JP3798201B2 - 基板処理装置 - Google Patents

基板処理装置 Download PDF

Info

Publication number
JP3798201B2
JP3798201B2 JP30441299A JP30441299A JP3798201B2 JP 3798201 B2 JP3798201 B2 JP 3798201B2 JP 30441299 A JP30441299 A JP 30441299A JP 30441299 A JP30441299 A JP 30441299A JP 3798201 B2 JP3798201 B2 JP 3798201B2
Authority
JP
Japan
Prior art keywords
light
liquid
processing liquid
processing
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30441299A
Other languages
English (en)
Other versions
JP2001127034A (ja
Inventor
英治 奥野
籍文 麻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Screen Holdings Co Ltd
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd, Dainippon Screen Manufacturing Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP30441299A priority Critical patent/JP3798201B2/ja
Publication of JP2001127034A publication Critical patent/JP2001127034A/ja
Application granted granted Critical
Publication of JP3798201B2 publication Critical patent/JP3798201B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Weting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体ウエハ、液晶表示装置用ガラス基板、PDP(プラズマディスプレイパネル)用ガラス基板、あるいは、磁気ディスク用のガラス基板やセラミック基板などの各種の被処理基板に対して1枚ずつまたは複数枚一括して処理を施すための基板処理装置に関する。
【0002】
【従来の技術】
超LSI(大規模集積回路)の製造工程においては、たとえば、半導体ウエハ(以下、単に「ウエハ」という。)の表面を洗浄液を用いて洗浄する洗浄処理工程や、ウエハの表面をエッチング液を用いてエッチングするウエットエッチング処理工程などがある。これらの工程では、たとえば、スピンチャックに保持されて回転するウエハの表面や裏面に、純水や薬液などの処理液を供給するようにした基板処理装置が用いられる。
【0003】
このような基板処理装置においては、スピンチャック等の基板保持機構に保持されたウエハ表面にノズルから処理液を供給することによって、ウエハが洗浄またはエッチングされる。ノズルに供給すべき処理液は、処理液タンクから、所定の処理液パイプを介して導かれる。処理液の圧送のために、処理液パイプにはベローズポンプが介装されている。
【0004】
ここで、このベローズポンプの構造について、図6を用いて簡単に説明する。このベローズポンプ1は、たとえば、1つのベローズが伸縮することによって液体を圧送する構成のシングルベローズ型のベローズポンプである。ベローズポンプ1は、シリンダ室1A内のエア室ACへの駆動エアの供給によって、ベローズ1Bを収縮させ、これにより、処理液パイプ2Aを介してノズルに向けて処理液を圧送する一方、ベローズ1Bに関連して設けられたばね(図示せず)の反力によってベローズ1Bを伸長させ、その際に、処理液パイプ2Bを介して処理液タンクからの処理液をベローズ1Bの内部の処理液室RCに取り込むように構成されている。なお、ベローズ1Bを収縮させるときには、三方弁Vの切替えによってエア室ACには駆動エアが供給され、エア室AC内部は大気圧以上の気圧となっており、ベローズ1Bを伸長させるときには、三方弁Vの切替えによってエア室ACは大気開放されて、エア室AC内部はほぼ大気圧の状態となっている。
【0005】
また、ノズル側の処理液パイプ2Aの途中には、処理液室RCから離れる方向にのみ処理液を流通させる逆止弁RV1が介装され、処理液供給タンク側の処理液パイプ2Bの途中には、処理液室RCへ向かう方向にのみ処理液を流通させる逆止弁RV2が介装されている。これら逆止弁RV1およびRV2の作用により、ベローズ1Bが伸縮を繰り返せば、処理液タンクからノズルに向けて処理液を圧送することができるようになっている。
【0006】
ここで、ベローズポンプ1のベローズ1Bは、たとえば、フッ素樹脂製であり、耐用年数が1ないし3年である。したがって、ベローズ1Bは、使用期間長が耐用年数に達する以前に定期的に交換されるのが通常である。しかし、場合によっては、周囲の温度環境、処理液による腐食、あるいは処理液中の異物等が原因で、耐用年数以前にベローズが破損する場合もあり、その交換時期を早急かつ正確に予測することが望まれる。
【0007】
一方、ベローズポンプ1のベローズ1Bが破損すると、ベローズ駆動用の駆動エアが処理液パイプ2Aに入り込んで、処理液中に大量の気泡が混入されることとなる。このような場合、処理液流量が通常時(ベローズ1Bの破損が無い時)の流量よりも減少して不安定になるため、ウエハWの洗浄処理またはエッチング処理にむらが生じてしまうことがある。また、駆動エア中の不純物等が処理液中に混入されるため、ウエハWが汚染されたり、基板処理装置自体が汚染されてしまうことがある。したがって、処理液への気泡の混入の原因となるベローズ1Bの破損を早急かつ正確に検知して、速やかにウエハWの処理を停止し、処理に不具合が生じたウエハWをその後の処理工程に送らないようにしなければならない。
【0008】
そこで、従来では、図6に示すような、ベローズポンプ1のエア室AC内の底部に設けられた電極3によって、ベローズ1Bの破損を検出していた。すなわち、ベローズ1Bが破損し、処理液室RC内の処理液がエア室ACに漏洩すると、エア室ACの底部に処理液が溜まるが、この溜まった処理液によって電極3が導通されたことを検知して、ベローズ1Bの破損を検出していた。
【0009】
【発明が解決しようとする課題】
しかし、従来のようにエア室AC内の電極3でベローズ1Bの破損を検出する場合には、ベローズ1Bの破損を早急かつ正確に検出することができない場合があるという重大な問題があった。
【0010】
たとえば、ベローズポンプ1が継続して運転している時には、エア室AC内への処理液の漏洩はおこりにくいので、ベローズ1Bの破損を早急かつ正確に検出することができない場合があった。すなわち、ベローズ1Bが収縮している時には、エア室AC内には高い圧力を持った駆動エアが供給されており、エア室AC内の圧力の方が処理液室RC内の圧力よりも高くなっているので、処理液室RC内からエア室AC内への処理液の漏洩は起こりにくい。また、ベローズ1Bが伸長している時には、処理液室RCは急激に体積が膨張して負圧となっており、エア室AC内の圧力(ほぼ大気圧)の方が処理液室RC内の圧力よりも高くなっているので、この時も、エア室AC内への処理液の漏洩は起こりにくい。
【0011】
また、たとえば、ベローズポンプ1の運転が停止している時であっても、ベローズ1Bが収縮していれば、ベローズ1Bの破損部分(クラック)が閉じられた状態となっているので、エア室AC内への処理液の漏洩は起こりにくい。
【0012】
したがって、エア室AC内へ処理液が漏洩し、ベローズポンプ1Bの破損を早急かつ確実に検出できるのは、ベローズポンプ1の運転が停止しており、かつベローズ1Bが伸長している状態の場合のみである。しかしながら、さらにこのような場合であっても、ベローズ1Bの破損によって漏洩する処理液の量が比較的少量である場合には、エア室AC内に漏れた処理液は、電極3に接触する前に湿度の低い駆動エアによってすぐに乾燥してしまい、ベローズ1Bの破損を検出することができない場合もある。
【0013】
一方、上述のようなベローズ1Bの破損等によって発生する処理液中の気泡を直接的に検出するのが好ましいと思われるが、そのような気泡の検出を早急かつ確実に行えるような検出機構は従来においては存在しなかった。すなわち、ストレートビーム式の光学式センサや静電容量センサなどの検出機構によって気泡を検出しようとしても、特に気泡の発生量が比較的少ない場合などに、気泡の検出が不安定でしばしば誤検出を生じていた。
【0014】
そこで、本発明の目的は、上述の技術的課題を解決し、処理液中の気泡を早急かつ確実に検出することで、基板の処理むらの発生および基板の汚染を未然に防止することができる基板処理装置を提供することである。また、本発明のもう一つの目的は、ベローズの破損を早急かつ確実に検出することで、基板の処理むらの発生および基板の汚染を未然に防止することができる基板処理装置を提供することである。
【0015】
【課題を解決するための手段】
上記の目的を達成するための請求項1記載の発明は、処理液を用いて基板を処理する基板処理装置において、処理液が内部を流通する処理液流通配管と、処理液流通配管の近傍に設けられ、少なくとも、処理液流通配管内の処理液の流れ方向に幅を持つ光を処理液流通配管に向けて発する投光部、および、処理液流通配管を挟んで投光部に対向する位置に設けられ、投光部から発せられて処理液流通配管を透過した処理液の流れ方向に幅を持つ光を受ける受光部を有し、処理液流通配管内の処理液に含まれる気泡を検出する光学式検出機構とを備え、投光部から発せられて処理液流通配管を透過し、受光部で受けられる光は、処理液の流れ方向の幅が処理液の流れ方向に直交する方向の幅よりも長い断面を持つ光であり、受光部により処理液中の気泡の発生量に応じた受光量が得られることを特徴とする基板処理装置である。
【0016】
この構成によれば、少なくとも、処理液の流れ方向(以下、液流れ方向という)に幅を持つ光を発する投光部と、この投光部から発せられて処理液流通配管を透過した上記液流れ方向に幅を持つ光を受ける受光部とを有する光学式検出機構によって、当該受光部において処理液中の気泡の発生量に応じた受光量が得られる。それにより、処理液流通配管内の気泡を早急かつ正確に検出できる。すなわち、光学式検出機構は、液流れ方向に広がる範囲で気泡を監視しているので、受光部での光のサンプリング間隔が比較的長かったとしても、液流れ方向に流れ去ろうとする気泡を見逃さずに確実に検出することができる。また、広い範囲で同時に多数の気泡を監視しているので、その検出結果は平均化されて安定した結果となる。
【0017】
また、処理液中の気泡の発生は、ベローズポンプのベローズの破損による場合のほか、処理液自体の発泡によって生じる場合があり、請求項1記載の発明はこのような場合にも広く適用可能である。なお、この処理液自体の発泡は、処理液の液圧低下に伴うキャビテーションや処理液に含まれる化学物質自体の発泡などが原因となって生じる。
【0018】
また、投光部から発せられて処理液流通配管を透過し、受光部で受けられる光は、処理液の流れ方向の幅が処理液の流れ方向に直交する方向の幅よりも長い断面を持つ光である。すなわち、この光は、断面が点であるような線状の光ではなく、処理液の流れ方向に沿って広がる幅を持つほぼ平板状の光(いわゆるフラットビーム)、長手方向が液流れ方向にほぼ一致する断面矩形状の光、および長径方向が液流れ方向にほぼ一致する断面楕円状の光等のうちいずれかの光であるのがよい。これによれば、所定の太さの処理液流通配管内を流通する処理液の流れ方向において、より広い範囲で気泡を捕捉できることから、気泡を見逃すことなく安定して検出できるので、気泡の検出精度が向上する。
【0019】
以上のことから、受光部により処理液中の気泡の発生量に応じた受光量が得られることにより処理液中の気泡を早急かつ確実に検出できる。それにより、処理液の流量が不安定となって基板の処理にむらが生じることを未然に防止でき、また、処理液中への不純物の混入による基板の汚染を未然に防止することができる。
【0020】
請求項2記載の発明のように、請求項1記載の発明において、投光部から発せられて処理液流通配管を透過し、受光部で受けられる光は、処理液の流れ方向に沿って広がる幅を持つほぼ平板状の光であるのがよい。これによれば、光の厚みが薄いので、処理液流通配管の内径が特に小さいような場合であっても、光を処理液流通配管の内径部分に対して無駄なく効率的に照射することができ、気泡の検出精度が向上する。
【0021】
請求項記載の発明は、処理液を用いて基板を処理する基板処理装置において、処理液が内部を流通する処理液流通配管と、処理液流通配管の近傍に設けられ、処理液流通配管に向けて超音波振動を発する発振部、および処理液流通配管を挟んで発振部に対向する位置に設けられ、発振部から発せられて処理液流通配管を通過した超音波振動を受ける受振部を有し、処理液流通配管内の処理液に含まれる気泡を検出する超音波式検出機構とを備え、発振部および受振部は、それぞれ処理液流通配管中の液流れ方向にほぼ一致する長手方向を持つ長方形状の振動板からなり、受振部により処理液中の気泡の発生量に応じた受振電圧値が得られることを特徴とする基板処理装置である。
【0022】
この請求項記載の発明によると、請求項記載の発明と同様に、処理液中の気泡を早急かつ確実に検出することができる。超音波を用いて、受振部により得られる処理液中の気泡の発生量に応じた受振電圧値に基づいて気泡を検出しているので、処理液の色や透明度の影響を受けず、処理液が濃い色を呈しているものや不透明なものであっても適用できる。また、処理液流通配管の透明度も影響を受けないので、処理液流通配管が光を透過しない不透明のもの、たとえば不透明の樹脂配管や金属配管でも適用可能である。また、固形状やゲル状の異物が、処理液流通配管中を通過したり、あるいは処理液流通配管の内壁面に付着していたとしても、その異物を気泡と誤認して検出することがない。さらに、発振部および受振部が、それぞれ処理液流通配管中の液流れ方向にほぼ一致する長手方向を持つ長方形状の振動板からなり、上記受振部により処理液中の気泡の発生量に応じた受振電圧値が得られることにより、液流れ方向においてより広い範囲で気泡を補足でき、気泡の検出精度が向上する。
【0023】
また、本発明に係る基板処理装置においては、超音波式検出機構を、処理液の液圧低下に伴うキャビテーションや処理液に含まれる化学物質自体の発泡等が原因となって生じる処理液自体の発泡を検出するために用いることができる。この場合、処理液中の気泡を確実に検出できるので、処理液の流量が不安定となって、基板の洗浄やエッチングなどの処理にむらが生じることを未然に防止でき、また、処理液中への不純物の混入を抑えて、基板や基板処理装置自体の汚染を未然に防止することができる。
【0024】
また、請求項記載の発明のように、処理液流通配管の周囲に設けられ、処理液流通配管に接する液体を貯留する液体貯留室をさらに備え、上記発振部および受振部は、この液体貯留室を挟む位置に設けられるようにするのがよい。このようにすれば、液体貯留室内の液体は、超音波振動を効率よく伝達する性質を持つため、発振部からの超音波振動を受振部へと確実に伝達させることができ、気泡の検出をさらに確実に行い、ベローズの破損を正確に検出することができる。
【0025】
なお、請求項記載の発明においては、投光部から発せられる光が、液流れ方向に幅を持つ光以外の光をも含んでいてもよく、このような場合には、受光部において、この投光部からの光のうちの液流れ方向に幅を持つ光を選択して受けるようにすればよい。さらに、この投光部からの光の色は何でも良く、赤色光や緑色光であってもよく、また赤外光であってもよい。ただし、正確に気泡を検出するためには、処理液と同色の光を使用するのは避けたほうが好ましい。さらには、この投光部からの光は、LED光などの指向性の低い光であってもよいし、レーザー光などの指向性の高い光であってもよい。
【0026】
また、請求項1〜に記載の「処理液」とは、基板を処理するための液体であればなんでもよく、たとえば、基板の表面を洗浄あるいはエッチング処理するための純水、または薬液(たとえば、フッ酸、硫酸、塩酸、硝酸、酢酸、燐酸、クエン酸、アンモニア、または過酸化水素水などを含む溶液)などの液体であってもよい。あるいは、基板の表面に感光性のレジスト膜を形成するためのレジスト液や、基板表面に形成された感光性レジスト膜を剥離するための剥膜液であってもよい。
【0027】
【発明の実施の形態】
以下では、本発明の実施の形態を、添付図面を参照して詳細に説明する。
【0028】
図1は、この発明の第1の実施形態に係る基板処理装置の構成を示す概略図である。この基板処理装置では、スピンチャックSCに保持されて回転するウエハWにノズルNからフッ酸(HF)などの処理液を供給することによって、ウエハW表面に洗浄処理やエッチング処理が施される。ノズルNに供給すべき処理液は、処理液タンク10から液配管20を介して導かれる。処理液の圧送のために、液配管20にはベローズポンプ30が介装されている。さらに、液配管20には、処理液の流量を計測する流量計21、処理液中の異物を除去するためのフィルタ22、処理液の流量を調整するための流量調整弁23、および処理液の供給を開始/停止するためのエア弁24が介装されている。そして、エア弁24とノズルNとの間には、液配管20を通る処理液の圧力を検出するための圧力センサ25が設けられている。この圧力センサ25の出力を監視することにより、エア弁24による処理液供給の開始/停止の状況をモニタすることができる。
【0029】
液配管20において、フィルタ22と流量調整弁23との間(すなわち、ベローズポンプ30とノズルNとの間)の位置からは、エア弁24が閉成状態であるときに、処理液を処理液タンク10に帰還させるための循環用配管40が分岐している。この循環用配管40の途中部には、エア弁24が開成状態のときに閉成状態に制御され、エア弁24が閉成状態のときには開成状態に制御されるエア弁41が介装されている。循環用配管40にはまた、処理液タンク10に帰還される処理液の流量を調整するための流量調整弁42が介装されている。
【0030】
また、ベローズポンプ30と流量計21との間の液配管20には、処理液の温度を一定に保持するための温度調整手段としての熱交換器26が付属している。ここで、ベローズポンプ30は継続して運転されており、そのため、エア弁24が閉成されて処理液をノズルNから吐出しないときには、エア弁41が開成されて上記の循環用配管40を介して処理液タンク10に処理液が帰還される。これにより、処理液をノズルNから吐出しないときには、処理液を熱交換器26を通って循環させることができ、処理液タンク10から液配管20と循環用配管40との接続部分に至るまでの液配管20内において、処理液の温度を最適値に保持することができる。
【0031】
ここで、ベローズポンプ30は、従来の図6に示したシングルベローズ型のベローズポンプ1と同様のもの(ただし、必ずしも電極3を備える必要はない)が用いられていてもよいし、また、図2に示されるようなダブルベローズ型のベローズポンプ30を用いてもよい。このダブルベローズ型のベローズポンプ30は、図6に示したシングル型のベローズポンプ1を2つ組合せたような構成であって、それぞれのベローズを交互に駆動させることで脈動が少ない状態で処理液を圧送することのできるようになっている。
【0032】
図2を用いてベローズポンプ30の構成を詳しく説明すると、このベローズポンプ30は、それぞれシングル型のベローズポンプと同様の構成を持つ一対のベローズ部分33および34を有している。そして、ベローズポンプ30は、対向して配置された一対のシリンダ室33Aおよび34Aを有しており、各シリンダ室33A,34A内には、ベローズ33B,34Bがそれぞれ配置されている。シリンダ室33A,34Aの内部空間はそれぞれエア室AC1,AC2となっており、この一対のエア室AC1,AC2内には、電磁弁SVを介して駆動エアが交互に供給され、また、一対のエア室AC1,AC2内の空気は、電磁弁SVを介して交互に大気開放されるようになっている。すなわち、エア室AC1内に駆動エアが供給されるときには、エア室AC2内の駆動エアが大気開放され、エア室AC2内に駆動エアが供給されるときには、エア室AC1内の駆動エアが大気開放される。ベローズ33B,34Bの端部は、連結部材35(図2の2点鎖線で示す)によって連結されており、一方のベローズの伸長と他方のベローズの収縮とが同期するようになっている。
【0033】
ベローズ33B,34B内部の処理液室RC1,RC2は、処理液タンク10側の液配管20が接続されて処理液タンク10からの処理液が導かれる処理液流入路36,37にそれぞれ連通している。この処理液流入路36,37には、処理液タンク10への逆流を防止する逆止弁RV3,RV4がそれぞれ介装されている。また、処理液室RC1,RC2は、ノズルN側の液配管20が接続されてノズルNに向けて処理液を流出する処理液流出路38,39にそれぞれ連通している。この処理液流出路38,39には、ノズルN側への処理液の流出のみを許容する逆止弁RV5,RV6がそれぞれ介装されている。なお、液配管20と処理液流出路38,39との接続部分付近が流出口31となっており、液配管20と処理液流入路36,37との接続部分付近が、流入口32となっている。
【0034】
電磁弁SVは、たとえば4ポート・2ポジション型の電磁弁であり、シリンダ室33Aのエア室AC1内の空気を大気開放するとともに、シリンダ室34Aのエア室AC2に駆動エアを供給する第1位置(左位置:図示の位置)と、シリンダ室33Aのエア室AC1内に駆動エアを供給するとともに、シリンダ室34Aのエア室AC2内の空気を大気開放する第2位置(右位置)とをとることができる。この電磁弁SVには、図示しない駆動エア供給源から圧力調整弁などによって圧力制御された駆動エアが供給されるようになっている。
【0035】
以上のような構成により、ベローズポンプ30は、ベローズ33B,34Bを交互に伸縮させることで、処理液タンク10側の液配管20からノズルN側の液配管20へと脈動が少ない状態で処理液を送出することができるようになっている。
【0036】
次に、図1に示したように、液配管20のベローズポンプ30の流出口31近傍には、光学式センサ50が設けられており、液配管20中の処理液の気泡を検出できるようになっている。また、液配管20の少なくとも光学式センサ50が取付けられる部分は、光学式センサ50からの光を透過可能なように、透明(無色透明または有色透明)となっている。ちなみに、液配管20の内径は、たとえば6mm程度であり、比較的細い(小さい)ものである。
【0037】
ここで、この光学式センサ50の構成について、図3の斜視図を用いて簡単に説明する。この光学式センサ50は、液配管20の近傍に設けられ、液配管20に向けてこの液配管20内の処理液の流れ方向F(以下、液流れ方向Fという)に広がる幅を持つほぼ平板状の光Lを発する投光部51と、液配管20を挟んで投光部51に対向する位置に設けられ、投光部51から発せられて液配管20を透過したほぼ平板状の光Lを受ける受光部52と、投光部51から発せられる光Lを生成したり、受光部52で受けられる光Lの量をサンプリングしたりする光生成検出部53と備えている。また、この光学式センサ50には、光生成検出部53と投光部51とを接続する光ファイバ51fと、光生成検出部53と受光部52とを接続する光ファイバ52fとが設けられている。なお、液配管20はほぼ垂直に設置されており、また、液流れ方向Fは、この液配管20中において下から上へと向かう方向となっている。
【0038】
ここで、投光部51は、ほぼ長方形板状の部材からなっており、この投光部51の液配管20に対向する面には、このほぼ平板状の光Lを発射するスリット状の投光窓51aが設けられている。また、この投光部51の内部には、入光された光を分散して屈曲させて広い幅を持つほぼ平板状の光Lに変換するプリズムおよび反射鏡(図示せず)が設けられている。
【0039】
そして、受光部52は、ほぼ長方形板状の部材からなっており、この受光部52の液配管20に対向する面には、光Lを受けるスリット状の受光窓52aが設けられている。また、この受光部52の内部には、この受光窓52aで受けた光Lを集光して屈曲させるするプリズムおよび反射鏡(図示せず)が設けられている。
【0040】
これらの構成により、投光部51は、ほぼ平板状の光Lを発することができ、受光部52は、投光部51から発せられて液配管20を透過したほぼ平板状の光Lを受けることができるようになっている。なお、投光部51から発せられる光Lは、たとえば、比較的波長の長い赤色を呈している。
【0041】
一方、投光部51および受光部52の液配管20への取付けは、取付けベース54と取付けプレート55との間に、液配管20、投光部51、および受光部52を挟持することによって達成されている。たとえば、この挟持は、以下のようにして達成される。
【0042】
まず、投光部51および受光部52を、それぞれ取付けベース54の同一平面上の取付け面54a,54bに各々2本ずつの取付けネジ(図示せず)によって取付ける。なお、このとき、この各々2本ずつ(計4本)の取付けネジは、投光部51および受光部52の取付け穴M1,M2,M3,M4に挿通された上で、それぞれ、取付けベース54に形成されたメネジm1,m2,m3,m4にねじ込まれる。次に、液配管20を、取付けベース54の丸溝54cに嵌め合わせるとともに、取付けプレート55の丸溝55aに嵌め合わせた状態で、取付けプレート55を取付けベース54に4本の取付けネジ(図示せず)によって取付ける。なお、このとき、この4本の取付けネジは、取付けプレート55の取付け穴N1,N2,N3,N4に挿通された上で、それぞれ、取付けベース54に形成されたメネジn1,n2,n3,n4にねじ込まれる。また、このとき、液配管20は取付けベース54と取付けプレート55とに挟まれて、その直径方向に若干押し潰された状態で挟持されるようになっている。
【0043】
このようにして投光部51および受光部52を液配管20へ取付けることで、ほぼ平板状の光Lは、液配管20内の液流れ方向Fに沿って広がる幅を持つ光、言い換えれば、液配管20の長さ方向に沿って広がる幅を持つ光となっている。また、この取り付けにより、平板状の光Lは液配管20の中心軸Oを通過するようにされており、液配管20内の液流れ方向Fに直行する方向において、気泡の捕捉範囲をできるだけ大きくする工夫がなされている。ただし、必ずしも、平板状の光Lがこの中心軸Oを通過する必要は無く、液配管20の内径の範囲内を通過するようにすればよい。
【0044】
ここで、光生成検出部53は、光を生成して光ファイバ51fを経由させて投光部51へ送り出す機能と、受光部52で受けられて光ファイバ52fを経由してきた光量(以下、受光量という)をサンプリングする機能とを有している。これにより、光生成検出部53で生成された光は、光ファイバ51f経由で投光部51に到達し、投光部51の投光窓51aからの光Lとなって液配管20に向けて発せられる。また、投光部51の投光窓51aから発せられて液配管20を通過した光Lは、受光部52の受光窓52aで受けられ、光ファイバ52f経由で光生成検出部53に到達してその受光量が所定のサンプリング間隔でサンプリングされるようになっている。
【0045】
ここで、この光生成検出部53でサンプリングされる受光量は、液配管20内を流通する処理液に含まれてる気泡量が多いほど、減少する。これは、処理液中の気泡が、投光部51の投光窓51aから発せられた光Lを受光部52の受光窓52aに向かう方向と異なる方向に屈折させ散乱させるため、受光部52の受光窓52aに到達する光Lの光量を減少させるからである。すなわち、処理液中に気泡が含まれていないか比較的少ない場合には、受光量は、投光部51から発せられる光量(以下、発光量という)にほぼ等しい状態となって、大きな値を示し、また、処理液中に気泡が比較的大量に存在する場合には、受光量は、著しく減少して、小さい値を示す。
【0046】
また、光生成検出部53内にはさらに検出回路(図示せず)が設けられており、この検出回路は、受光部52で受けられて光生成検出部53でサンプリングされた受光量に基づいて、気泡有りの検出信号(以下、気泡検出信号という)を基板処理装置の制御部Cに出力する。なお、この検出回路は、たとえば、発光量に対する受光量の比率や、これら発光量と受光量との差に基づいて、気泡検出信号を基板処理装置の制御部Cに出力するものでもよい。
【0047】
ではここで、光生成検出部53や制御部Cでの制御動作について説明する。たとえば、光生成検出部53は、図4(a)のフローチャートに示すような制御を行い、制御部Cは、図4(b)のフローチャートに示すような制御を行う。すなわち、光生成検出部53は、光ファイバ52f経由で受けた受光量をサンプリングし(ステップS1)、受光量が所定の基準値(以下、閾値という)以下かどうかを判断する(ステップS2)。そして、受光量が閾値を超えている場合には、所定のサンプリング間隔時間の経過後に再度、ステップS1を実行して受光量のサンプリングを行い、受光量が閾値以下である場合には、制御部Cへ気泡検出信号を送る(ステップ3)。
【0048】
一方、制御部Cは、通常は、図1を用いて既に説明したように、ウエハWを保持しているスピンチャックSCを回転させつつ、そのウエハWに処理液を供給したりする通常処理を行っている(ステップT1)。その一方で、制御部Cは、光生成検出部53から気泡検出信号が送られてきたかどうかも判断しており(ステップT2)、気泡検出信号が送られてきていない場合には、ステップT1を実行して通常処理を継続して実行するが、気泡検出信号が送られてきた場合には、異常処理を行う(ステップT3)。この異常処理では、たとえば、警報を発して基板処理装置周辺の作業者に異常を報知したり、基板処理装置を停止させたりするなどの処理が行われる。
【0049】
なおここで、基板処理装置の停止とは、たとえば、基板処理装置への新たな基板の搬入を停止させたり、基板処理装置で処理中であった基板の基板処理装置外への搬出を停止させたりすることである。そして、実際にこの異常処理が起こった場合には、ベローズポンプ30のベローズ30Bの破損等を作業者が確認し、ベローズ30Bの破損があった場合にはベローズ30Bの交換作業が行われるなどして、基板処理装置の復旧作業が行われる。
【0050】
なお、光生成検出部53にはまた、受光量の閾値を調整するためのボリューム(図示せず)や、受光量やその閾値などを表示させることのできる表示部(図示せず)などが備えられており、作業者が表示部を見ながらボリュームを操作することで、受光量の閾値を所望の値に調整することができるようになっている。また、表示部に表示される受光量やその閾値は、たとえば、光生成検出部53の検出回路での受光量サンプリングの分解能を1としたときの相対受光量で示される。
【0051】
ここで、上述した光生成検出部53は、一般にはセンサアンプと呼ばれており、実際には、光生成検出部53内部にある発光素子が、この発光素子に供給された電気エネルギー(電圧または電流)を光エネルギーに変換して光を生成し、また、光生成検出部53内部にある受光素子が、受けた光の光エネルギーを電気エネルギー(電圧または電流)に変換して、この電圧値または電流値を読み取ってサンプリングしている。したがって、この光生成検出部53において実際にサンプリングされる受光量は電圧値または電流値として認識されている。
【0052】
以上のような光学式センサ50を用いた第1の実施形態によると、投光部51から発せられて液配管20を透過して受光部52で受けられたほぼ平板状の光Lは、液配管20内の液流れ方向Fに幅を持つこととなる。このため、液流れ方向Fに広がる範囲で気泡を監視しているので、光生成検出部53の検出回路での受光量のサンプリング間隔が比較的長かったとしても、液流れ方向Fに流れ去ろうとする気泡を見逃さずに確実に検出することができる。また、広い範囲で同時に多数の気泡を監視しているので、その検出結果は平均化されて安定した結果となる。このようにして処理液中の気泡を確実に検出すれば、処理液の流量が安定して、ウエハWの洗浄やエッチングなどの処理にむらが生じることを未然に防止でき、また、処理液中への不純物の混入を抑えて、ウエハWや基板処理装置自体の汚染を未然に防止することができる。
【0053】
さらに、このようにしてベローズポンプ30の流出口31に接続された液配管20を流通する処理液中の気泡を確実に検出することで、ベローズポンプ30のベローズ30Bが破損したことを確実に知ることができ、ベローズポンプ30の交換を早期に実施することができる。
【0054】
また、このようなベローズ30Bの破損によって処理液中に気泡が発生する他、処理液の液圧低下に伴うキャビテーションや処理液に含まれる化学物質自体の発泡などの処理液自体の発泡によっても処理液中に気泡が発生する場合がある。このような場合であっても、処理液中の気泡を早急かつ確実に検出することができる。さらに、通常は、上述の処理液自体の発泡による気泡の発生量に比べてベローズ30Bの破損による気泡の発生量は多くなるため、たとえば、光学式センサ50の光生成検出部53のボリュームによって、受光量の閾値をこれらの気泡の発生量の中間に対応する値に設定すれば、ベローズ30Bの破損に起因する気泡と処理液自体の発泡に起因する気泡とを区別することもできる。
【0055】
次に、この発明の第2の実施形態に係る基板処理装置について説明する。なお、この第2の実施形態に係る基板処理装置において、上述の第1の実施形態に係る基板処理装置と同等の部分については説明を省略するものとし、また、後述の図5において、第1の実施形態で説明した各部と同等の部分には同一の参照符号を付して示す。ここで、上述の第1の実施形態においては、処理液中の気泡を検出するために光学式センサ50が用いられていたが、この第2の実施形態では、処理液中の気泡を検出するために超音波式センサ150が用いられる。したがって、この第2の実施形態の基板処理装置は、図1に示す基板処理装置のベローズポンプ30の流出口31近傍において、光学式センサ50を超音波式センサ150に入れ替えた形態となっている。
【0056】
図5は、この発明の第2の実施形態に係る超音波式センサ150の構成を示す液配管20の側方から見た断面図である。この超音波式センサ150は、液配管20の側方近傍に設けられ、液配管20に向けて所定の振幅を持つ超音波振動を発する発振部151と、および液配管20を挟んで発振部151に対向する位置に設けられ、発振部151から発せられて液配管20を通過した超音波振動を受ける受振部152と、発振部151で発せられる超音波振動を生み出すための電圧を生成したり、受振部152で受けられた超音波振動の振幅量をサンプリングしたりする超音波生成検出部153と備えている。
【0057】
また、貯水槽154が、液配管20を取り囲むように設けられている。そして、その貯水槽154の内部には貯水室154aが形成されており、この貯水室154aは、液配管20を中心としてその周囲にほぼ円柱状に設けられて、液配管20に接する水Waを貯留できるようになっている。そして、貯水槽154の側壁面154bには、発振部151および受振部152が互いに対向するよう埋設されており、また、発振部151と受振部152とを結ぶ直線に液配管20が交差するようになっている。なお、図示はしていないが、実際には、側壁面154bの上部には、貯水室154aに水Waを供給するための給水口が設けられ、また、側壁面154bの下部には、貯水室154aから水Waを排出するための排水口が形成されている。これにより、貯水室154a内に水Waを供給したり、貯水室154a内から水Waを排出したりできるようになっている。
【0058】
さらに、貯水槽154の上端および下端には、液配管20を挿通可能な一対の挿通孔154c,154cが形成されている。そして、この一対の挿通孔154c,154c内の底部には、一対のOリング155,155が設けられている。また、この一対の挿通孔154c,154cの開口付近の内壁面には、メネジが形成されており、このメネジに対して、液配管20を挿通可能な配管止めネジ156,156(オネジ)が螺合するようになっている。したがって、図5に示すような形で、液配管20を一対の挿通孔154c,154cおよび配管止めネジ156,156に挿通させた状態で、配管止めネジ156,156を締め付ければ、この超音波式センサ150を液配管20に固定させることができ、また、貯水室154a内に水Waを密封することができる。すなわち、配管止めネジ156,156によって、一対のOリング155,155が押し潰されて、液配管20の外周に一対のOリング155,155の内周が密着して、液配管20が一対のOリング155,155に挟持され、液配管20と超音波式センサ150が固定され、また、貯水室154a内に水Waが密封される。
【0059】
ここで、発振部151は、供給された電圧を所定の振動エネルギー(振幅)の超音波振動に変換する振動子151aと、この振動子151aによって超音波振動する円形状の振動板151bとを有している。また、受振部152は、超音波振動を受けて振動する振動板152bと、この振動板152bの振動エネルギー(振幅)を電圧値に変換する円形状の振動子152aとを有している。これにより、発振部151は供給された電圧によって所定の振幅を持つ超音波振動を発することができ、受振部152は、発振部151から発せられて液配管20を通過した超音波振動を受けて所定の振幅に対応する電圧に変換することができる。
【0060】
さらに、この超音波式センサ150には、超音波生成検出部53と発振部151とを接続する電気配線151fと、超音波生成検出部53と受振部152とを接続する電気配線152fとが設けられている。そして、超音波生成検出部153は、所定の周波数(数〜数十MHz)の電圧を生成して電気配線151fを経由させて発振部151へ送り出す機能と、受振部152で受けられて電気配線152fを経由してきた所定の周波数の電圧の量(以下、受振電圧値)をサンプリングする機能とを有している。これにより、超音波生成検出部153で生成された所定の周波数の電圧は、電気配線151fを経由して発振部151に到達し、発振部151の振動板151bで所定の振幅を持つ超音波振動となって液配管20に向けて発せられる。また、発振部151から発せられて液配管20を通過した超音波振動は、受振部152の振動板152bで受けられて電圧となり、この電圧は電気配線152f経由で超音波生成検出部153に到達してその受振電圧値がサンプリングされるようになっている。なお、このサンプリングされる受振電圧値は、受振部152で受けられた超音波振動の振動エネルギー(振幅)に比例する値である。
【0061】
ここで、この超音波生成検出部153でサンプリングされる受振電圧値は、液配管20内を流通する処理液に含まれてる気泡量が多いほど、減少する。これは、処理液中の気泡が、発振部151から発せられた超音波振動の振動エネルギー(振幅)を吸収してしまうため、受振部152の振動板152bに到達する超音波振動の振幅量を減少させるからである。すなわち、処理液中に気泡が含まれていないか比較的少ない場合には、受振電圧値は、超音波生成検出部153で生成されて発振部151に供給される電圧値(以下、発振電圧値という)にほぼ等しい状態となって、大きな値を示し、また、処理液中に気泡が比較的大量に存在する場合には、受振電圧値は、著しく減少して、小さい値を示す。
【0062】
なお、液配管20の周囲の発振部151と受振部152とで挟まれる領域には貯水室154a内の水Waが存在している。そして、この水Waなどの液体は、一般に、空気などの気体に比べて超音波の伝達効率がはるかに高い。このため、この貯水室154a内の水Waは、気泡以外の要因で生じる超音波振動の減衰を抑制する役目を果たしている。
【0063】
一方、超音波生成検出部153内には、さらに検出回路(図示せず)が設けられており、この検出回路は、受振部152で受けられて超音波生成検出回路153でサンプリングされた受振電圧値に基づいて、気泡検出信号を基板処理装置の制御部Cに出力する。なお、この検出回路は、たとえば、発振電圧値に対する受振電圧値の比率や、これら発振電圧値と受振電圧値との差に基づいて、気泡検出信号を基板処理装置の制御部Cに出力するようにしてもよい。
【0064】
ここで、超音波生成検出部153や制御部Cでの制御は、上述の第1の実施形態の図4に示した制御フローとほぼ同一である。すなわち、図4の(a)および(b)において、ステップS1,S2の「受光量」を「受振電圧値」に代えただけであるため、図4を代用するものとし、その説明も簡略化する。
【0065】
超音波生成検出部153は、電気配線152f経由で受けた受振電圧値をサンプリングし(ステップS1)、受振電圧値が閾値以下かどうかを判断し(ステップS2)、受振電圧値が閾値を超えている場合には、所定のサンプリング間隔時間の経過後に再度、ステップS1を実行し、受光量が閾値以下である場合には、制御部Cへ気泡検出信号を送る(ステップS3)。そして、制御部Cは、通常、上述の通常処理を行っており(ステップT1)、その一方で、光生成検出部53から気泡検出信号が送られてきたかどうかを判断し(ステップT2)、気泡検出信号が送られてきていない場合には、ステップT1を継続して実行し、気泡検出信号が送られてきた場合には、異常処理を行う(ステップT3)。
【0066】
また、超音波生成検出部153にはまた、第1の実施形態における光生成検出部53と同様に、受振電圧値の閾値を調整するためのボリューム(図示せず)や、受振量やその閾値などを表示させることのできる表示部(図示せず)などが備えられている。なお、超音波生成検出部153では、受振された超音波振動を電圧値としてサンプリングしているが、振動子152aとして、振動エネルギーを電流値に変換するものを用いれば、受振された超音波振動を電流値としてサンプリングすることもできる。
【0067】
以上のような超音波式センサ150を用いた第2の実施形態によると、発振部151のほぼ円形状の振動板151bから発せられる超音波振動は、液配管20内の液流れ方向Fに幅を持つこととなる。このため、第1の実施形態と同様、液流れ方向Fに流れ去ろうとする気泡を見逃さずに確実に検出することができ、また、その検出結果は平均化されて安定した結果となる。このようにして処理液中の気泡を確実に検出すれば、処理液の流量が安定して、ウエハWの洗浄やエッチングなどの処理にむらが生じることを未然に防止でき、また、処理液中への不純物の混入を抑えて、ウエハWや基板処理装置自体の汚染を未然に防止することができる。
【0068】
さらに、第1の実施形態と同様、ベローズポンプ30の流出口31に接続された液配管20を流通する処理液中の気泡を確実に検出することで、ベローズポンプ30のベローズ30Bが破損したことを確実に知ることができ、ベローズポンプ30の交換時期を早急かつ正確に知ることができる。また、処理液自体の発泡による気泡を確実に検出することもできる。あるいは、処理液自体の発泡による気泡の発生量に比べてベローズ30Bの破損による気泡の発生量は多くなるため、光学式センサ50の超音波生成検出部153のボリュームによって、受振電圧値の閾値をこれらの気泡の発生量の中間に対応する値に設定すれば、ベローズ30Bの破損に起因する気泡と処理液自体の発泡に起因する気泡とを区別することもできる。
【0069】
さらには、この超音波式センサ150は、処理液が濃い色を呈しているものや不透明なものであっても適用できる。また、液配管20が、たとえば不透明の樹脂配管や金属配管でも適用可能である。さらには、固形状やゲル状の異物が、液配管20中を通過したり、あるいは液配管20の内壁面に付着していたとしても、その異物を気泡と誤認して検出することがないので、ベローズの破損検出を正確に行うことができる。
【0070】
以上、この発明のいくつかの実施形態について説明してきたが、この発明は他の実施形態をとることもできる。たとえば、上述の第1の実施形態においては、光学式センサ50の投光部51から発せられて液配管20を透過し、受光部52で受けられる光Lは、液流れ方向に沿って広がる幅を持つほぼ平板状の光としているが、液流れ方向に幅を持つ光であれば何でもよい。たとえば、第1の実施形態のようなほぼ平板状のフラットビームに限らず、所定の幅と厚みを持つ断面矩形状の光であってもよく、また、ほぼ断面楕円状の光であってもよい。なお、本明細書において、「光の断面」とは、光の進行方向に対して直交する平面でその光を切断したときの切断面をいう。ちなみに、上記ほぼ平板状の光の断面は所定太さの線分となる。
【0071】
ここで、投光部51から液配管20に向けて発せられて液配管20を透過し、受光部52で受けられる光は、液流れ方向において、より広い範囲で気泡を捕捉できることから、処理液の流れ方向の幅が処理液の流れ方向に直交する方向の幅よりも長い断面を持つ光であるのが好ましい。たとえば、第1の実施形態で示したような液流れ方向に沿って広がる幅を持つフラットビームの他、長手方向が液流れ方向にほぼ一致する断面矩形状の光や、長径方向が液流れ方向にほぼ一致する断面楕円状の光などが好ましい。ただし、液配管20等の配管の内径が小さい場合には、光が配管20の内径部分に対して無駄なく効率的に照射されるように、第1の実施形態のようなほぼ平板状のフラットビームを適用するのが最も好ましい。さらには、以上のような光学式センサを液流れ方向に沿って複数個設けてもよく、この場合、さらに広い範囲で気泡を捕捉でき、気泡の検出精度が向上する。
【0072】
また、上述の第1の実施形態においては、投光部51から発せられて液配管20を透過し、受光部52で受けられる光Lは、ほぼ平板状の光のみで構成されているが、これに限るものではない。たとえば、その光が、液流れ方向に幅を持つ光L以外の光をも含んでいるようなもの、たとえば、液配管20以外の部分をも覆うように広範囲にわたって発せられるほぼ断面円形状の光であってもよい。このような場合であっても、受光部52において、この投光部51からの光のうちの液流れ方向に幅を持つ光Lを選択して受け取れば、第1の実施形態と同様の効果を奏することができる。なお、具体的には、受光部52の受光窓52aを、液流れ方向に長い幅を持つ開口、たとえば、第1の実施形態に示したようなスリット状の開口としていれば、投光部51の投光窓51aの開口形状は何でもよい。
【0073】
さらに、上述の第1の実施形態においては、光学式センサ50の投光部51から発せられる光Lは赤色としているが、何色であっても良く、たとえば緑色光や赤外光であってもよい。ここで、たとえば処理液が赤色のレジスト液のような場合は、光Lの色は赤色を避けて、たとえば緑色としたほうが気泡の検出精度の面から好ましい。ただし、波長の長い赤色光や赤外光の方がより光の減衰率が小さく、気泡の検出精度の面で有利であるので、処理液が赤色以外の場合には、光Lの色を赤色とするのが好ましい。また、投光部51から発せられる光は、LED光などの指向性の低い光であってもよいし、レーザー光などの指向性の高い光であってもよい。
【0074】
また、上述の第2の実施形態においては、発振部151の振動板151aおよび受振部152の振動板152aはほぼ円形状であったが、たとえば、液配管20中の液流れ方向にほぼ一致する長手方向を持つ長方形状の振動板としてもよい。この場合、液流れ方向においてより広い範囲で気泡を補足でき、気泡の検出精度が向上する。さらには、超音波式センサ150を液流れ方向に沿って複数個設けてもよく、この場合、さらに広い範囲で気泡を捕捉できる。
【0075】
また、上述の第2の実施形態においては、超音波振動の伝達を促す役目として貯水槽154の貯水室154a内に水Waを貯留しているが、液体であればなんでもよく、液配管20を流通している処理液と同じような処理液、あるいは、油などでもよい。
【0076】
さらに、上述の第1および第2の実施形態においては、液配管20はほぼ垂直に設置されており、液流れ方向Fは、この液配管20中において処理液が下から上へと向かう方向となっているが、これに限るものではない。たとえば、同様に液配管20がほぼ垂直に設置されている場合において、液流れ方向Fが上から下へと向かう方向であってもよい。ただし、第1の実施形態のように液流れ方向Fが下から上へと向かう方向となっている場合には、気泡に作用する浮力の方向と液流れ方向Fとがほぼ一致していて気泡の滞留や乱れがなく、気泡の検出精度が良くなるのでより好ましい。また、液配管20は、ほぼ水平に設置されたり、傾斜させて設置されてもよい。ただし、これらのような場合には、気泡は、液配管20の内部において上方向に偏ってしまう。このため、気泡の検出精度の面から、光学式センサ50のほぼ平板状の光Lを、液配管20内において、その中心軸Oよりも上部に通過させるのが好ましい。
【0077】
また、上述の第1および第2の実施形態においては、光学式センサ50や超音波センサ150は、液配管20内の処理液に含まれる大量の気泡を検出することで、ベローズポンプ30のベローズ30Bの破損を検出するために用いられているが、これに限るものではない。たとえば、光学式センサ50や超音波センサ150を、処理液の液圧低下に伴うキャビテーションや処理液に含まれる化学物質自体の発泡などが原因となって生じる処理液自体の発泡を検出するために用いてもよい。この場合であっても、処理液中の気泡を確実に検出できるので、処理液の流量が不安定となって、基板の洗浄やエッチングなどの処理にむらが生じることを未然に防止でき、また、処理液中への不純物の混入を抑えて、基板や基板処理装置自体の汚染を未然に防止することができる。
【0078】
また、上述の第1および第2の実施形態においては、ベローズポンプ30を継続して運転させ、ノズルNから処理液を吐出しないときには、循環用配管40を介して処理液タンク10に処理液を帰還させるようにしているが、処理液の温度制御が重要でない場合には、循環用配管40を設ける必要はない。ただし、この場合には、エア弁24を閉じて処理液の供給を停止する際に、ベローズポンプ30も同時に停止させることが好ましい。
【0079】
またさらに、上述の第1および第2の実施形態においては、光学式センサ50や超音波センサ150は、液配管20においてベローズポンプ30の流出口31の近傍に設置されているが、これに限るものではない。たとえば、図1において、液配管20のうち、ベローズポンプ30の流出口31から循環用配管40が接続されている箇所までの範囲内に設ければよい。なぜなら、ベローズポンプ30が継続して運転されている場合は、ベローズポンプ30で発生した気泡は必ずこの範囲を通過するからである。なお、循環用配管40がなく、ベローズポンプ30が断続的に運転される場合は、センサ50,150の設置位置は、液配管20のうち、ベローズポンプ30の流出口31からノズルNまでの範囲内とすればよい。
【0080】
ただし、図1のように上記気泡の通過範囲内にフィルタ22が介装されているような場合には、このフィルタ22よりも処理液タンク10側に超音波センサ150を設けるのがより好ましい。なぜなら、このフィルタ22よりもノズルN側に超音波センサ150を設けた場合は、フィルタ22で一時的に気泡が捕捉されてしまい、超音波センサ150での気泡検出のタイミングが遅れてしまう可能性があるからである。
【0081】
さらに、上述の第1および第2の実施形態においては、基板処理装置が、基板を洗浄またはエッチングするための装置であって、処理液としてフッ酸を用いているが、その他、硫酸、塩酸、硝酸、酢酸、燐酸、クエン酸、アンモニア、または過酸化水素水などを含む薬液、あるいは純水などの液体であってもよい。あるいは、基板処理装置が、基板表面に感光性のレジスト膜を形成するためのレジスト塗布装置である場合には、処理液は、レジスト液であってもよく、基板表面に形成された感光性レジスト膜を剥離するための剥膜装置である場合には、剥膜液であってもよい。
【0082】
さらに、上述の第1および第2の実施形態においては、ウエハを枚葉で処理するための装置に本発明が適用された例について説明したが、この発明は、液晶表示装置用ガラス基板、PDP(プラズマディスプレイパネル)用ガラス基板、あるいは、磁気ディスク用のガラス基板やセラミック基板のような他の被処理基板を処理するための装置に対しても広く適用することができ、また、複数枚の被処理基板を一括して処理液槽などに浸漬させて処理するためのいわゆるバッチ式の基板処理装置に対しても広く適用することができる。
【0083】
その他、特許請求の範囲に記載された範囲で種々の変更を施すことが可能である。
【0084】
【発明の効果】
以上詳細に説明したように、請求項1に係る発明の基板処理装置によると、光学式検出機構は、液流れ方向に広がる範囲で気泡を監視しており、また、広い範囲で同時に多数の気泡を監視しているので、処理液中の気泡を早急かつ確実に検出することができ、したがって、基板の処理むらの発生および基板の汚染を未然に防止することができるという効果を奏する。
【0085】
また、投光部から発せられて処理液流通配管を透過し、受光部で受けられる光が、処理液の流れ方向の幅が処理液の流れ方向に直交する方向の幅よりも長い断面を持つ光であり、当該受光部により処理液中の気泡の発生量に応じた受光量が得られることにより、所定の太さの処理液流通配管内を流通する処理液の流れ方向において、より広い範囲で気泡を捕捉できることから、気泡を見逃すことなく安定して検出できるので、気泡の検出精度が向上する。
【0086】
請求項2に係る発明の基板処理装置によると、光の厚みが薄いので、処理液流通配管の内径が特に小さいような場合であっても、光を処理液流通配管内部に対して無駄なく照射することができ、気泡の検出精度が向上する。
【0087】
請求項に係る発明の基板処理装置によると、超音波式検出機構によって、処理液中の気泡を早急かつ確実に検出することができる。また、発振部および受振部が、それぞれ処理液流通配管中の液流れ方向にほぼ一致する長手方向を持つ長方形状の振動板からなり、当該受振部により処理液中の気泡の発生量に応じた受振電圧値が得られることにより、液流れ方向においてより広い範囲で気泡を補足でき、気泡の検出精度が向上する。さらに、処理液や処理液流通配管の色や透明度の影響を受けず、また、処理液流通配管中の固形状やゲル状の異物の影響も受けないので、気泡の検出をさらに正確に行うことができるという効果を奏する。
【0088】
また、請求項1〜4に係る発明の基板処理装置においては、光学式検出機構または超音波式検出機構を、ベローズポンプのベローズの破損による処理液中の発泡、または処理液の液圧低下に伴うキャビテーションや処理液に含まれる化学物質自体の発泡等が原因となって生じる処理液自体の発泡を検出するために用いることができる。この場合、処理液中の気泡を確実に検出できるので、処理液の流量が不安定となって、基板の洗浄やエッチングなどの処理にむらが生じることを未然に防止でき、また、処理液中への不純物の混入を抑えて、基板や基板処理装置自体の汚染を未然に防止することができる。
【0089】
請求項に係る発明の基板処理装置によると、液体貯留室内の液体は、超音波振動の伝達効率の向上させるため、超音波振動を発振部から受振部へと確実に伝達させるので、気泡の検出をさらに確実に行って、ベローズの破損を正確に検出することができるという効果を奏する。
【図面の簡単な説明】
【図1】この発明の第1の実施形態に係る基板処理装置の構成を示す概略図である。
【図2】この発明の第1の実施形態に係るダブルベローズ型のベローズポンプの概略図である。
【図3】この発明の第1の実施形態に係る光学式センサの構成を簡略的に示す斜視図である。
【図4】この発明の第1の実施形態に係る光生成検出部および制御部での制御動作を説明するためのフローチャートである。
【図5】この発明の第2の実施形態に係る超音波式センサの構成を簡略的示す断面図である。
【図6】従来のシングルベローズ型のべロースポンプの構成の概略図である。
【符号の説明】
10 処理液タンク
20 液配管(処理液流通配管)
30 ベローズポンプ
31 流出口
32 流入口
33,34 ベローズ部分
33A,34A シリンダ室
33B,34B ベローズ
40 循環用配管
50 光学式センサ(光学式検出機構)
51 投光部
52 受光部
53 光生成検出部
54 取付けベース
55 取付けプレート
150 超音波式センサ(超音波式検出機構)
151 発振部
152 受振部
151a,152a 振動子
151b,152b 振動板
153 超音波生成検出部
154 貯水槽
154a 貯水室(液体貯留室)
155 Oリング
156 配管止めネジ
AC1,AC2 エア室
F 液流れ方向(処理液の流れ方向)
L 光
N ノズル
RC1,RC2 処理液室
SC スピンチャック
W ウエハ
Wa 水(処理液流通配管に接する液体)

Claims (4)

  1. 処理液を用いて基板を処理する基板処理装置において、
    処理液が内部を流通する処理液流通配管と、
    前記処理液流通配管の近傍に設けられ、少なくとも、前記処理液流通配管内の処理液の流れ方向に幅を持つ光を前記処理液流通配管に向けて発する投光部、および、前記処理液流通配管を挟んで前記投光部に対向する位置に設けられ、前記投光部から発せられて前記処理液流通配管を透過した処理液の流れ方向に幅を持つ光を受ける受光部を有し、前記処理液流通配管内の処理液に含まれる気泡を検出する光学式検出機構とを備え、
    前記投光部から発せられて前記処理液流通配管を透過し、前記受光部で受けられる光は、処理液の流れ方向の幅が処理液の流れ方向に直交する方向の幅よりも長い断面を持つ光であり、前記受光部により処理液中の気泡の発生量に応じた受光量が得られることを特徴とする基板処理装置。
  2. 前記投光部から発せられて前記処理液流通配管を透過し、前記受光部で受けられる光は、処理液の流れ方向に沿って広がる幅を持つほぼ平板状の光であることを特徴とする請求項1記載の基板処理装置。
  3. 処理液を用いて基板を処理する基板処理装置において、
    処理液が内部を流通する処理液流通配管と、
    前記処理液流通配管の近傍に設けられ、前記処理液流通配管に向けて超音波振動を発する発振部、および前記処理液流通配管を挟んで前記発振部に対向する位置に設けられ、前記発振部から発せられて前記処理液流通配管を通過した超音波振動を受ける受振部を有し、前記処理液流通配管内の処理液に含まれる気泡を検出する超音波式検出機構とを備え、
    前記発振部および前記受振部は、それぞれ前記処理液流通配管中の液流れ方向にほぼ一致する長手方向を持つ長方形状の振動板からなり、前記受振部により処理液中の気泡の発生量に応じた受振電圧値が得られることを特徴とする基板処理装置。
  4. 前記処理液流通配管の周囲に設けられ、前記処理液流通配管に接する液体を貯留する液体貯留室をさらに備え、
    前記発振部および前記受振部は、前記液体貯留室を挟む位置に設けられていることを特徴とする請求項記載の基板処理装置。
JP30441299A 1999-10-26 1999-10-26 基板処理装置 Expired - Fee Related JP3798201B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30441299A JP3798201B2 (ja) 1999-10-26 1999-10-26 基板処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30441299A JP3798201B2 (ja) 1999-10-26 1999-10-26 基板処理装置

Publications (2)

Publication Number Publication Date
JP2001127034A JP2001127034A (ja) 2001-05-11
JP3798201B2 true JP3798201B2 (ja) 2006-07-19

Family

ID=17932701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30441299A Expired - Fee Related JP3798201B2 (ja) 1999-10-26 1999-10-26 基板処理装置

Country Status (1)

Country Link
JP (1) JP3798201B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107093564A (zh) * 2016-02-18 2017-08-25 中芯国际集成电路制造(上海)有限公司 一种全纵深高分辨在线实时气泡监控装置及监控方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3376985B2 (ja) * 2000-02-25 2003-02-17 日本電気株式会社 ウェット処理装置
DE60237932D1 (de) * 2001-08-28 2010-11-18 Mitsubishi Rayon Co Verfahren und Vorrichtung zur Herstellung eines künstlichen Sprudelwassers
JP2005296809A (ja) * 2004-04-12 2005-10-27 Hugle Electronics Inc 除塵装置用異物検出装置
JP4445315B2 (ja) * 2004-04-13 2010-04-07 株式会社東芝 基板処理方法
JP4437744B2 (ja) * 2004-12-27 2010-03-24 大日本スクリーン製造株式会社 液体供給装置、基板処理装置および液体供給方法
US20080185459A1 (en) * 2004-12-31 2008-08-07 An Doo-Keun Fluid Supply System Used in an Apparatus for Manufacturing Integrated Circuits
JP4785496B2 (ja) * 2005-10-28 2011-10-05 大日本スクリーン製造株式会社 吐出装置および塗布装置
JP4884169B2 (ja) * 2006-11-07 2012-02-29 東京エレクトロン株式会社 処理システム
JP5036439B2 (ja) * 2007-07-24 2012-09-26 浜松ホトニクス株式会社 試料ホルダ
WO2011001536A1 (ja) * 2009-06-29 2011-01-06 本多電子株式会社 液体圧送設備の異常検出装置及び方法、異常検出機能付きの超音波流量計
JP5038378B2 (ja) * 2009-11-11 2012-10-03 株式会社コガネイ 薬液供給装置および薬液供給方法
CN102029263A (zh) * 2010-11-19 2011-04-27 南京文采科技有限责任公司 叶中含梗检测与剔除装置
JP2013153108A (ja) * 2012-01-26 2013-08-08 Yaskawa Electric Corp 基板位置決め装置
JP5603376B2 (ja) * 2012-07-02 2014-10-08 浜松ホトニクス株式会社 試料ホルダ
JP6609231B2 (ja) 2016-09-16 2019-11-20 キオクシア株式会社 基板処理装置および半導体装置の製造方法
JP6887836B2 (ja) * 2017-03-16 2021-06-16 株式会社Screenホールディングス 処理液供給装置、基板処理装置、および処理液供給方法
JP7002369B2 (ja) * 2018-03-08 2022-02-10 株式会社ディスコ チッピング測定方法及びチッピング測定装置
JP7487013B2 (ja) * 2020-05-29 2024-05-20 株式会社Screenホールディングス 基板処理方法および基板処理装置
CN115702338A (zh) * 2020-06-17 2023-02-14 东京毅力科创株式会社 异物检查基板、基板处理装置以及基板处理方法
KR102357757B1 (ko) * 2020-10-20 2022-02-08 동우 화인켐 주식회사 유동 나노입자 측정장치 및 측정방법
KR102324097B1 (ko) * 2020-10-20 2021-11-08 동우 화인켐 주식회사 유동 나노입자 측정장치 및 이를 이용한 나노입자 판단방법
KR20230010072A (ko) * 2021-07-08 2023-01-18 주식회사 제우스 식각 장치 및 그 제어 방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107093564A (zh) * 2016-02-18 2017-08-25 中芯国际集成电路制造(上海)有限公司 一种全纵深高分辨在线实时气泡监控装置及监控方法
CN107093564B (zh) * 2016-02-18 2021-01-26 中芯国际集成电路制造(上海)有限公司 一种全纵深高分辨在线实时气泡监控装置及监控方法

Also Published As

Publication number Publication date
JP2001127034A (ja) 2001-05-11

Similar Documents

Publication Publication Date Title
JP3798201B2 (ja) 基板処理装置
US7443079B2 (en) Method and apparatus for cavitation threshold characterization and control
JP4895294B2 (ja) パーティクルモニタシステム及び基板処理装置
KR20050053715A (ko) 플라즈마 처리 시스템을 구비한 광학 시스템용 장치 및방법
CN101359578B (zh) 晶圆清洗方法及装置
US20100163083A1 (en) Ultrasonic cleaning device
WO2008008921A2 (en) Tranducer assembly incorporating a transmitter having through holes, and method of cleaning
US6840250B2 (en) Nextgen wet process tank
JP2001304937A (ja) 液面検出装置及び方法
JP3390314B2 (ja) 基板処理装置
JP4878187B2 (ja) 基板処理装置、堆積物モニタ装置、及び堆積物モニタ方法
KR101852286B1 (ko) 진공 환경을 누출에 대해 보호하기 위한 디바이스 및 방법, 그리고 euv 복사-생성 장치
JP2001267288A (ja) 基板処理装置
JP3162623B2 (ja) パーティクル検出装置
EP1050899B1 (en) An ultrasonic washing apparatus
JP3362302B2 (ja) 薬液の供給装置
JP2022535350A (ja) プラズマoes診断用ウィンドウおよびこれを利用したプラズマ装置
JP2001198538A (ja) 超音波洗浄装置
JP2002280350A (ja) 液処理装置
JP2001009395A (ja) 超音波洗浄処理方法とその装置
KR102268652B1 (ko) 기판 처리 장치 및 방법
KR100227822B1 (ko) 반도체 제조장비의 배관 압력센서 어셈블리 및 누수방지 시스템
JPH09330917A (ja) プラズマ処理装置のプラズマ光の検出窓
JPH10281976A (ja) 粒子計測装置
JP2000228385A (ja) 洗浄装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees