JP3814964B2 - 車両用空調装置 - Google Patents

車両用空調装置 Download PDF

Info

Publication number
JP3814964B2
JP3814964B2 JP21653897A JP21653897A JP3814964B2 JP 3814964 B2 JP3814964 B2 JP 3814964B2 JP 21653897 A JP21653897 A JP 21653897A JP 21653897 A JP21653897 A JP 21653897A JP 3814964 B2 JP3814964 B2 JP 3814964B2
Authority
JP
Japan
Prior art keywords
temperature
flow rate
adjusting valve
rate adjusting
conditioned air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21653897A
Other languages
English (en)
Other versions
JPH1159158A (ja
Inventor
聡 小原
伊藤  公一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP21653897A priority Critical patent/JP3814964B2/ja
Publication of JPH1159158A publication Critical patent/JPH1159158A/ja
Application granted granted Critical
Publication of JP3814964B2 publication Critical patent/JP3814964B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、車両用空調装置であって、特に加熱用熱交換器であるヒータコアに供給される温水量を流量調整弁にて調整することで、空調風の温度を調整する所謂リヒート式の空調装置に関する。
【0002】
【従来の技術】
従来、車室内の温度を自動的に設定温度に制御する車両用空調装置において、上記リヒート式のものが周知である。例えば、外気温度、車室内温度、設定温度等の空調情報に基づいて、車室内に吹き出す必要熱量データ(目標吹出温度)を算出し、この目標吹出温度と実際の吹出温度との差を考慮して、流量調整弁の弁開度を制御している。
【0003】
【発明が解決しようとする課題】
しかしながら、上記従来装置では、流量調整弁の弁開度を絶対位置で検出するポテンショメータを使用しているために、部品点数が増加し、コスト増となる。
そこで、本発明の目的は、上記ポテンショメータを廃止しながら、必要な弁開度へ制御可能な車両用空調装置を提供することにある。
【0004】
【課題を解決するための手段】
上記目的を達成するために、請求項1ないし3記載の発明では、空気を加熱する加熱用熱交換器(5)と、
この加熱用熱交換器(5)に供給される熱源流体の流量を調整する流量調整弁(12)と、
この流量調整弁(12)を駆動するサーボモータ(27)とを有し、
流量調整弁(12)の開度を調整することで、空調風の温度を調整する車両用空調装置であって、
空調情報を検出する空調情報検出手段(21〜24)と、
この空調情報検出手段(21〜24)にて検出された空調情報に基づいて、空調風の目標吹出温度(TAO)を算出する目標吹出温度算出手段(S20)と、
空調風の温度(Tn )を検出する温度検出手段(25)と、
目標吹出温度算出手段(S20)にて算出された目標吹出温度(TAO)と、温度検出手段(25)にて検出された空調風の温度(Tn )との差が大きくなる程、サーボモータ(27)による流量調整弁作動時間(WVt)を長い時間として算出する時間算出手段(S30)とを有し、
流量調整弁作動時間(W Vt )にて流量調整弁(12)の開度を制御することを特徴としている。
【0005】
これにより、時間算出手段により、目標吹出温度と、空調風の温度(Tn )との差が大きくなる程、流量調整弁の作動時間(WVt)を長い時間として算出するため、ポテンショメータを廃止しながら、必要な弁開度となるように制御できる。
また、請求項3記載の発明では、流量調整弁(12)は、その所定作動量(X)に対して第1温度変化する第1温度特性範囲(A)と、所定作動量に対して第1温度変化(A)より大きい第2温度特性範囲(B)とを有し、時間算出手段(S40)は、第1温度特性範囲(A)と第2温度特性範囲(B)とで、上記差が同じであっても、第1温度特性範囲(A)の方が第2温度特性範囲(B)より作動時間(WVt)を長く算出することを特徴としている。
【0006】
これにより、流量調整弁の作動範囲に応じて、空調風の温度特性が異なり、その所定作動量に対して第1温度変化する第1温度特性範囲と、所定作動量に対して第1温度変化より大きい第2温度特性範囲とを有する場合において、時間算出手段にて、第1温度特性範囲の方が第2温度特性範囲より作動時間を長く算出するため、空調風の温度を調整可能な全範囲において、応答性を向上することができる。
【0007】
【発明の実施の形態】
以下、本発明の実施形態について説明する。図1に車両用空調装置の全体構成図を示す。車両用空調装置1は、車室内への空調風流路をなす空調ケース2を有する。空調ケース2には、車室内へ向かう空気流を発生する送風機3が設けられている。
