JP3786879B2 - 出力回路 - Google Patents

出力回路 Download PDF

Info

Publication number
JP3786879B2
JP3786879B2 JP2002015118A JP2002015118A JP3786879B2 JP 3786879 B2 JP3786879 B2 JP 3786879B2 JP 2002015118 A JP2002015118 A JP 2002015118A JP 2002015118 A JP2002015118 A JP 2002015118A JP 3786879 B2 JP3786879 B2 JP 3786879B2
Authority
JP
Japan
Prior art keywords
output
output transistors
circuit
delay
transistors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002015118A
Other languages
English (en)
Other versions
JP2003218689A (ja
Inventor
康幸 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002015118A priority Critical patent/JP3786879B2/ja
Priority to US10/345,940 priority patent/US6801062B2/en
Priority to CN03102939.6A priority patent/CN1225837C/zh
Publication of JP2003218689A publication Critical patent/JP2003218689A/ja
Application granted granted Critical
Publication of JP3786879B2 publication Critical patent/JP3786879B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/003Modifications for increasing the reliability for protection
    • H03K19/00369Modifications for compensating variations of temperature, supply voltage or other physical parameters
    • H03K19/00384Modifications for compensating variations of temperature, supply voltage or other physical parameters in field effect transistor circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D13/00Circuits for comparing the phase or frequency of two mutually-independent oscillations
    • H03D13/003Circuits for comparing the phase or frequency of two mutually-independent oscillations in which both oscillations are converted by logic means into pulses which are applied to filtering or integrating means
    • H03D13/004Circuits for comparing the phase or frequency of two mutually-independent oscillations in which both oscillations are converted by logic means into pulses which are applied to filtering or integrating means the logic means delivering pulses at more than one terminal, e.g. up and down pulses

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Logic Circuits (AREA)
  • Manipulation Of Pulses (AREA)
  • Dram (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体集積回路における出力回路に関するものである。
【0002】
【従来の技術】
特開平4−14571号公報には、CMOS構成のドライバ回路を備えた出力回路が開示されている。このドライバ回路は、大きな電流駆動能力が得られるように、互いに並列接続された複数のNチャネル出力トランジスタと、互いに並列接続された複数のPチャネル出力トランジスタとで構成される。そして、複数のNチャネル出力トランジスタが同時に導通状態へ遷移することがないように、また複数のPチャネル出力トランジスタが同時に導通状態へ遷移することがないように、遅延回路を用いて各出力トランジスタのゲート電圧を制御することで、各出力トランジスタを流れるピーク電流の発生時刻をずらし、以てデータ出力時のノイズ発生を抑制している。ただし、各出力トランジスタの導通タイミング調整にアナログ的手段を用いるものであったため、設計変更に柔軟に対応できず、またノイズの抑制効果が製造プロセス依存性を持つこととなる。
【0003】
そこで、特開平9−232930号公報の出力回路では、可変の周期を持つ単一のクロック信号を受け取るディジタル回路(シフトレジスタとマルチプレクサとで構成される。)を用いて、上記と同様のCMOSドライバ回路中の各出力トランジスタの導通タイミングを調整することとしている。
【0004】
【発明が解決しようとする課題】
さて、SSTL(Stub Series Terminated Logic)、HSTL(High Speed Transceiver Logic)等の小振幅かつ高速のインターフェースをLSIに持たせる場合には、上記と同様のCMOSドライバ回路中の全ての出力トランジスタのドレイン端子が共通の出力パッドに、各Nチャネル出力トランジスタのソース端子が共通の接地電圧VSSQに、各Pチャネル出力トランジスタのソース端子が共通の電源電圧VDDQにそれぞれ内部接続され、出力パッドが当該LSIの外部で終端抵抗を介して終端電圧VTTに接続される。通常は、
VTT=(VDDQ+VSSQ)/2
が成り立つようにVTTが設定される。このため、CMOSドライバ回路に特有のデータ遷移時の充放電電流に加えて、Nチャネル出力トランジスタが導通して出力パッドがlowの電圧を示す場合にはVTTとVSSQとの間に、Pチャネル出力トランジスタが導通して出力パッドがhighの電圧を示す場合にはVDDQとVTTとの間にそれぞれ定常的な出力電流が流れる。しかも、製造プロセスのばらつきによって、また電源電圧及び温度の変化に応じて、各出力トランジスタの電流駆動能力が変動し、これにつれて当該ドライバ回路の出力電流も変動する。
【0005】
一般に、出力トランジスタのサイズは、製造プロセス、電源電圧及び温度に係るワースト条件、すなわち出力トランジスタが最も低い電流駆動能力を持つような条件で、出力電流等の規格を満足するように設計される。したがって、従来は、例えば出力トランジスタが最も高い電流駆動能力を持つようなベスト条件において、ドライバ回路の出力電流が過大になり、ワースト条件の場合の2倍にも達することがあった。このことは、当該LSIの消費電力の増大をもたらす。
【0006】
本発明の目的は、製造プロセスのばらつきがあっても、また電源電圧及び温度が変動しても、実質的に一定の出力電流がドライバ回路から得られるようにすることにある。
【0007】
【課題を解決するための手段】
上記目的を達成するため、本発明は、互いに並列接続された複数の出力トランジスタを有するドライバ回路と、与えられたデータ信号が所定の論理レベルを示す場合には複数の出力トランジスタのいずれかが導通するようにドライバ回路を制御するための制御回路とを備えた出力回路において、当該制御回路は、複数の出力トランジスタの電流駆動能力の変化を反映した可変の遅延時間を持つ遅延回路を有し、複数の出力トランジスタの個々の電流駆動能力が低くなったことを前記遅延時間の変化から検知した場合には複数の出力トランジスタのうち導通させるべき出力トランジスタの数を増やし、複数の出力トランジスタの個々の電流駆動能力が高くなったことを前記遅延時間の変化から検知した場合には複数の出力トランジスタのうち導通させるべき出力トランジスタの数を減らすこととしたものである。
【0008】
本発明によれば、出力トランジスタの電流駆動能力の変化を反映した可変の遅延時間を持つ前記遅延回路を用いることで、例えば基準クロック信号に対して当該遅延時間を反映した可変の位相差を有する遅延変動信号を生成することができる。そして、基準クロック信号に対して各々異なる位相差を有する多相信号と、生成した遅延変動信号との位相関係を調べれば、当該位相関係から出力トランジスタの電流駆動能力の変化を検知することができる。
【0009】
【発明の実施の形態】
以下、添付の図面を参照しながら、LSIにおける出力回路の実施形態を説明する。この出力回路は、小振幅かつ高速のインターフェースの実現に好適なものである。
【0010】
図1は、本発明に係る出力回路の構成例を示している。図1の出力回路は、CMOS構成のドライバ回路10を備えている。このドライバ回路10は、互いに並列接続された4個のNチャネル出力トランジスタ20,21,22,23と、互いに並列接続された4個のPチャネル出力トランジスタ24,25,26,27とで構成される。これら全ての出力トランジスタ20〜27のドレイン端子が共通の出力パッド11に、各Nチャネル出力トランジスタ20〜23のソース端子が共通の接地電圧VSSQ(例えば0V)に、各Pチャネル出力トランジスタ24〜27のソース端子が共通の電源電圧VDDQ(例えば2.5Vあるいは1.5V)にそれぞれ内部接続され、出力パッド11がLSIの外部で終端抵抗12を介して終端電圧VTTに接続されている。VTTは、
VTT=(VDDQ+VSSQ)/2
が成り立つように設定される。このため、Nチャネル出力トランジスタ20〜23のいずれかが導通して出力パッド11がlowの電圧を示す場合にはVTTとVSSQとの間に、Pチャネル出力トランジスタ24〜27のいずれかが導通して出力パッド11がhighの電圧を示す場合にはVDDQとVTTとの間にそれぞれ定常的な出力電流が流れる。しかも、製造プロセスのばらつきによって、また電源電圧及び温度の変化に応じて、各出力トランジスタ20〜27の電流駆動能力が変動する。本発明は、このような電流駆動能力が変動があっても、ドライバ回路10から実質的に一定の出力電流が得られるようにするものである。
【0011】
図1の出力回路は、第1のロジック回路13と、第2のロジック回路14とを更に備えている。第1のロジック回路13において、31,32,33は第1、第2及び第3のインバータ、40,41,42,43は周知のDフリップフロップ、50,51,52,53,54,55,56,57はデータラッチ回路、60,61,62,63はAND回路、64,65,66,67はNAND回路である。第2のロジック回路14において、70は遅延回路、71は周知のDフリップフロップである。
【0012】
第1及び第2のロジック回路13,14からなる制御回路は、データ(DATA)信号と、4相クロック信号C0,C1,C2,C3とを受け取る。第1のインバータ31は、DATA信号を反転して得られる信号XDATAを供給する。Dフリップフロップ40,41,42,43は、各々のD端子にXDATAを、各々のクロック端子にそれぞれC0,C1,C2,C3を受け取り、各々のQ端子から4相データ信号Q0,Q1,Q2,Q3を供給する。遅延回路70は、可変の遅延時間TdだけC0を遅延して得られる遅延変動クロック信号C0dを供給する。Dフリップフロップ71は、D端子にXDATAを、クロック端子にC0dをそれぞれ受け取り、Q端子から遅延変動データ信号Q0dを供給する。データラッチ回路50,51,52,53は、各々のG端子にQ0dを、各々のD端子にそれぞれQ0,Q1,Q2,Q3を受け取り、各々のQ端子からラッチ信号QN0,QN1,QN2,QN3を供給する。AND回路60,61,62,63は、一方の入力にQ0を、他方の入力にそれぞれQN0,QN1,QN2,QN3を受け取り、各々ゲート電圧信号N0,N1,N2,N3を供給する。ドライバ回路10中のNチャネル出力トランジスタ20,21,22,23は、各々のゲート端子にそれぞれN0,N1,N2,N3を受け取る。第2のインバータ32はQ0dを反転して得られる信号XQ0dを、第3のインバータ33はQ0を反転して得られる信号XQ0をそれぞれ供給する。データラッチ回路54,55,56,57は、各々のG端子にXQ0dを、各々のD端子にそれぞれQ0,Q1,Q2,Q3を受け取り、各々のXQ端子からラッチ信号QP0,QP1,QP2,QP3を供給する。NAND回路64,65,66,67は、一方の入力にXQ0を、他方の入力にそれぞれQP0,QP1,QP2,QP3を受け取り、各々ゲート電圧信号P0,P1,P2,P3を供給する。ドライバ回路10中のPチャネル出力トランジスタ24,25,26,27は、各々のゲート端子にそれぞれP0,P1,P2,P3を受け取る。
【0013】
図2は、図1中の遅延回路70の内部構成例を示している。この遅延回路70は、Nチャネルトランジスタ80及びPチャネルトランジスタ81で構成された初段インバータと、この初段インバータの出力に接続されたキャパシタ82と、Nチャネルトランジスタ83及びPチャネルトランジスタ84で構成された次段インバータと、この次段インバータの出力に接続されたキャパシタ85とで構成されており、これら4個のトランジスタ80,81,83,84は図1中の出力トランジスタ20〜27と同様の特性を持っている。したがって、C0に対するC0dの遅延時間Tdは、図1中の出力トランジスタ20〜27の電流駆動能力の変化を反映する。具体的に説明すると、Tdは出力トランジスタ20〜27の電流駆動能力が低くなるにつれて長くなり、出力トランジスタ20〜27の電流駆動能力が高くなるにつれて短くなる。なお、キャパシタ82,85は、配線に付く寄生容量や、MOSトランジスタのゲート容量のみでも実現可能である。
【0014】
図3は、図1中のデータラッチ回路50の内部構成例を示している。このデータラッチ回路50は、第1、第2及び第3のインバータ90,91,92と、第1及び第2のNチャネルトランジスタ93,94と、第1及び第2のPチャネルトランジスタ95,96とで構成されている。第2のインバータ91の入力は、互いに直列接続された両Nチャネルトランジスタ93,94を介して接地電圧に接続され、かつ互いに直列接続された両Pチャネルトランジスタ95,96を介して電源電圧に接続されている。データラッチ回路50のD端子は、第1のNチャネルトランジスタ93及び第1のPチャネルトランジスタ95の各々のゲート端子に直接接続されている。また、データラッチ回路50のG端子は、第1のインバータ90を介して第2のNチャネルトランジスタ94のゲート端子に接続されるとともに、第2のPチャネルトランジスタ96のゲート端子に直接接続されている。第2のインバータ91の出力は、データラッチ回路50のQ端子に接続されるとともに、第3のインバータ92の入力にも接続されている。第3のインバータ92の出力は、データラッチ回路50のXQ端子に接続されるとともに、第2のインバータ91の入力にも接続されている。以上のような内部構成を持つデータラッチ回路50によれば、G端子入力がlowならば、第2のNチャネルトランジスタ94及び第2のPチャネルトランジスタ96がともに導通(オン)するので、D端子入力と同じ論理レベルの信号がQ端子に、D端子入力とは逆の論理レベルの信号がXQ端子にそれぞれ現れる。そして、G端子入力がlowからhighへ遷移すると、第2のNチャネルトランジスタ94及び第2のPチャネルトランジスタ96がともに非導通(オフ)となるので、この遷移の時点のQ端子出力及びXQ端子出力がそれぞれ保持されることとなる。なお、図1中の他のデータラッチ回路51〜57の内部構成も図3に示したものと同様である。
【0015】
図4は、C0,C1,C2,C3を図1の出力回路へ供給するためのPLL(Phase Locked Loop)回路の構成例を示している。図4のPLL回路100は、位相比較回路(PD)101と、チャージポンプ(CP)102と、ローパスフィルタ(LPF)103と、電圧電流変換器(V/I)104と、リングオシレータ105とで構成されている。図5は、図4中のリングオシレータ105を構成する9個のインバータ110の各々が、1個のNチャネルトランジスタ111と1個のPチャネルトランジスタ112とで構成されることを示している。
【0016】
図4中の位相比較回路101は、基準クロック(CLK)信号と、リングオシレータ105から供給されたフィードバッククロック(FCLK)信号との位相を比較し、CLKがFCLKより進んでいる場合にはアップ(Up)信号を、逆にCLKがFCLKより遅れている場合にはダウン(Down)信号をそれぞれチャージポンプ102に伝える。チャージポンプ102は、Up信号によりVcoノードを充電し、Down信号でVcoノードを放電する。このVcoノードにはローパスフィルタ103が接続されているので、このVcoノードの電圧は微分変化を取り除かれたアナログ電圧となる。次に、電圧電流変換器104によりVcoノードの電圧の高低を電流Icpの大小に変換し、この電流Icpをリングオシレータ105の各インバータ110に供給する。この結果、リングオシレータ105の発振周波数は、Icpが増加するにつれて高くなり、Icpが減少するにつれて低くなる。以上の構成を持つPLL回路100により、CLKとFCLKとが同じ位相に保たれる。そして、リングオシレータ105中の4個のインバータ出力が、CLKに対して各々異なる位相差を有する4相クロック信号C0,C1,C2,C3として取り出される。したがって、CLKに対するC0,C1,C2,C3の各々の位相差は、製造プロセスのばらつきや、電源電圧及び温度の変動に依存せず、それぞれ実質的に一定である。
【0017】
さて、図1中の第1及び第2のロジック回路13,14からなる制御回路の基本的な機能は、与えられたDATA信号がlowを示す場合には4個のNチャネル出力トランジスタ20〜23のいずれかが導通するように、またDATA信号がhighを示す場合には4個のPチャネル出力トランジスタ24〜27のいずれかが導通するようにドライバ回路10を制御することにある。
【0018】
図6は2個のNチャネル出力トランジスタ20,21が導通する例を、図7は2個のPチャネル出力トランジスタ24,25が導通する例をそれぞれ示している。ここでは、Tdの長さのゆえにC0,C1,C0d,C2,C3の順に信号の立ち上がりが生起するものとする。第1のロジック回路13中の4個のDフリップフロップ40,41,42,43はXDATA信号をそれぞれC0,C1,C2,C3の立ち上がりエッジに同期してラッチし、第2のロジック回路14中の1個のDフリップフロップ71は同じXDATA信号をC0dの立ち上がりエッジに同期してラッチする。したがって、Q0,Q1,Q0d,Q2,Q3の順に信号の立ち上がりが生起し、Q0,Q1,Q0d,Q2,Q3の順に信号の立ち下がりが生起する。その結果、図6に示すように、N0の立ち上がりから遅れてN1が立ち上がり、N2及びN3が立ち上がることなく、N0及びN1が同時に立ち下がることとなる。また、図7に示すように、P0の立ち下がりから遅れてP1が立ち下がり、P2及びP3が立ち下がることなく、P0及びP1が同時に立ち上がることとなる。
【0019】
製造プロセスのばらつきや、電源電圧及び温度の変動に起因して出力トランジスタ20〜27の電流駆動能力が低くなると、C0に対するC0dの遅延時間Tdが長くなる。このためにC0,C1,C2,C0d,C3の順に信号の立ち上がりが生起することとなると、N0及びN1に加えてN2も変化し、P0及びP1に加えてP2も変化するので、出力トランジスタ20〜27のうちの導通トランジスタの数が増える。このようにして、個々の出力トランジスタ20〜27の電流駆動能力の低下が相殺されるように導通トランジスタの数が増える結果、ドライバ回路10の出力電流が実質的に一定に保持される。
【0020】
これとは逆に、出力トランジスタ20〜27の電流駆動能力が高くなると、C0に対するC0dの遅延時間Tdが短くなる。このためにC0,C0d,C1,C2,C3の順に信号の立ち上がりが生起することとなると、N0及びPのみが変化するようになり、出力トランジスタ20〜27のうちの導通トランジスタの数が減る。このようにして、個々の出力トランジスタ20〜27の電流駆動能力の向上が相殺されるように導通トランジスタの数が減る結果、ドライバ回路10の出力電流が実質的に一定に保持される。
【0021】
以上のとおり、図1中の第1及び第2のロジック回路13,14からなる制御回路は、出力トランジスタ20〜27の個々の電流駆動能力が低くなったことをTdの変化から検知した場合には当該出力トランジスタ20〜27のうち導通させるべき出力トランジスタの数を増やし、出力トランジスタ20〜27の個々の電流駆動能力が高くなったことをTdの変化から検知した場合には当該出力トランジスタ20〜27のうち導通させるべき出力トランジスタの数を減らすように働く。そのために、第1のロジック回路13中のDフリップフロップ40〜43はQ0,Q1,Q2,Q3を生成し、第2のロジック回路14はC0d及びQ0dを生成する。そして、第1のロジック回路13中のデータラッチ回路50〜57、AND回路60〜63及びNAND回路64〜67は、Q0,Q1,Q2,Q3とQ0dとの位相関係から、出力トランジスタ20〜27の電流駆動能力の変化を検知するように構成されている。なお、第1及び第2のロジック回路13,14は、C0,C1,C2,C3とC0dとの位相関係から出力トランジスタ20〜27の電流駆動能力の変化を検知するものでもある。
【0022】
また、図1の構成によれば、CLKに対してC0,C1,C2,C3が各々異なる位相差を有することを利用して、例えば図6に示したようにN0の立ち上がりから遅れてN1が立ち上がるように制御することで、Nチャネル出力トランジスタ20,21の導通タイミングを互いにずらしている。また、図7に示したようにP0の立ち下がりから遅れてP1が立ち下がるように制御することで、Pチャネル出力トランジスタ24,25の導通タイミングを互いにずらしている。このようにして出力トランジスタ20〜27の導通タイミングを互いにずらすことで、データ出力時のノイズ発生が抑制される効果も得られる。
【0023】
なお、ドライバ回路10を構成するNチャネル出力トランジスタ及びPチャネル出力トランジスタの数は各々4に限らない。これらの出力トランジスタの数に応じて、4相以外の多相クロック信号を採用することとすればよい。
【0024】
図8は、ドライバ回路10を構成するNチャネル出力トランジスタ及びPチャネル出力トランジスタの数を各々10にした場合の、図1の回路の出力電流シミュレーション波形を示している。シミュレーション条件は、TT(標準条件)、SS(ワースト条件)及びFF(ベスト条件)である。図8の波形から、本発明によれば出力電流のばらつきが数パーセントに抑えられていることが分かる。
【0025】
図9は、図1中の第2のロジック回路14の変形例を示している。この変形例は、Dフリップフロップ71の後段に遅延回路70を配置した構成である。図9において、Dフリップフロップ71は、D端子にXDATAを、クロック端子にC0をそれぞれ受け取り、Q端子からデータ信号Q0を供給する。このデータ信号Q0は、図1中の第1のロジック回路13における4相データ信号Q0,Q1,Q2,Q3のうちの1つと同じ位相を有する信号である。本変形例の遅延回路70は、可変の遅延時間TdだけQ0を遅延して得られる遅延変動データ信号Q0dを供給する。この遅延変動データ信号Q0dは、図1中の第2のロジック回路14が供給するQ0dと同じ位相を有する信号である。したがって、本変形例によっても、Q0,Q1,Q2,Q3とQ0dとの位相関係から出力トランジスタ20〜27の電流駆動能力の変化を検知することができ、ドライバ回路10の出力電流が実質的に一定に保持される。
【0026】
なお、図1中のNチャネル出力トランジスタ20〜23のサイズは互いに異なっていてもよい。Pチャネル出力トランジスタ24〜27のサイズについても同様である。また、インバータ31はDATA信号と出力パッド11の信号との極性を合わせるために付加されているのであって、これを省略することも可能である。更に、本発明の適用範囲はCMOS構成のドライバ回路を有する出力回路に限らない。例えば、Nチャネル出力トランジスタのみ、又はPチャネル出力トランジスタのみで構成されたドライバ回路を有する出力回路にも本発明は適用可能である。
【0027】
また、CLKに対する多相クロック信号C0,C1,C2,C3の位相差は等間隔でなくてもよい。第2のロジック回路14へ供給するクロック信号は、C0,C1,C2,C3のうちの1つであるC0に限らず、C0,C1,C2,C3とは別のクロック信号でもよい。回路70の遅延時間Tdの長さを調整しさえすれば、例えば図4中のFCLKを第2のロジック回路14へ供給することとしてもよい。また、CLKに対するC0,C1,C2,C3の各々の位相差が製造プロセスのばらつきや、電源電圧及び温度の変動に依存して変化する場合でも、その依存性より大きい依存性をTdが有する限り、そのような多相クロック信号を利用することも可能である。
【0028】
【発明の効果】
以上説明してきたとおり、本発明によれば、ドライバ回路中の複数の出力トランジスタの電流駆動能力の変化を反映した可変の遅延時間を持つ遅延回路を設け、複数の出力トランジスタの個々の電流駆動能力が低くなったことを前記遅延時間の変化から検知した場合には複数の出力トランジスタのうち導通させるべき出力トランジスタの数を増やし、複数の出力トランジスタの個々の電流駆動能力が高くなったことを前記遅延時間の変化から検知した場合には複数の出力トランジスタのうち導通させるべき出力トランジスタの数を減らすこととしたので、製造プロセスのばらつきがあっても、また電源電圧及び温度が変動しても、実質的に一定の出力電流が当該ドライバ回路から得られる。
【図面の簡単な説明】
【図1】本発明に係る出力回路の構成例を示すブロック図である。
【図2】図1中の遅延回路の内部構成例を示す回路図である。
【図3】図1中のデータラッチ回路の内部構成例を示す回路図である。
【図4】図1の出力回路へ4相クロック信号を供給するためのPLL回路の構成例を示すブロック図である。
【図5】図4中のリングオシレータを構成する9個のインバータの各々の内部構成例を示す回路図である。
【図6】図1中のNチャネル出力トランジスタの駆動例を示すタイミングチャート図である。
【図7】図1中のPチャネル出力トランジスタの駆動例を示すタイミングチャート図である。
【図8】図1の出力回路の効果を示す出力電流シミュレーション波形図である。
【図9】図1中の第2のロジック回路の変形例を示すブロック図である。
【符号の説明】
10 ドライバ回路
11 出力パッド
12 終端抵抗
13 第1のロジック回路(制御回路)
14 第2のロジック回路(制御回路)
20〜23 Nチャネル出力トランジスタ
24〜27 Pチャネル出力トランジスタ
31〜33 インバータ
40〜43 Dフリップフロップ
50〜57 データラッチ回路
60〜63 AND回路
64〜67 NAND回路
70 遅延回路
71 Dフリップフロップ
100 PLL回路
CLK 基準クロック信号
C0,C1,C2,C3 4相クロック信号
C0d 遅延変動クロック信号
DATA データ信号
Q0,Q1,Q2,Q3 4相データ信号
Q0d 遅延変動データ信号
Td 遅延時間

Claims (5)

  1. 半導体集積回路における出力回路であって、
    互いに並列接続された複数の出力トランジスタを有するドライバ回路と、
    与えられたデータ信号が所定の論理レベルを示す場合には前記複数の出力トランジスタのいずれかが導通するように前記ドライバ回路を制御するための制御回路とを備え、
    前記制御回路は、前記複数の出力トランジスタの電流駆動能力の変化を反映した可変の遅延時間を持つ遅延回路を有し、前記複数の出力トランジスタの個々の電流駆動能力が低くなったことを前記遅延時間の変化から検知した場合には前記複数の出力トランジスタのうち導通させるべき出力トランジスタの数を増やし、前記複数の出力トランジスタの個々の電流駆動能力が高くなったことを前記遅延時間の変化から検知した場合には前記複数の出力トランジスタのうち導通させるべき出力トランジスタの数を減らすことを特徴とする出力回路。
  2. 請求項1記載の出力回路において、
    前記遅延回路は、前記複数の出力トランジスタの電流駆動能力が低くなるにつれて長い遅延時間を、前記複数の出力トランジスタの電流駆動能力が高くなるにつれて短い遅延時間をそれぞれ有し、
    前記制御回路は、前記遅延時間が長くなるにつれて前記複数の出力トランジスタのうち導通させるべき出力トランジスタの数を増やし、前記遅延時間が短くなるにつれて前記複数の出力トランジスタのうち導通させるべき出力トランジスタの数を減らすことを特徴とする出力回路。
  3. 請求項1記載の出力回路において、
    前記制御回路は、
    基準クロック信号に対して各々異なる位相差を有する多相クロック信号を受け取るための手段と、
    前記基準クロック信号に対して前記遅延時間を反映した可変の位相差を有する遅延変動クロック信号を、前記遅延回路を用いて生成するための手段と、
    前記多相クロック信号と前記遅延変動クロック信号との位相関係を調べ、当該位相関係から前記複数の出力トランジスタの電流駆動能力の変化を検知するための手段とを備えたことを特徴とする出力回路。
  4. 請求項1記載の出力回路において、
    前記制御回路は、
    基準クロック信号に対して各々異なる位相差を有する多相クロック信号から、各々前記データ信号に応じた論理変化パターンを持つ多相データ信号を生成するための手段と、
    前記基準クロック信号に対して前記遅延時間を反映した可変の位相差を有し、かつ前記データ信号に応じた論理変化パターンを持つ遅延変動データ信号を、前記遅延回路を用いて生成するための手段と、
    前記多相データ信号と前記遅延変動データ信号との位相関係を調べ、当該位相関係から前記複数の出力トランジスタの電流駆動能力の変化を検知するための手段とを備えたことを特徴とする出力回路。
  5. 請求項1記載の出力回路において、
    前記制御回路は、前記複数の出力トランジスタのうち導通させるべき出力トランジスタについて、当該出力トランジスタの導通タイミングを互いにずらすように制御することを特徴とする出力回路。
JP2002015118A 2002-01-24 2002-01-24 出力回路 Expired - Fee Related JP3786879B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002015118A JP3786879B2 (ja) 2002-01-24 2002-01-24 出力回路
US10/345,940 US6801062B2 (en) 2002-01-24 2003-01-17 Output circuit
CN03102939.6A CN1225837C (zh) 2002-01-24 2003-01-24 输出电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002015118A JP3786879B2 (ja) 2002-01-24 2002-01-24 出力回路

Publications (2)

Publication Number Publication Date
JP2003218689A JP2003218689A (ja) 2003-07-31
JP3786879B2 true JP3786879B2 (ja) 2006-06-14

Family

ID=19191925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002015118A Expired - Fee Related JP3786879B2 (ja) 2002-01-24 2002-01-24 出力回路

Country Status (3)

Country Link
US (1) US6801062B2 (ja)
JP (1) JP3786879B2 (ja)
CN (1) CN1225837C (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7301375B2 (en) * 2003-03-07 2007-11-27 Hynix Semiconductor Inc. Off-chip driver circuit and data output circuit using the same
JP4229804B2 (ja) * 2003-10-24 2009-02-25 Necエレクトロニクス株式会社 半導体出力回路
KR100569559B1 (ko) * 2003-10-31 2006-04-10 매그나칩 반도체 유한회사 씨모스 출력 버퍼회로
JP4536449B2 (ja) 2004-07-29 2010-09-01 富士通株式会社 ドライバ回路、半導体装置、及び電子機器
EP1816757B8 (en) * 2004-11-02 2013-08-21 Ntt Docomo, Inc. Base station, radio network control station, and radio communication method
GB0428482D0 (en) * 2004-12-30 2005-02-02 Ibm Method and apparatus for managing feedback in a group resource environment
US7176743B2 (en) * 2005-03-18 2007-02-13 Agere Systems Inc. Driver circuit capable of providing rise and fall transitions that step smoothly in the transition regions
JP4804926B2 (ja) * 2006-01-12 2011-11-02 富士通セミコンダクター株式会社 半導体集積回路
DE112007001946T5 (de) 2006-08-16 2009-07-02 Advantest Corp. Lastschwankung-Kompensationsschaltung, elektronische Vorrichtung, Prüfvorrichtung, Taktgeneratorschaltung und Lastschwankungs-Kompensationsverfahren
US7550993B2 (en) * 2007-08-21 2009-06-23 Texas Instruments Incorporated Glitch reduced compensated circuits and methods for using such
KR100956781B1 (ko) * 2008-09-10 2010-05-12 주식회사 하이닉스반도체 데이터 출력회로
CN103592987B (zh) * 2012-08-14 2016-08-03 联华电子股份有限公司 稳压电路
CN104065368B (zh) * 2013-03-22 2017-06-06 联咏科技股份有限公司 驱动能力与芯片终端电阻值自我调整方法及其装置
US10483953B2 (en) * 2018-02-07 2019-11-19 Texas Instruments Incorporated Ring oscillator-based timer
US11004387B2 (en) * 2018-12-21 2021-05-11 Samsung Display Co., Ltd. High-efficiency piecewise linear column driver with asynchronous control for displays
JP2023045562A (ja) * 2021-09-22 2023-04-03 ルネサスエレクトロニクス株式会社 積分型a/d変換器、及び、半導体装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04145715A (ja) 1990-10-08 1992-05-19 Nec Ic Microcomput Syst Ltd チャタリング防止回路
JPH04145717A (ja) 1990-10-08 1992-05-19 Nec Ic Microcomput Syst Ltd 出力バッファ回路
JP2891920B2 (ja) 1996-02-21 1999-05-17 山形日本電気株式会社 出力バッファ回路
DE59813699D1 (de) * 1998-11-23 2006-10-05 Micronas Gmbh Kurvenformgenerator
JP3888019B2 (ja) 2000-02-28 2007-02-28 ヤマハ株式会社 出力バッファ回路

Also Published As

Publication number Publication date
US6801062B2 (en) 2004-10-05
CN1434569A (zh) 2003-08-06
US20030137326A1 (en) 2003-07-24
CN1225837C (zh) 2005-11-02
JP2003218689A (ja) 2003-07-31

Similar Documents

Publication Publication Date Title
JP3786879B2 (ja) 出力回路
JP4544780B2 (ja) クロック制御回路
US7541848B1 (en) PLL circuit
US6564359B2 (en) Clock control circuit and method
KR100861919B1 (ko) 다 위상 신호 발생기 및 그 방법
US20070076832A1 (en) Semiconductor integrated circuit and correcting method of the same
US6882196B2 (en) Duty cycle corrector
JP2001209454A (ja) クロック生成回路
JP2001160752A (ja) 位相同期ループの同期方法、位相同期ループ及び該位相同期ループを備えた半導体装置
JP2008135835A (ja) Pll回路
JP4856458B2 (ja) 高速動的周波数分周器
JP2001217694A (ja) 遅延調整回路及びこれを用いたクロック生成回路
JP2007235739A (ja) ダイナミック型フリップフロップ回路
JP4083884B2 (ja) Pll回路及びpll回路を内蔵した半導体集積回路
JPWO2002099971A1 (ja) 半導体集積回路
JP2000348487A (ja) 遅延同期回路
US6882211B2 (en) Output circuit, input circuit, electronic circuit, multiplexer, demultiplexer, wired-or circuit, wired-and circuit, pulse-processing circuit, multiphase-clock processing circuit, and clock-multiplier circuit
US11770116B1 (en) Duty cycle correction for high-speed clock signals
JP6492442B2 (ja) 電子部品及び情報処理装置
KR100853862B1 (ko) 지연 고정 루프 기반의 주파수 체배기
US20070165476A1 (en) Clock signal generating circuit
US6900684B2 (en) Pulse processing circuit and frequency multiplier circuit
US6861911B2 (en) Self-regulating voltage controlled oscillator
JP4245136B2 (ja) ジッター発生回路及び半導体装置
JP3797345B2 (ja) 遅延調整回路

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060322

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees