JP3891549B2 - Mn alloy material for magnetic material, Mn alloy sputtering target and magnetic thin film - Google Patents

Mn alloy material for magnetic material, Mn alloy sputtering target and magnetic thin film Download PDF

Info

Publication number
JP3891549B2
JP3891549B2 JP2001329175A JP2001329175A JP3891549B2 JP 3891549 B2 JP3891549 B2 JP 3891549B2 JP 2001329175 A JP2001329175 A JP 2001329175A JP 2001329175 A JP2001329175 A JP 2001329175A JP 3891549 B2 JP3891549 B2 JP 3891549B2
Authority
JP
Japan
Prior art keywords
alloy
ppm
oxygen
less
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001329175A
Other languages
Japanese (ja)
Other versions
JP2002235140A (en
Inventor
裕一朗 新藤
恒男 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2001329175A priority Critical patent/JP3891549B2/en
Publication of JP2002235140A publication Critical patent/JP2002235140A/en
Application granted granted Critical
Publication of JP3891549B2 publication Critical patent/JP3891549B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
    • H01F41/183Sputtering targets therefor

Description

【0001】
【発明の属する技術分野】
本発明は、磁性材用Mn合金材料、Mn合金スパッタリングターゲット及び磁性薄膜に関する。特には、反強磁性薄膜用Mn合金、Mn合金スパッタリングターゲット及び反強磁性薄膜に関する。
【0002】
【従来の技術】
コンピュータ用のハードディスクなどの磁気記録装置は、近年急速に小型大容量化が進み、数年後にはその記録密度は20Gb/in に達すると予想される。このため、再生ヘッドとしては従来の誘導型ヘッドが限界に近づき、磁気抵抗効果型(AMR)ヘッドが用いられ始めている。
磁気抵抗効果型ヘッドは、パソコン市場等の拡大に伴い世界的規模で今後急成長が見込まれている。そして、数年のうちには、さらに高密度が期待されている巨大磁気抵抗効果型(GMR)ヘッドが実用化されることが現実的となってきた。
GMRヘッドに使用されるスピンバルブ膜の反磁性膜としてMn合金が検討されている。
【0003】
【発明が解決しようとする課題】
スピンブルブ膜用の反磁性膜としてはMn合金、特にMn−Fe合金等が検討されている。しかし、Mn−Fe合金は耐食性に問題があるため実用化の可能性は小さかった。耐食性を改善するためにMn中に貴金属を使用する試みも行われているが、貴金属が高価であることと、貴金属を添加した場合でもなお十分な耐食性を得ることができないという問題があった。
本発明は、耐食性に優れた反磁性膜を形成するための手段を提供することを目的とした。
【0004】
【課題を解決するための手段】
上記の課題を解決するために本発明者らは鋭意研究を行った結果、Mn合金中の不純物元素が、特に酸素及び硫黄が耐腐食性を劣化させていることを見いだした。
【0005】
本発明は、この知見に基づき、
1.Mnと合金を形成する合金成分が、Fe,Irから選択された1種または2種以上であり、不純物(Mnおよび合金成分以外の元素)含有量が合計で500ppm以下、酸素含有量が100ppm以下、S含有量が20ppm以下であることを特徴とする磁性材用Mn合金材料
【0006】
2.Mnと合金を形成する合金成分が、Fe,Ir,Rh,Ruから選択された1種または2種以上であり、不純物(Mnおよび合金成分以外の元素)含有量が合計で500ppm以下、酸素含有量が100ppm以下、S含有量が20ppm以下であることを特徴とする磁性材用Mn合金材料
【0007】
3.Mn−Fe合金,Mn−Ir合金又はMn−Rh−Ru合金からなり、不純物(Mnおよび合金成分以外の元素)含有量が合計で500ppm以下、酸素含有量が100ppm以下、S含有量が20ppm以下であることを特徴とする磁性材用Mn合金材料
【0008】
4.Mnと合金を形成する合金成分が、Fe,Irから選択された1種または2種以上であり、不純物(Mnおよび合金成分以外の元素)含有量が合計で500ppm以下、酸素含有量が100ppm以下、S含有量が20ppm以下であることを特徴とする磁性薄膜形成用Mn合金スパッタリングターゲット
【0009】
5.Mnと合金を形成する合金成分が、Fe,Ir,Rh,Ruから選択された1種または2種以上であり、不純物(Mnおよび合金成分以外の元素)含有量が合計で500ppm以下、酸素含有量が100ppm以下、S含有量が20ppm以下であることを特徴とする磁性薄膜形成用Mn合金スパッタリングターゲット
【0010】
6.Mn−Fe合金,Mn−Ir合金又はMn−Rh−Ru合金からなり、不純物(Mnおよび合金成分以外の元素)含有量が合計で500ppm以下、酸素含有量が100ppm以下、S含有量が20ppm以下であることを特徴とする磁性薄膜形成用Mn合金スパッタリングターゲット
【0011】
7.上記4〜6のそれぞれに記載の磁性薄膜形成用Mn合金スパッタリングターゲットをスパッタリングすることによって形成されたことを特徴とする磁性薄膜。
を提供するものである。
【0012】
【発明の実施の形態】
本発明の磁性材用Mn合金材料は、Mnを主成分として含有する合金からなるものである。Mn以外の合金成分としては、Fe,Ir,Rh,Ruを挙げることができる。特にMn−Fe系、MnIr系、Mn−Rh−Ru系などの合金などが反磁性膜形成用として有用である。
【0013】
そして酸素及び硫黄含有量が低減されたものである。酸素及び硫黄は耐食性を低下させる大きな原因となるため、酸素含有量100ppm以下、S含有量20ppm以下にまで低減すべきである。
【0014】
さらに、不純物すなわち、Mn及び合金成分以外の元素の含有量が合計で500ppm以下にまで低減されたものであることが好ましい。Mn及び合金成分以外の不純物は、磁気的特性を悪化させ、また耐食性低下の原因ともなるため、極力低減することが望まれており合計で500ppm以下に低減するべきである。不純物含有量が合計で500ppmを越えると、磁気的特性不良が顕著となりまた耐食性も著しく低下するため好ましくない。
【0015】
上記のような、不純物を低減したMn合金材料は以下のような方法で作成することができる。
本発明者らはMn合金中の不純物、特に酸素と硫黄が原料の電解Mnに起因するものであることから、原料となるMnの高純度化を行った。
市販されている電解Mnに脱酸剤としてCa,Mg,La等を加え、高周波溶解を行うことによって酸素、硫黄を除去した。特に不活性ガス雰囲気、減圧下での溶解を行った場合には、酸素、硫黄のみならず他の不純物元素も十分に低減できるため好ましい。
また、Mnを高純度化するための別の方法として、電解Mnを予備溶解した後、さらに真空蒸留を行うことによっても不純物を低減することが可能である。
【0016】
一方、Mn以外の合金成分元素についてもできるだけ高純度のものを使用するのが望ましく、市販品を使用する場合には純度3N以上の高純度品を用いるべきである。必要に応じて、真空脱ガス処理等を行い、ガス成分不純物等を除去する。
【0017】
上記のような方法で得られたMnとMn以外の合金成分元素とを溶解し合金化した後鋳造する。得られた合金インゴットを機械加工し、スパッタリングターゲット材とする。基本的には、ターゲットの純度はインゴットと同等である。
そして、ここで得ることができたスパッタリングターゲットをスパッタリングすることによって磁性薄膜を形成することが可能である。
【0018】
【実施例】
以下、実施例を比較例と対比して説明するが、本発明はこれによって制限されるものではない。
【0019】
(実施例1)
原料となる電解Mnを、MgO坩堝を用いて高周波溶解した。雰囲気はAr雰囲気とした。温度が1400°Cに到達後、脱酸剤としてLaを1wt%添加した。5分間保持した後、タンディシュを介してスラグを除去し、その後金型に鋳造した。冷却後、インゴットを取り出した。その結果、酸素:50ppm、S:10ppm、不純物量が合計で221ppmのMnを得た。
得られたMnと市販の純度4NのFe(酸素:50ppm、S:1ppm)とを1:1で溶解し合金化した。その結果、酸素:50ppm、S:6ppm、不純物(MnおよびFe以外の元素)含有量が合計で132ppmのMn-Fe合金が得られた。
各原料及びMn-Fe合金の組成を表1に示す。
【0020】
【表1】

Figure 0003891549
【0021】
得られたMn-Fe合金の一部を約10mm角で切り出し、耐食性試験用のブロック試片とした。
耐食性試験用のブロック試片は、観察面を鏡面研磨した後、温度35°C、湿度98%の湿潤試験器内に入れた。72時間後、試料を取り出し錆の発生状況を目視で観察した。
残りのMn-Fe合金は、機械加工を行い、直径50mm、厚さ5mmの円板状のスパッタリングターゲットとした。このスパッタリングターゲットを、In-Sn合金はんだを用いて銅製のバッキングプレートと接合し、マグネトロンスパッタ装置を用いてスパッタ試験を行い、3インチSiウエハー上にMn-Fe合金薄膜を形成した。
この際のウエハー1枚当たりに存在する直径0.3μm以上のパーティクル数を測定した。
【0022】
(実施例2)
原料となる電解Mnを、MgO坩堝を用いて高周波溶解した。雰囲気はAr雰囲気とした。温度が1400°Cに到達後、脱酸剤としてLaを1wt%添加した。5分間保持した後、タンディシュを介してスラグを除去し、その後金型に鋳造した。冷却後、インゴットを取り出した。その結果、酸素:50ppm、S:10ppm、不純物量が合計で223ppmのMnを得た。
得られたMnと、市販の純度2〜3NのIr粉末(酸素:1300ppm、S:1ppm)を真空脱ガスして得たIr(酸素:100ppm、S:1ppm)とを1:1で溶解し合金化した。
その結果、酸素:70ppm、S:6ppm、不純物(MnおよびIr以外の元素)含有量が合計で220ppmのMn−Ir合金が得られた。
各原料及びMn−Ir合金の組成を表2に示す。そして上記実施例1と同様に耐食性試験及びスパッタ試験を行った。
【0023】
【表2】
Figure 0003891549
【0024】
(実施例3)
原料となる電解Mnを、Al坩堝を用いて1300°Cで予備溶解した後、1400°Cで真空蒸留した。真空度は10−2Torr 、蒸留温度1400°C、保持時間30分とした。蒸留したMnは、酸素:30ppm、S:10ppm、不純物量が合計で122ppmであった。
得られたMnと市販の4NのFe(酸素:40ppm、S:10ppm)とを1:1で、Al坩堝で溶解し合金化した。その結果、酸素:50ppm、S:<10ppm、不純物(Mn及びFe以外の元素)含有量が合計で106ppmのMn-Fe 合金が得られた。
各原料及びMn-Fe合金の組成を表3に示す。そして、上記実施例1と同様に耐食性試験及びスパッタ試験を行った。
【0025】
【表3】
Figure 0003891549
【0026】
(実施例4)
原料となる電解Mnを、Al坩堝を用いて1300°Cで予備溶解した後、1400°Cで真空蒸留した。真空度は10−2 Torr 、蒸留温度1400°C、保持時間30分とした。蒸留したMnは、酸素:30ppm、S:<10ppm、不純物量が合計で141ppmであった。
得られたMnと市販の3NのIr粉末(酸素:1300ppm、S:<10ppm)を真空脱ガスして得たIr粉末(酸素:100ppm、S:<10ppm)とを55:45で、Al坩堝で溶解し合金化した。その結果、酸素:70ppm、S:<10ppm、不純物(Mn及びIr以外の元素)含有量が合計で175ppmのMn−Ir 合金が得られた。
各原料及びMn−Ir合金の組成を表4に示す。そして、上記実施例1と同様に耐食性試験及びスパッタ試験を行った。
【0027】
【表4】
Figure 0003891549
【0028】
(比較例1)
純度2〜3Nの原料Mn粉末(酸素:1000ppm、S:400ppm)と、市販の純度3NのFe(酸素:120ppm、S:40ppm)とを1:1で溶解し合金化した。その結果、酸素:600ppm、S:220ppm、不純物(MnおよびFe以外の元素)含有量が合計で1220ppmのMn-Fe合金が得られた。
各原料及びMn-Fe合金の組成を表5に示す。上記と同様に耐食性試験及びスパッタ試験を行った。
【0029】
【表5】
Figure 0003891549
【0030】
(比較例2)
純度2〜3Nの原料Mn粉末(酸素:1000ppm、S:400ppm)と、市販の純度2〜3NのIr粉末(酸素:1300ppm、S:1ppm)とを55:45で溶解し合金化した。その結果、酸素:1100ppm、S:200ppm、不純物(MnおよびIr以外の元素)含有量が合計で2100ppmのMn-Fe合金が得られた。
各原料及びMn-Fe合金の組成を表6に示す。上記と同様に耐食性試験及びスパッタ試験を行った。
【0031】
【表6】
Figure 0003891549
【0032】
(比較例3)
純度3Nの原料Mn粉末(酸素:1000ppm、S:400ppm)と、市販の純度3NのFe(酸素:120ppm、S:40ppm)とを1:1で溶解し合金化した。その結果、酸素:560ppm、S:220ppm、不純物(MnおよびFe以外の元素)含有量が合計で1631 ppmのMn-Fe合金が得られた。
各原料及びMn-Fe合金の組成を表7に示す。上記と同様に耐食性試験及びスパッタ試験を行った。
【0033】
【表7】
Figure 0003891549
【0034】
(比較例4)
純度2〜3Nの原料Mn粉末(酸素:1000ppm、S:400ppm)と、市販の純度2〜3NのIr粉末(酸素:1300ppm、S:1ppm)とを55:45で溶解し合金化した。その結果、酸素:1100ppm、S:200ppm、不純物(MnおよびIr以外の元素)含有量が合計で2443ppmのMn-Fe合金が得られた。
各原料及びMn-Fe合金の組成を表8に示す。上記と同様に耐食性試験及びスパッタ試験を行った。
【0035】
【表8】
Figure 0003891549
【0036】
(結果)
実施例1〜4及び比較例1〜4の耐食性試験結果及びスパッタ試験におけるパーティクル数測定結果を表9に示す。
【0037】
【表9】
Figure 0003891549
【0038】
その結果、表9に示すように、本発明の酸素含有量が100ppm以下、S含有量が20ppm以下、さらに不純物(Mnおよび合金成分以外の元素)合計量が500ppm以下であるMn合金は、比較例に比べて格段に優れた耐食性を示した。
また、本発明のターゲットを用いた場合には、スパッタの際に発生するパーティクル数も比較例に比べてはるかに少ないことがわかる。
以上から、本発明の磁性材用Mn合金材料、Mn合金スパッタリングターゲット及び磁性薄膜は、比較例に示す従来技術には存在しない、優れた特性を有するものである。
【0039】
【発明の効果】
本発明の酸素含有量が100ppm以下、S含有量が20ppm以下、さらに不純物(Mnおよび合金成分以外の元素)合計量が500ppm以下であることを特徴とする磁性材用Mn合金材料から形成した磁性薄膜形成用Mn合金スパッタリングターゲットを用いることによって、パーティクル発生が少なく、耐食性に優れた反磁性膜を形成することが可能であり、磁性薄膜形成用材料として有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a Mn alloy material for a magnetic material, a Mn alloy sputtering target, and a magnetic thin film. In particular, it relates to a Mn alloy for antiferromagnetic thin films, a Mn alloy sputtering target, and an antiferromagnetic thin film.
[0002]
[Prior art]
In recent years, magnetic recording apparatuses such as hard disks for computers have been rapidly reduced in size and capacity, and the recording density is expected to reach 20 Gb / in 2 in a few years. For this reason, conventional inductive heads are approaching the limit as reproducing heads, and magnetoresistive (AMR) heads are beginning to be used.
The magnetoresistive head is expected to grow rapidly on a global scale with the expansion of the personal computer market. In a few years, it has become practical that a giant magnetoresistive (GMR) head that is expected to have a higher density will be put into practical use.
Mn alloys have been studied as diamagnetic films for spin valve films used in GMR heads.
[0003]
[Problems to be solved by the invention]
As a diamagnetic film for a spin blob film, a Mn alloy, particularly a Mn—Fe alloy or the like has been studied. However, since the Mn—Fe alloy has a problem in corrosion resistance, the possibility of practical use was small. Attempts have been made to use noble metals in Mn to improve corrosion resistance, but there are problems that the noble metals are expensive and that even when noble metals are added, sufficient corrosion resistance cannot be obtained.
An object of the present invention is to provide a means for forming a diamagnetic film excellent in corrosion resistance.
[0004]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors conducted extensive research and found that impurity elements in the Mn alloy, particularly oxygen and sulfur, deteriorate the corrosion resistance.
[0005]
The present invention is based on this finding,
1. The alloy component that forms an alloy with Mn is one or more selected from Fe and Ir, the total content of impurities (elements other than Mn and alloy components) is 500 ppm or less, and the oxygen content is 100 ppm or less Mn alloy material for magnetic material, characterized in that S content is 20 ppm or less
2. The alloy component that forms an alloy with Mn is one or more selected from Fe, Ir, Rh, and Ru, and the content of impurities (elements other than Mn and alloy components) is 500 ppm or less in total, containing oxygen Mn alloy material for magnetic material, characterized in that the amount is 100 ppm or less and the S content is 20 ppm or less.
3. Made of Mn-Fe alloy, Mn-Ir alloy or Mn-Rh-Ru alloy, the total content of impurities (elements other than Mn and alloy components) is 500 ppm or less, the oxygen content is 100 ppm or less, and the S content is 20 ppm or less. Mn alloy material for magnetic material, characterized in that
4). The alloy component that forms an alloy with Mn is one or more selected from Fe and Ir, the total content of impurities (elements other than Mn and alloy components) is 500 ppm or less, and the oxygen content is 100 ppm or less A Mn alloy sputtering target for forming a magnetic thin film characterized in that the S content is 20 ppm or less.
5). The alloy component that forms an alloy with Mn is one or more selected from Fe, Ir, Rh, and Ru, and the content of impurities (elements other than Mn and alloy components) is 500 ppm or less in total, containing oxygen Mn alloy sputtering target for forming a magnetic thin film, characterized in that the amount is 100 ppm or less and the S content is 20 ppm or less.
6). Made of Mn-Fe alloy, Mn-Ir alloy or Mn-Rh-Ru alloy, the total content of impurities (elements other than Mn and alloy components) is 500 ppm or less, the oxygen content is 100 ppm or less, and the S content is 20 ppm or less. Mn alloy sputtering target for forming a magnetic thin film characterized in that
7). 7. A magnetic thin film formed by sputtering the Mn alloy sputtering target for forming a magnetic thin film according to each of 4 to 6 above.
Is to provide.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The Mn alloy material for magnetic material of the present invention is made of an alloy containing Mn as a main component. Examples of alloy components other than Mn include Fe, Ir, Rh, and Ru. In particular, alloys such as Mn—Fe, MnIr, and Mn—Rh—Ru are useful for forming a diamagnetic film.
[0013]
And oxygen and sulfur content are reduced. Oxygen and sulfur cause a significant decrease in corrosion resistance and should be reduced to an oxygen content of 100 ppm or less and an S content of 20 ppm or less.
[0014]
Furthermore, it is preferable that the content of impurities other than Mn and alloy components is reduced to 500 ppm or less in total. Impurities other than Mn and alloy components deteriorate the magnetic properties and cause a decrease in corrosion resistance. Therefore, it is desired to reduce them as much as possible and should be reduced to 500 ppm or less in total. If the impurity content exceeds 500 ppm in total, the magnetic property defect becomes remarkable, and the corrosion resistance is remarkably lowered.
[0015]
The Mn alloy material with reduced impurities as described above can be produced by the following method.
Since the impurities in the Mn alloy, in particular oxygen and sulfur, are attributed to the raw material electrolytic Mn, the present inventors have refined the raw material Mn.
Oxygen and sulfur were removed by adding Ca, Mg, La or the like as a deoxidizer to commercially available electrolytic Mn and performing high-frequency dissolution. In particular, when dissolution is performed in an inert gas atmosphere and under reduced pressure, not only oxygen and sulfur but also other impurity elements can be sufficiently reduced, which is preferable.
Further, as another method for increasing the purity of Mn, impurities can be reduced by preliminarily dissolving electrolytic Mn and further performing vacuum distillation.
[0016]
On the other hand, it is desirable to use an alloy component element other than Mn as high as possible, and when using a commercial product, a high-purity product having a purity of 3N or more should be used. If necessary, vacuum degassing is performed to remove gas component impurities and the like.
[0017]
The Mn obtained by the above method and alloy component elements other than Mn are melted and alloyed, and then cast. The obtained alloy ingot is machined to obtain a sputtering target material. Basically, the purity of the target is equivalent to that of the ingot.
And it is possible to form a magnetic thin film by sputtering the sputtering target obtained here.
[0018]
【Example】
Hereinafter, examples will be described in comparison with comparative examples, but the present invention is not limited thereto.
[0019]
Example 1
Electrolytic Mn as a raw material was melted at high frequency using a MgO crucible. The atmosphere was an Ar atmosphere. After the temperature reached 1400 ° C., 1 wt% La was added as a deoxidizer. After holding for 5 minutes, the slag was removed through a tundish and then cast into a mold. After cooling, the ingot was taken out. As a result, Mn having oxygen: 50 ppm, S: 10 ppm, and a total amount of impurities of 221 ppm was obtained.
The obtained Mn and commercially available 4N purity Fe (oxygen: 50 ppm, S: 1 ppm) were melted and alloyed at 1: 1. As a result, an Mn—Fe alloy with oxygen: 50 ppm, S: 6 ppm, and impurities (elements other than Mn and Fe) totaling 132 ppm was obtained.
Table 1 shows the composition of each raw material and the Mn—Fe alloy.
[0020]
[Table 1]
Figure 0003891549
[0021]
A part of the obtained Mn—Fe alloy was cut out at about 10 mm square to obtain a block specimen for a corrosion resistance test.
The block specimen for the corrosion resistance test was mirror-polished on the observation surface, and then placed in a humidity tester having a temperature of 35 ° C. and a humidity of 98%. After 72 hours, the sample was taken out and the occurrence of rust was visually observed.
The remaining Mn—Fe alloy was machined to obtain a disk-like sputtering target having a diameter of 50 mm and a thickness of 5 mm. This sputtering target was joined to a copper backing plate using In—Sn alloy solder, and a sputtering test was performed using a magnetron sputtering apparatus to form a Mn—Fe alloy thin film on a 3-inch Si wafer.
At this time, the number of particles having a diameter of 0.3 μm or more present per wafer was measured.
[0022]
(Example 2)
Electrolytic Mn as a raw material was melted at high frequency using a MgO crucible. The atmosphere was an Ar atmosphere. After the temperature reached 1400 ° C., 1 wt% La was added as a deoxidizer. After holding for 5 minutes, the slag was removed through a tundish and then cast into a mold. After cooling, the ingot was taken out. As a result, Mn with oxygen: 50 ppm, S: 10 ppm, and the total amount of impurities was 223 ppm.
The obtained Mn and Ir (oxygen: 100 ppm, S: 1 ppm) obtained by vacuum degassing of commercially available Ir powder (oxygen: 1300 ppm, S: 1 ppm) having a purity of 2 to 3 N were dissolved at a ratio of 1: 1. Alloyed.
As a result, an Mn—Ir alloy having a total content of oxygen of 70 ppm, S: 6 ppm, and impurities (elements other than Mn and Ir) of 220 ppm was obtained.
Table 2 shows the composition of each raw material and the Mn—Ir alloy. Then, the corrosion resistance test and the sputtering test were performed in the same manner as in Example 1.
[0023]
[Table 2]
Figure 0003891549
[0024]
(Example 3)
Electrolytic Mn as a raw material was pre-dissolved at 1300 ° C. using an Al 2 O 3 crucible and then vacuum distilled at 1400 ° C. The degree of vacuum was 10 −2 Torr, the distillation temperature was 1400 ° C., and the retention time was 30 minutes. Distilled Mn was oxygen: 30 ppm, S: 10 ppm, and the total amount of impurities was 122 ppm.
The obtained Mn and commercially available 4N Fe (oxygen: 40 ppm, S: 10 ppm) were melted and alloyed at a ratio of 1: 1 in an Al 2 O 3 crucible. As a result, an Mn—Fe 2 alloy having a total of 106 ppm of oxygen (50 ppm), S: <10 ppm, and impurities (elements other than Mn and Fe) was obtained.
Table 3 shows the composition of each raw material and the Mn—Fe alloy. Then, the corrosion resistance test and the sputtering test were performed in the same manner as in Example 1.
[0025]
[Table 3]
Figure 0003891549
[0026]
Example 4
Electrolytic Mn as a raw material was pre-dissolved at 1300 ° C. using an Al 2 O 3 crucible and then vacuum distilled at 1400 ° C. The degree of vacuum was 10 −2 Torr, the distillation temperature was 1400 ° C., and the retention time was 30 minutes. Distilled Mn was oxygen: 30 ppm, S: <10 ppm, and the total amount of impurities was 141 ppm.
The obtained Mn and Ir powder (oxygen: 100 ppm, S: <10 ppm) obtained by vacuum degassing of commercially available 3N Ir powder (oxygen: 1300 ppm, S: <10 ppm) at 55:45, Al 2 It melted and alloyed in an O 3 crucible. As a result, an Mn—Ir alloy having a total of 175 ppm of oxygen: 70 ppm, S: <10 ppm, and impurities (elements other than Mn and Ir) was obtained.
Table 4 shows the composition of each raw material and the Mn—Ir alloy. Then, the corrosion resistance test and the sputtering test were performed in the same manner as in Example 1.
[0027]
[Table 4]
Figure 0003891549
[0028]
(Comparative Example 1)
Raw material Mn powder having a purity of 2 to 3N (oxygen: 1000 ppm, S: 400 ppm) and commercially available Fe of 3N purity (oxygen: 120 ppm, S: 40 ppm) were melted at 1: 1 to be alloyed. As a result, an Mn—Fe alloy having oxygen: 600 ppm, S: 220 ppm, and a total content of impurities (elements other than Mn and Fe) of 1220 ppm was obtained.
Table 5 shows the composition of each raw material and the Mn—Fe alloy. Corrosion resistance test and sputter test were conducted in the same manner as above.
[0029]
[Table 5]
Figure 0003891549
[0030]
(Comparative Example 2)
Raw material Mn powder having a purity of 2 to 3N (oxygen: 1000 ppm, S: 400 ppm) and commercially available Ir powder having a purity of 2 to 3N (oxygen: 1300 ppm, S: 1 ppm) were melted and alloyed at 55:45. As a result, an Mn—Fe alloy having oxygen of 1100 ppm, S of 200 ppm, and impurities (elements other than Mn and Ir) in total of 2100 ppm was obtained.
Table 6 shows the composition of each raw material and the Mn—Fe alloy. Corrosion resistance test and sputter test were conducted in the same manner as above.
[0031]
[Table 6]
Figure 0003891549
[0032]
(Comparative Example 3)
A raw material Mn powder of 3N purity (oxygen: 1000 ppm, S: 400 ppm) and commercially available Fe of 3N purity (oxygen: 120 ppm, S: 40 ppm) were melted and alloyed at 1: 1. As a result, an Mn—Fe alloy having oxygen: 560 ppm, S: 220 ppm, and a total content of impurities (elements other than Mn and Fe) of 1631 ppm was obtained.
Table 7 shows the composition of each raw material and the Mn—Fe alloy. Corrosion resistance test and sputter test were conducted in the same manner as above.
[0033]
[Table 7]
Figure 0003891549
[0034]
(Comparative Example 4)
Raw material Mn powder having a purity of 2 to 3N (oxygen: 1000 ppm, S: 400 ppm) and commercially available Ir powder having a purity of 2 to 3N (oxygen: 1300 ppm, S: 1 ppm) were melted and alloyed at 55:45. As a result, an Mn—Fe alloy having oxygen: 1100 ppm, S: 200 ppm, and impurities (elements other than Mn and Ir) totaling 2443 ppm was obtained.
Table 8 shows the composition of each raw material and the Mn—Fe alloy. Corrosion resistance test and sputter test were conducted in the same manner as above.
[0035]
[Table 8]
Figure 0003891549
[0036]
(result)
Table 9 shows the corrosion resistance test results of Examples 1 to 4 and Comparative Examples 1 to 4 and the particle number measurement results in the sputtering test.
[0037]
[Table 9]
Figure 0003891549
[0038]
As a result, as shown in Table 9, Mn alloys having an oxygen content of 100 ppm or less, an S content of 20 ppm or less, and a total amount of impurities (elements other than Mn and alloy components) of 500 ppm or less are compared. Compared to the examples, the corrosion resistance was much better.
It can also be seen that when the target of the present invention is used, the number of particles generated during sputtering is much smaller than that of the comparative example.
From the above, the Mn alloy material for magnetic materials, the Mn alloy sputtering target, and the magnetic thin film of the present invention have excellent characteristics that do not exist in the prior art shown in the comparative examples.
[0039]
【The invention's effect】
Magnetic material formed from a Mn alloy material for magnetic materials, wherein the oxygen content of the present invention is 100 ppm or less, the S content is 20 ppm or less, and the total amount of impurities (elements other than Mn and alloy components) is 500 ppm or less. By using a Mn alloy sputtering target for forming a thin film, it is possible to form a diamagnetic film with less generation of particles and excellent corrosion resistance, which is useful as a material for forming a magnetic thin film.

Claims (5)

Mnと合金を形成する合金成分がIrであり、不純物(Mnおよび合金成分以外の元素)含有量が合計で500ppm以下、酸素含有量が100ppm以下、S含有量が20ppm以下であることを特徴とする磁性材用Mn合金材料。The alloy component that forms an alloy with Mn is Ir, the total content of impurities (elements other than Mn and the alloy component) is 500 ppm or less, the oxygen content is 100 ppm or less, and the S content is 20 ppm or less. Mn alloy material for magnetic material. Mnと合金を形成する合金成分として、さらにRu、Rhから選択した1種又は2種を含有することを特徴とする請求項1記載の磁性材用Mn合金材料 2. The Mn alloy material for magnetic materials according to claim 1, further comprising one or two selected from Ru and Rh as an alloy component forming an alloy with Mn . Mnと合金を形成する合金成分がIrであり、不純物(Mnおよび合金成分以外の元素)含有量が合計で500ppm以下、酸素含有量が100ppm以下、S含有量が20ppm以下であることを特徴とする磁性薄膜形成用Mn合金スパッタリングターゲット。The alloy component that forms an alloy with Mn is Ir, the total content of impurities (elements other than Mn and the alloy component) is 500 ppm or less, the oxygen content is 100 ppm or less, and the S content is 20 ppm or less. Mn alloy sputtering target for forming a magnetic thin film. Mnと合金を形成する合金成分として、さらにRu、Rhから選択した1種又は2種を含有することを特徴とする請求項1記載の磁性材用Mn合金スパッタリングターゲット 2. The Mn alloy sputtering target for magnetic material according to claim 1, further comprising one or two selected from Ru and Rh as an alloy component forming an alloy with Mn . 請求項3又は4記載の磁性薄膜形成用Mn合金スパッタリングターゲットをスパッタリングすることによって形成されたことを特徴とする磁性薄膜。Magnetic thin film characterized in that it is formed by sputtering according to claim 3 or Mn alloy sputtering target for a magnetic thin film formed according 4.
JP2001329175A 1997-07-31 2001-10-26 Mn alloy material for magnetic material, Mn alloy sputtering target and magnetic thin film Expired - Lifetime JP3891549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001329175A JP3891549B2 (en) 1997-07-31 2001-10-26 Mn alloy material for magnetic material, Mn alloy sputtering target and magnetic thin film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-219012 1997-07-31
JP21901297 1997-07-31
JP2001329175A JP3891549B2 (en) 1997-07-31 2001-10-26 Mn alloy material for magnetic material, Mn alloy sputtering target and magnetic thin film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP33228697A Division JP3544293B2 (en) 1997-07-31 1997-11-18 Mn alloy material for magnetic material, Mn alloy sputtering target and magnetic thin film

Publications (2)

Publication Number Publication Date
JP2002235140A JP2002235140A (en) 2002-08-23
JP3891549B2 true JP3891549B2 (en) 2007-03-14

Family

ID=26522868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001329175A Expired - Lifetime JP3891549B2 (en) 1997-07-31 2001-10-26 Mn alloy material for magnetic material, Mn alloy sputtering target and magnetic thin film

Country Status (1)

Country Link
JP (1) JP3891549B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5113031B2 (en) * 2008-12-24 2013-01-09 Jx日鉱日石金属株式会社 High purity shape memory alloy target and alloy thin film

Also Published As

Publication number Publication date
JP2002235140A (en) 2002-08-23

Similar Documents

Publication Publication Date Title
JP3544293B2 (en) Mn alloy material for magnetic material, Mn alloy sputtering target and magnetic thin film
JP4013999B2 (en) Manufacturing method of high purity Mn material
TWI227746B (en) Manganese alloy sputtering target and manufacturing method thereof
JP2005530925A (en) High PTF sputtering target and manufacturing method thereof
US9293166B2 (en) Sputtering target material for producing intermediate layer film of perpendicular magnetic recording medium and thin film produced by using the same
JP3396420B2 (en) Mn-Ir alloy sputtering target for forming magnetic thin film and Mn-Ir alloy magnetic thin film
JPH05247638A (en) Sputtering target and manufacture therefore
JP3891549B2 (en) Mn alloy material for magnetic material, Mn alloy sputtering target and magnetic thin film
EP1724368A2 (en) Low oxygen content alloy compositions
JP3525439B2 (en) Target member and method of manufacturing the same
JP4936613B2 (en) Sputtering target
JP4002659B2 (en) IrMn alloy target for film formation and antiferromagnetic film using the same
JP3822145B2 (en) Method for producing Mn-Ir alloy sputtering target for magnetic thin film formation
JP3803797B2 (en) Manufacturing method of high purity Ir material
JP2004211203A (en) Mn ALLOY MATERIAL FOR MAGNETIC MATERIAL, Mn ALLOY SPUTTERING TARGET AND MAGNETIC THIN FILM
JP4477017B2 (en) High purity Mn material for thin film formation
JPS5922782B2 (en) High permeability alloy for iron-based magnetic head and magnetic recording/reproducing head
JP4491844B2 (en) Sputtering target
JPH0641734A (en) Target member and its production
JP4685059B2 (en) Manganese alloy sputtering target
JP2001026861A (en) PLATINUM GROUP-Mn BASE ALLOY TARGET
JPH05247641A (en) Target member and manufacture therefor
JPH05263233A (en) Target material and its production
JPH05263232A (en) Target material and its production
JPH05263231A (en) Target material and its production

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20031112

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term