【0008】
空調ケース2内で、送風機3の下流側には、車両に搭載された冷凍サイクル(図示しない)のエバポレータ4が配置されている。このエバポレータ4は、内部に低温低圧冷媒が流れ、この低温低圧冷媒の蒸発潜熱により通過する空気から熱を奪うことで、空気を冷却する冷却用熱交換器を構成している。
さらに空調ケース2内で、上記エバポレータの下流側には、通過する空気を加熱する加熱用熱交換器5(以下、ヒータコア)が設置されている。このヒータコア5は、温水回路6内に設けられており、温水回路6を流れる温水(熱源流体、エンジン冷却水)が循環するようになっている。これにより、ヒータコア5では、通過する空気と温水とが熱交換することで、空気が加熱される。
【0009】
ヒータコア5の下流側における空調ケース2には、図示しない車両窓ガラスの内面に向かって空調風を送風するデフロスタ用空気通路7、乗員の上半身に向けて空調風を送風するフェイス用空気通路8、および乗員の下半身に向けて空調風を送風するフット用空気通路9が形成されている。なお、これら空気通路7〜9は、図示しない吹出口切換ドアにて開閉されることで、吹出口モードとして周知のフェイスモード、バイレベルモード、フットモード、デフロスタモード等が切り換え可能となっている。
【0010】
次に、上記温水回路6およびヒータコア5での空調風の温度調整について説明する。温水回路6は、図1に示すように車両駆動用エンジン10(内燃機関)を冷却するエンジン冷却水(上記温水)が流れるものである。なお、図示しないが図1中エンジン10の左側で、温水回路6には、エンジン冷却水を冷却する周知のラジエータを有する冷却水回路が接続されている。また、これら温水回路6および冷却水回路には、エンジン10に内蔵された機械式のポンプ(図示しない)にて温水が流れる。
【0011】
温水回路6には、エンジン冷却水がヒータコア5をパイパスするバイパス回路6aが設けられている。そして、この温水回路6のうち、バイパス回路6aとヒータコア5への温水流入回路6bとの分岐部には、ヒータコア5へ供給される温水流量を調整する3方弁タイプの流量調整弁12が設けられている。本例では、この流量調整弁12は、円筒状のハウジング12a内に、弁体12bが収納されたロータリ式のものである。弁体12bには、図1に示すように温水が流れる制御用流路12cが形成されている。なお、図1中弁体12bには、その形状および制御流路12cを分かりやすくするため、ハッチングがいれてある。
【0012】
そして、本例では、弁体12bは回動すると、制御流路12cの温水入口側の開口部と、ハウジング12aに開口した温水取入口(図示しない)との重畳面積が変化する。さらに、制御流路12cの温水出口側の開口部と、ハウジング12aに開口したバイパス回路6a用の温水取出口(図示しない)およびハウジング12aに開口した温水流入回路6b用の温水取出口(図示しない)の重畳面積が変化する。
【0013】
例えば、ヒータコア5へ温水供給量を最大(最大暖房)にするためには、図1中弁体12bを時計回りに回動して、バイパス回路6aを閉塞するとともに、上記温水取入口および温水流入回路6bとを全開とする。一方、ヒータコア5へ温水供給量を最小(0、最大冷房)にするためには、図1中弁体12bを逆時計回りに回動して、バイパス回路6aおよび上記温水取入口を若干開口するとともに、温水流入回路6bを閉塞する。
【0014】
なお、このように若干ながらバイパス回路6aおよび上記温水取入口を開口したのは、急激に流量調整弁12により温水流れを遮断すると、ウォーターハンマー音が発生するため、本例では温水がバイパス回路6aに流れるようにして、上記ウォーターハンマー音の発生を防止している。また、図1に示した流量調整弁12の状態は、弁開度が上記最大暖房と上記最大冷房との中間の状態を表している。
【0015】
さらに、本例では、流量調整弁12は、その作動範囲を上記最大暖房から上記最大冷房までの範囲と規制するために、例えばハウジング12aには、図示しない一対のストッパー部が形成されており、弁体12b(回動軸心方向の一端部)には、このストッパー部と係合する係合部が形成されている。これにより、流量調整弁12は、弁体12bの作動位置が上記最大暖房となると、一方のストッパー部と係合部とがぶつかることで、それ以上弁体12bが作動しないようにしている。一方、流量調整弁12は、弁体12bの作動位置が上記最大冷房となると、他方のストッパー部と係合部とがぶつかることで、それ以上弁体12bが作動しないようにしている。
【0016】
このようにして、ヒータコア5への温水供給量が変化し、ヒータコア5での空気の加熱度合いが変化するため、空調風の温度が調整される。
また、上記バイパス回路6aには、均圧弁11が設けられている。この均圧弁11は、ヒータコア5の温水上流側と温水下流側との間の圧力を一定にすることで、エンジン回転数によるヒータコア5を流れる温水流量の変化を和らげるために設けられている。
【0017】
詳しく説明すると、上記エンジン10の回転数が変動すると、上記ポンプの回転数が変化し、温水の吐出量(吐出圧力)が変化する。従って、例えば図1に示すような弁開度が、所定の中間開度であるときに、エンジン回転数によって、ヒータコア5に供給される温水流量が変動するが、例えば、エンジン回転数が上昇して温水の圧力が上昇すると、均圧弁11が開弁する。これにより、ヒータコア5の温水上流側と温水下流側との間の圧力を一定にでき、エンジン回転数によるヒータコア5を流れる温水流量の変化を和らげることができる。
【0018】
次に、上述の車両用空調装置1の制御系について説明する。
図1に示すように車両用空調装置1は、制御装置20にて空調制御されるようになっている。制御装置20は、周知のコンピュータ手段であり、空調プログラムが記憶されたROMや、データを一時的に記憶するRAM、A/D変換器、タイマー等を有するものである。
【0019】
制御装置20は、入力端子として空調情報を検出する空調情報検出手段である各種センサが接続されている。具体的には、制御装置20には、車室外の温度を検出する外気温センサ21と、車室内の温度を検出する内気温センサ22、車室内に入射する日射量を検出する日射センサ23と、ヒータコア5の空気下流側に設置され、ヒータコア5にて温度調整された空調風の温度を検出する空調風温度センサ25、温水回路5を循環する温水温度を検出する水温センサ24と、車室内の設定温度を設定する温度設定器26とが接続されている。
【0020】
一方、制御装置20は、出力端子として、上記流量調整弁12の弁体12bを回動する手段であるサーボモータ27、上記送風機3を駆動する図示しない駆動回路、上記吹出口切換ドアを駆動する図示しないサーボモータ等に接続されている。
次に、本発明の要部である上記サーボモータ27(流量調整弁12)の駆動制御内容について図2のフローチャートにて説明する。
【0021】
先ず、ステップS10では、空調情報入力として、上記各種センサ21〜25の検出値(デジタル値)を読み込むとともに、上記温度設定器26の設定温度(デジタル値TSET )を読み込む。
続いて、ステップS20にて、上記ステップS10にて読み込まれた空調情報に基づいて、以下の数式1より空調風の目標温度である目標吹出温度TAOを算出する。
【0022】
【数1】
TAO=KSET ×TSET −Kr ×Tr −Kam×Tam−Ks ×Ts +C
ここで、TSET は温度設定器26の検出値、Tr は内気温センサ22の検出値、Tamは外気温センサ21の検出値、Ts は日射センサ23の検出値である。また、KSET 、Kr 、Kam、Ks はそれぞれゲインであり、Cは補正用定数である。
【0023】
次にステップS30(時間算出手段)では、上記サーボモータ27のバルブ駆動時間SWt(通電時間)を以下の数式(比例積分制御の制御式)2から算出する。
【0024】
【数2】
SWt=Kp 〔{(TAOn −Tn )−(TAOn-1 −Tn -1)}+(θ/Ti)・(TAOn −Tn )〕
なお、Tn は上記空調風温度センサ25の検出値、つまり空調風の実際の温度であり、Tn は今回(最新)の検出値、Tn -1は前回の検出値、TAOn は今回(最新)のTAO、TAOn-1 は前回のTAOである。また、Kpは比例定数、Tiは積分定数、θはサンプリング時間を表す。
【0025】
そして、上記数式2は、前回と今回とで空調情報が全く変化しておらずTAOn =TAOn-1 とすると、以下の数式3となる。なお、この数式3の意味は後で詳述する。
【0026】
【数3】
SWt=Kp 〔{(−Tn +Tn -1)}+(θ/Ti)・(TAOn −Tn )〕
続いて、ステップS40では、上記バルブ駆動時間SWtを補正して、最終的なバルブ駆動時間WVtを以下の数式4にて算出する。なお、詳細は後で説明する。
【0027】
【数4】
WVt=SWt・Kg
但し、Kgは補正項である。そして、ステップS50では、上記バルブ駆動時間WVtが0より大きい場合では、サーボモータ27を正転し、上記バルブ駆動時間WVtが0より小さい場合では、サーボモータ27逆転するように制御信号をサーボモータ27に出力する。
但し、ここでいう正転とは、弁体12bがヒータコア5の循環温水流量を増加して空調風の温度を高める方向(図1中矢印a方向)に回動する方向と定義し、逆転とは、弁体12bがヒータコア5の循環温水流量を減少して空調風の温度を下げる方向(図1中矢印b方向)に回動する方向と定義する。
【0028】
次に上述のステップS30での数式3の意味について説明する。先ず、(TAOn −Tn )の意味を説明する。なお、説明を分かりやすくするため、(−Tn +Tn -1)を0と見なして説明する。
例えば、夏場において車室内が非常に高温な状態にあり、急速に車室内を冷却する場合では、上記TAOn は、上記数式1にて例えば−15℃といった値が算出される。この場合は、Tn が−15℃には成りえないため、TAOn <Tn の関係となり、この差(TAOn −Tn )は負で、絶対値は大きな値となる。このため、バルブ駆動時間SWtが長くなり、バルブ駆動時間WVtも長く算出される。
【0029】
つまり、(TAOn −Tn )の差が大きくなる程、バルブ駆動時間SWtが長くなり、バルブ駆動時間WVtも長く算出される。これにより、ステップS50では、サーボモータ27にて弁体12bを図1中矢印b方向に大きく回動させるので、空調風の温度は最大限低い温度となる。
この後、車室内の温度(Tr )が設定温度程度まで下がってくるにつれて、上記TAOn も徐々に高くなり、差(TAOn −Tn )も徐々に小さくなる。そして、例えば車室内の温度が(Tr )が設定温度まで下がって安定してくると、TAOn がTn より高くなって、差(TAOn −Tn )が正となる。
【0030】
これにより、ステップS50では、サーボモータ27にて弁体12bを図1中矢印a方向に若干回動させるので、空調風の温度は上昇する。また、車室内の温度(Tr )が設定温度にほぼ安定しても、日射等によってTAOn が変動するため、上記(TAOn −Tn )が正となったり負となったりすることで、日射等の空調環境の変化に追従して、空調風の温度が調整される。
【0031】
一方、例えば、冬場において車室内が非常に低温な状態にあり、急速に車室内を暖房する場合では、上記TAOn は、上記数式1にて例えば70℃といった値が算出される。この場合は、Tn が70℃には成りえないため、TAOn >Tn の関係となり、この差(TAOn −Tn )は正で、絶対値は大きな値となる。このため、バルブ駆動時間SWtが長くなり、バルブ駆動時間WVtも長く算出される。
【0032】
そして、バルブ駆動時間SWtは、(TAOn −Tn )の差が大きくなる程、長くなり、バルブ駆動時間WVtも長く算出される。これにより、ステップS50では、サーボモータ27にて弁体12bを図1中矢印a方向に大きく回動させるので、空調風の温度は最大限高い温度となる。
そして、この後、車室内の温度(Tr )が設定温度程度まで上昇してくるにつれて、上記TAOn も徐々に低くなり、差(TAOn −Tn )も徐々に小さくなる。そして、例えば車室内の温度(T r が設定温度まで上昇して安定してくると、TAOn がTn より低くなって、差(TAOn −Tn )が負となる。
【0033】
これにより、ステップS50では、サーボモータ27にて弁体12bを図1中矢印b方向に若干回動させるので、空調風の温度は低下する。また、車室内の温度(Tr )が設定温度にほぼ安定しても、日射等によってTAOn が変動するため、上記(TAOn −Tn )が正となったり負となったりすることで、日射等の空調環境の変化に追従して、空調風の温度が調整される。
【0034】
このようにすることで、目標吹出温度TAOと、空調風の温度Tn との差が大きくなる程、流量調整弁12のバルブ駆動時間(WVt)を長くするようにしたため、従来使用していたポテンショメータを廃止しながら、必要な弁開度となるように制御できる。
次に、(−Tn +Tn -1)の意味について説明する。先ず、上述の(TAOn −Tn )だけによるバルブ駆動時間WVt算出では、以下のような問題がある。
【0035】
つまり、空調風の温度をTAOに近づけようとして、弁体12bを駆動したとしても、温水流量はこれに追従して変動せずに若干遅れたり、温水回路5における流量調整弁12とヒータコア5との流路長さや、ヒータコア5の熱伝達による遅れによって、空調風の温度は直ぐさま変わらない。
従って、例えば空調風の温度を上記TAO(例えば25℃とする)に近づけべく、上昇しようとしても、直ぐさま空調風の温度が上昇しないため、さらに弁体12bが図1中矢印a方向に回動する。
これにより、例えば温水流量が追従してきたときには、空調風の温度が25℃を大きく越えてしまい(オーバーシュート)、今度は弁体12bを図1中矢印b方向に回動するので、弁体12bが頻繁に作動する。
【0036】
そこで、このような不具合を防止するために、数式3中に(−Tn +Tn -1)が含まれている。つまり、空調風の温度を上昇する過程では、TAOn >Tn にあり、Tn >Tn -1となるため、(−Tn +Tn -1)は負となる。
これにより、(−Tn +Tn -1)は、バルブ駆動時間WVt短く算出するように寄与するため、弁体12bの作動を抑制しようと機能する。この結果、空調風の温度がオーバーシュートすることを低減でき、弁体12bが頻繁に作動することが防止できる。なお、空調風の温度を低下する場合でも、同様に(−Tn +Tn -1)が機能する。
【0037】
次に、上記ステップS40の内容について詳しく説明する。図3は、本発明者が上記弁体12bの作動位置(開度)に対する空調風の温度を実験した温度コントロール特性の結果である。なお、弁開度0°とは、ヒータコア5に温水を供給しない最大冷房時であり、バルブ開度100とは、ヒータコア5に最大限温水を供給する最大暖房時のことである。
【0038】
これを見て分かるように本例では、流量調整弁12は、弁開度0〜30°(30°を所定作動量に値する)に対して空調風の温度が10〜15℃(第1温度,5°)変化する第1温度特性範囲M、弁開度30〜60°(30°、上記所定作動量と同じ)に対して空調風の温度が15〜65℃(第2温度)変化する第2温度特性範囲Lを有する。
【0039】
つまり、本例では、上記第1温度特性範囲Mでは、上記第2温度特性範囲に比べて温度変化が少なく、非常に応答性が悪い。
このため、本例では、上記応答性を向上させるために、上記補正項Kg を設け、この補正項Kg は、図4に示すマップから決定される。つまり、この補正項Kg は、図3の応答性が悪い所程、大きく決定される。すなわち、図3の応答性が悪い所程、バルブ駆動時間WVtが長く算出されるので、空調風の温度の全範囲において、応答性を向上することができる。
【0040】
(変形例)
上記実施形態では、バイパス回路6aを設けたが、本発明はバイパス回路6aを設けない温水回路6でも適用できる。なお、この場合は、流量調整弁12を2方弁タイプのものを使用すれば良い。
また、上記各実施形態では、流量調整弁12は、ロータリ式のものを使用したが、バタフライ式のものであっても良いし、どのようなタイプのものであっても良い。
【図面の簡単な説明】
【図1】本発明の実施形態における車両用空調装置の全体概略構成図である。
【図2】上記実施形態おける制御装置の制御内容を表すフローチャートである。
【図3】上記実施形態における流量調整弁の温度コントロール特性を表す図である。
【図4】上記実施形態におけるKg の決定方法を示す図である。
【符号の説明】
5…ヒータコア、12…流量調整弁、20…制御装置。

Claims (3)

  1. 空気を加熱する加熱用熱交換器(5)と、
    この加熱用熱交換器(5)に供給される熱源流体の流量を調整する流量調整弁(12)と、
    この流量調整弁(12)を駆動するサーボモータ(27)とを有し、
    前記流量調整弁(12)の開度を調整することで、空調風の温度を調整する車両用空調装置であって、
    少なくとも車室内の設定温度(TSET )と車室内の温度(Tr )とに基づいて、空調風の目標吹出温度(TAO)を算出する目標吹出温度算出手段(S20)と、
    前記空調風の温度(Tn )を検出する温度検出手段(25)と、
    前記目標吹出温度算出手段(S20)にて算出された目標吹出温度(TAO)と、前記温度検出手段(25)にて検出された空調風の温度(Tn )との差が大きくなる程、前記サーボモータ(27)による流量調整弁作動時間(WVt)を長い時間として算出する時間算出手段(S30)とを有し、
    前記流量調整弁作動時間(W Vt )にて前記流量調整弁(12)の開度を制御することを特徴とする車両用空調装置。
  2. 前記目標吹出温度(TAO)が前記空調風の温度(Tn )より高いときには、前記流量調整弁(12)を前記熱源流体の流量が大きくなるように制御するとともに、前記目標吹出温度(TAO)が前記空調風の温度(Tn )より低いときには、前記流量調整弁(12)を前記熱源流体の流量が少なくなるように制御するようになっている請求項1記載の車両用空調装置。
  3. 前記流量調整弁(12)は、その所定作動量に対して第1温度変化する第1温度特性範囲(M)と、前記所定作動量に対して前記第1温度変化より大きい第2温度特性範囲(L)とを有し、
    前記時間算出手段(S40)は、前記第1温度特性範囲(M)と前記第2温度特性範囲(L)とで、前記差が同じであっても、前記第1温度特性範囲(M)の方が前記第2温度特性範囲(L)より前記作動時間(WVt)を長く算出することを特徴とする請求項1または2記載の車両用空調装置。
JP21653897A 1997-08-11 1997-08-11 車両用空調装置 Expired - Fee Related JP3814964B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21653897A JP3814964B2 (ja) 1997-08-11 1997-08-11 車両用空調装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21653897A JP3814964B2 (ja) 1997-08-11 1997-08-11 車両用空調装置

Publications (2)

Publication Number Publication Date
JPH1159158A JPH1159158A (ja) 1999-03-02
JP3814964B2 true JP3814964B2 (ja) 2006-08-30

Family

ID=16690017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21653897A Expired - Fee Related JP3814964B2 (ja) 1997-08-11 1997-08-11 車両用空調装置

Country Status (1)

Country Link
JP (1) JP3814964B2 (ja)

Also Published As

Publication number Publication date
JPH1159158A (ja) 1999-03-02

Similar Documents

Publication Publication Date Title
US6192698B1 (en) Vehicle-air-conditioning system with cooling degree estimator for left/right temperature control
JP3335037B2 (ja) 車両用空気調和装置
JPS5919849B2 (ja) 車輛用自動空調装置
JP3334439B2 (ja) 暖房装置
JP3814964B2 (ja) 車両用空調装置
JP3794135B2 (ja) 温水式暖房装置
JP2595508B2 (ja) 自動車用温水式暖房装置
JPH1016540A (ja) 車両用エアコンシステムの外気温度補正装置
JP3651047B2 (ja) 車両用空気調和装置
JPH0258125B2 (ja)
JP2573373Y2 (ja) 自動車用空調装置
JP3325428B2 (ja) 自動車用空気調和装置
JP3772432B2 (ja) 車両用空調装置
JP3139017B2 (ja) 車両用空気調和制御装置
JP3029569B2 (ja) 車両用空調制御装置
JPH06320937A (ja) 車両用暖房装置
JPS6345363Y2 (ja)
JP3572678B2 (ja) 車両用空調装置
JPH0952514A (ja) 自動車用空気調和装置
JPH04169321A (ja) 車両用オートエアコン装置の制御方法
JP2024088381A (ja) 空調制御システム
JPH0542883Y2 (ja)
JPH08318725A (ja) 車両用空調装置
JPH07186701A (ja) 車両用空気調和装置
JPH05185825A (ja) 車両用空気調和装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060529

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees