JP3800093B2 - Carbon nanotube purification method - Google Patents

Carbon nanotube purification method Download PDF

Info

Publication number
JP3800093B2
JP3800093B2 JP2002008078A JP2002008078A JP3800093B2 JP 3800093 B2 JP3800093 B2 JP 3800093B2 JP 2002008078 A JP2002008078 A JP 2002008078A JP 2002008078 A JP2002008078 A JP 2002008078A JP 3800093 B2 JP3800093 B2 JP 3800093B2
Authority
JP
Japan
Prior art keywords
carbon
crude product
carbon nanotube
potential
purification method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002008078A
Other languages
Japanese (ja)
Other versions
JP2003212526A (en
Inventor
慧 宮城
敬二 國松
雅史 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Equos Research Co Ltd
Original Assignee
Equos Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Equos Research Co Ltd filed Critical Equos Research Co Ltd
Priority to JP2002008078A priority Critical patent/JP3800093B2/en
Publication of JP2003212526A publication Critical patent/JP2003212526A/en
Application granted granted Critical
Publication of JP3800093B2 publication Critical patent/JP3800093B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
この発明はカーボンナノチューブの精製方法に関する。
【0002】
【従来の技術】
カーボンナノチューブはアーク放電法やレーザー蒸発法等の周知の方法で形成される。これらの方法を実行したとき、カーボンナノチューブは所謂チャンバー煤や陰極煤中に含まれており、これら煤からの精製が不可避である。煤の中には触媒である金属微粒子とともにアモルファスカーボン等がカーボン不純物として含まれている。
従来より、金属微粒子の除去は、塩酸や硝酸を用い金属を溶解することで除くことが可能であった。
【0003】
一方、カーボン不純物は酸化による除去が行われ、具体的には酸化性の酸である硝酸、混酸あるいは過酸化水素水による化学的処理や乾燥空気中で350℃程度に加熱する熱処理がこれまで行われてきた。例えば特開2001−26410号公報等を参照されたい。その他、遠心分離法、限外ろ過法等も一般的に知られている。
【0004】
【発明が解決しようとする課題】
しかしながら、いずれの方法もアモルファスカーボン等のカーボン不純物がナノチューブより化学的に不安定なことを前提として実施されてきたが、その差は僅かであるため同時にナノチューブの酸化(燃焼)がおこり、有効な精製法とは言えなかった。即ち、アモルファスカーボンのみを酸化することは困難であった。例えば熱処理を行う場合、試料中の温度勾配に加え、微視的には酸化反応に寄与する酸素分子の活性が本質的に分布を伴うことから、アモルファスカーボンのみに選択的に酸化反応を起こさせることは困難である。
【0005】
【課題を解決するための手段】
本発明者は上記課題を解決すべく鋭意検討を重ねてきたところ、電気化学的な処理方法に気付き、本発明を完成するに至った。
即ち、カーボン不純物を含んだカーボンナノチューブ粗生成物からカーボンナノチューブを精製する方法であって、
前記カーボンナノチューブ粗生成物中の前記カーボン不純物を電気化学的に酸化させる、ことを特徴とするカーボンナノチューブの精製方法。
【0006】
カーボンナノチューブ粗生成物を作用電極(陽極)とし、他方例えば白金を対極(陰極)としてこれらを電解質溶液に浸漬し、作用電極へ所定の電圧を印加すると粗生成物に含まれるカーボン不純物のみが選択的に酸化されることが確認された。
【0007】
【実施の形態】
以下、この発明をより詳細に説明する。
カーボンナノチューブ粗生成物
カーボンナノチューブ粗生成物はアーク放電法やレーザー蒸発法等の周知の方法を実行したときチャンバー煤(チャンバー内壁やトラップに付着する煤)や陰極煤(陰極表面に付着する煤)に含まれる。
これらの煤をそのままカーボンナノチューブ粗生成物として用いることが可能である。
これらの煤を水熱法、遠心分離法、限外ろ過法等の周知の方法で前処理して、カーボンナノチューブの純度を高めておくこともできる。
煤のなかには触媒としての金属微細粉が含まれることがあるので、この金属微細粉も予め周知の方法にしたがって溶解除去しておくことが好ましい。
本発明の精製方法を実行した後、金属微細粉を溶解除去することもできる。
【0008】
本発明の対象とするカーボンナノチューブとは、単原子層のグラファイト、即ちグラフェンが円筒状に丸まって、継ぎ目なく閉じた、直径がナノメートルオーダーの極微の中空チューブである単層カーボンナノチューブと、2から数十層のグラフェンが積み重なってできたチューブで、直径は2nmから50nmの範囲にある多層カーボンナノチューブを指す。
本発明は電気化学的な手法によりカーボン不純物を選択に酸化するものであるところ、当該カーボン不純物を含む他のナノ構造カーボン物質にも本発明は適用可能である。ナノ構造カーボン物質として、フラーレン、グラファイトファイバー、カーボンナノホーン、カーボンナノファイバー等を挙げることができる。
【0009】
このような粗生成物中のカーボン不純物を選択的に酸化するため、この発明では電気化学的な酸化手法を採用する。即ち、電解質溶液中に作用電極と対象電極を浸漬し通電したときの電気化学エネルギーによりカーボン不純物を酸化させる。より具体的には、粗生成物を作用電極(陽極)としてこれに所定の電位を印加するとカーボン不純物のみがCO若しくはCOまで酸化されて消失する。カーボン不純物に比べてカーボンナノチューブは化学的に安定なため、印加された電位においてカーボンナノチューブが酸化されることはない。
ここに、電気化学的な酸化方法によれば、印加する電位を調整することにより酸化のためのエネルギーが高精度で制御される。したがって、カーボン不純物とカーボンナノチューブとの間の化学的な安定性の差が小さくても、印加する電位を正確に制御することにより、前者のみを正確に酸化することが可能である。
【0010】
粗生成物に印加する電位は電極や電解質の材料等の外部環境を考慮して、実質的にカーボン不純物のみが選択的に酸化される電位となるように適宜調整される。カーボン不純物は混合物の場合が多いので、一定の幅で電位を走査することが好ましい。
実施例では、印加する電位を0V〜1.7V(RHE:平衡水素電極を基準とした電位)とした。この中で1.3V〜1.7V(RHE)の範囲においてカーボン不純物の酸化が行われている。1.3V未満ではカーボンナノチューブはもとよりカーボン不純物の酸化も行われていない。
したがって、印加する電位は1.3V〜2.5V(RHE)で走査することが好ましく、更に好ましくは1.3〜2.0(RHE)である。
【0011】
カーボンナノチューブ粗生成物で電極を構成する方法も特に限定されるものではないが、例えば当該粗生成物を有機溶剤に分散させ、これを集電体へ塗布・乾燥する。集電体としては比表面積が大きく、電気化学的に安定な金属(例えばAu)の網状等の形状をもつものが好ましい。集電体と粗生成物との接着性を向上させるためバインダを用いることができる。
本発明による電気化学的な酸化処理が終了したのち、集電体を有機溶剤へ浸漬若しくはこれで洗浄することにより、集電体に付着しているカーボンナノチューブ(精製されたもの)を容易に回収することができる。
【0012】
【実施例】
次に、この発明の実施例について説明する。
図1に実施例の電気化学的な処理装置1を示す。この処理装置1は作用電極室10、対極室20、平衡水素電極(RHE)室30及び制御部40から構成される。
作用電極室10と対極室20とはコック3により連通され、また作用電極室10と平衡水素電極(RHE)室30との間もコック5により連通され、各室10、20、30には電解質溶液7として硫酸水溶液(0.5M)が満たされている。電解質溶液7には硫酸水溶液の他、通常の酸、アルカリ、中性塩溶液を用いることができる。
【0013】
作用電極室10には作用電極11が浸漬されている。網状の集電体に有機溶剤に分散させたカーボンナノチューブ粗生成物を塗布・乾燥させることにより作用電極11は得られる。実施例ではカーボンナノチューブの純度が90重量%の粗生成物(実施例1)及び同じく純度が50重量%の粗生成物(実施例2)並びに比表面積2000mの活性炭(比較例1、純度0%)を使用した。当該粗生成物と集電体との接着を確保するためバインダを用いることができる。例えば、作用電極をナフィオン(デュポン社商品名)溶液へ浸漬し140℃で乾燥させることができる。
対極21及び平衡水素電極31には網状の白金電極を用いた。
作用電極室10にはアルゴンガスが10cc/分の流量で吹込まれており、平衡水素電極室30には水素ガスが5cc/分の流量で吹込まれている。
【0014】
各電極11、21及び31を制御部40としてポテンシオスタットに接続し、平衡水素電極31を参照電極として作用電極11に0〜1.7Vまでの電圧を印加して電流−電圧特性を測定した。走査速度は50mV/秒、走査回数は約100回である。
【0015】
結果を図2に示す。
図2の結果において、1.3〜1.7Vの領域で集電体として使用した金(Au)電極表面酸化領域よりも低電位から、いずれも電位に対し指数関数的に電流が増加する酸化電流が見られた。これはアモルファスカーボン等のカーボン不純物の電気化学的酸化に対応しており、100サイクル程度で約1/4まで電流は減少した。
一方、0.0〜1.0Vの低電位領域では非ファラデー的な電気2重層形成に起因する電流が観測される。この電流のサイクル変化は、電極を構成する材料によって異なる。純度が90%以上のカーボンナノチューブにおいて変化はほとんど見られなかったが、活性炭の場合高電位領域の電流の減少に伴って低電位領域の電流も同様に減少した。
これはカーボン不純物の燃焼に伴って、アモルファスカーボンを多く含む活性炭の場合表面積が減少し、電流量も同様に減少したが、高純度ナノチューブの場合はナノチューブに付着したカーボン不純物が燃焼しても、大部分を占めているナノチューブは残り、電気化学的表面積は変化しないため低電位領域の電流は減少せず一定となる。
【0016】
【発明の効果】
以上説明したようにこの発明の精製方法によれば、カーボンナノチューブ粗生成物を電気化学的に処理する。このとき、酸化エネルギーを規定する電圧は精密に制御することができるので、粗生成物に含まれるカーボンナノチューブとカーボン不純物との間の化学的安定性がたとえ小さくても、後者のみを選択的に酸化することが可能となる。よって、従来の方法に比べてカーボンナノチューブを高純度に精製することができる。また、電気化学的な処理は簡易な装置で行えるので、高純度のカーボンナノチューブを安価に提供することが可能になる。
【0017】
この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。
【0018】
以下、次ぎの事項を開示する。
11 カーボン不純物を含んだナノ構造カーボン物質粗生成物からナノ構造カーボン物質を精製する方法であって、
前記粗生成物中の前記カーボン不純物を電気化学的に酸化させる、ことを特徴とするナノ構造カーボン物質の精製方法。
12 前記ナノ構造カーボン物資粗生成物を陽極として電解質溶液中に浸漬し、該陽極に1.3V〜2.5V(RHE)の電位を印加する、ことを特徴とする11に記載の精製方法。
13 前記電位は繰返し印加される、ことを特徴とする12に記載の精製方法。
14 前記ナノ構造カーボン物質粗生成物を陽極として電解質溶液中に浸漬し、該陽極に0V〜2.5V(RHE)の範囲の電位を走査して繰返し印加する、ことを特徴とする11に記載の精製方法。
15 前記電解質溶液は硫酸である、ことを特徴とする12〜14のいずれかに記載の精製方法。
【図面の簡単な説明】
【図1】図1はこの発明の実施例の電気化学処理装置の構成をしめす図である。
【図2】図2は電気化学的な酸化処理の結果を示すグラフである。
【符号の説明】
1 電気化学処理装置
11 作用電極
21 対極電極
31 平衡水素電極
[0001]
[Industrial application fields]
The present invention relates to a method for purifying carbon nanotubes.
[0002]
[Prior art]
The carbon nanotube is formed by a known method such as an arc discharge method or a laser evaporation method. When these methods are carried out, the carbon nanotubes are contained in so-called chamber soots and cathode soots, and purification from these soots is inevitable. In the soot, amorphous carbon and the like are contained as carbon impurities together with metal fine particles as a catalyst.
Conventionally, the metal fine particles can be removed by dissolving the metal using hydrochloric acid or nitric acid.
[0003]
On the other hand, carbon impurities are removed by oxidation. Specifically, chemical treatment with nitric acid, mixed acid or hydrogen peroxide, which is an oxidizing acid, and heat treatment at about 350 ° C. in dry air have been performed. I have been. For example, see Japanese Patent Application Laid-Open No. 2001-26410. In addition, a centrifugal separation method, an ultrafiltration method and the like are generally known.
[0004]
[Problems to be solved by the invention]
However, both methods have been implemented on the premise that carbon impurities such as amorphous carbon are chemically more unstable than nanotubes, but since the difference is slight, oxidation (combustion) of the nanotubes occurs simultaneously and effective. It was not a purification method. That is, it was difficult to oxidize only amorphous carbon. For example, when heat treatment is performed, in addition to the temperature gradient in the sample, microscopically, the activity of oxygen molecules contributing to the oxidation reaction is inherently distributed, so that only the amorphous carbon is selectively oxidized. It is difficult.
[0005]
[Means for Solving the Problems]
The inventor has conducted extensive studies to solve the above-mentioned problems, and as a result, has noticed an electrochemical treatment method and completed the present invention.
That is, a method of purifying carbon nanotubes from a carbon nanotube crude product containing carbon impurities,
A method for purifying carbon nanotubes, wherein the carbon impurities in the carbon nanotube crude product are electrochemically oxidized.
[0006]
When carbon nanotube crude product is used as the working electrode (anode) and platinum, for example, is used as the counter electrode (cathode), and these are immersed in an electrolyte solution and a predetermined voltage is applied to the working electrode, only carbon impurities contained in the crude product are selected. Was confirmed to be oxidized.
[0007]
Embodiment
Hereinafter, the present invention will be described in more detail.
Carbon nanotube crude product When a well-known method such as an arc discharge method or a laser evaporation method is executed, the crude product of the carbon nanotube is a chamber 煤 (attached to the inner wall or trap of the chamber) or a cathode 煤 (attached to the cathode surface). include.
These soots can be used as a carbon nanotube crude product as they are.
These soot can be pretreated by a known method such as a hydrothermal method, a centrifugal separation method, or an ultrafiltration method to increase the purity of the carbon nanotubes.
Since soot may contain metal fine powder as a catalyst, it is preferable to dissolve and remove the metal fine powder in advance according to a known method.
After carrying out the purification method of the present invention, the fine metal powder can be dissolved and removed.
[0008]
The carbon nanotubes that are the subject of the present invention are single-walled carbon nanotubes, which are monolayer graphite, that is, graphene is a round hollow tube with a diameter of the order of nanometers, and is closed seamlessly, and 2 Is a tube made of stacked graphenes of several tens of layers, and refers to a multi-walled carbon nanotube having a diameter in the range of 2 nm to 50 nm.
Since the present invention selectively oxidizes carbon impurities by an electrochemical method, the present invention can also be applied to other nanostructured carbon materials containing the carbon impurities. Examples of the nanostructured carbon material include fullerene, graphite fiber, carbon nanohorn, and carbon nanofiber.
[0009]
In order to selectively oxidize carbon impurities in such a crude product, an electrochemical oxidation method is employed in the present invention. That is, carbon impurities are oxidized by electrochemical energy when the working electrode and the target electrode are immersed in an electrolyte solution and energized. More specifically, when a predetermined potential is applied to the crude product as a working electrode (anode), only carbon impurities are oxidized to CO or CO 2 and disappear. Since carbon nanotubes are chemically stable compared to carbon impurities, carbon nanotubes are not oxidized at an applied potential.
Here, according to the electrochemical oxidation method, the energy for oxidation is controlled with high accuracy by adjusting the applied potential. Therefore, even if the difference in chemical stability between the carbon impurity and the carbon nanotube is small, it is possible to accurately oxidize only the former by accurately controlling the applied potential.
[0010]
The potential applied to the crude product is appropriately adjusted so as to be a potential at which only carbon impurities are selectively oxidized in consideration of the external environment such as electrodes and electrolyte materials. Since carbon impurities are often a mixture, it is preferable to scan the potential with a certain width.
In the examples, the applied potential was set to 0 V to 1.7 V (RHE: potential based on the equilibrium hydrogen electrode). Among these, the oxidation of carbon impurities is performed in the range of 1.3V to 1.7V (RHE). Below 1.3 V, not only carbon nanotubes but also carbon impurities are not oxidized.
Therefore, the applied potential is preferably scanned at 1.3 V to 2.5 V (RHE), more preferably 1.3 to 2.0 (RHE).
[0011]
The method of forming the electrode with the carbon nanotube crude product is not particularly limited, but for example, the crude product is dispersed in an organic solvent, and this is applied to a current collector and dried. A current collector having a large specific surface area and an electrochemically stable metal (for example, Au) net shape is preferable. A binder can be used to improve the adhesion between the current collector and the crude product.
After the electrochemical oxidation treatment according to the present invention is completed, carbon nanotubes (purified) attached to the current collector can be easily recovered by immersing or washing the current collector in an organic solvent. can do.
[0012]
【Example】
Next, examples of the present invention will be described.
FIG. 1 shows an electrochemical processing apparatus 1 according to an embodiment. The processing apparatus 1 includes a working electrode chamber 10, a counter electrode chamber 20, a balanced hydrogen electrode (RHE) chamber 30, and a control unit 40.
The working electrode chamber 10 and the counter electrode chamber 20 are communicated by the cock 3, and the working electrode chamber 10 and the equilibrium hydrogen electrode (RHE) chamber 30 are also communicated by the cock 5, and each chamber 10, 20, 30 has an electrolyte. Solution 7 is filled with a sulfuric acid aqueous solution (0.5 M). The electrolyte solution 7 can be a normal acid, alkali, or neutral salt solution in addition to an aqueous sulfuric acid solution.
[0013]
A working electrode 11 is immersed in the working electrode chamber 10. The working electrode 11 is obtained by applying and drying a carbon nanotube crude product dispersed in an organic solvent on a net-like current collector. In the examples, a crude product having a carbon nanotube purity of 90% by weight (Example 1) and a crude product having the same purity of 50% by weight (Example 2) and activated carbon having a specific surface area of 2000 m 2 (Comparative Example 1, purity 0) %)It was used. A binder can be used to ensure adhesion between the crude product and the current collector. For example, the working electrode can be immersed in a Nafion (DuPont brand name) solution and dried at 140 ° C.
A reticulated platinum electrode was used as the counter electrode 21 and the equilibrium hydrogen electrode 31.
Argon gas is blown into the working electrode chamber 10 at a flow rate of 10 cc / min, and hydrogen gas is blown into the equilibrium hydrogen electrode chamber 30 at a flow rate of 5 cc / min.
[0014]
Each electrode 11, 21, and 31 was connected to a potentiostat as the control unit 40, and a voltage of 0 to 1.7 V was applied to the working electrode 11 using the balanced hydrogen electrode 31 as a reference electrode, and current-voltage characteristics were measured. . The scanning speed is 50 mV / second, and the number of scans is about 100 times.
