JP2006342011A - Carbon nanotube-carbon fiber composite and method for producing the same - Google Patents

Carbon nanotube-carbon fiber composite and method for producing the same Download PDF

Info

Publication number
JP2006342011A
JP2006342011A JP2005167905A JP2005167905A JP2006342011A JP 2006342011 A JP2006342011 A JP 2006342011A JP 2005167905 A JP2005167905 A JP 2005167905A JP 2005167905 A JP2005167905 A JP 2005167905A JP 2006342011 A JP2006342011 A JP 2006342011A
Authority
JP
Japan
Prior art keywords
carbon fiber
carbon
carbon nanotube
fiber composite
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005167905A
Other languages
Japanese (ja)
Inventor
Osamu Shiino
修 椎野
Kenji Sato
研二 佐藤
Yoshinori Iwabuchi
芳典 岩淵
Takeshi Oba
丈司 大場
Shinichi Toyosawa
真一 豊澤
Masahito Yoshikawa
雅人 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2005167905A priority Critical patent/JP2006342011A/en
Publication of JP2006342011A publication Critical patent/JP2006342011A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon nanotube-based new material having a large surface area and high hydrogen absorption capability. <P>SOLUTION: The method for producing a carbon nanotube-carbon fiber composite comprises the steps of: (i) polymerizing an aromatic compound to form a fibril polymer; (ii) firing the fibril polymer to form a three-dimensionally continuous carbon fiber 2; (iii) supporting a metal on the three-dimensionally continuous carbon fiber 2; and (iv) forming a carbon nanotube 4 on the three-dimensionally continuous carbon fiber 2 on which the metal is supported. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、カーボンナノチューブ−炭素繊維複合体の製造方法及び該方法で得られたカーボンナノチューブ−炭素繊維複合体、並びに該複合体を用いた水素吸蔵体に関し、特に高い表面積を有し、水素吸蔵能に優れたカーボンナノチューブ−炭素繊維複合体に関するものである。   The present invention relates to a method of producing a carbon nanotube-carbon fiber composite, a carbon nanotube-carbon fiber composite obtained by the method, and a hydrogen storage body using the composite, and particularly has a high surface area and has a hydrogen storage capacity. The present invention relates to a carbon nanotube-carbon fiber composite having excellent performance.

昨今、発電効率が高く、環境への負荷が小さい電池として、燃料電池が注目を集めており、広く研究開発が行われている。そして、燃料電池の普及のために、軽量で水素吸蔵能の高い水素吸蔵体が求めらており、かかる水素吸蔵体としてカーボンナノチューブが有望視されている。   In recent years, fuel cells have attracted attention as a battery with high power generation efficiency and a low environmental load, and extensive research and development has been conducted. For the widespread use of fuel cells, there is a demand for a lightweight and high hydrogen storage capacity hydrogen storage body, and carbon nanotubes are promising as such a hydrogen storage body.

上記カーボンナノチューブは、ナノメートルオーダーのチューブ状の形態を有しており、該チューブの内部又は各カーボンナノチューブの間に水素を吸着・吸蔵することができる。そのため、カーボンナノチューブを水素吸蔵体として使用する場合は、カーボンナノチューブの表面積を拡大することで、水素吸蔵量を増大させることが可能となる。   The carbon nanotube has a tubular shape in the order of nanometers, and can adsorb and occlude hydrogen inside the tube or between the carbon nanotubes. Therefore, when carbon nanotubes are used as a hydrogen storage material, the hydrogen storage amount can be increased by increasing the surface area of the carbon nanotubes.

ところで、上記カーボンナノチューブは、例えば、真空中で加熱した平坦な基板の表面にカーボンナノチューブの原料ガスを供給し、CVD法等により基板の表面にカーボンナノチューブを成長させる等して合成される。   The carbon nanotubes are synthesized, for example, by supplying a carbon nanotube source gas to the surface of a flat substrate heated in a vacuum and growing the carbon nanotubes on the surface of the substrate by a CVD method or the like.

しかしながら、従来の方法でカーボンナノチューブを平板上で合成した場合、得られるカーボンナノチューブの表面積は、使用する平板の面積に比例する傾向がある。そのため、従来の方法では、カーボンナノチューブの表面積を大幅に向上させることができず、水素吸蔵能に限界があった。   However, when carbon nanotubes are synthesized on a flat plate by a conventional method, the surface area of the obtained carbon nanotubes tends to be proportional to the area of the flat plate used. Therefore, in the conventional method, the surface area of the carbon nanotube cannot be significantly improved, and the hydrogen storage capacity is limited.

「応用物理」,第71巻,第3号(2002年3月号)"Applied Physics", Vol. 71, No. 3 (March 2002)

そこで、本発明の目的は、上記従来技術の問題を解決し、高い表面積及び水素吸蔵能を有するカーボンナノチューブ系の新規材料及びその製造方法を提供することにある。   Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art and provide a novel carbon nanotube-based material having a high surface area and hydrogen storage capacity and a method for producing the same.

本発明者らは、上記目的を達成するために鋭意検討した結果、網目状の微細構造を有する3次元連続状の炭素繊維上にカーボンナノチューブを成長させることで、3次元連続状の炭素繊維よりも更に微細な構造を有するカーボンナノチューブが炭素繊維上に形成され、カーボンナノチューブの表面積が大幅に増大し、水素吸蔵量が大幅に増加することを見出し、本発明を完成させるに至った。   As a result of intensive studies to achieve the above-described object, the present inventors have grown carbon nanotubes on a three-dimensional continuous carbon fiber having a network-like microstructure, thereby making it possible to produce a carbon nanotube from a three-dimensional continuous carbon fiber. Furthermore, it has been found that carbon nanotubes having a finer structure are formed on the carbon fiber, the surface area of the carbon nanotubes is greatly increased, and the hydrogen storage capacity is greatly increased, and the present invention has been completed.

即ち、本発明のカーボンナノチューブ−炭素繊維複合体の製造方法は、
(i)芳香族化合物を重合させてフィブリル状ポリマーを生成させる工程と、
(ii)前記フィブリル状ポリマーを焼成して3次元連続状の炭素繊維を生成させる工程と、
(iii)前記3次元連続状の炭素繊維に金属を担持する工程と、
(iv)前記金属が担持された3次元連続状の炭素繊維上にカーボンナノチューブを生成させる工程と
を含むことを特徴とする。
That is, the method for producing the carbon nanotube-carbon fiber composite of the present invention includes:
(i) a step of polymerizing an aromatic compound to form a fibrillated polymer;
(ii) firing the fibrillated polymer to form a three-dimensional continuous carbon fiber;
(iii) supporting a metal on the three-dimensional continuous carbon fiber;
(iv) forming a carbon nanotube on a three-dimensional continuous carbon fiber on which the metal is supported.

本発明のカーボンナノチューブ−炭素繊維複合体の製造方法の好適例においては、前記(i)工程における重合が電解酸化重合である。   In a preferred example of the method for producing a carbon nanotube-carbon fiber composite of the present invention, the polymerization in the step (i) is electrolytic oxidation polymerization.

本発明のカーボンナノチューブ−炭素繊維複合体の製造方法の他の好適例においては、前記(i)工程における重合を基板上で行う。   In another preferred embodiment of the method for producing a carbon nanotube-carbon fiber composite of the present invention, the polymerization in the step (i) is performed on a substrate.

本発明のカーボンナノチューブ−炭素繊維複合体の製造方法の他の好適例においては、前記(i)工程で用いる芳香族化合物が、芳香族アミノ化合物及び複素環式化合物から選択される少なくとも一種の化合物を含む。ここで、該芳香族化合物としては、アニリン、ピロール、チオフェン及びそれらの誘導体が好ましい。   In another preferred embodiment of the method for producing a carbon nanotube-carbon fiber composite of the present invention, the aromatic compound used in the step (i) is at least one compound selected from aromatic amino compounds and heterocyclic compounds. including. Here, as the aromatic compound, aniline, pyrrole, thiophene and derivatives thereof are preferable.

本発明のカーボンナノチューブ−炭素繊維複合体の製造方法の他の好適例においては、前記(ii)工程における焼成を非酸化性雰囲気中で行う。   In another preferred embodiment of the method for producing a carbon nanotube-carbon fiber composite of the present invention, the firing in the step (ii) is performed in a non-oxidizing atmosphere.

本発明のカーボンナノチューブ−炭素繊維複合体の製造方法の他の好適例においては、前記(iii)工程における金属の担持をメッキ法又はスパッタ成膜法で行う。   In another preferred embodiment of the method for producing a carbon nanotube-carbon fiber composite of the present invention, the metal is supported in the step (iii) by a plating method or a sputtering film forming method.

本発明のカーボンナノチューブ−炭素繊維複合体の製造方法の他の好適例においては、前記(iii)工程で担持する金属がCo又はFeである。   In another preferred embodiment of the method for producing a carbon nanotube-carbon fiber composite of the present invention, the metal supported in the step (iii) is Co or Fe.

本発明のカーボンナノチューブ−炭素繊維複合体の製造方法の他の好適例においては、前記(iv)工程において、熱CVD法又はプラズマCVD法でカーボンナノチューブを生成させる。   In another preferred embodiment of the method for producing a carbon nanotube-carbon fiber composite of the present invention, in the step (iv), carbon nanotubes are generated by a thermal CVD method or a plasma CVD method.

また、本発明のカーボンナノチューブ−炭素繊維複合体は、上記の方法で製造されたものであることを特徴とし、水素吸蔵体として利用できる。   In addition, the carbon nanotube-carbon fiber composite of the present invention is manufactured by the above method and can be used as a hydrogen storage material.

本発明によれば、網目状の微細構造を有する3次元連続状の炭素繊維上にカーボンナノチューブを成長させることで、高い表面積を有するカーボンナノチューブ−炭素繊維複合体を製造することができる。また、得られたカーボンナノチューブ−炭素繊維複合体は、表面積が非常に高いため、水素吸蔵体として好適に利用することができる。   According to the present invention, a carbon nanotube-carbon fiber composite having a high surface area can be produced by growing carbon nanotubes on three-dimensional continuous carbon fibers having a network-like microstructure. Moreover, since the obtained carbon nanotube-carbon fiber composite has a very high surface area, it can be suitably used as a hydrogen storage material.

以下に、本発明を詳細に説明する。本発明のカーボンナノチューブ−炭素繊維複合体の製造方法は、(i)芳香族化合物を重合させてフィブリル状ポリマーを生成させる工程と、(ii)前記フィブリル状ポリマーを焼成して3次元連続状の炭素繊維を生成させる工程と、(iii)前記3次元連続状の炭素繊維に金属を担持する工程と、(iv)前記金属が担持された3次元連続状の炭素繊維上にカーボンナノチューブを生成させる工程とを含むことを特徴とする。   The present invention is described in detail below. The method for producing a carbon nanotube-carbon fiber composite of the present invention comprises (i) a step of polymerizing an aromatic compound to produce a fibril-like polymer, and (ii) firing the fibril-like polymer to form a three-dimensional continuous form. A step of generating carbon fibers, (iii) a step of supporting metal on the three-dimensional continuous carbon fiber, and (iv) generation of carbon nanotubes on the three-dimensional continuous carbon fiber supporting the metal. And a process.

本発明のカーボンナノチューブ−炭素繊維複合体の製造方法においては、(i)工程で、芳香族化合物を重合させてフィブリル状ポリマーを生成させる。該芳香族化合物の重合法としては、酸化重合法が好ましく、該酸化重合法としては、電解酸化重合法及び化学的酸化重合法が挙げられ、電解酸化重合法が特に好ましい。ここで、芳香族化合物としては、芳香族アミノ化合物、複素環式化合物を挙げることができ、芳香族アミノ化合物として、具体的には、アニリン及びアニリン誘導体が好まく、複素環式化合物として、具体的には、ピロール、チオフェン及びこれらの誘導体が好ましい。これら芳香族化合物は、一種単独で用いてもよいし、二種以上の混合物として用いてもよい。   In the method for producing a carbon nanotube-carbon fiber composite of the present invention, in step (i), an aromatic compound is polymerized to produce a fibrillated polymer. As a method for polymerizing the aromatic compound, an oxidative polymerization method is preferable. Examples of the oxidative polymerization method include an electrolytic oxidative polymerization method and a chemical oxidative polymerization method, and an electrolytic oxidative polymerization method is particularly preferable. Here, examples of the aromatic compound include an aromatic amino compound and a heterocyclic compound. Specifically, the aromatic amino compound is preferably aniline or an aniline derivative. Specifically, pyrrole, thiophene, and derivatives thereof are preferable. These aromatic compounds may be used alone or in a mixture of two or more.

上記フィブリル状ポリマーは、通常、直径が30nm〜数百nmであり、好ましくは40nm〜500nmであり、長さが0.5μm〜100mmで、好ましくは1μm〜10mmである。   The fibrillar polymer usually has a diameter of 30 nm to several hundreds of nm, preferably 40 nm to 500 nm, and a length of 0.5 μm to 100 mm, preferably 1 μm to 10 mm.

例えば、上記フィブリル状ポリマーを電解酸化重合法で製造する場合、原料の芳香族化合物と共に、酸を混在させることが好ましい。この場合、酸の負イオンがドーパントとして合成されるフィブリル状ポリマー中に取り込まれ、導電性に優れたフィブリル状ポリマーが得られ、このフィブリル状ポリマーを用いることにより最終的に得られる炭素繊維の導電性を向上させることができる。なお、重合の際に混在させる酸としては、特に限定されるものではなく、HBF4、H2SO4、HCl、HClO4等を例示することができ、該酸の濃度は、0.1〜3mol/Lの範囲が好ましく、0.5〜2.5mol/Lの範囲が更に好ましい。 For example, when the fibrillated polymer is produced by an electrolytic oxidation polymerization method, it is preferable to mix an acid together with the starting aromatic compound. In this case, the negative ion of the acid is taken into the fibril polymer synthesized as a dopant to obtain a fibril polymer excellent in conductivity, and the conductivity of the carbon fiber finally obtained by using this fibril polymer is obtained. Can be improved. The acid mixed in the polymerization is not particularly limited, and examples thereof include HBF 4 , H 2 SO 4 , HCl, HClO 4 , and the concentration of the acid is 0.1 to 3 mol / The range of L is preferable, and the range of 0.5 to 2.5 mol / L is more preferable.

上記電解酸化重合によりフィブリル状ポリマーを得る場合には、芳香族化合物を含む溶液中に、作用極及び対極を浸漬し、両極間に上記芳香族化合物の酸化電位以上の電圧を印加するか、または該芳香族化合物が重合するのに充分な電圧が確保できるような条件の電流を通電すればよく、これにより作用極上にフィブリル状ポリマーが生成する。ここで、作用極及び対極としては、ステンレススチール、白金、カーボン等の良導電性物質からなる板や多孔質材などを用いることができる。また、電解酸化重合における電流密度は、0.1〜1000mA/cm2の範囲が好ましく、0.2〜100mA/cm2の範囲が更に好ましく、芳香族化合物の電解溶液中の濃度は、0.05〜3mol/Lの範囲が好ましく、0.25〜1.5mol/Lの範囲が更に好ましい。なお、電解溶液には、上記成分に加え、pHを調製するために可溶性塩等を適宜添加してもよい。 When obtaining a fibrillated polymer by the electrolytic oxidation polymerization, the working electrode and the counter electrode are immersed in a solution containing the aromatic compound, and a voltage equal to or higher than the oxidation potential of the aromatic compound is applied between the two electrodes, or It is only necessary to pass a current under such a condition that a voltage sufficient to polymerize the aromatic compound can be secured, whereby a fibril polymer is formed on the working electrode. Here, as the working electrode and the counter electrode, a plate made of a highly conductive material such as stainless steel, platinum, or carbon, a porous material, or the like can be used. Also, the current density in the electrolytic oxidation polymerization is preferably in the range of 0.1~1000mA / cm 2, more preferably in the range of 0.2~100mA / cm 2, the concentration of the electrolytic solution of the aromatic compound, the 0.05 to 3 mol / L The range is preferable, and the range of 0.25 to 1.5 mol / L is more preferable. In addition to the above components, a soluble salt or the like may be appropriately added to the electrolytic solution in order to adjust the pH.

上記芳香族化合物の重合は、基板上で行うことが好ましい。ここで、基板としては、カーボンペーパー等が挙げられ、例えば、電解酸化重合法において、該基板を上記作用極として用いることで、基板上にフィブリル状ポリマーを生成させることができる。基板上で重合を行い、基板上にフィブリル状ポリマーを生成させた場合、後工程の作業が容易になる。   The polymerization of the aromatic compound is preferably performed on a substrate. Here, examples of the substrate include carbon paper. For example, in the electrolytic oxidation polymerization method, a fibrillated polymer can be generated on the substrate by using the substrate as the working electrode. When the polymerization is performed on the substrate and the fibrillated polymer is generated on the substrate, the work in the subsequent process becomes easy.

本発明の製造方法では、上記のようにして得られたフィブリル状ポリマーを水や有機溶剤等の溶媒で洗浄し、乾燥させて、次工程に用いることが好ましい。ここで、乾燥方法としては、特に制限されるものではないが、風乾、真空乾燥の他、流動床乾燥装置、気流乾燥機、スプレードライヤー等を使用した方法を例示することができる。   In the production method of the present invention, it is preferable that the fibrillated polymer obtained as described above is washed with a solvent such as water or an organic solvent, dried and used in the next step. Here, the drying method is not particularly limited, and examples thereof include a method using a fluidized bed drying device, an air dryer, a spray dryer, etc., in addition to air drying and vacuum drying.

本発明の製造方法においては、(ii)工程で、前記フィブリル状ポリマーを焼成して3次元連続状の炭素繊維を生成させる。ここで、フィブリル状ポリマーの焼成は、非酸化性雰囲気中行うことが好ましい。非酸化性雰囲気としては、窒素雰囲気、アルゴン雰囲気、ヘリウム雰囲気等を挙げることができ、場合によっては水素雰囲気とすることもできる。なお、非酸化性雰囲気は、フィブリル状ポリマーが完全に消失されない限り、少量の酸素を含んでもよい。また、焼成条件としては、特に限定されるものではなく、目的に応じて適宜設定すればよく、例えば、温度500〜3000℃、好ましくは600〜2800℃で、0.5〜6時間焼成することが好ましい。   In the production method of the present invention, in the step (ii), the fibrillar polymer is baked to produce a three-dimensional continuous carbon fiber. Here, the firing of the fibrillated polymer is preferably performed in a non-oxidizing atmosphere. Examples of the non-oxidizing atmosphere include a nitrogen atmosphere, an argon atmosphere, and a helium atmosphere. In some cases, a hydrogen atmosphere can also be used. The non-oxidizing atmosphere may contain a small amount of oxygen as long as the fibrillated polymer is not completely lost. The firing conditions are not particularly limited, and may be set as appropriate according to the purpose. For example, firing is preferably performed at a temperature of 500 to 3000 ° C., preferably 600 to 2800 ° C. for 0.5 to 6 hours. .

上記炭素繊維は、直径が30nm〜数百nm、好ましくは40nm〜500nmであり、長さが0.5μm〜100mm、好ましくは1μm〜10mmであり、表面抵抗が106〜10-2Ω、好ましくは104〜10-2Ωである。また、該炭素繊維は、残炭率が95〜30%、好ましくは90〜40%である。なお、上記のようにして得られる炭素繊維は、カーボン全体が3次元に連続した網目構造を有する。 The carbon fiber has a diameter of 30 nm to several hundred nm, preferably 40 nm to 500 nm, a length of 0.5 μm to 100 mm, preferably 1 μm to 10 mm, and a surface resistance of 10 6 to 10 −2 Ω, preferably 10 4 to 10 −2 Ω. The carbon fiber has a residual carbon ratio of 95 to 30%, preferably 90 to 40%. The carbon fiber obtained as described above has a network structure in which the entire carbon is three-dimensionally continuous.

本発明の製造方法においては、(iii)工程で、前記3次元連続状の炭素繊維に金属を担持する。ここで、上記金属の担持法としては、特に限定されるものではなく、例えば、含浸法、電気メッキ法(電解還元法)、無電解メッキ法、スパッタ成膜法等が挙げられる。ここで、担持する金属としては、カーボンナノチューブの生成反応に対して触媒作用を有するものであればよく、例えば、Co,Fe,Ni,Pt等が挙げられ、Co及びFeが好ましい。また、金属担持量は、特に限定されるものではなく、炭素繊維1gに対して0.001μg〜0.1mgの範囲が好ましい。   In the production method of the present invention, in the step (iii), a metal is supported on the three-dimensional continuous carbon fiber. Here, the method for supporting the metal is not particularly limited, and examples thereof include an impregnation method, an electroplating method (electrolytic reduction method), an electroless plating method, and a sputtering film forming method. Here, the supported metal is not particularly limited as long as it has a catalytic action for the carbon nanotube formation reaction, and examples thereof include Co, Fe, Ni, Pt, and the like, and Co and Fe are preferable. The amount of metal supported is not particularly limited, and is preferably in the range of 0.001 μg to 0.1 mg with respect to 1 g of carbon fiber.

本発明の製造方法においては、(iv)工程で、前記金属が担持された3次元連続状の炭素繊維上にカーボンナノチューブ(CNT)を生成させる。ここで、カーボンナノチューブの成長方法としては、熱CVD法及びプラズマCVD法が好ましい。   In the production method of the present invention, in the step (iv), carbon nanotubes (CNT) are generated on the three-dimensional continuous carbon fiber on which the metal is supported. Here, as a carbon nanotube growth method, a thermal CVD method and a plasma CVD method are preferable.

例えば、熱CVD法でカーボンナノチューブを成長させる場合は、上記金属が担持された炭素繊維を反応器に仕込み、所望の温度下で、炭素源となる炭化水素ガスとキャリアガスとの混合ガスを反応器に流通させればよい。ここで、炭化水素ガスとしては、メタンガス、アセチレンガス等が挙げられ、キャリアガスとしては、ヘリウムガス、アルゴンガス、窒素ガス等が挙げられる。また、反応器の温度は、特に限定されるものではないが、500〜1000℃程度が好ましい。   For example, when carbon nanotubes are grown by thermal CVD, carbon fibers carrying the above metals are charged into a reactor, and a mixture of a hydrocarbon gas serving as a carbon source and a carrier gas is reacted at a desired temperature. It can be distributed to the vessel. Here, examples of the hydrocarbon gas include methane gas and acetylene gas, and examples of the carrier gas include helium gas, argon gas, and nitrogen gas. The temperature of the reactor is not particularly limited, but is preferably about 500 to 1000 ° C.

上記のようにして炭素繊維上に形成されたカーボンナノチューブ(CNT)は、炭素原子が筒状に結合した巨大分子であり、高い導電性を有する。通常のグラファイトは、蜂の巣状に結合した炭素原子が平面状に広がった層(グラフェンシート)が積み重なってできているが、CNTはグラフェンシートが円筒状に丸まった構造をしている。なお、グラフェンシート1層が筒状になったものを単層CNT(SWNT)、2層以上が同心円状に筒状になったものを多層CNT(MWNT)と呼ぶが、上記カーボンナノチューブは、SWNT、MWNTのいずれでもよい。また、炭素繊維上に形成されたカーボンナノチューブの直径は、特に制限されず、通常0.7nm〜30nmの範囲であり、長さは通常3nm〜3μmの範囲である。   Carbon nanotubes (CNT) formed on carbon fibers as described above are macromolecules in which carbon atoms are bonded in a cylindrical shape, and have high conductivity. Ordinary graphite is formed by stacking layers (graphene sheets) in which carbon atoms bonded in a honeycomb shape spread in a plane, but CNT has a structure in which graphene sheets are rounded into a cylindrical shape. A graphene sheet having one cylindrical shape is called single-walled CNT (SWNT), and two or more layers made concentrically cylindrical are called multi-walled CNT (MWNT). , MWNT may be used. The diameter of the carbon nanotube formed on the carbon fiber is not particularly limited, and is usually in the range of 0.7 nm to 30 nm, and the length is usually in the range of 3 nm to 3 μm.

また、上記のようにして得られたカーボンナノチューブ−炭素繊維複合体のカーボンナノチューブは、端部が閉じた構造を有するため、適宜、端部を破壊することで、チューブ内にも水素を吸着させることが可能となる。ここで、カーボンナノチューブの端部の破壊方法としては、特に制限は無く、硝酸と塩酸の混合溶液で化学的に処理する方法や、レーザー光を照射する方法等が挙げられる。   Moreover, since the carbon nanotube of the carbon nanotube-carbon fiber composite obtained as described above has a structure in which the end is closed, hydrogen is adsorbed in the tube by appropriately breaking the end. It becomes possible. Here, there is no restriction | limiting in particular as the destruction method of the edge part of a carbon nanotube, The method of chemically processing with the mixed solution of nitric acid and hydrochloric acid, the method of irradiating a laser beam, etc. are mentioned.

本発明のカーボンナノチューブ−炭素繊維複合体は、上記の方法で製造されたことを特徴とし、水素吸蔵体として好適に利用できる。また、該水素吸蔵体は、燃料電池等種々の用途に使用することができる。   The carbon nanotube-carbon fiber composite of the present invention is characterized by being produced by the above method, and can be suitably used as a hydrogen storage material. Moreover, this hydrogen storage body can be used for various uses, such as a fuel cell.

次に、本発明のカーボンナノチューブ−炭素繊維複合体の構造を図1を参照しながら詳細に説明する。図1の(a)は、本発明のカーボンナノチューブ−炭素繊維複合体の一例の模式図であり、図1の(b)は、図1の(a)中のA部分の拡大図である。図1の(a)に示すカーボンナノチューブ−炭素繊維複合体1は、3次元連続状で網目状の構造を有する。該カーボンナノチューブ−炭素繊維複合体1は、図1の(b)に示すように、3次元連続状の炭素繊維2の表面に金属触媒層3が形成されており、該金属触媒層3の表面からカーボンナノチューブ4が成長している。該カーボンナノチューブ4は、カーボンナノチューブ同士が絡み合った構造を有しており、3次元連続状の炭素繊維の網目構造よりも更に微細な網目構造を形成している。そのため、本発明のカーボンナノチューブ−炭素繊維複合体は、表面積が非常に広く、水素を多量に吸着することができる。   Next, the structure of the carbon nanotube-carbon fiber composite of the present invention will be described in detail with reference to FIG. FIG. 1A is a schematic view of an example of the carbon nanotube-carbon fiber composite of the present invention, and FIG. 1B is an enlarged view of a portion A in FIG. The carbon nanotube-carbon fiber composite 1 shown in FIG. 1A has a three-dimensional continuous network structure. As shown in FIG. 1B, the carbon nanotube-carbon fiber composite 1 has a metal catalyst layer 3 formed on the surface of a three-dimensional continuous carbon fiber 2, and the surface of the metal catalyst layer 3. From this, the carbon nanotubes 4 are growing. The carbon nanotube 4 has a structure in which carbon nanotubes are entangled with each other, and forms a finer network structure than the network structure of a three-dimensional continuous carbon fiber. Therefore, the carbon nanotube-carbon fiber composite of the present invention has a very large surface area and can adsorb a large amount of hydrogen.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

(実施例1)
まず、網目構造を有する炭素繊維膜を作製した。具体的には、アニリン 0.5mol/Lと塩酸 1.0mol/Lとを含む水溶液中で、電極を3Vで10分の条件で電解重合させて、電極上にフィブリル状のポリアニリン膜を作製し、得られたポリアニリン膜を800℃で1時間焼成して、炭素繊維の膜を得た。得られた炭素繊維膜をSEMで観察したところ、直径が約0.2μmの3次元連続状の網目構造を形成している様子が確認された。なお、炭素繊維膜の厚さは、約10μmであった。
Example 1
First, a carbon fiber film having a network structure was produced. Specifically, an electrode is electropolymerized in an aqueous solution containing aniline 0.5 mol / L and hydrochloric acid 1.0 mol / L at 3 V for 10 minutes to produce a fibrillar polyaniline film on the electrode. The obtained polyaniline film was baked at 800 ° C. for 1 hour to obtain a carbon fiber film. When the obtained carbon fiber membrane was observed with an SEM, it was confirmed that a three-dimensional continuous network structure having a diameter of about 0.2 μm was formed. The carbon fiber membrane had a thickness of about 10 μm.

次に、無電解メッキ法で炭素繊維膜上にCoを担持した。具体的には、1.0mol/Lの塩化コバルト水溶液中に炭素繊維膜を含浸させ、更に、水素気流中、300℃で焼成して、炭素繊維膜の炭素繊維上にCoの膜を形成した。   Next, Co was supported on the carbon fiber film by an electroless plating method. Specifically, a carbon fiber film was impregnated in a 1.0 mol / L cobalt chloride aqueous solution, and further fired at 300 ° C. in a hydrogen stream to form a Co film on the carbon fibers of the carbon fiber film.

次に、カーボンナノチューブを熱CVD法で成長させた。具体的には、Coが担持された炭素繊維膜を管状炉に挿入し、600℃に熱した。管状炉に、15sccmのメタンガスと100sccmのHeガスとの混合ガスを10分間供給し、炭素繊維上にカーボンナノチューブを成長させた。生成物をSEMで観察したところ、炭素繊維膜の網目構造の上に更に微細で絡み合った糸状の構造体が一面に確認された。この絡み合った糸状の構造体は、カーボンナノチューブである。   Next, carbon nanotubes were grown by a thermal CVD method. Specifically, a carbon fiber membrane carrying Co was inserted into a tubular furnace and heated to 600 ° C. A mixed gas of 15 sccm methane gas and 100 sccm He gas was supplied to the tubular furnace for 10 minutes to grow carbon nanotubes on the carbon fiber. When the product was observed with an SEM, a finer and more intertwined thread-like structure was confirmed on one side of the network structure of the carbon fiber membrane. This intertwined thread-like structure is a carbon nanotube.

(比較例1)
石英ガラス上にCo膜をスパッタ法で形成した。該Co膜の厚さは50nmである。該Co膜の上に、実施例1と同様に熱CVD法によってカーボンナノチューブを成長させた。生成物をSEMで観察したところ、カーボンナノチューブの束が石英ガラスと直角方向に整列して成長している様子が確認された。
(Comparative Example 1)
A Co film was formed on quartz glass by sputtering. The thickness of the Co film is 50 nm. Carbon nanotubes were grown on the Co film by the thermal CVD method as in Example 1. When the product was observed with an SEM, it was confirmed that a bundle of carbon nanotubes was grown in a direction perpendicular to the quartz glass.

<水素吸蔵量測定>
まず、上記実施例及び比較例で得られた生成物のカーボンナノチューブに対して、硝酸と塩酸を用いた酸処理によってチューブのキャップを削除した。次に、ユアサアイオニクス社製吸着量測定装置を用いて水素吸着量を測定したところ、比較例1の生成物の水素吸着量が0.4wt%であるのに対し、実施例1の生成物は、水素吸着量が3.1wt%と、水素吸着量が大幅に増加していることが確認された。
<Measurement of hydrogen storage amount>
First, the caps of the tubes were removed by acid treatment using nitric acid and hydrochloric acid on the product carbon nanotubes obtained in the above Examples and Comparative Examples. Next, when the amount of hydrogen adsorption was measured using an adsorption amount measuring device manufactured by Yuasa Ionics, the amount of hydrogen adsorption of the product of Comparative Example 1 was 0.4 wt%, whereas the product of Example 1 was As a result, it was confirmed that the hydrogen adsorption amount was significantly increased to 3.1 wt%.

本発明のカーボンナノチューブ−炭素繊維複合体の一例の模式図である。It is a schematic diagram of an example of the carbon nanotube-carbon fiber composite of the present invention.

符号の説明Explanation of symbols

1 カーボンナノチューブ−炭素繊維複合体
2 3次元連続状の炭素繊維
3 金属触媒層
4 カーボンナノチューブ
DESCRIPTION OF SYMBOLS 1 Carbon nanotube-carbon fiber composite 2 Three-dimensional continuous carbon fiber 3 Metal catalyst layer 4 Carbon nanotube

Claims (11)

(i)芳香族化合物を重合させてフィブリル状ポリマーを生成させる工程と、
(ii)前記フィブリル状ポリマーを焼成して3次元連続状の炭素繊維を生成させる工程と、
(iii)前記3次元連続状の炭素繊維に金属を担持する工程と、
(iv)前記金属が担持された3次元連続状の炭素繊維上にカーボンナノチューブを生成させる工程と
を含むカーボンナノチューブ−炭素繊維複合体の製造方法。
(i) a step of polymerizing an aromatic compound to form a fibrillated polymer;
(ii) firing the fibrillated polymer to form a three-dimensional continuous carbon fiber;
(iii) supporting a metal on the three-dimensional continuous carbon fiber;
(iv) producing a carbon nanotube on a three-dimensional continuous carbon fiber on which the metal is supported.
前記(i)工程における重合が電解酸化重合であることを特徴とする請求項1に記載のカーボンナノチューブ−炭素繊維複合体の製造方法。   The method for producing a carbon nanotube-carbon fiber composite according to claim 1, wherein the polymerization in the step (i) is electrolytic oxidation polymerization. 前記(i)工程における重合を基板上で行うことを特徴とする請求項1に記載のカーボンナノチューブ−炭素繊維複合体の製造方法。   The method for producing a carbon nanotube-carbon fiber composite according to claim 1, wherein the polymerization in the step (i) is performed on a substrate. 前記(i)工程で用いる芳香族化合物が、芳香族アミノ化合物及び複素環式化合物から選択された少なくとも一種の化合物を含むことを特徴とする請求項1に記載のカーボンナノチューブ−炭素繊維複合体の製造方法。   The carbon nanotube-carbon fiber composite according to claim 1, wherein the aromatic compound used in the step (i) includes at least one compound selected from an aromatic amino compound and a heterocyclic compound. Production method. 前記芳香族化合物が、アニリン、ピロール、チオフェン及びそれらの誘導体からなる群から選択された少なくとも一種の化合物であることを特徴とする請求項4に記載のカーボンナノチューブ−炭素繊維複合体の製造方法。   The method for producing a carbon nanotube-carbon fiber composite according to claim 4, wherein the aromatic compound is at least one compound selected from the group consisting of aniline, pyrrole, thiophene and derivatives thereof. 前記(ii)工程における焼成を非酸化性雰囲気中で行うことを特徴とする請求項1に記載のカーボンナノチューブ−炭素繊維複合体の製造方法。   The method for producing a carbon nanotube-carbon fiber composite according to claim 1, wherein the firing in the step (ii) is performed in a non-oxidizing atmosphere. 前記(iii)工程における金属の担持をメッキ法又はスパッタ成膜法で行うことを特徴とする請求項1に記載のカーボンナノチューブ−炭素繊維複合体の製造方法。   The method for producing a carbon nanotube-carbon fiber composite according to claim 1, wherein the metal is supported in the step (iii) by a plating method or a sputtering film forming method. 前記(iii)工程で担持する金属がCo又はFeであることを特徴とする請求項1に記載のカーボンナノチューブ−炭素繊維複合体の製造方法。   2. The method for producing a carbon nanotube-carbon fiber composite according to claim 1, wherein the metal supported in the step (iii) is Co or Fe. 前記(iv)工程において、熱CVD法又はプラズマCVD法でカーボンナノチューブを生成させることを特徴とする請求項1に記載のカーボンナノチューブ−炭素繊維複合体の製造方法。   2. The method for producing a carbon nanotube-carbon fiber composite according to claim 1, wherein in the step (iv), carbon nanotubes are generated by a thermal CVD method or a plasma CVD method. 請求項1〜10のいずれかに記載の方法で製造されたカーボンナノチューブ−炭素繊維複合体。   A carbon nanotube-carbon fiber composite produced by the method according to claim 1. 請求項10に記載のカーボンナノチューブ−炭素繊維複合体からなる水素吸蔵体。   The hydrogen storage body which consists of a carbon nanotube-carbon fiber composite_body | complex of Claim 10.
JP2005167905A 2005-06-08 2005-06-08 Carbon nanotube-carbon fiber composite and method for producing the same Withdrawn JP2006342011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005167905A JP2006342011A (en) 2005-06-08 2005-06-08 Carbon nanotube-carbon fiber composite and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005167905A JP2006342011A (en) 2005-06-08 2005-06-08 Carbon nanotube-carbon fiber composite and method for producing the same

Publications (1)

Publication Number Publication Date
JP2006342011A true JP2006342011A (en) 2006-12-21

Family

ID=37639252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005167905A Withdrawn JP2006342011A (en) 2005-06-08 2005-06-08 Carbon nanotube-carbon fiber composite and method for producing the same

Country Status (1)

Country Link
JP (1) JP2006342011A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009067663A (en) * 2007-09-18 2009-04-02 Tokyo Institute Of Technology Method of growing carbon nanotube on carbon fiber sheet and carbon nanotube emitter
JP2009167084A (en) * 2008-01-16 2009-07-30 Inha-Industry Partnership Inst Method for producing porous carbon nanofiber composite produced by electroplating transition metal for hydrogen storage
JP2010531934A (en) * 2007-01-03 2010-09-30 ロッキード マーティン コーポレーション Fibers leached with carbon nanotubes and methods for producing the same
JP2011255314A (en) * 2010-06-09 2011-12-22 Hiroshima Univ Hydrogen storage material and method for producing the same
US8580342B2 (en) 2009-02-27 2013-11-12 Applied Nanostructured Solutions, Llc Low temperature CNT growth using gas-preheat method
US8709539B2 (en) 2009-02-17 2014-04-29 Meijo University Process and apparatus for producing composite material that includes carbon nanotubes
US8784937B2 (en) 2010-09-14 2014-07-22 Applied Nanostructured Solutions, Llc Glass substrates having carbon nanotubes grown thereon and methods for production thereof
US8815341B2 (en) 2010-09-22 2014-08-26 Applied Nanostructured Solutions, Llc Carbon fiber substrates having carbon nanotubes grown thereon and processes for production thereof
US8951631B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused metal fiber materials and process therefor
US8951632B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused carbon fiber materials and process therefor
US8969225B2 (en) 2009-08-03 2015-03-03 Applied Nano Structured Soultions, LLC Incorporation of nanoparticles in composite fibers
US9005755B2 (en) 2007-01-03 2015-04-14 Applied Nanostructured Solutions, Llc CNS-infused carbon nanomaterials and process therefor
WO2016084842A1 (en) * 2014-11-25 2016-06-02 学校法人同志社 Carbon-fiber-reinforced plastic, method for producing carbon fibers, and method for producing carbon-fiber-reinforced plastic
US10138128B2 (en) 2009-03-03 2018-11-27 Applied Nanostructured Solutions, Llc System and method for surface treatment and barrier coating of fibers for in situ CNT growth
CN110044463A (en) * 2019-04-28 2019-07-23 陕西师范大学 A kind of sensing arrangement based on Fibre Optical Sensor

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015110859A (en) * 2007-01-03 2015-06-18 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニーApplied Nanostructuredsolutions, Llc Composition containing carbon nanotube-infused fiber
JP2010531934A (en) * 2007-01-03 2010-09-30 ロッキード マーティン コーポレーション Fibers leached with carbon nanotubes and methods for producing the same
US8951632B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused carbon fiber materials and process therefor
US8951631B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused metal fiber materials and process therefor
US9573812B2 (en) 2007-01-03 2017-02-21 Applied Nanostructured Solutions, Llc CNT-infused metal fiber materials and process therefor
US9574300B2 (en) 2007-01-03 2017-02-21 Applied Nanostructured Solutions, Llc CNT-infused carbon fiber materials and process therefor
US9005755B2 (en) 2007-01-03 2015-04-14 Applied Nanostructured Solutions, Llc CNS-infused carbon nanomaterials and process therefor
JP2009067663A (en) * 2007-09-18 2009-04-02 Tokyo Institute Of Technology Method of growing carbon nanotube on carbon fiber sheet and carbon nanotube emitter
JP2009167084A (en) * 2008-01-16 2009-07-30 Inha-Industry Partnership Inst Method for producing porous carbon nanofiber composite produced by electroplating transition metal for hydrogen storage
US8709539B2 (en) 2009-02-17 2014-04-29 Meijo University Process and apparatus for producing composite material that includes carbon nanotubes
US8580342B2 (en) 2009-02-27 2013-11-12 Applied Nanostructured Solutions, Llc Low temperature CNT growth using gas-preheat method
US10138128B2 (en) 2009-03-03 2018-11-27 Applied Nanostructured Solutions, Llc System and method for surface treatment and barrier coating of fibers for in situ CNT growth
US8969225B2 (en) 2009-08-03 2015-03-03 Applied Nano Structured Soultions, LLC Incorporation of nanoparticles in composite fibers
JP2011255314A (en) * 2010-06-09 2011-12-22 Hiroshima Univ Hydrogen storage material and method for producing the same
US8784937B2 (en) 2010-09-14 2014-07-22 Applied Nanostructured Solutions, Llc Glass substrates having carbon nanotubes grown thereon and methods for production thereof
US8815341B2 (en) 2010-09-22 2014-08-26 Applied Nanostructured Solutions, Llc Carbon fiber substrates having carbon nanotubes grown thereon and processes for production thereof
WO2016084842A1 (en) * 2014-11-25 2016-06-02 学校法人同志社 Carbon-fiber-reinforced plastic, method for producing carbon fibers, and method for producing carbon-fiber-reinforced plastic
CN110044463A (en) * 2019-04-28 2019-07-23 陕西师范大学 A kind of sensing arrangement based on Fibre Optical Sensor

Similar Documents

Publication Publication Date Title
JP2006342011A (en) Carbon nanotube-carbon fiber composite and method for producing the same
CN107235472B (en) Porous vertical graphene nano wall array of N doping and the preparation method and application thereof
Endo et al. Large-scale production of carbon nanotubes and their applications
Mao et al. Nanocarbon-based electrochemical systems for sensing, electrocatalysis, and energy storage
Gooding Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing
Endo et al. Applications of carbon nanotubes in the twenty–first century
JP6289630B2 (en) Method for producing nitrogen-doped carbon nanohorn for oxygen reduction electrocatalyst
Janošević et al. Microporous conducting carbonized polyaniline nanorods: Synthesis, characterization and electrocatalytic properties
Gao et al. Chemical vapor-deposited carbon nanofibers on carbon fabric for supercapacitor electrode applications
Stoner et al. Selected topics on the synthesis, properties and applications of multiwalled carbon nanotubes
KR20080053470A (en) Carbon nanostructures manufactured from catalytic templating nanoparticles
De et al. Carbon nanotube as electrode materials for supercapacitors
JP5099300B2 (en) Nanocarbon material composite and method for producing the same
Rakhi Preparation and properties of manipulated carbon nanotube composites and applications
Xu et al. Synthesis of multiwall carbon nanotubes via an inert atmosphere absent autogenetic-pressure method for supercapacitor
Serban et al. Carbon nanohorns and their nanocomposites: Synthesis, properties and applications. A concise review
Wan et al. Nano-netlike carbon fibers decorated with highly dispersed CoSe2 nanoparticles as efficient hydrogen evolution electrocatalysts
Yan et al. Preparation of nitrogen-doped graphitic carboncages as electrocatalyst for oxygen reduction reaction
KR100726237B1 (en) Preparation of platinum nano catalyst supported on carbon nanotube by electrochemical deposition
Ghalkhani et al. Carbon nano-onions: Synthesis, characterization, and application
KR101576739B1 (en) Fabrication of supercapacitor electrode based on amorphous carbon coated Nickel oxide nanofibers using electrospinning, vapor deposition polymerization and heat treatment
Redkin et al. Simple technique of multiwalled carbon nanotubes growth on aluminum foil for supercapacitors
Wang et al. Three dimentional graphene-CNTs foam architectures for electrochemical capacitors
Bordjiba et al. Enhanced physical and electrochemical properties of nanostructured carbon nanotubes coated microfibrous carbon paper
Shariatinia Applications of carbon nanotubes

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080902