JP2004211203A - Mn ALLOY MATERIAL FOR MAGNETIC MATERIAL, Mn ALLOY SPUTTERING TARGET AND MAGNETIC THIN FILM - Google Patents

Mn ALLOY MATERIAL FOR MAGNETIC MATERIAL, Mn ALLOY SPUTTERING TARGET AND MAGNETIC THIN FILM Download PDF

Info

Publication number
JP2004211203A
JP2004211203A JP2004040750A JP2004040750A JP2004211203A JP 2004211203 A JP2004211203 A JP 2004211203A JP 2004040750 A JP2004040750 A JP 2004040750A JP 2004040750 A JP2004040750 A JP 2004040750A JP 2004211203 A JP2004211203 A JP 2004211203A
Authority
JP
Japan
Prior art keywords
ppm
alloy
oxygen
content
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004040750A
Other languages
Japanese (ja)
Inventor
Yuichiro Shindo
裕一朗 新藤
Tsuneo Suzuki
恒男 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nikko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Materials Co Ltd filed Critical Nikko Materials Co Ltd
Priority to JP2004040750A priority Critical patent/JP2004211203A/en
Publication of JP2004211203A publication Critical patent/JP2004211203A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a means for forming an Mn alloy magnetic thin film having excellent corrosion resistance. <P>SOLUTION: In an Mn alloy material for a magnetic material, alloy components forming the alloy together with Mn are Ru and one or more kinds selected from among Fe, Ir, Ni, Cr and Co and the content of impurities (elements other than Mn and alloy components) is ≤ 500 ppm in total, the content of oxygen is ≤ 100 ppm and the content of S is ≤ 20 ppm ; and in the Mn alloy sputtering target for forming the magnetic thin film, the alloy components forming the alloy together with Mn are Ru and one or more kinds selected among Fe, Ir, Ni, Cr and Co, and the content of impurities (elements other than Mn and alloy components) is ≤ 500 ppm in total, the content of oxygen is ≤ 100 ppm and the content of S is ≤ 20 ppm. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、磁性材用Mn合金材料、Mn合金スパッタリングターゲット及び磁性薄膜に関する。特には、反強磁性薄膜用Mn合金、Mn合金スパッタリングターゲット及び反強磁性薄膜に関する。   The present invention relates to a Mn alloy material for a magnetic material, a Mn alloy sputtering target, and a magnetic thin film. In particular, it relates to a Mn alloy for an antiferromagnetic thin film, a Mn alloy sputtering target, and an antiferromagnetic thin film.

コンピュータ用のハードディスクなどの磁気記録装置は、近年急速に小型大容量化が進み、数年後にはその記録密度は20Gb/in に達すると予想される。このため、再生ヘッドとしては従来の誘導型ヘッドが限界に近づき、磁気抵抗効果型(AMR)ヘッドが用いられ始めている。
磁気抵抗効果型ヘッドは、パソコン市場等の拡大に伴い世界的規模で今後急成長が見込まれている。そして、数年のうちには、さらに高密度が期待されている巨大磁気抵抗効果型(GMR)ヘッドが実用化されることが現実的となってきた。
GMRヘッドに使用されるスピンバルブ膜の反磁性膜としてMn合金が検討されている。
In recent years, magnetic recording devices such as hard disks for computers have rapidly become smaller and larger in capacity, and the recording density is expected to reach 20 Gb / in 2 in a few years. For this reason, the conventional inductive head approaches the limit as a reproducing head, and a magnetoresistive (AMR) head has begun to be used.
Magnetoresistive heads are expected to grow rapidly on a worldwide scale with the expansion of the personal computer market and the like. In a few years, it has become realistic to commercialize a giant magnetoresistive (GMR) head expected to have a higher density.
A Mn alloy has been studied as a diamagnetic film of a spin valve film used for a GMR head.

スピンブルブ膜用の反磁性膜としてはMn合金、特にMn−Fe合金等が検討されている。しかし、Mn−Fe合金は耐食性に問題があるため実用化の可能性は小さかった。耐食性を改善するためにMn中に貴金属を使用する試みも行われているが、貴金属が高価であることと、貴金属を添加した場合でもなお十分な耐食性を得ることができないという問題があった。
本発明は、耐食性に優れた反磁性膜を形成するための手段を提供することを目的とした。
As a diamagnetic film for a spin bull film, a Mn alloy, particularly a Mn-Fe alloy, has been studied. However, since the Mn-Fe alloy has a problem in corrosion resistance, the possibility of practical application was small. Attempts have been made to use a noble metal in Mn in order to improve the corrosion resistance. However, there have been problems that the noble metal is expensive and that sufficient corrosion resistance cannot be obtained even when the noble metal is added.
An object of the present invention is to provide a means for forming a diamagnetic film having excellent corrosion resistance.

上記の課題を解決するために本発明者らは鋭意研究を行った結果、Mn合金中の不純物元素が、特に酸素及び硫黄が耐腐食性を劣化させていることを見いだした。   The present inventors have conducted intensive studies to solve the above problems, and as a result, have found that impurity elements in a Mn alloy, particularly oxygen and sulfur, deteriorate the corrosion resistance.

本発明は、この知見に基づき、
1.Mnと合金を形成する合金成分が、Ru及びFe,Ir,Ni,Cr,Coから選択された1種または2種以上であり、不純物(Mnおよび合金成分以外の元素)含有量が合計で500ppm以下、酸素含有量が100ppm以下、S含有量が20ppm以下であることを特徴とする磁性材用Mn合金材料
The present invention is based on this finding,
1. The alloy component forming an alloy with Mn is one or more selected from Ru and Fe, Ir, Ni, Cr and Co, and the content of impurities (elements other than Mn and alloy components) is 500 ppm in total. An Mn alloy material for a magnetic material, characterized in that the oxygen content is 100 ppm or less and the S content is 20 ppm or less.

2.Mnと合金を形成する合金成分が、Ru及びFe,Ir,Ni,Cr,Coから選択された1種または2種以上であり、不純物(Mnおよび合金成分以外の元素)含有量が合計で500ppm以下、酸素含有量が100ppm以下、S含有量が20ppm以下であることを特徴とする磁性薄膜形成用Mn合金スパッタリングターゲット
3.上記2に記載の磁性薄膜形成用Mn合金スパッタリングターゲットをスパッタリングすることによって形成されたことを特徴とする磁性薄膜
を提供するものである。
2. The alloy component forming an alloy with Mn is one or more selected from Ru and Fe, Ir, Ni, Cr and Co, and the content of impurities (elements other than Mn and alloy components) is 500 ppm in total. 2. An Mn alloy sputtering target for forming a magnetic thin film, wherein the oxygen content is 100 ppm or less and the S content is 20 ppm or less. A magnetic thin film formed by sputtering the Mn alloy sputtering target for forming a magnetic thin film described in 2 above, is provided.

本発明の酸素含有量が100ppm以下、S含有量が20ppm以下、さらに不純物(Mnおよび合金成分以外の元素)合計量が500ppm以下であることを特徴とする磁性材用Mn合金材料から形成した磁性薄膜形成用Mn合金スパッタリングターゲットを用いることによって、パーティクル発生が少なく、耐食性に優れた反磁性膜を形成することが可能であるという優れた効果を有する。   A magnetic material formed from a Mn alloy material for a magnetic material according to the present invention, wherein the oxygen content is 100 ppm or less, the S content is 20 ppm or less, and the total amount of impurities (elements other than Mn and alloy components) is 500 ppm or less. The use of the Mn alloy sputtering target for forming a thin film has an excellent effect that it is possible to form a diamagnetic film with less generation of particles and excellent corrosion resistance.

本発明の磁性材用Mn合金材料は、Mnを主成分として含有する合金からなるものである。Mn以外の合金成分としては、Ru及びFe,Ir,Ni,Cr,Coを挙げることができる。特にMn−Ru−Fe系、Mn−Ru−Ir系などの合金などが反磁性膜形成用として有用である。   The Mn alloy material for a magnetic material of the present invention is made of an alloy containing Mn as a main component. Examples of alloy components other than Mn include Ru and Fe, Ir, Ni, Cr, and Co. In particular, alloys such as Mn-Ru-Fe and Mn-Ru-Ir are useful for forming a diamagnetic film.

そして酸素及び硫黄含有量が低減されたものである。酸素及び硫黄は耐食性を低下させる大きな原因となるため、酸素含有量500ppm以下、好ましくは100ppm以下、S含有量20ppm以下にまで低減するべきである。   The oxygen and sulfur contents are reduced. Since oxygen and sulfur are the major causes of lowering corrosion resistance, the oxygen content should be reduced to 500 ppm or less, preferably 100 ppm or less, and the S content to 20 ppm or less.

さらに、不純物すなわち、Mn及び合金成分以外の元素の含有量が合計で500ppm以下にまで低減されたものであることが好ましい。Mn及び合金成分以外の不純物は、磁気的特性を悪化させ、また耐食性低下の原因ともなるため、極力低減することが望まれており合計で500ppm以下に低減するべきである。
不純物含有量が合計で500ppmを越えると、磁気的特性不良が顕著となりまた耐食性も著しく低下するため好ましくない。
Furthermore, it is preferable that the content of impurities, that is, the content of elements other than Mn and alloy components is reduced to 500 ppm or less in total. Impurities other than Mn and alloy components deteriorate magnetic properties and cause deterioration of corrosion resistance. Therefore, it is desired to reduce the content as much as possible, and the total content should be reduced to 500 ppm or less.
If the total content of impurities exceeds 500 ppm, poor magnetic properties become remarkable and the corrosion resistance is remarkably reduced, which is not preferable.

上記のような、不純物を低減したMn合金材料は以下のような方法で作成することができる。
本発明者らはMn合金中の不純物、特に酸素と硫黄が原料の電解Mnに起因するものであることから、原料となるMnの高純度化を行った。
市販されている電解Mnに脱酸剤としてCa,Mg,La等を加え、高周波溶解を行うことによって酸素、硫黄を除去した。特に不活性ガス雰囲気、減圧下での溶解を行った場合には、酸素、硫黄のみならず他の不純物元素も十分に低減できるため好ましい。
また、Mnを高純度化するための別の方法として、電解Mnを予備溶解した後、さらに真空蒸留を行うことによっても不純物を低減することが可能である。
The Mn alloy material with reduced impurities as described above can be prepared by the following method.
The inventors of the present invention purify Mn as a raw material because impurities in the Mn alloy, particularly oxygen and sulfur, are caused by electrolytic Mn as a raw material.
Oxygen and sulfur were removed by adding Ca, Mg, La, etc. as a deoxidizing agent to commercially available electrolytic Mn and performing high frequency melting. In particular, it is preferable to perform the dissolution in an inert gas atmosphere under reduced pressure because not only oxygen and sulfur but also other impurity elements can be sufficiently reduced.
Further, as another method for purifying Mn, impurities can be reduced by preliminarily dissolving electrolytic Mn and further performing vacuum distillation.

一方、Mn以外の合金成分元素についてもできるだけ高純度のものを使用するのが望ましく、市販品を使用する場合には純度3N以上の高純度品を用いるべきである。必要に応じて、真空脱ガス処理等を行い、ガス成分不純物等を除去する。   On the other hand, it is desirable to use alloy components other than Mn with as high a purity as possible. When a commercial product is used, a high-purity product having a purity of 3N or more should be used. If necessary, a vacuum degassing process or the like is performed to remove gas component impurities and the like.

上記のような方法で得られたMnとMn以外の合金成分元素とを溶解し合金化した後鋳造する。得られた合金インゴットを機械加工し、スパッタリングターゲット材とする。基本的には、ターゲットの純度はインゴットと同等である。
そして、ここで得ることができたスパッタリングターゲットをスパッタリングすることによって磁性薄膜を形成することが可能である。
Mn obtained by the above-described method and alloying elements other than Mn are melted and alloyed, and then cast. The obtained alloy ingot is machined to obtain a sputtering target material. Basically, the purity of the target is equivalent to that of the ingot.
Then, a magnetic thin film can be formed by sputtering the sputtering target obtained here.

以下、発明に基づく実施例、比較例及び参考例に基づいて説明するが、本発明はこれによって制限されるものではない。   Hereinafter, the present invention will be described based on examples, comparative examples, and reference examples, but the present invention is not limited thereto.

(参考例1)
原料となる電解MNを、MgO坩堝を用いて高周波溶解した。雰囲気はAr雰囲気とした。温度が1400°Cに到達後、脱酸剤としてCaを1wt%添加した。5分間保持した後、タンディシュを介してスラグを除去し、その後金型に鋳造した。冷却後、インゴットを取り出した。その結果、酸素:360ppm、S:150ppm、不純物量が合計で941ppmのMnを得た。
得られたMnと市販の純度3N〜4NのFe(酸素:320ppm、S:40ppm)とを1:1で溶解し合金化した。その結果、酸素:340ppm、S:90ppm、不純物(MnおよびFe以外の元素)含有量が合計で668ppmのMn-Fe合金が得られた。
各原料及びMn-Fe合金の組成を表1に示す。
(Reference Example 1)
Electrolytic MN as a raw material was subjected to high frequency melting using an MgO crucible. The atmosphere was an Ar atmosphere. After the temperature reached 1400 ° C., 1 wt% of Ca was added as a deoxidizing agent. After holding for 5 minutes, the slag was removed via a tundish and then cast into a mold. After cooling, the ingot was taken out. As a result, 360 ppm of oxygen, 150 ppm of S, and Mn having an impurity amount of 941 ppm in total were obtained.
The obtained Mn and commercially available Fe having a purity of 3N to 4N (oxygen: 320 ppm, S: 40 ppm) were dissolved and alloyed at a ratio of 1: 1. As a result, a Mn-Fe alloy containing 340 ppm of oxygen, 90 ppm of S, and a total of 668 ppm of impurities (elements other than Mn and Fe) was obtained.
Table 1 shows the composition of each raw material and the Mn-Fe alloy.

Figure 2004211203
Figure 2004211203

得られたMn-Fe合金の一部を約10mm角で切り出し、耐食性試験用のブロック試片とした。
耐食性試験用のブロック試片は、観察面を鏡面研磨した後、温度35°C、湿度98%の湿潤試験器内に入れた。72時間後、試料を取り出し錆の発生状況を目視で観察した。
残りのMn-Fe合金は、機械加工を行い、直径50mm、厚さ5mmの円板状のスパッタリングターゲットとした。このスパッタリングターゲットを、In-Sn合金はんだを用いて銅製のバッキングプレートと接合し、マグネトロンスパッタ装置を用いてスパッタ試験を行い、3インチSiウエハー上にMn-Fe合金薄膜を形成した。
この際のウエハー1枚当たりに存在する直径0.3μm以上のパーティクル数を測定した。
A part of the obtained Mn-Fe alloy was cut out into a square of about 10 mm and used as a block specimen for a corrosion resistance test.
After the observation surface of the block test piece for corrosion resistance test was mirror-polished, it was placed in a humidity tester at a temperature of 35 ° C. and a humidity of 98%. After 72 hours, the sample was taken out and the occurrence of rust was visually observed.
The remaining Mn-Fe alloy was machined to obtain a disk-shaped sputtering target having a diameter of 50 mm and a thickness of 5 mm. This sputtering target was bonded to a copper backing plate using an In-Sn alloy solder, and a sputtering test was performed using a magnetron sputtering apparatus to form a Mn-Fe alloy thin film on a 3-inch Si wafer.
At this time, the number of particles having a diameter of 0.3 μm or more per wafer was measured.

(参考例2)
原料となる電解Mnを、MgO坩堝を用いて高周波溶解した。雰囲気はAr雰囲気とした。温度が1400°Cに到達後、脱酸剤としてLaを1wt%添加した。5分間保持した後、タンディシュを介してスラグを除去し、その後金型に鋳造した。冷却後、インゴットを取り出した。その結果、酸素:50ppm、S:10ppm、不純物量が合計で221ppmのMnを得た。
得られたMnと市販の純度3N〜4NのFe(酸素:120ppm、S:40ppm)とを1:1で溶解し合金化した。その結果、酸素:110ppm、S:25ppm、不純物(MnおよびFe以外の元素)含有量が合計で238ppmのMn-Fe合金が得られた。
各原料及びMn-Fe合金の組成を表2に示す。
(Reference Example 2)
Electrolytic Mn as a raw material was subjected to high frequency melting using a MgO crucible. The atmosphere was an Ar atmosphere. After the temperature reached 1400 ° C., 1 wt% of La was added as a deoxidizing agent. After holding for 5 minutes, the slag was removed via a tundish and then cast into a mold. After cooling, the ingot was taken out. As a result, Mn containing 50 ppm of oxygen, 10 ppm of S, and a total of 221 ppm of impurities was obtained.
The obtained Mn and commercially available Fe having a purity of 3N to 4N (oxygen: 120 ppm, S: 40 ppm) were melted and alloyed at a ratio of 1: 1. As a result, a Mn-Fe alloy containing 110 ppm oxygen, 25 ppm S, and a total of 238 ppm of impurities (elements other than Mn and Fe) was obtained.
Table 2 shows the composition of each raw material and the Mn-Fe alloy.

Figure 2004211203
Figure 2004211203

上記と同様に耐食性試験及びスパッタ試験を行った。   A corrosion resistance test and a sputter test were performed in the same manner as described above.

(実施例1)
原料となる電解Mnを、MgO坩堝を用いて高周波溶解した。雰囲気はAr雰囲気とした。温度が1400°Cに到達後、脱酸剤としてLaを1wt%添加した。5分間保持した後、タンディシュを介してスラグを除去し、その後金型に鋳造した。冷却後、インゴットを取り出した。その結果、酸素:50ppm、S:10ppm、不純物量が合計で221ppmのMnを得た。
得られたMnと市販の純度4NのFe(酸素:50ppm、S:1ppm)とを1:1で溶解し合金化した。その結果、酸素:50ppm、S:6ppm、不純物(MnおよびFe以外の元素)含有量が合計で132ppmのMn-Fe合金が得られた。
各原料及びMn-Fe合金の組成を表3に示す。
(Example 1)
Electrolytic Mn as a raw material was subjected to high frequency melting using a MgO crucible. The atmosphere was an Ar atmosphere. After the temperature reached 1400 ° C., 1 wt% of La was added as a deoxidizing agent. After holding for 5 minutes, the slag was removed via a tundish and then cast into a mold. After cooling, the ingot was taken out. As a result, Mn containing 50 ppm of oxygen, 10 ppm of S, and a total of 221 ppm of impurities was obtained.
The obtained Mn and commercially available Fe having a purity of 4N (oxygen: 50 ppm, S: 1 ppm) were melted and alloyed at a ratio of 1: 1. As a result, an Mn-Fe alloy containing 50 ppm of oxygen, 6 ppm of S, and 132 ppm in total of impurities (elements other than Mn and Fe) was obtained.
Table 3 shows the composition of each raw material and the Mn-Fe alloy.

Figure 2004211203
Figure 2004211203

上記と同様に耐食性試験及びスパッタ試験を行った。   A corrosion resistance test and a sputter test were performed in the same manner as described above.

(参考例3)
原料となる電解Mnを、MgO坩堝を用いて高周波溶解した。雰囲気はAr雰囲気とした。温度が1400°Cに到達後、脱酸剤としてCaを1wt%添加した。5分間保持した後、タンディシュを介してスラグを除去し、その後金型に鋳造した。冷却後、インゴットを取り出した。その結果、酸素:160ppm、S:170ppm、不純物量が合計で493ppmのMNを得た。
得られたMnと、市販の純度2〜3NのIr粉末(酸素:1300ppm、S:1ppm)を真空脱ガスして得たIr(酸素:500ppm、S:1ppm)とを55:45で溶解し合金化した。その結果、酸素:330ppm、S:90ppm、不純物(MnおよびIr以外の元素)含有量が合計で564ppmのMnIr合金が得られた。
各原料及びMnIr合金の組成を表4に示す。
(Reference Example 3)
Electrolytic Mn as a raw material was subjected to high frequency melting using a MgO crucible. The atmosphere was an Ar atmosphere. After the temperature reached 1400 ° C., 1 wt% of Ca was added as a deoxidizing agent. After holding for 5 minutes, the slag was removed via a tundish and then cast into a mold. After cooling, the ingot was taken out. As a result, MN containing 160 ppm of oxygen, 170 ppm of S, and a total of 493 ppm of impurities was obtained.
The obtained Mn and a commercially available Ir powder having a purity of 2 to 3 N (oxygen: 1300 ppm, S: 1 ppm) were vacuum-degassed to obtain Ir (oxygen: 500 ppm, S: 1 ppm) at 55:45. Alloyed. As a result, a MnIr alloy having 330 ppm of oxygen, 90 ppm of S, and a total of 564 ppm of impurities (elements other than Mn and Ir) was obtained.
Table 4 shows the composition of each raw material and MnIr alloy.

Figure 2004211203
Figure 2004211203

上記と同様に耐食性試験及びスパッタ試験を行った。   A corrosion resistance test and a sputter test were performed in the same manner as described above.

(実施例2)
原料となる電解Mnを、MgO坩堝を用いて高周波溶解した。雰囲気はAr雰囲気とした。温度が1400°Cに到達後、脱酸剤としてLaを1wt%添加した。5分間保持した後、タンディシュを介してスラグを除去し、その後金型に鋳造した。冷却後、インゴットを取り出した。その結果、酸素:50ppm、S:10ppm、不純物量が合計で223ppmのMnを得た。
得られたMnと、市販の純度2〜3NのIr粉末(酸素:1300ppm、S:1ppm)を真空脱ガスして得たIr(酸素:100ppm、S:1ppm)とを1:1で溶解し合金化した。
その結果、酸素:70ppm、S:6ppm、不純物(MnおよびIr以外の元素)含有量が合計で220ppmのMnIr合金が得られた。
各原料及びMnIr合金の組成を表5に示す。
(Example 2)
Electrolytic Mn as a raw material was subjected to high frequency melting using a MgO crucible. The atmosphere was an Ar atmosphere. After the temperature reached 1400 ° C., 1 wt% of La was added as a deoxidizing agent. After holding for 5 minutes, the slag was removed via a tundish and then cast into a mold. After cooling, the ingot was taken out. As a result, Mn containing 50 ppm of oxygen, 10 ppm of S, and a total of 223 ppm of impurities was obtained.
The obtained Mn and Ir (oxygen: 100 ppm, S: 1 ppm) obtained by degassing commercially available Ir powder having a purity of 2 to 3 N (oxygen: 1300 ppm, S: 1 ppm) in a ratio of 1: 1 were dissolved. Alloyed.
As a result, an MnIr alloy was obtained in which the content of oxygen was 70 ppm, the content of S was 6 ppm, and the content of impurities (elements other than Mn and Ir) was 220 ppm in total.
Table 5 shows the composition of each raw material and MnIr alloy.

Figure 2004211203
Figure 2004211203

上記と同様に耐食性試験及びスパッタ試験を行った。   A corrosion resistance test and a sputter test were performed in the same manner as described above.

(参考例4)
原料となる電解MnをMgO坩堝を用いて1300°Cで予備溶解した後、1400°Cで真空蒸留した。真空度は10−2Torr、蒸留温度1400°C、保持時間30分とした。蒸留したMnは、酸素:100ppm、S:50ppm、不純物量が合計で482ppmであった。
得られたMnと市販の3NのFe(酸素:200ppm、S:70ppm)とを1:1で、MgO坩堝で溶解し合金化した。その結果、酸素:100ppm、S:50ppm、不純物(Mn及びFe以外の元素)含有量が合計で482ppmのMn-Fe 合金が得られた。
各原料及びMn-Fe合金の組成を表6に示す。
(Reference Example 4)
Electrolytic Mn as a raw material was preliminarily melted at 1300 ° C. using a MgO crucible, and then vacuum distilled at 1400 ° C. The degree of vacuum was 10 −2 Torr, the distillation temperature was 1400 ° C., and the holding time was 30 minutes. Distilled Mn had oxygen: 100 ppm, S: 50 ppm, and the total amount of impurities was 482 ppm.
The obtained Mn and commercially available 3N Fe (oxygen: 200 ppm, S: 70 ppm) were melted and alloyed at a ratio of 1: 1 in an MgO crucible. As a result, a Mn-Fe alloy containing 100 ppm of oxygen, 50 ppm of S, and a total of 482 ppm of impurities (elements other than Mn and Fe) was obtained.
Table 6 shows the composition of each raw material and the Mn-Fe alloy.

Figure 2004211203
Figure 2004211203

上記と同様に耐食性試験及びスパッタ試験を行った。   A corrosion resistance test and a sputter test were performed in the same manner as described above.

(実施例3)
原料となる電解Mnを、Al坩堝を用いて1300°Cで予備溶解した後、1400°Cで真空蒸留した。真空度は10−2Torr 、蒸留温度1400°C、保持時間30分とした。蒸留したMnは、酸素:30ppm、S:10ppm、不純物量が合計で122ppmであった。
得られたMnと市販の4NのFe(酸素:40ppm、S:10ppm)とを1:1で、Al坩堝で溶解し合金化した。その結果、酸素:50ppm、S:10ppm、不純物(Mn及びFe以外の元素)含有量が合計で106ppmのMn-Fe 合金が得られた。
各原料及びMn-Fe合金の組成を表7に示す。
(Example 3)
Electrolytic Mn as a raw material was pre-dissolved at 1300 ° C. using an Al 2 O 3 crucible, and then vacuum distilled at 1400 ° C. The degree of vacuum was 10 −2 Torr, the distillation temperature was 1400 ° C., and the holding time was 30 minutes. Distilled Mn had an oxygen content of 30 ppm, an S content of 10 ppm, and a total impurity content of 122 ppm.
The obtained Mn and commercially available 4N Fe (oxygen: 40 ppm, S: 10 ppm) were melted and alloyed at a ratio of 1: 1 in an Al 2 O 3 crucible. As a result, a Mn-Fe alloy containing 50 ppm of oxygen, 10 ppm of S, and a total of 106 ppm of impurities (elements other than Mn and Fe) was obtained.
Table 7 shows the composition of each raw material and the Mn-Fe alloy.

Figure 2004211203
Figure 2004211203

上記と同様に耐食性試験及びスパッタ試験を行った。   A corrosion resistance test and a sputter test were performed in the same manner as described above.

(参考例5)
原料となる電解MnをMgO 坩堝を用いて1300°Cで予備溶解した後、1400°Cで真空蒸留した。真空度は10−2Torr 、蒸留温度1400°C、保持時間30分とした。蒸留したMnは、酸素:100ppm、S:20ppm、不純物量が合計で382ppmであった。
得られたMnと市販の3NのIr粉末(酸素:1300ppm、S:<10ppm)を真空脱ガスして得たIr粉末(酸素:250ppm、S:<10ppm)とを1:1でMgO 坩堝で溶解し合金化した。その結果、酸素:180ppm、S:10ppm、不純物(Mn及びIr以外の元素)含有量が合計で473ppmのMnIr 合金が得られた。
各原料及びMnIr合金の組成を表7に示す。
(Reference Example 5)
Electrolytic Mn as a raw material was preliminarily melted at 1300 ° C. using a MgO crucible, and then vacuum distilled at 1400 ° C. The degree of vacuum was 10 −2 Torr, the distillation temperature was 1400 ° C., and the holding time was 30 minutes. Distilled Mn was oxygen: 100 ppm, S: 20 ppm, and the total amount of impurities was 382 ppm.
The obtained Mn and a commercially available 3N Ir powder (oxygen: 1300 ppm, S: <10 ppm) were vacuum degassed to obtain an Ir powder (oxygen: 250 ppm, S: <10 ppm) at a ratio of 1: 1 in an MgO crucible. Melted and alloyed. As a result, an MnIr alloy containing 180 ppm of oxygen, 10 ppm of S, and a total of 473 ppm of impurities (elements other than Mn and Ir) was obtained.
Table 7 shows the composition of each raw material and MnIr alloy.

Figure 2004211203
Figure 2004211203

上記と同様に耐食性試験及びスパッタ試験を行った。   A corrosion resistance test and a sputter test were performed in the same manner as described above.

(実施例4)
原料となる電解Mnを、Al坩堝を用いて1300°Cで予備溶解した後、1400°Cで真空蒸留した。真空度は10−2 Torr 、蒸留温度1400°C、保持時間30分とした。蒸留したMnは、酸素:30ppm、S:<10ppm、不純物量が合計で141ppmであった。
得られたMnと市販の3NのIr粉末(酸素:1300ppm、S:<10ppm)を真空脱ガスして得たIr粉末(酸素:100ppm、S:<10ppm)とを55:45で、Al坩堝で溶解し合金化した。その結果、酸素:70ppm、S:10ppm、不純物(Mn及びIr以外の元素)含有量が合計で175ppmのMnIr 合金が得られた。
各原料及びMnIr合金の組成を表9に示す。
(Example 4)
Electrolytic Mn as a raw material was pre-dissolved at 1300 ° C. using an Al 2 O 3 crucible, and then vacuum distilled at 1400 ° C. The degree of vacuum was 10 −2 Torr, the distillation temperature was 1400 ° C., and the holding time was 30 minutes. Distilled Mn had oxygen: 30 ppm, S: <10 ppm, and the total amount of impurities was 141 ppm.
The obtained Mn and Ir powder (oxygen: 100 ppm, S: <10 ppm) obtained by degassing a commercially available 3N Ir powder (oxygen: 1300 ppm, S: <10 ppm) in a ratio of 55:45 to Al 2 dissolved alloyed with O 3 crucible. As a result, a MnIr alloy containing 70 ppm of oxygen, 10 ppm of S, and a total of 175 ppm of impurities (elements other than Mn and Ir) was obtained.
Table 9 shows the composition of each raw material and MnIr alloy.

Figure 2004211203
Figure 2004211203

上記と同様に耐食性試験及びスパッタ試験を行った。   A corrosion resistance test and a sputter test were performed in the same manner as described above.

(比較例1)
純度2〜3Nの原料Mn粉末(酸素:1000ppm、S:400ppm)と、市販の純度3NのFe(酸素:120ppm、S:40ppm)とを1:1で溶解し合金化した。その結果、酸素:600ppm、S:220ppm、不純物(MnおよびFe以外の元素)含有量が合計で1220ppmのMn-Fe合金が得られた。
各原料及びMn-Fe合金の組成を表10に示す。
(Comparative Example 1)
A raw material Mn powder having a purity of 2 to 3 N (oxygen: 1000 ppm, S: 400 ppm) and a commercially available 3N-purity Fe (oxygen: 120 ppm, S: 40 ppm) were melted and alloyed at a ratio of 1: 1. As a result, a Mn-Fe alloy containing 600 ppm of oxygen, 220 ppm of S, and a total of 1220 ppm of impurities (elements other than Mn and Fe) was obtained.
Table 10 shows the composition of each raw material and the Mn-Fe alloy.

Figure 2004211203
Figure 2004211203

上記と同様に耐食性試験及びスパッタ試験を行った。   A corrosion resistance test and a sputter test were performed in the same manner as described above.

(比較例2)
純度2〜3Nの原料Mn粉末(酸素:1000ppm、S:400ppm)と、市販の純度2〜3NのIr粉末(酸素:1300ppm、S:1ppm)とを55:45で溶解し合金化した。その結果、酸素:1100ppm、S:200ppm、不純物(MnおよびIr以外の元素)含有量が合計で2100ppmのMn-Fe合金が得られた。
各原料及びMn-Fe合金の組成を表11に示す。
(Comparative Example 2)
Raw material Mn powder having a purity of 2 to 3 N (oxygen: 1000 ppm, S: 400 ppm) and commercially available Ir powder having a purity of 2 to 3 N (oxygen: 1300 ppm, S: 1 ppm) were melted and alloyed at 55:45. As a result, a Mn-Fe alloy containing 1100 ppm of oxygen, 200 ppm of S, and a total of 2100 ppm of impurities (elements other than Mn and Ir) was obtained.
Table 11 shows the composition of each raw material and the Mn-Fe alloy.

Figure 2004211203
Figure 2004211203

上記と同様に耐食性試験及びスパッタ試験を行った。   A corrosion resistance test and a sputter test were performed in the same manner as described above.

(比較例3)
純度3Nの原料Mn粉末(酸素:1000ppm、S:400ppm)と、市販の純度3NのFe(酸素:120ppm、S:40ppm)とを1:1で溶解し合金化した。その結果、酸素:560ppm、S:220ppm、不純物(MnおよびFe以外の元素)含有量が合計で1631 ppmのMn-Fe合金が得られた。
各原料及びMn-Fe合金の組成を表12に示す。
(Comparative Example 3)
A raw material Mn powder having a purity of 3N (oxygen: 1000 ppm, S: 400 ppm) and a commercially available 3N-purity Fe (oxygen: 120 ppm, S: 40 ppm) were melted and alloyed at a ratio of 1: 1. As a result, a Mn-Fe alloy containing 560 ppm of oxygen, 220 ppm of S, and a total of 1631 ppm of impurities (elements other than Mn and Fe) was obtained.
Table 12 shows the composition of each raw material and the Mn-Fe alloy.

Figure 2004211203
Figure 2004211203

上記と同様に耐食性試験及びスパッタ試験を行った。   A corrosion resistance test and a sputter test were performed in the same manner as described above.

(比較例4)
純度2〜3Nの原料Mn粉末(酸素:1000ppm、S:400ppm)と、市販の純度2〜3NのIr粉末(酸素:1300ppm、S:1ppm)とを55:45で溶解し合金化した。その結果、酸素:1100ppm、S:200ppm、不純物(MnおよびIr以外の元素)含有量が合計で2443ppmのMn-Fe合金が得られた。
各原料及びMn-Fe合金の組成を表13に示す。
(Comparative Example 4)
Raw material Mn powder having a purity of 2 to 3 N (oxygen: 1000 ppm, S: 400 ppm) and commercially available Ir powder having a purity of 2 to 3 N (oxygen: 1300 ppm, S: 1 ppm) were melted and alloyed at 55:45. As a result, a Mn-Fe alloy containing 1100 ppm of oxygen, 200 ppm of S, and a total of 2443 ppm of impurities (elements other than Mn and Ir) was obtained.
Table 13 shows the composition of each raw material and the Mn-Fe alloy.

Figure 2004211203
Figure 2004211203

上記と同様に耐食性試験及びスパッタ試験を行った。   A corrosion resistance test and a sputter test were performed in the same manner as described above.

(結果)
実施例1〜4、参考例1〜5及び比較例1〜4の耐食性試験結果およびスパッタ試験におけるパーティクル数測定結果を表14に示す。
(result)
Table 14 shows the corrosion resistance test results and the particle count measurement results in the sputtering tests of Examples 1 to 4, Reference Examples 1 to 5, and Comparative Examples 1 to 4.

Figure 2004211203
Figure 2004211203

その結果、参考例1〜5に示すように、酸素含有量が500ppm以下、S含有量が100ppm以下である本発明のMn合金は比較例に比べて耐食性が良く、また不純物(Mnおよび合金成分以外の元素)合計量が500ppm以下であるMn合金は、より耐食性が良い。
しかし、このような中でも、本発明の実施例(1〜4)である、特に、酸素含有量が100ppm以下、S含有量が20ppm以下であるMn合金は格段に優れた耐食性を示した。
また、本発明のターゲットを用いた場合には、スパッタの際に発生するパーティクル数も比較例及び参考例に比べて少ないことがわかる。
以上から、本発明の磁性材用Mn合金材料、Mn合金スパッタリングターゲット及び磁性薄膜は、比較例及び参考例に示す従来技術には存在しない、優れた特性を有するものである。
なお、各本発明に基づく実施例においては、Ruの含有を特に明示していないが、これらの実施例においてRuが必須成分として含有された場合も、同様の作用及び効果を有するものである。
As a result, as shown in Reference Examples 1 to 5, the Mn alloy of the present invention having an oxygen content of 500 ppm or less and an S content of 100 ppm or less has better corrosion resistance than the comparative example, and has an impurity (Mn and alloy component). Other elements) Mn alloys having a total amount of 500 ppm or less have better corrosion resistance.
However, among these, the Mn alloys of Examples (1 to 4) of the present invention, in particular, having an oxygen content of 100 ppm or less and an S content of 20 ppm or less, showed remarkably excellent corrosion resistance.
In addition, when the target of the present invention is used, the number of particles generated at the time of sputtering is smaller than that of the comparative example and the reference example.
As described above, the Mn alloy material for a magnetic material, the Mn alloy sputtering target, and the magnetic thin film of the present invention have excellent characteristics that do not exist in the related art shown in Comparative Examples and Reference Examples.
In each of the examples according to the present invention, the content of Ru is not particularly specified. However, even when Ru is contained as an essential component in these examples, the same action and effect are obtained.

本発明の酸素含有量が100ppm以下、S含有量が20ppm以下、さらに不純物(Mnおよび合金成分以外の元素)合計量が500ppm以下であることを特徴とする磁性材用Mn合金材料から形成した磁性薄膜形成用Mn合金スパッタリングターゲットを用いることによって、パーティクル発生が少なく、耐食性に優れた反磁性膜を形成することが可能であり、磁性薄膜形成用材料として有用である。
A magnetic material formed from a Mn alloy material for a magnetic material according to the present invention, wherein the oxygen content is 100 ppm or less, the S content is 20 ppm or less, and the total amount of impurities (elements other than Mn and alloy components) is 500 ppm or less. By using a Mn alloy sputtering target for forming a thin film, it is possible to form a diamagnetic film with less generation of particles and excellent corrosion resistance, which is useful as a material for forming a magnetic thin film.

Claims (3)

Mnと合金を形成する合金成分が、Ru及びFe,Ir,Ni,Cr,Coから選択された1種または2種以上であり、不純物(Mnおよび合金成分以外の元素)含有量が合計で500ppm以下、酸素含有量が100ppm以下、S含有量が20ppm以下であることを特徴とする磁性材用Mn合金材料。   The alloy component forming an alloy with Mn is one or more selected from Ru and Fe, Ir, Ni, Cr, Co, and the content of impurities (elements other than Mn and alloy components) is 500 ppm in total. Hereinafter, a Mn alloy material for a magnetic material having an oxygen content of 100 ppm or less and an S content of 20 ppm or less. Mnと合金を形成する合金成分が、Ru及びFe,Ir,Ni,Cr,Coから選択された1種または2種以上であり、不純物(Mnおよび合金成分以外の元素)含有量が合計で500ppm以下、酸素含有量が100ppm以下、S含有量が20ppm以下であることを特徴とする磁性薄膜形成用Mn合金スパッタリングターゲット。  The alloy component forming an alloy with Mn is one or more selected from Ru and Fe, Ir, Ni, Cr, Co, and the content of impurities (elements other than Mn and alloy components) is 500 ppm in total. Hereinafter, a Mn alloy sputtering target for forming a magnetic thin film, wherein the oxygen content is 100 ppm or less and the S content is 20 ppm or less. 請求項2に記載の磁性薄膜形成用Mn合金スパッタリングターゲットをスパッタリングすることによって形成されたことを特徴とする磁性薄膜。
A magnetic thin film formed by sputtering the Mn alloy sputtering target for forming a magnetic thin film according to claim 2.
JP2004040750A 1997-07-31 2004-02-18 Mn ALLOY MATERIAL FOR MAGNETIC MATERIAL, Mn ALLOY SPUTTERING TARGET AND MAGNETIC THIN FILM Pending JP2004211203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004040750A JP2004211203A (en) 1997-07-31 2004-02-18 Mn ALLOY MATERIAL FOR MAGNETIC MATERIAL, Mn ALLOY SPUTTERING TARGET AND MAGNETIC THIN FILM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP21901297 1997-07-31
JP2004040750A JP2004211203A (en) 1997-07-31 2004-02-18 Mn ALLOY MATERIAL FOR MAGNETIC MATERIAL, Mn ALLOY SPUTTERING TARGET AND MAGNETIC THIN FILM

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP33228697A Division JP3544293B2 (en) 1997-07-31 1997-11-18 Mn alloy material for magnetic material, Mn alloy sputtering target and magnetic thin film

Publications (1)

Publication Number Publication Date
JP2004211203A true JP2004211203A (en) 2004-07-29

Family

ID=32827219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004040750A Pending JP2004211203A (en) 1997-07-31 2004-02-18 Mn ALLOY MATERIAL FOR MAGNETIC MATERIAL, Mn ALLOY SPUTTERING TARGET AND MAGNETIC THIN FILM

Country Status (1)

Country Link
JP (1) JP2004211203A (en)

Similar Documents

Publication Publication Date Title
JP3544293B2 (en) Mn alloy material for magnetic material, Mn alloy sputtering target and magnetic thin film
JP4013999B2 (en) Manufacturing method of high purity Mn material
JP5253781B2 (en) Alloy target material for soft magnetic film layer in perpendicular magnetic recording media
US20080083616A1 (en) Co-Fe-Zr BASED ALLOY SPUTTERING TARGET MATERIAL AND PROCESS FOR PRODUCTION THEREOF
TWI227746B (en) Manganese alloy sputtering target and manufacturing method thereof
JP2005530925A (en) High PTF sputtering target and manufacturing method thereof
JP4953082B2 (en) Co-Fe-Zr alloy sputtering target material and method for producing the same
US9293166B2 (en) Sputtering target material for producing intermediate layer film of perpendicular magnetic recording medium and thin film produced by using the same
JPH05247638A (en) Sputtering target and manufacture therefore
JP3396420B2 (en) Mn-Ir alloy sputtering target for forming magnetic thin film and Mn-Ir alloy magnetic thin film
EP1724368A2 (en) Low oxygen content alloy compositions
JP3891549B2 (en) Mn alloy material for magnetic material, Mn alloy sputtering target and magnetic thin film
JP2004211203A (en) Mn ALLOY MATERIAL FOR MAGNETIC MATERIAL, Mn ALLOY SPUTTERING TARGET AND MAGNETIC THIN FILM
JP4477017B2 (en) High purity Mn material for thin film formation
CN112626406A (en) Grain-refined chromium-cobalt-nickel multi-principal-element alloy and preparation process thereof
JP3803797B2 (en) Manufacturing method of high purity Ir material
JPH11246967A (en) Target for irmn series alloy film formation, its production and antiferromagnetic film using it
JP3822145B2 (en) Method for producing Mn-Ir alloy sputtering target for magnetic thin film formation
JPS5922782B2 (en) High permeability alloy for iron-based magnetic head and magnetic recording/reproducing head
JP5650169B2 (en) Alloy target material for soft magnetic film layer in perpendicular magnetic recording media
JP2004346392A (en) Ruthenium sputtering target, method for manufacturing the same
WO2020040082A1 (en) Co-BASED ALLOY FOR USE IN SOFT MAGNETIC LAYER OF MAGNETIC RECORDING MEDIUM
CN116904827A (en) CoCrFeNi-based high-temperature-resistant high-entropy alloy material containing Mo and Nb elements
JP2020202006A (en) Co-BASED ALLOY FOR SOFT MAGNETIC LAYER OF MAGNETIC RECORDING MEDIA
JP2020135907A (en) Spattering target for forming soft magnetic layer of perpendicular magnetic recording medium, and perpendicular magnetic recording medium, and soft magnetic layer thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040907

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061205