[0015]
The results are shown in FIG.
In the results of FIG. 2, it can be seen that the oxidation current increases exponentially with respect to the potential from the lower potential of the gold (Au) electrode surface oxidation region used as a current collector in the region of 1.3 to 1.7 V. It was. This corresponds to the electrochemical oxidation of carbon impurities such as amorphous carbon, and the current decreased to about 1/4 in about 100 cycles.
On the other hand, in the low potential region of 0.0 to 1.0 V, current due to non-Faraday electric double layer formation is observed. The cycle change of this electric current changes with materials which comprise an electrode. Almost no change was observed in carbon nanotubes with a purity of 90% or more, but in the case of activated carbon, the current in the low potential region decreased as the current in the high potential region decreased.
In the case of activated carbon containing a large amount of amorphous carbon, the surface area decreased and the amount of current decreased in the same way as the carbon impurities burned. Most of the nanotubes remain and the electrochemical surface area does not change, so the current in the low potential region does not decrease and remains constant.
[0016]
【The invention's effect】
As described above, according to the purification method of the present invention, the carbon nanotube crude product is electrochemically treated. At this time, since the voltage defining the oxidation energy can be precisely controlled, even if the chemical stability between the carbon nanotubes and carbon impurities contained in the crude product is small, only the latter is selectively selected. It becomes possible to oxidize. Therefore, it is possible to purify the carbon nanotubes with higher purity than in the conventional method. In addition, since the electrochemical treatment can be performed with a simple apparatus, it is possible to provide high-purity carbon nanotubes at low cost.
[0017]
The present invention is not limited to the description of the embodiments and examples of the invention described above. Various modifications may be included in the present invention as long as those skilled in the art can easily conceive without departing from the description of the scope of claims.
[0018]
The following items are disclosed below.
11 A method for purifying a nanostructured carbon material from a nanostructured carbon material crude product containing carbon impurities,
A method for purifying a nanostructured carbon material, wherein the carbon impurities in the crude product are oxidized electrochemically.
12. The purification method according to 11, wherein the crude nanostructured carbon material is immersed in an electrolyte solution as an anode, and a potential of 1.3 V to 2.5 V (RHE) is applied to the anode.
13 The purification method according to 12, wherein the potential is repeatedly applied.
14. The nanostructured carbon material crude product is immersed in an electrolyte solution as an anode, and a potential in a range of 0 V to 2.5 V (RHE) is scanned and repeatedly applied to the anode. Purification method.
[15] The purification method according to any one of [12] to [14], wherein the electrolyte solution is sulfuric acid.
[Brief description of the drawings]
FIG. 1 is a diagram showing the configuration of an electrochemical processing apparatus according to an embodiment of the present invention.
FIG. 2 is a graph showing the results of electrochemical oxidation treatment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electrochemical processing apparatus 11 Working electrode 21 Counter electrode 31 Equilibrium hydrogen electrode

Claims (5)

カーボン不純物を含んだカーボンナノチューブ粗生成物からカーボンナノチューブを精製する方法であって、
前記カーボンナノチューブ粗生成物中の前記カーボン不純物を電気化学的に酸化させる、ことを特徴とするカーボンナノチューブの精製方法。
A method for purifying carbon nanotubes from a carbon nanotube crude product containing carbon impurities,
A method for purifying carbon nanotubes, wherein the carbon impurities in the carbon nanotube crude product are electrochemically oxidized.
前記カーボンナノチューブ粗生成物を陽極として電解質溶液中に浸漬し、該陽極に1.3V〜2.5V(RHE)の電位を印加する、ことを特徴とする請求項1に記載の精製方法。The purification method according to claim 1, wherein the carbon nanotube crude product is immersed in an electrolyte solution as an anode, and a potential of 1.3 V to 2.5 V (RHE) is applied to the anode. 前記電位は繰返し印加される、ことを特徴とする請求項2に記載の精製方法。The purification method according to claim 2, wherein the potential is repeatedly applied. 前記カーボンナノチューブ粗生成物を陽極として電解質溶液中に浸漬し、該陽極に0V〜2.5V(RHE)の範囲の電位を走査して繰返し印加する、ことを特徴とする請求項1に記載の精製方法。2. The carbon nanotube crude product is immersed in an electrolyte solution as an anode, and a potential in a range of 0 V to 2.5 V (RHE) is scanned and repeatedly applied to the anode. Purification method. 前記電解質溶液は硫酸である、ことを特徴とする請求項2〜4のいずれかに記載の精製方法。The purification method according to claim 2, wherein the electrolyte solution is sulfuric acid.
JP2002008078A 2002-01-16 2002-01-16 Carbon nanotube purification method Expired - Fee Related JP3800093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002008078A JP3800093B2 (en) 2002-01-16 2002-01-16 Carbon nanotube purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002008078A JP3800093B2 (en) 2002-01-16 2002-01-16 Carbon nanotube purification method

Publications (2)

Publication Number Publication Date
JP2003212526A JP2003212526A (en) 2003-07-30
JP3800093B2 true JP3800093B2 (en) 2006-07-19

Family

ID=27646432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002008078A Expired - Fee Related JP3800093B2 (en) 2002-01-16 2002-01-16 Carbon nanotube purification method

Country Status (1)

Country Link
JP (1) JP3800093B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4808444B2 (en) * 2005-07-06 2011-11-02 中部電力株式会社 Electric double layer capacitor and manufacturing method thereof
EP2307313B1 (en) 2008-07-03 2017-09-13 UCL Business PLC Method for dispersing and separating nanotubes
KR101616017B1 (en) * 2008-07-03 2016-04-27 유씨엘 비즈니스 피엘씨 Method for separating nanomaterials
CN103979526B (en) * 2014-05-22 2016-08-31 苏州捷迪纳米科技有限公司 The purification process of carbon nano-tube macroscopic body
CN115215327B (en) * 2022-02-23 2023-10-03 无锡东恒新能源科技有限公司 Device and method for purifying carbon nano tube

Also Published As

Publication number Publication date
JP2003212526A (en) 2003-07-30

Similar Documents

Publication Publication Date Title
Rao et al. Carbon-based nanomaterials: Synthesis and prospective applications
Gong et al. Electrochemistry at carbon nanotube electrodes: Is the nanotube tip more active than the sidewall?
Bracamonte et al. H2O2 sensing enhancement by mutual integration of single walled carbon nanohorns with metal oxide catalysts: the CeO2 case
Zhang et al. Selective response of dopamine in the presence of ascorbic acid at multi-walled carbon nanotube modified gold electrode
JP2009132604A (en) Method for processing carbon nanotube, carbon nanotube and carbon nanotube device
Vairavapandian et al. Preparation and modification of carbon nanotubes: Review of recent advances and applications in catalysis and sensing
EP2305601B1 (en) Nanotube-nanohorn composite and process for production thereof
JP2006342011A (en) Carbon nanotube-carbon fiber composite and method for producing the same
Hong et al. Catalase immobilized on a functionalized multi-walled carbon nanotubes–gold nanocomposite as a highly sensitive bio-sensing system for detection of hydrogen peroxide
JP2006198570A (en) Production method for electrode catalyst
Xu et al. Selectively attaching Pt-nano-clusters to the open ends and defect sites on carbon nanotubes for electrochemical catalysis
Prosini et al. Electrochemical studies of hydrogen evolution, storage and oxidation on carbon nanotube electrodes
JP2002263496A (en) Catalyst composition, manufacturing method thereof and method of manufacturing carbon nanofiber
US9079775B2 (en) Method for separating nanomaterials
Li-Pook-Than et al. Type-and species-selective air etching of single-walled carbon nanotubes tracked with in situ Raman spectroscopy
JP3800093B2 (en) Carbon nanotube purification method
Qu et al. Assembly of polyoxometalates on carbon nanotubes paste electrode and its catalytic behaviors
Ji et al. Modification of electron structure on the semiconducting single-walled carbon nanotubes for effectively electrosensing guanine and adenine
Malara et al. Origin of the different behavior of some platinum decorated nanocarbons towards the electrochemical oxidation of hydrogen peroxide
Wang et al. Aligned open-ended carbon nanotube membranes for direct electrochemistry applications
Varshoy et al. Effect of pH on enhancement of hydrogen storage capacity in carbon nanotubes on a copper substrate
US7335290B2 (en) Processing method for nano-size substance
Szroeder et al. The role of band structure in electron transfer kinetics in low‐dimensional carbon
KR101087829B1 (en) Method for forming carbon pattern using electrochemical reaction
JP2009132605A (en) Method for processing carbon nanotube, carbon nanotube and carbon nanotube device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060417

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees