for the corrosion resistance test was mirror-polished on the observation surface, and then placed in a humidity tester having a temperature of 35 ° C. and a humidity of 98%. After 72 hours, the sample was taken out and the occurrence of rust was visually observed.
The remaining Mn—Ir alloy was machined to obtain a disk-like sputtering target having a diameter of 50 mm and a thickness of 5 mm. This sputtering target was joined to a copper backing plate using In—Sn alloy solder, and a sputtering test was performed using a magnetron sputtering apparatus to form a 15 nm Mn—Ir alloy thin film on a 3-inch slide glass.
At this time, the number of particles having a diameter of 0.3 μm or more present on the slide glass was measured.
Moreover, the structure | tissue observation of the cross section of the thin film was performed.
[0018]
(Example 2)
Electrolytic Mn as a raw material was preliminarily dissolved at 1400 ° C. using an Al 2 O 3 crucible and then vacuum distilled. The degree of vacuum was 10 −2 Torr, the distillation temperature was 1300 ° C., and the retention time was 30 minutes. Distilled Mn was oxygen: 30 ppm, S: <10 ppm, C: 10 ppm, H: 0.8 ppm.
On the other hand, a commercially available 3N Ir powder (oxygen: 1300 ppm, S: <10 ppm, C: 760 ppm, H: 50 ppm) was degassed at 1400 ° C. for 2 hours under an Ar atmosphere, and then melted with an electron beam. Ir powder (oxygen: 40 ppm, S: <10 ppm, C: 10 ppm, H: 1 ppm) was obtained.
The obtained high-purity Mn and high-purity Ir were melted and alloyed at a ratio of 1: 1 in a CaO crucible. As a result, an Mn—Ir alloy having oxygen: 70 ppm, S: 10 ppm, C: 10 ppm, and H: 0.2 ppm was obtained.
Table 2 shows the composition of each raw material and the Mn—Ir alloy.
[0019]
[Table 2]
Figure 0003822145
[0020]
A corrosion resistance test was performed in the same manner as in Example 1, and a sputtering target was prepared to perform a particle evaluation test and a thin film structure observation.
[0021]
(Comparative Example 1)
Raw material Mn powder of 3N purity (oxygen: 1500 ppm, S: 600 ppm, C: 150 ppm, H: 120 ppm) and commercially available Ir powder of purity 3N (oxygen: 1300 ppm, S: <10 ppm, C: 760 ppm, H: 50 ppm) Were melted 1: 1 and alloyed.
As a result, an Mn—Ir alloy having oxygen: 800 ppm, S: 310 ppm, C: 230 ppm, and H: 2 ppm was obtained.
Table 3 shows the composition of each raw material and the Mn—Ir alloy.
[0022]
[Table 3]
Figure 0003822145
[0023]
Corrosion resistance tests were conducted in the same manner as in the examples, and sputtering targets were prepared to carry out particle evaluation tests and thin film structure observations.
[0024]
(result)
Table 4 shows the corrosion resistance test results of Examples 1 and 2 and Comparative Example 1, the particle number measurement results in the sputtering test, and the thin film structure observation results.
[0025]
[Table 4]
Figure 0003822145
[0026]
As a result, the oxygen content is 1000 ppm or less, the S content is 300 ppm or less, the C content is 100 ppm or less, and the hydrogen content is 1 ppm or less. Was superior in corrosion resistance compared to the comparative example.
In addition, when the target of the present invention was used, the number of particles generated during sputtering was much smaller than that of the comparative example.
Furthermore, the Mn—Ir alloy thin film obtained by sputtering the Mn—Ir alloy sputtering target obtained by the production method of the present invention also has an oxygen content of 1000 pm or less, an S content of 300 ppm or less, and a C content of 100 ppm. Hereinafter, the hydrogen content is as high as 1 ppm or less and the purity is the same as the target composition, the crystal structure is a columnar crystal, the crystal structure is coarse, and the magnetic properties are good. It was a thing.
On the other hand, the thin film obtained using the target of the comparative example had a large impurity content, the crystal structure was a fine equiaxed crystal, and the magnetic properties were unsatisfactory.
[0027]
【The invention's effect】
Mn-Ir for forming a magnetic thin film characterized in that the oxygen content obtained by the production method of the present invention is 1000 ppm or less, the S content is 300 ppm or less, the C content is 100 ppm or less, and the hydrogen content is 1 ppm or less. By using an alloy sputtering target, it is possible to form a diamagnetic film with less generation of particles, excellent corrosion resistance, and good magnetic properties, and is useful as a material for forming a magnetic thin film.

Claims (1)

原料Mnを1250〜1500°Cで予備溶解した後、1100〜1500°Cで真空蒸留することによって得た高純度Mn材料と、原料Ir粉末を1000〜1500°Cで脱ガス処理した後、電子ビーム溶解することによって得た高純度Ir原料とを溶解し合金化した後、鋳造することを特徴とする酸素含有量が100ppm以下、S含有量が10ppm以下、炭素含有量が50ppm以下、水素含有量が0.5ppm以下である磁性薄膜形成用Mn−Ir合金スパッタリングターゲットの製造方法。After pre-dissolving the raw material Mn at 1250 to 1500 ° C., degassing the high-purity Mn material obtained by vacuum distillation at 1100 to 1500 ° C. and the raw material Ir powder at 1000 to 1500 ° C. A high-purity Ir raw material obtained by beam melting is melted and alloyed, and then cast, oxygen content is 100 ppm or less, S content is 10 ppm or less, carbon content is 50 ppm or less, hydrogen content The manufacturing method of the Mn-Ir alloy sputtering target for magnetic thin film formation whose quantity is 0.5 ppm or less .
JP2002202464A 2002-07-11 2002-07-11 Method for producing Mn-Ir alloy sputtering target for magnetic thin film formation Expired - Fee Related JP3822145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002202464A JP3822145B2 (en) 2002-07-11 2002-07-11 Method for producing Mn-Ir alloy sputtering target for magnetic thin film formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002202464A JP3822145B2 (en) 2002-07-11 2002-07-11 Method for producing Mn-Ir alloy sputtering target for magnetic thin film formation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP08824098A Division JP3396420B2 (en) 1998-03-18 1998-03-18 Mn-Ir alloy sputtering target for forming magnetic thin film and Mn-Ir alloy magnetic thin film

Publications (2)

Publication Number Publication Date
JP2003119561A JP2003119561A (en) 2003-04-23
JP3822145B2 true JP3822145B2 (en) 2006-09-13

Family

ID=19195697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002202464A Expired - Fee Related JP3822145B2 (en) 2002-07-11 2002-07-11 Method for producing Mn-Ir alloy sputtering target for magnetic thin film formation

Country Status (1)

Country Link
JP (1) JP3822145B2 (en)

Also Published As

Publication number Publication date
JP2003119561A (en) 2003-04-23

Similar Documents

Publication Publication Date Title
JP3544293B2 (en) Mn alloy material for magnetic material, Mn alloy sputtering target and magnetic thin film
JP4013999B2 (en) Manufacturing method of high purity Mn material
US9605339B2 (en) Sputtering target for magnetic recording film and process for production thereof
JPH11335821A (en) Nickel-iron alloy sputtering target for forming magnetic thin film, production of magnetic thin film and nickel-iron alloy sputtering target for forming magnetic thin film
TWI463026B (en) And an Ag alloy thermal diffusion control film and a magnetic recording medium for a magnetic recording medium for heat-assist recording
WO2002086184A1 (en) Manganese alloy sputtering target and method for producing the same
JP6312009B2 (en) Cr-Ti alloy sputtering target material and method for producing the same
JP3396420B2 (en) Mn-Ir alloy sputtering target for forming magnetic thin film and Mn-Ir alloy magnetic thin film
US9293166B2 (en) Sputtering target material for producing intermediate layer film of perpendicular magnetic recording medium and thin film produced by using the same
JP2009191359A (en) Fe-Co-Zr BASED ALLOY TARGET MATERIAL
JP3822145B2 (en) Method for producing Mn-Ir alloy sputtering target for magnetic thin film formation
EP1647605A2 (en) Low oxygen content alloy compositions
JP2001073125A (en) Co-Ta ALLOY SPUTTERING TARGET AND ITS PRODUCTION
JP3891549B2 (en) Mn alloy material for magnetic material, Mn alloy sputtering target and magnetic thin film
JP4477017B2 (en) High purity Mn material for thin film formation
JP6037197B2 (en) Sputtering target for forming a magnetic recording medium film and method for producing the same
TW201339342A (en) Alloy and sputtering target material used for soft magnetic thin film layer in perpendicular magnetic recording medium and perpendicular magnetic recording medium having soft magnetic thin film layer
JPH05247642A (en) Target member and manufacture therefor
JP3803797B2 (en) Manufacturing method of high purity Ir material
JP2004211203A (en) Mn ALLOY MATERIAL FOR MAGNETIC MATERIAL, Mn ALLOY SPUTTERING TARGET AND MAGNETIC THIN FILM
Bostanjoglo et al. Stabilization of amorphous films by stress
JP2758836B2 (en) Method for producing sintered compact for high oxygen chromium target
JP2008101275A (en) Target of high-purity nickel or nickel alloy, and production method therefor
JP2022177530A (en) CrTi-based alloy for adhesion film layer of magnetic recording medium, sputtering target material, and perpendicular magnetic recording medium
JP2011150783A (en) Ag ALLOY THERMAL DIFFUSION CONTROL FILM USED FOR MAGNETIC RECORDING MEDIUM FOR HEAT ASSISTED RECORDING, AND MAGNETIC RECORDING MEDIUM

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060621

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees