JP3767992B2 - Polypropylene resin for extrusion foaming and method for producing the same - Google Patents

Polypropylene resin for extrusion foaming and method for producing the same Download PDF

Info

Publication number
JP3767992B2
JP3767992B2 JP1815998A JP1815998A JP3767992B2 JP 3767992 B2 JP3767992 B2 JP 3767992B2 JP 1815998 A JP1815998 A JP 1815998A JP 1815998 A JP1815998 A JP 1815998A JP 3767992 B2 JP3767992 B2 JP 3767992B2
Authority
JP
Japan
Prior art keywords
polypropylene resin
raw material
peroxide
weight
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1815998A
Other languages
Japanese (ja)
Other versions
JPH1180262A (en
Inventor
晃 岩本
徹 木野
義昭 百瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP1815998A priority Critical patent/JP3767992B2/en
Publication of JPH1180262A publication Critical patent/JPH1180262A/en
Application granted granted Critical
Publication of JP3767992B2 publication Critical patent/JP3767992B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、押出発泡性に優れ、熱成形性の改良されたポリプロピレン系押出発泡シートを提供することのできる押出発泡用ポリプロピレン系樹脂およびその製造方法に関する。
【0002】
【従来の技術】
ポリプロピレン系樹脂の板状発泡体やシート状発泡体は、各種容器やトレー等を製造するための熱成形用として広く用いられている。ポリプロピレン系樹脂の板状発泡体やシート状発泡体を製造する方法として、ポリプロピレン系樹脂を押出機内で発泡剤と溶融混練し、この発泡性の溶融混練物を押出機先端のダイスより押出して発泡性溶融混練物を発泡させる押出発泡法が知られている。
【0003】
ポリプロピレン系樹脂は、発泡性溶融混練物を押出機から押出す際の温度に僅かな変化が生じると、溶融混練物の粘度が大きく変化するという性質(発泡適正温度範囲が狭い)を有し、この性質が優れた性状のポリプロピレン系樹脂押出発泡体を製造する上での大きな問題となる。即ち、ポリプロピレン系樹脂の場合、押出温度の僅かな上昇によって溶融混練物の粘度が大きく低下し易く、この結果、溶融混練物中の発泡剤の逃散が激しくなって発泡体が連続気泡構造となったり発泡倍率低下をきたし易く、また押出温度の僅かな低下によって溶融混練物の粘度が急激に高くなり、均一な発泡が阻害されて表面に凹凸のある発泡体となり易い等の問題がある。
【0004】
このようなポリプロピレン系樹脂の押出発泡性の悪さを改善するために、種々の改良が検討されており、押出発泡性を改善したポリプロピレン系樹脂として、例えばポリプロピレン系樹脂に電子線を照射し、その一部を分解させて遊離基を形成し、それを再結合させるとともに残りの遊離基を失活させることによって得られる自由端長鎖分岐を有するポリプロピレン系樹脂(以下、長鎖分岐ポリプロピレン系樹脂と呼ぶ。)が知られている(特開平2−69533号公報)。
【0005】
【発明が解決しようとする課題】
上記長鎖分岐ポリプロピレン系樹脂は、押出発泡性には優れているが、得られた発泡シートを熱成形するに際し、発泡シートに大きな垂れ下がり(一般に、この垂れ下がりのことをドローダウンと呼んでいる。)が生じ易く、そのような大きなドローダウンは、熱成形品に大きな皺やブリッジと呼ばれるシート同士の重なり等の不良が生じ易いとともに、場合によっては発泡シートが加熱ヒーターに接触して変質する(焦げたり、収縮したり、穴が開いたりする)という問題があった。
【0006】
発泡シートの熱成形性を改善するためには、発泡シートを架橋する方法が挙げられるが、架橋した樹脂を押出発泡したり、押出発泡時に同時に架橋することはきわめて困難であるため、現在知られている架橋ポリプロピレン発泡シートは、無架橋の発泡性押出シート得た後、架橋し、その後、発泡する方法で製造されており、発泡シートの製造に煩雑な製造工程が必要となるとともに、架橋発泡シートは再生利用が困難であるという問題を有していた。
【0007】
本発明は上記の点に鑑みなされたもので、押出発泡性に優れるとともに、熱成形性に優れた押出発泡体を提供することのできる押出発泡用ポリプロピレン系樹脂を提供することを目的とする。
【0008】
【課題を解決するための手段】
即ち本発明は、原料ポリプロピレン系樹脂と、1分間半減期温度が100℃〜(原料ポリプロピレン系樹脂の融点−10℃)の過酸化物と、主鎖切断防止剤とを水性媒体中で加熱、攪拌して得られるポリプロピレン系樹脂であるとともに、メルトテンションが15(gf)以上、メルトフローレイトが0.3〜12(g/10分)であり、且つメルトテンション:MT(gf)の自然対数値:lnMTと、メルトフローレイト:MFR(g/10分)の自然対数値:lnMFRとの間に、下記(1)式が成り立ち、ポリプロピレン系樹脂の重量( G 1 )と、該ポリプロピレン系樹脂における沸騰キシレン不溶分の重量(G 2 )を用い下記(2)式にて定まるゲル分率が0.5%未満であることを特徴とする押出発泡用ポリプロピレン系樹脂を要旨とする。
【0009】
【数3】
lnMT > −0.83lnMFR+2.82 (1)
【0010】
(数4)
ゲル分率(%)=G 2 (g)÷G 1 (g)×100 (2)
【0011】
上記押出発泡用ポリプロピレン系樹脂は、メルトテンションが20〜60(gf)のものが好ましい。
【0012】
また本発明は、原料ポリプロピレン系樹脂と、該樹脂100重量部に対して0.1〜3.0重量部の1分間半減期温度が100℃〜(原料ポリプロピレン系樹脂の融点−10℃)である過酸化物と、該樹脂100重量部に対して0.01〜5.0重量部の主鎖切断防止剤とを、水性媒体中で攪拌し、過酸化物の投入量の半分以上が残存する温度と時間にて原料ポリプロピレン系樹脂に過酸化物と主鎖切断防止剤とを含浸させ、次いで過酸化物の10時間半減期温度以上の温度にて原料ポリプロピレン系樹脂中に含浸させた過酸化物を分解させて上記記載の押出発泡用ポリプロピレン系樹脂を得ることを特徴とする押出発泡用ポリプロピレン系樹脂の製造方法である。
【0013】
【発明の実施の形態】
本発明のポリプロピレン系樹脂は、上記(1)式が成り立つようにポリプロピレン系樹脂(以下、微架橋後のポリプロピレン系樹脂と区別するため、微架橋前のポリプロピレン系樹脂を原料ポリプロピレン系樹脂と呼ぶ。)を微架橋することによって得られる。本発明のポリプロピレン系樹脂は、微架橋処理しているがゲル分率は実質的に0%である。ゲル分率とは、試料約1gを秤量(秤量した試料重量をG1 (g)とする。)してキシレン100g中で8時間煮沸した後、100メッシュの金網で速やかに濾過し、次いで金網上に残った沸騰キシレン不溶分を20℃で24時間乾燥させてから不溶分の重量を秤量し(秤量した沸騰キシレン不溶分の重量をG2 (g)とする。)、下記(2)式によって求めた値である。本発明においてゲル分率が実質的に0%とは、下記(2)式によって求めたゲル分率が0.5%未満のものを言う。
【0014】
【数5】
ゲル分率(%)=G2 (g)÷G1 (g)×100 (2)
【0015】
原料ポリプロピレン系樹脂を微架橋する方法としては、例えば原料ポリプロピレン系樹脂と、1分間半減期温度が原料ポリプロピレン系樹脂の融点以下の過酸化物と、主鎖切断防止剤とを水性媒体中で攪拌し、過酸化物が分解してしまうのを極力抑え、少なくとも投入した過酸化物の全量の半分以上が残存するような温度と時間で、ポリプロピレン粒子に過酸化物や主鎖切断防止剤を含浸させた後、過酸化物を分解せしめ、実質的にゲル分率が0%で且つ上記(1)式が成り立つように微架橋する方法が挙げられる。
【0016】
本発明において原料ポリプロピレン系樹脂は、プロピレンホモポリマーやプロピレンと他のモノマー成分との共重合体が挙げられ、共重合体の場合、ブロック共重合体、ランダム共重合体のいずれも用いることができ、更に二元系のみならず三元系共重合体であっても良い。これらのうち、原料ポリプロピレン系樹脂としては、耐熱性、低温での耐衝撃性に優れたブロック共重合体、特にプロピレン−エチレンブロック共重合体が好ましい。
【0017】
プロピレンと他のモノマー成分との共重合体を原料ポリプロピレン系樹脂として用いる場合、他のモノマー成分は共重合体中に、ランダム共重合体の場合には5.0重量%以下、ブロック共重合体の場合には20.0重量%以下の割合で含有されていることが好ましい。共重合体中に含有される他のモノマー成分がこれよりも多いと、ポリプロピレン本来の透明性、剛性、表面光沢、耐熱性等の特性が損なわれてしまうため好ましくない。
【0018】
プロピレンと共重合可能な他のモノマー成分としては、エチレン、1−ブテン、イソブチレン、1−ペンテン、3−メチル−1−ブテン、1−ヘキセン、3,4−ジメチル−1−ブテン、1−ヘプテン、3−メチル−1−ヘキセン等が挙げられる。
【0019】
また、上記原料ポリプロピレン系樹脂は単独で用いるのみならず、2種以上を混合して用いることもできる。更に、原料ポリプロピレン系樹脂には、前記したようなポリプロピレン本来の特性が損なわれない範囲で、高密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、直鎖状超低密度ポリエチレン、エチレン−ブテン共重合体、エチレン−無水マレイン酸共重合体等のエチレン系樹脂、ブテン系樹脂、ポリ塩化ビニル、塩化ビニル−酢酸ビニル共重合体等の塩化ビニル系樹脂、スチレン系樹脂等を必要に応じて混合することもできる。
【0020】
尚、本発明で用いる原料ポリプロピレン系樹脂は、メルトフローレイト:MFR(JIS K 7210の表1の条件14)が1〜20g/10分であるのが好ましい。また、原料ポリプロピレン系樹脂の融点は135℃以上であるのが好ましいが、より好ましくは145℃以上、特に好ましくは155℃以上である。原料ポリプロピレン系樹脂の融点は、原料ポリプロピレン系樹脂3〜5mgを、示差走査熱量測定装置により、昇温速度10℃/分で室温から220℃まで昇温して1回目のDSC曲線を得た後、直ちに降温速度10℃/分で40℃まで降温し、その後もう一度昇温速度10℃/分で220℃まで昇温したときに得られる2回目のDSC曲線上の最も高温側に現れるピークの頂点の温度をいうものとする。
【0021】
上記したような原料ポリプロピレン系樹脂の具体的な形状は特に限定されず、球状、楕円球状、円柱状、不定形状等、任意の形状を採用することができるが、過酸化物や主鎖切断防止剤の均一な含浸が効率良く短時間で行なわれるようにするためには、原料ポリプロピレン系樹脂の体積を小さくし且つ比表面積が大きくなるようにするのが好ましい。そのためには原料ポリプロピレン系樹脂1個当たりの平均重量が5mg/1個以下の粒子状物であるのが好ましく、より好ましくは4mg/1個以下の粒子状物である。
【0022】
尚、上記の場合、原料ポリプロピレン系樹脂の平均重量は、無作為に選んだ20個の粒子状の原料ポリプロピレン系樹脂の総重量を計測し、相加平均することにより求めるものとし、全ての粒子状の原料ポリプロピレン系樹脂が5mg/1個以下である必要はない。
【0023】
原料ポリプロピレン系樹脂を微架橋するために用いる過酸化物としては、通常、1分間半減期温度が原料ポリプロピレン系樹脂の融点よりも低いものを用いる。原料ポリプロピレン系樹脂の融点以上のものを用いた場合には、原料ポリプロピレン系樹脂の融点未満で過酸化物の分解を行おうとすると、あまりに長時間を要するため実際的でない。過酸化物の1分間半減期温度は、使用する原料ポリプロピレン系樹脂の融点よりも10℃以上低いことが望まれる。また、過酸化物の1分間半減期温度が低すぎる場合には、過酸化物を低温で保存しなければならないといった保管上の不具合があり、このような不具合を回避するためには、過酸化物の1分間半減期温度は100℃以上であることが望まれる。従って原料ポリプロピレン系樹脂を微架橋するために用いる過酸化物は、その1分間半減期温度が100℃〜(原料ポリプロピレン系樹脂の融点−10℃)であるものが望ましく、1分間半減期温度が100℃〜(原料ポリプロピレン系樹脂の融点−20℃)であるものがより望ましい。
【0024】
上記過酸化物としては例えば、ラウロイルパーオキサイド、m−トルオイル−ベンゾイルパーオキサイド、ベンゾイルパーオキサイド、ビス(4−ブチルシクロヘキシル)パーオキシジカーボネート等が挙げられ、これらのなかから1分間半減期温度が原料ポリプロピレン系樹脂の融点以下のものを選択して用いる。上記した過酸化物のうち、取り扱い易さの上からラウロイルパーオキサイド、m−トルオイル−ベンゾイルパーオキサイド、ベンゾイルパーオキサイドが好ましい。
【0025】
上記過酸化物とともに用いる主鎖切断防止剤は、過酸化物によってポリプロピレン系樹脂の主鎖が切断されるのを防止するためのものであり、例えばメチルメタクリレート、ジビニルベンゼン、トリアリルシアヌレート等が用いられる。なかでもビニル結合を1分子中に2つ有する反応性の高いジビニルベンゼンが好ましい。
【0026】
原料ポリプロピレン系樹脂、過酸化物、主鎖切断防止剤を分散させる水性媒体としては、通常は界面活性剤を添加した水が用いられる。水性媒体は熱伝導性が良く良好な加熱媒体となるので、原料ポリプロピレン系樹脂等を均一に加熱することができ、また温度制御も容易であるため、過酸化物や主鎖切断防止剤の原料ポリプロピレン系樹脂への均一な含浸が容易に行なえる。
【0027】
本発明の押出発泡用ポリプロピレン系樹脂を得るに際し、過酸化物は原料ポリプロピレン系樹脂100重量部当たり0.1〜3.0重量部程度、主鎖切断防止剤は原料ポリプロピレン系樹脂100重量部当たり、0.01〜5.0重量部程度用いることが好ましい。また、水性媒体は、原料ポリプロピレン系樹脂100重量部当たり、150〜500重量部使用することが好ましい。
【0028】
過酸化物の使用量が原料ポリプロピレン系樹脂100重量部当たりに対し、3.0重量部を超えると、原料ポリプロピレン系樹脂が分解し易くなってしまうため好ましくなく、しかも、この場合に原料ポリプロピレン系樹脂の分解を防ぐためには主鎖切断防止剤を多量に添加しなければならず、多量の主鎖切断防止剤を添加するとゲル分率を実質的に0%に維持することが困難となる。また、過酸化物の使用量が0.1重量部に満たないと、特に3〜30倍の発泡倍率(発泡体密度に換算すると0.3〜0.03g/cm3 となる。)をもつポリプロピレン系樹脂押出発泡体を製造するに適した溶融加工性をポリプロピレンに充分に付与できなくなってしまう虞があるため好ましくない。一方、主鎖切断防止剤の添加量が原料ポリプロピレン系樹脂100重量部当たりに対し、5.0重量部を超えるとゲル分率を実質的に0%に維持することが困難となり、0.01重量部に満たないと樹脂が分解し易くなるため好ましくない。
【0029】
原料ポリプロピレン系樹脂を微架橋するより具体的な例として、原料ポリプロピレン系樹脂、過酸化物、主鎖切断防止剤を水等の水性媒体に分散させて攪拌し、過酸化物が分解してしまうのを極力抑え、少なくとも投入した過酸化物の全量の半分以上、好ましくは4/5以上が残存するような温度と時間(例えば、過酸化物の半減期が10時間となる分解温度(10時間半減期温度)であれば、1〜6時間程度、好ましくは1.5〜4.5時間)加熱保持することにより、原料ポリプロピレン系樹脂に過酸化物と主鎖切断防止剤とを含浸させ、次いで10℃以上、原料ポリプロピレン系樹脂の融点未満の温度で、且つ過酸化物の実質的な分解が行われる温度以上、好ましくは過酸化物の10分間半減期温度以上となる温度条件下で5〜120分、好ましくは15〜60分間加熱保持することにより、原料ポリプロピレン系樹脂に含浸させた過酸化物を分解せしめ、原料ポリプロピレン系樹脂を完全に溶融させることなく僅かに架橋させて実質ゲル分率0%のポリプロピレン系樹脂を得る方法が挙げられる。原料ポリプロピレン系樹脂を完全に溶融させることなく過酸化物を含浸かつ分解させることにより、過酸化物による原料ポリプロピレン系樹脂の主鎖の切断が起こり難く、主鎖切断防止剤の使用量を比較的少なくすることができるため、多量の主鎖切断防止剤の混入による物性の不均一化を引き起こす虞がない。
【0030】
尚、上記した架橋反応は密閉容器内で行われることになるが、内容物を密閉容器内に投入した後、容器内の上部気相空間は酸素濃度が1体積%以下となるように不活性ガスで置換することが望ましい。
【0031】
本発明のポリプロピレン系樹脂を得るに際し、上記したようにして水性媒体を使用して原料ポリプロピレン系樹脂に主鎖切断防止剤を含浸させる方法の他に、主鎖切断防止剤を予め原料ポリプロピレン系樹脂に含有させておき、その後水性媒体を使用して該樹脂中に過酸化物を含浸させる方法も採用することができる。原料ポリプロピレン系樹脂に予め主鎖切断防止剤を含有させておくには、例えば、押出機内で原料樹脂と主鎖切断防止剤とを溶融混練した後、この溶融混練物を押出機から線状に押出し、この線状樹脂を切断して粒子状とする方法を採用することができる。但し、この場合には、時間の経過とともに主鎖切断防止剤の一部が原料ポリプロピレン系樹脂から気化散逸してその含有量が減少してしまう虞があるため、主鎖切断防止剤を含有せしめた原料ポリプロピレン系樹脂を造粒した後は、比較的早い時期に原料ポリプロピレン系樹脂に過酸化物を含浸させて微架橋させることが好ましい。
【0032】
本発明の押出発泡用ポリプロピレン系樹脂は、メルトテンション:MT(gf)の自然対数値:lnMTと、メルトフローレイト:MFR(g/10分)の自然対数値:lnMFRとの間に、前記(1)式で示す関係が成り立つように微架橋されたものであり、図1に示す直線の上側部分のMTとMFRとを有するものである(図1は縦軸がlnMT、横軸がlnMFRの両対数グラフであり、直線はlnMT=−0.83lnMFR+2.82を示す。また、プロット点は後記の実施例、比較例、参考例からのデータに基づく。)。本発明において上記(1)式で示す関係が成り立つMTとMFRのうちでも、MT=15gf以上、MFR=0.3〜12g/10分のものが好ましい。MTが15gf未満であると、得られた発泡シートを熱成形するに際し、ドローダウンが大きくなる傾向にある。また、MTが70gfを超えるとゲル分率が0.5%を超え易くなるため、このような観点から、特にMT=20〜60gfのものが好ましい。尚、特にMTが25gf以上の場合には、得られた発泡体の加熱下での安定性がより高まり、ポリプロピレン系樹脂が長鎖分岐を有するものであっても加熱成形時のドローダウンを小さくできるとともに、より長い時間加熱することが可能となるので、深絞り成形時の安定性が高まるという効果を奏する。一方、MFRが0.3g/10分未満であると、30倍以下の発泡倍率で良好な発泡体の製造が困難となり、12g/10分を超えると機械的物性の低下が大きくなる。このような観点から、特にMFR=0.5〜8g/10分のものが好ましい。
【0033】
上記基材樹脂のメルトテンション:MT(gf)は、株式会社東洋精機製作所製のメルトテンションテスターII型によって測定することができる。具体的には、ノズル径2.095mm、長さ8mmのノズルを有するメルトテンションテスターを用い、上記ノズルから樹脂温度230℃、押出しのピストン速度10mm/分の条件で樹脂を紐状に押出して、この紐状物を直径45mmの張力検出用プーリーに掛けた後、5rpm/秒(紐状物の捲取り加速度:1.3×10-2m/秒2 )程度の割合で捲取り速度を徐々に増加させていきながら直径50mmの捲取りローラーで捲取る。本発明において、メルトテンション(MT)を求めるには、まず、張力検出用プーリーに掛けた紐状物が切れるまで捲取り速度を増加させ、紐状物が切れた時の捲取り速度:R(rpm)を求める。次いで、R×0.7(rpm)の一定の捲取り速度において紐状物の捲取りを行い、張力検出用プーリーと連結する検出器により検出される紐状物のメルトテンションを経時的に測定し、縦軸にメルトテンションを、横軸に時間を取ったグラフに示すと、図2のような振幅をもったグラフが得られる。本発明におけるメルトテンションとしては、図2において振幅の安定した部分の振幅の中央値(X)を採用する。但し、捲取り速度が500rpmに達しても紐状物が切れない場合には、捲取り速度を500rpmとして紐状物を巻き取って求めたグラフより紐状物のメルトテンションを求める。尚、メルトテンションの経時的測定の際に、まれに特異な振幅値が検出されることがあるが、このような特異な振幅値は無視するものとする。またメルトフローレイト:MFR(g/10分)は、JIS K7210の表1の条件14で測定した値である。
【0034】
本発明の押出発泡用ポリプロピレン系樹脂を用いて押出発泡体を得る方法としては、例えば本発明の押出発泡用ポリプロピレン系樹脂を押出機内で溶融し、高温高圧下で発泡剤と混練して形成した発泡性組成物を押出機先端に設けられた環状ダイスを通して押出機内よりも低圧下に押出して筒状に発泡させ、この筒状発泡体を挟圧して内面側を融着させて板状発泡体としたり、筒状発泡体を押出方向に沿って切り開いてシート状発泡体とする等の方法が採用される。このようにして得られるシート状又は板状発泡体は、通常、3〜30倍の発泡倍率と、0.3〜10mmの厚みを有する。
【0035】
発泡剤としては、無機発泡剤、揮発性発泡剤、分解型発泡剤が用いられる。無機発泡剤としては二酸化炭素、空気、窒素等が挙げられれる。
【0036】
また揮発性発泡剤としては、プロパン、n−ブタン、i−ブタン、ペンタン、ヘキサン等の脂肪族炭化水素、シクロブタン、シクロペンタン等の環式脂肪族炭化水素、クロロフロロメタン、トリフロロメタン、1,1−ジフロロエタン、1−クロロ−1,1−ジフロロエタン、1,1,1,2−テトラフロロエタン、1−クロロ−1,2,2,2−テトラフロロエタン、メチルクロライド、エチルクロライド、メチレンクロライド等のハロゲン化炭化水素等を用いることができる。また、分解型発泡剤としては、アゾジカルボンアミド、ジニトロソペンタメチレンテトラミン、アゾビスイソブチロニトリル、重炭酸ナトリウム等を用いることができる。
【0037】
上記発泡剤は適宜混合して用いることができる。発泡剤の使用量は、発泡剤の種類、所望する発泡倍率等によっても異なるが、例えば、密度0.2〜0.013g/cm3 程度の発泡体を得るための発泡剤の使用量の目安は、ポリプロピレン系樹脂100重量部当たり、揮発性発泡剤の場合、0.5〜25重量部(ブタン換算)程度である。また、密度0.09g/cm3 を超える発泡体を得るための発泡剤の使用量の目安は、樹脂100重量部当たり、無機発泡剤の場合0.1〜10重量部程度、分解型発泡剤の場合0.1〜5重量部程度である。
【0038】
押出発泡体を製造するに当たり、基材樹脂中または、押出機内において発泡剤と溶融混練した発泡性樹脂組成物中に、必要に応じて気泡調整剤を添加することができる。気泡調整剤としては、タルク、シリカ等の無機粉末や多価カルボン酸の酸性塩、多価カルボン酸と炭酸ナトリウム或いは重炭酸ナトリウムとの反応混合物等が挙げられる。気泡調整剤の添加量は樹脂100重量部当たり一般に3重量部程度以下が好ましい。更に必要に応じて、帯電防止剤、流動性向上剤等や、所期の目的を妨げない範囲の量の着色剤等の各種添加剤を配合することもできる。更に、タルク、シリカ、炭酸カルシウム、クレー、ゼオライト、アルミナ、硫酸バリウム等を無機充填剤として添加することもできる。これら無機充填剤の添加量は樹脂と他の添加剤等を合計した総重量の40重量%を上限とすることが好ましい。上記無機粉末や無機充填剤は平均粒径が1〜70μmのものが好ましい。無機充填剤を添加すると、得られた発泡体の耐熱性が向上するとともに、発泡体を焼却する際の燃焼カロリーを低下させることができる。
【0039】
【実施例】
以下、実施例を挙げて本発明を更に詳細に説明する。
【0040】
実施例1〜、比較例1〜2
容積500リットルのオートクレーブ中に、水250重量部にドデシルベンゼンスルホン酸ナトリウム0.01重量部を添加してなる水性媒体を入れ、この水性媒体中に表1に示す原料ポリプロピレン系樹脂粒子、過酸化物、主鎖切断防止剤を投入してオートクレーブの蓋を閉じた。次いで、オートクレーブ内の上部空間に窒素ガスを流入させて、該空間の酸素濃度が0.2体積%以下となるように窒素置換を行なった。
【0041】
表1において、過酸化物、主鎖切断防止剤の使用量は、原料ポリプロピレン系樹脂粒子100重量部当たりに対する重量部で示した。また、実施例3、比較例1、2については、次の点で他の実施例と操作を異ならせ、それ以外の操作は他の実施例と同様に行なった。
【0042】
実施例3では主鎖切断防止剤を予め含有させた原料ポリプロピレン系樹脂粒子を使用したので、水性媒体への主鎖切断防止剤の投入は行なわなかった。比較例1では水性媒体を使用せずに、表1に示す原料ポリプロピレン系樹脂粒子、過酸化物、主鎖切断防止剤だけをオートクレーブ中に投入してその後の操作を行なった。比較例2では主鎖切断防止剤を使用しなかった。
【0043】
次に、オートクレーブ内を攪拌しながら、2℃/分の昇温速度で用いた過酸化物の10時間半減期温度まで加熱して、その温度で2時間保持した。その後、2℃/分の昇温速度で用いた過酸化物の1分間半減期温度まで加熱して、その温度で20分間保持した後に冷却した。このようにして得られたポリプロピレン系樹脂粒子の性状を表2に示す。
【0044】
実施例及び比較例に用いた原料ポリプロピレン系樹脂粒子は、以下の通りである。
【0045】
X:平均重量18.0mg/1個のポリプロピレン粒子〔出光石油化学製E250G;融点163.7℃〕
【0046】
Y:平均重量18.0mg/1個のポリプロピレン粒子〔日本ポリオレフィン製M7500;融点162.8℃〕
【0047】
MX:上記粒子Xを押出機内で溶融混練してストランド状に押し出し、平均重量2.5mg/1個となるようにカットしたもの。
【0048】
MY:上記粒子Yを押出機内で溶融混練してストランド状に押し出し、平均重量2.5mg/1個となるようにカットしたもの。
【0049】
XY1:上記粒子Xと上記粒子Yとを重量比2:8でブレンドして押出機内で溶融混練してストランド状に押し出し、平均重量2.5mg/1個となるようにカットしたもの〔融点162.7℃〕。
【0051】
YDVB:上記粒子Y100重量部当たり0.1重量部のジビニルベンゼン(DVB)を主鎖切断防止剤として配合し、これらを押出機内で溶融混練してストランド状に押し出し、平均重量2.5mg/1個となるようにカットしたもの。
【0052】
また、過酸化物としては以下に示すA〜Dのものを用いた。尚、実施例及び比較例で用いた過酸化物の1分間半減期温度、10時間半減期温度を表1にあわせて示した。
A:ラウロイルパーオキサイド〔日本油脂製パーロイルL〕
B:m−トルオイル−ベンゾイルパーオキサイド〔日本油脂製ナイパーBMT−K40〕
C:ベンゾイルパーオキサイド〔日本油脂製ナイパーFF〕
D:ビス(4−ブチルシクロヘキシル)パーオキシジカーボネート〔日本油脂製パーロイルTCP〕
【0053】
また、主鎖切断防止剤にはジビニルベンゼン(以下、DVBと略称する。)、トリアリルシアヌレート(以下、TACと略称する。)を用い、使用した主鎖切断防止剤の種類を表1中に略称で示した。
【0054】
(表1)

Figure 0003767992
【0055】
(表2)
Figure 0003767992
尚、表2に示す樹脂の性状において、MT、MFRは以下のようにして測定した。
【0056】
メルトテンション:MTは、(株)東洋精機製作所製のメルトテンションテスターII型にて、ノズル径が2.095mm、長さ8mmのノズルを用い、樹脂温度230℃、押出しピストン速度10mm/分の条件で樹脂を紐状に押出し、この紐状物について前述した方法で測定した。
【0057】
メルトフローレイト:MFRは、JIS K7210の表1の条件14で測定した。
【0058】
次に、上記の如くして得られたポリプロピレン粒子に、表3に示す割合となるようにブタン及び気泡調整剤(クエン酸モノナトリウム塩)を添加し(表3に示すブタン、気泡調整剤の割合は、ポリプロピレン粒子、ブタン及び気泡調整剤の合計量に対する重量%で示した。)、50mmφの単一スクリューを備えた押出機(L/Dは46)へ配合し、溶融混練した後、押出機先端に取り付けた径75mmφ、間隙0.3mmのリップを有するサーキュラーダイスを通して押出発泡してチューブ状の発泡体を得、次いでこのチューブを切り開いて発泡シートを得た。発泡シート製造時の押出発泡性及び得られた発泡シートの密度を表3に併せて示す。得られた発泡シートを単発成形機(三和興業株式会社製の「PLAVAC-FE36HP 型」)に焼きそばトレー用金型を取り付けて成形した。発泡シートを加熱する時間を変えて成形を行い、加熱不足のために得られる成形体に所謂ナキが生じるようになる成形直前のシート表面温度の下限:TL (℃)と、加熱過多によって所謂ヤケが生じるようになる成形直前のシート表面温度の上限:TU (℃)との差を、成形可能加熱温度範囲とし、表3に示した。
【0059】
尚、この成形テストにおいては、上ヒーターの電圧調整器の40個のダイヤル目盛は全て30に設定し、下ヒーターの電圧調整器の6個のダイヤル目盛は全て40に設定して行った。また、上記「成形直前のシートの表面温度」とは、シートを加熱後、ヒーターが後退した直後のシート表面の温度を意味し、この温度はオプテックス株式会社製の「THERMO-HUNTER PT-3LF」を使用して測定した。
また各シートに対し、加熱時のシートの垂れ下がり量であるドローダウン量を測定し、その結果を表3にあわせて示した。尚、ドローダウン量は、25cm角に切断した発泡シートを縦横共に20cmの正方形状の貫通孔を有する木枠の間にしっかり挟み込み、発泡シートの中央部に100gの重りを載せ、これを雰囲気温度が145℃設定のオーブン中に5分間放置した後、直ちに取り出し、木枠挟み込み面からのシートの最大垂れ下がり距離を測定し、これをドローダウン量(mm)とした。
【0060】
(表3)
Figure 0003767992
成形可能加熱温度範囲の下段の括弧内の左側の数値はTL(℃)を、右側の数値はTU(℃)を示す。
【0061】
参考例
市販の長鎖分岐ポリプロピレン系樹脂(米国モンテル社製の製造に係る商品名「SD632」)に対する、MT、MFR、lnMTの値及び、−0.83lnMFR+2.82の値を表2にあわせて示した。またこの長鎖分岐ポリプロピレン系樹脂を用いて実施例、比較例と同様にして発泡シートを製造し、この発泡シートの成形テストを行うとともに、ドローダウン量を測定した。これらの結果を表3にあわせて示した。
【0062】
【発明の効果】
以上説明したように本発明の押出発泡用ポリプロピレン系樹脂は、押出発泡性に優れ、本発明樹脂より得た押出発泡体は熱成形時のドローダウンが小さいため、成形時の不良品の発生率を低減させることができる。またMTが20gf以上、特に25gf以上の場合には、得られる押出発泡体の熱安定性がより高まる結果、加熱時間(温度)の多少の変動によっても成形不良を生じる虞れが少なくなり、加熱時間(温度)の変動による不良成形品の発生率が大幅に低減されるとともに、より長い時間加熱することができるので深絞り成形時の不良品発生率も大幅に低減される。更に、本発明の押出発泡用ポリプロピレン系樹脂は、ゲル分率が実質的に0%であるため、再生利用が可能である等の利点を有する。
【図面の簡単な説明】
【図1】本発明押出発泡用ポリプロピレン系樹脂のMTとMFRの関係を示すグラフである。
【図2】メルトテンションテスターのノズルから樹脂を紐状に押出して、捲取り速度一定として紐状の樹脂を捲取りローラーで捲取ったときのメルトテンション(MT)の経時変化を示すグラフである。[0001]
[Technical field to which the invention belongs]
  The present invention provides a polypropylene-based resin for extrusion foaming, which is excellent in extrusion foamability and can provide a polypropylene-based extruded foam sheet with improved thermoformability.And manufacturing method thereofAbout.
[0002]
[Prior art]
A plate-like foam or a sheet-like foam of a polypropylene resin is widely used for thermoforming for manufacturing various containers, trays and the like. As a method of producing a polypropylene resin plate-like foam or sheet-like foam, a polypropylene resin is melt-kneaded with a foaming agent in an extruder, and this foamable melt-kneaded product is extruded from a die at the tip of the extruder and foamed. There is known an extrusion foaming method in which a foamable melt-kneaded product is foamed.
[0003]
The polypropylene resin has a property that the viscosity of the melt-kneaded material changes greatly when the temperature at the time of extruding the foamable melt-kneaded product from the extruder (the foaming proper temperature range is narrow), This is a major problem in producing a polypropylene resin extruded foam having excellent properties. That is, in the case of a polypropylene resin, the viscosity of the melt-kneaded product is likely to be greatly reduced by a slight increase in the extrusion temperature, and as a result, the foaming agent in the melt-kneaded product is escaping and the foam has an open cell structure. There is a problem that the foaming ratio is liable to be reduced, and the viscosity of the melt-kneaded product is rapidly increased by a slight decrease in the extrusion temperature, and uniform foaming is hindered to easily form a foam having irregularities on the surface.
[0004]
In order to improve the poor extrusion foamability of such a polypropylene resin, various improvements have been studied. As a polypropylene resin having improved extrusion foamability, for example, a polypropylene resin is irradiated with an electron beam, A polypropylene resin having a free-end long-chain branch (hereinafter referred to as a long-chain branched polypropylene resin) obtained by decomposing a part to form a free radical, recombining it and deactivating the remaining free radical Is known) (Japanese Patent Laid-Open No. 2-69533).
[0005]
[Problems to be solved by the invention]
The long-chain branched polypropylene resin is excellent in extrusion foaming property, but when the obtained foamed sheet is thermoformed, it droops greatly into the foamed sheet (generally, this sagging is called drawdown). Such a large drawdown is likely to cause defects such as large wrinkles and overlapping of sheets called bridges in the thermoformed product, and in some cases, the foamed sheet contacts the heater and deteriorates ( There was a problem of scorching, shrinking, and opening a hole).
[0006]
In order to improve the thermoformability of the foamed sheet, there is a method of crosslinking the foamed sheet, but it is currently known because it is very difficult to extrude foam a crosslinked resin or to simultaneously crosslink at the time of extrusion foaming. The cross-linked polypropylene foam sheet is manufactured by a method in which a non-cross-linked foamable extruded sheet is obtained and then cross-linked and then foamed, and a complicated manufacturing process is required for the production of the foam sheet. The sheet has a problem that it is difficult to recycle.
[0007]
This invention is made | formed in view of said point, and it aims at providing the polypropylene-type resin for extrusion foaming which can provide the extrusion foam excellent in thermoforming property while being excellent in extrusion foamability.
[0008]
[Means for Solving the Problems]
  That is, the present inventionIt is obtained by heating and stirring a raw material polypropylene resin, a peroxide having a half-life temperature of 100 ° C. to (melting point of the raw material polypropylene resin −10 ° C.) and a main chain cleavage inhibitor in an aqueous medium. Polypropylene resin, melt tension of 15 (gf) or more, melt flow rate of 0.3 to 12 (g / 10 min)And the following equation (1) holds between the natural logarithm of melt tension: MT (gf): lnMT and the natural logarithm of melt flow rate: MFR (g / 10 min): lnMFR.The weight of polypropylene resin ( G 1 ) And the weight (G of insoluble content of boiling xylene in the polypropylene resin) 2 The gel fraction determined by the following formula (2) is less than 0.5%The gist of the polypropylene-based resin for extrusion foaming is characterized by the above.
[0009]
[Equation 3]
lnMT> −0.83 lnMFR + 2.82 (1)
[0010]
(Equation 4)
Gel fraction (%) = G 2 (G) ÷ G 1 (G) × 100 (2)
[0011]
  the abovePolypropylene resin for extrusion foamingMelt tension is 20-60 (gf)ThingsIs preferred.
[0012]
  In the present invention, the raw material polypropylene resin has a one-minute half-life temperature of 100 to 100 parts by weight and a 1 minute half-life temperature of 100 ° C. to (melting point of raw material polypropylene resin −10 ° C.). A peroxide and 0.01 to 5.0 parts by weight of a main chain cleavage inhibitor are stirred in an aqueous medium with respect to 100 parts by weight of the resin, and more than half of the input amount of the peroxide remains. The raw material polypropylene resin is impregnated with the peroxide and the main chain scission inhibitor at the temperature and time to be used, and then the raw material polypropylene resin is impregnated with the raw material polypropylene resin at a temperature equal to or higher than the 10 hour half-life temperature of the peroxide It is a method for producing a polypropylene resin for extrusion foaming, characterized in that an oxide is decomposed to obtain the polypropylene resin for extrusion foaming described above.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The polypropylene resin of the present invention is called a polypropylene resin (hereinafter referred to as a raw material polypropylene resin in order to distinguish it from a polypropylene resin after micro-crosslinking so that the above formula (1) is satisfied. ) Is finely crosslinked. The polypropylene resin of the present invention is finely crosslinked, but the gel fraction is substantially 0%. The gel fraction means that about 1 g of a sample is weighed (the weight of the weighed sample is G1 (G). Boiled in 100 g of xylene for 8 hours, and then quickly filtered through a 100-mesh wire mesh, and then the boiling xylene-insoluble matter remaining on the wire mesh was dried at 20 ° C. for 24 hours, and the weight of the insoluble matter was weighed. (Weigh the weighed boiling xylene insoluble matter G2 (G). ), A value obtained by the following equation (2). In the present invention, the gel fraction substantially 0% means that the gel fraction obtained by the following formula (2) is less than 0.5%.
[0014]
[Equation 5]
Gel fraction (%) = G2 (G) ÷ G1 (G) × 100 (2)
[0015]
As a method of finely crosslinking the raw material polypropylene resin, for example, the raw material polypropylene resin, a peroxide having a half-life temperature of 1 minute or less of the melting point of the raw material polypropylene resin, and a main chain cleavage inhibitor are stirred in an aqueous medium. In order to suppress the decomposition of peroxide as much as possible, the polypropylene particles are impregnated with a peroxide or main chain breakage inhibitor at a temperature and a time at which at least half of the total amount of the charged peroxide remains. Then, the peroxide is decomposed and finely crosslinked so that the gel fraction is substantially 0% and the above formula (1) is satisfied.
[0016]
In the present invention, the raw material polypropylene resin includes a propylene homopolymer and a copolymer of propylene and other monomer components. In the case of a copolymer, either a block copolymer or a random copolymer can be used. Further, not only a binary system but also a ternary copolymer may be used. Among these, as the raw material polypropylene resin, a block copolymer excellent in heat resistance and impact resistance at low temperature, particularly a propylene-ethylene block copolymer is preferable.
[0017]
When a copolymer of propylene and another monomer component is used as a raw material polypropylene resin, the other monomer component is contained in the copolymer, and in the case of a random copolymer, 5.0% by weight or less, a block copolymer In this case, it is preferably contained at a ratio of 20.0% by weight or less. When the amount of other monomer components contained in the copolymer is larger than this, the properties such as transparency, rigidity, surface gloss, and heat resistance inherent in polypropylene are impaired, which is not preferable.
[0018]
Examples of other monomer components copolymerizable with propylene include ethylene, 1-butene, isobutylene, 1-pentene, 3-methyl-1-butene, 1-hexene, 3,4-dimethyl-1-butene, and 1-heptene. , 3-methyl-1-hexene and the like.
[0019]
Moreover, the raw material polypropylene resin can be used alone or in combination of two or more. Furthermore, the raw material polypropylene-based resin includes high-density polyethylene, low-density polyethylene, linear low-density polyethylene, linear ultra-low-density polyethylene, ethylene-butene as long as the original properties of polypropylene as described above are not impaired. Copolymer, ethylene resin such as ethylene-maleic anhydride copolymer, butene resin, polyvinyl chloride, vinyl chloride resin such as vinyl chloride-vinyl acetate copolymer, styrene resin, etc. as required It can also be mixed.
[0020]
The raw material polypropylene resin used in the present invention preferably has a melt flow rate: MFR (condition 14 in Table 1 of JIS K 7210) of 1 to 20 g / 10 min. The melting point of the raw material polypropylene resin is preferably 135 ° C. or higher, more preferably 145 ° C. or higher, particularly preferably 155 ° C. or higher. The melting point of the raw material polypropylene resin was obtained by heating 3 to 5 mg of the raw material polypropylene resin from room temperature to 220 ° C. at a temperature rising rate of 10 ° C./min with a differential scanning calorimeter to obtain the first DSC curve. The apex of the peak appearing on the highest temperature side on the second DSC curve obtained when the temperature is immediately lowered to 40 ° C. at a temperature lowering rate of 10 ° C./min and then heated again to 220 ° C. at a temperature raising rate of 10 ° C./min Temperature.
[0021]
The specific shape of the raw material polypropylene-based resin as described above is not particularly limited, and any shape such as a spherical shape, an elliptical spherical shape, a cylindrical shape, or an indefinite shape can be adopted. In order to perform uniform impregnation of the agent efficiently and in a short time, it is preferable to reduce the volume of the raw polypropylene resin and increase the specific surface area. For that purpose, the average weight per raw material polypropylene resin is preferably 5 mg / 1 or less, more preferably 4 mg / 1 or less.
[0022]
In the above case, the average weight of the raw material polypropylene resin is obtained by measuring the total weight of 20 randomly selected raw material polypropylene resins, and calculating the arithmetic average of all the particles. It is not necessary that the raw material polypropylene-based resin is 5 mg / 1 piece or less.
[0023]
As the peroxide used for finely crosslinking the raw material polypropylene resin, one having a one minute half-life temperature lower than the melting point of the raw material polypropylene resin is usually used. When a material having a melting point higher than that of the raw material polypropylene resin is used, if it is attempted to decompose the peroxide at a temperature lower than the melting point of the raw material polypropylene resin, it takes a long time and is not practical. The one-minute half-life temperature of the peroxide is desired to be 10 ° C. or more lower than the melting point of the raw material polypropylene resin used. In addition, when the one-minute half-life temperature of the peroxide is too low, there is a storage problem such that the peroxide must be stored at a low temperature. The 1 minute half-life temperature of the product is desired to be 100 ° C. or higher. Therefore, it is desirable that the peroxide used for finely crosslinking the raw material polypropylene resin has a one-minute half-life temperature of 100 ° C. to (the melting point of the raw material polypropylene-based resin−10 ° C.). What is 100 degreeC-(melting | fusing point of raw material polypropylene resin -20 degreeC) is more desirable.
[0024]
Examples of the peroxide include lauroyl peroxide, m-toluoyl-benzoyl peroxide, benzoyl peroxide, and bis (4-butylcyclohexyl) peroxydicarbonate. Among these, the half-life temperature is 1 minute. A material having a melting point lower than that of the raw material polypropylene resin is selected and used. Among the above-mentioned peroxides, lauroyl peroxide, m-toluoyl-benzoyl peroxide, and benzoyl peroxide are preferable because of easy handling.
[0025]
The main chain scission inhibitor used together with the peroxide is for preventing the main chain of the polypropylene resin from being cleaved by the peroxide. For example, methyl methacrylate, divinylbenzene, triallyl cyanurate, etc. Used. Of these, highly reactive divinylbenzene having two vinyl bonds in one molecule is preferable.
[0026]
As an aqueous medium in which the raw material polypropylene resin, peroxide, and main chain cleavage inhibitor are dispersed, water to which a surfactant is added is usually used. Since the aqueous medium has a good thermal conductivity and becomes a good heating medium, the raw material polypropylene resin can be uniformly heated, and the temperature control is also easy, so the raw material for peroxides and main chain cleavage inhibitors Uniform impregnation into polypropylene resin can be easily performed.
[0027]
In obtaining the polypropylene resin for extrusion foaming of the present invention, the peroxide is about 0.1 to 3.0 parts by weight per 100 parts by weight of the raw material polypropylene resin, and the main chain cleavage inhibitor is per 100 parts by weight of the raw material polypropylene resin. About 0.01 to 5.0 parts by weight are preferably used. The aqueous medium is preferably used in an amount of 150 to 500 parts by weight per 100 parts by weight of the raw material polypropylene resin.
[0028]
If the amount of the peroxide used exceeds 3.0 parts by weight per 100 parts by weight of the raw material polypropylene resin, it is not preferable because the raw material polypropylene resin tends to decompose, and in this case, the raw material polypropylene In order to prevent decomposition of the resin, a large amount of main chain cleavage inhibitor must be added. If a large amount of main chain cleavage inhibitor is added, it becomes difficult to maintain the gel fraction at substantially 0%. Further, when the amount of peroxide used is less than 0.1 parts by weight, the foaming ratio is particularly 3 to 30 times (0.3 to 0.03 g / cm in terms of foam density).Three It becomes. This is not preferred because there is a risk that melt processability suitable for producing a polypropylene-based resin extruded foam having a high molecular weight) cannot be sufficiently imparted to polypropylene. On the other hand, when the addition amount of the main chain cleavage inhibitor exceeds 5.0 parts by weight per 100 parts by weight of the raw material polypropylene resin, it becomes difficult to maintain the gel fraction at substantially 0%, 0.01% Less than parts by weight is not preferable because the resin is easily decomposed.
[0029]
As a more specific example of finely crosslinking the raw material polypropylene resin, the raw material polypropylene resin, peroxide, and main chain cleavage inhibitor are dispersed in an aqueous medium such as water and stirred to decompose the peroxide. The temperature and time at which at least half of the total amount of the charged peroxide remains, preferably 4/5 or more remain (for example, the decomposition temperature at which the half-life of the peroxide is 10 hours (10 hours If it is half-life temperature), the raw material polypropylene resin is impregnated with a peroxide and a main chain cleavage inhibitor by heating and holding for about 1 to 6 hours, preferably 1.5 to 4.5 hours, Next, the temperature is 5 ° C. at a temperature not lower than the melting point of the raw material polypropylene resin and not lower than the temperature at which substantial decomposition of the peroxide is performed, preferably not lower than the 10-minute half-life temperature of the peroxide. ~ 120 Preferably, the material is heated and held for 15 to 60 minutes to decompose the peroxide impregnated in the raw material polypropylene resin and slightly crosslink without completely melting the raw material polypropylene resin, so that the substantial gel fraction is 0%. The method of obtaining the polypropylene resin of this is mentioned. By impregnating and decomposing the peroxide without completely melting the raw material polypropylene resin, the main chain of the raw material polypropylene resin is hardly broken by the peroxide, and the amount of the main chain cleavage inhibitor used is relatively low. Since it can be reduced, there is no possibility of causing non-uniform physical properties due to mixing of a large amount of main chain cleavage inhibitor.
[0030]
The above-described crosslinking reaction is performed in a sealed container, but after the contents are put into the sealed container, the upper gas phase space in the container is inert so that the oxygen concentration becomes 1% by volume or less. It is desirable to replace with gas.
[0031]
In obtaining the polypropylene resin of the present invention, in addition to the method of impregnating the raw polypropylene resin with the main chain cleavage inhibitor using the aqueous medium as described above, the main chain cleavage inhibitor is preliminarily used as the raw polypropylene resin. It is also possible to employ a method in which the resin is impregnated with a peroxide after that using an aqueous medium. In order to contain the main chain cleavage inhibitor in the raw material polypropylene resin in advance, for example, after melt-kneading the raw material resin and the main chain cleavage inhibitor in an extruder, the melt-kneaded product is linearized from the extruder. A method of extruding and cutting the linear resin to form particles can be employed. However, in this case, since a part of the main chain cleavage inhibitor may be vaporized and dissipated from the raw material polypropylene resin with the passage of time, the content thereof may be reduced. After the raw material polypropylene resin is granulated, it is preferable that the raw material polypropylene resin is impregnated with a peroxide at a relatively early stage for fine crosslinking.
[0032]
The polypropylene resin for extrusion foaming of the present invention has a natural logarithm of melt tension: MT (gf): lnMT and a natural logarithm of melt flow rate: MFR (g / 10 min): lnMFR. 1) It is finely cross-linked so that the relationship represented by the formula is established, and has MT and MFR in the upper part of the straight line shown in FIG. 1 (in FIG. 1, the vertical axis is lnMT, and the horizontal axis is lnMFR. It is a log-log graph, and the straight line shows lnMT = −0.83 lnMFR + 2.82, and the plotted points are based on data from Examples, Comparative Examples, and Reference Examples described later. Among MT and MFR in which the relationship represented by the above formula (1) is satisfied in the present invention, MT = 15 gf or more and MFR = 0.3 to 12 g / 10 min are preferable. When MT is less than 15 gf, the drawdown tends to increase when the obtained foamed sheet is thermoformed. Further, when MT exceeds 70 gf, the gel fraction tends to exceed 0.5%. From this viewpoint, MT = 20 to 60 gf is particularly preferable. In particular, when MT is 25 gf or more, the stability of the obtained foam is further increased under heating, and even when the polypropylene resin has a long chain branch, the drawdown at the time of thermoforming is reduced. In addition, since it is possible to heat for a longer time, there is an effect that stability at the time of deep drawing is increased. On the other hand, when the MFR is less than 0.3 g / 10 min, it becomes difficult to produce a good foam at an expansion ratio of 30 times or less, and when it exceeds 12 g / 10 min, the mechanical properties are greatly deteriorated. From this point of view, those having MFR = 0.5 to 8 g / 10 min are particularly preferable.
[0033]
The melt tension MT (gf) of the base resin can be measured with a melt tension tester type II manufactured by Toyo Seiki Seisakusho. Specifically, using a melt tension tester having a nozzle with a nozzle diameter of 2.095 mm and a length of 8 mm, the resin is extruded from the nozzle at a resin temperature of 230 ° C. and an extrusion piston speed of 10 mm / min. After this string-like object is put on a tension detection pulley having a diameter of 45 mm, 5 rpm / second (string-like object tearing acceleration: 1.3 × 10-2m / sec2) While gradually increasing the scraping speed at a rate of about, scraping with a scraping roller having a diameter of 50 mm. In the present invention, the melt tension (MT) is obtained by first increasing the scooping speed until the string-like material hung on the tension detecting pulley is cut, and then scooping speed when the string-like material is cut: R ( rpm). Next, the string-like material is removed at a constant tearing speed of R × 0.7 (rpm), and the melt tension of the string-like material detected by the detector connected to the tension detection pulley is measured over time. Then, if the graph is shown with the melt tension on the vertical axis and the time on the horizontal axis, a graph having an amplitude as shown in FIG. 2 is obtained. As the melt tension in the present invention, the median value (X) of the amplitude of the stable portion in FIG. 2 is adopted. However, if the string-like material does not break even when the reeling speed reaches 500 rpm, the melt tension of the string-like material is obtained from the graph obtained by winding the string-like material with the stringing speed set to 500 rpm. It should be noted that a singular amplitude value is rarely detected during measurement of the melt tension over time, but such a singular amplitude value is ignored. Melt flow rate: MFR (g / 10 min) is a value measured under condition 14 in Table 1 of JIS K7210.
[0034]
As a method for obtaining an extruded foam using the polypropylene resin for extrusion foaming of the present invention, for example, the polypropylene resin for extrusion foaming of the present invention was melted in an extruder and kneaded with a foaming agent at high temperature and high pressure. The foamable composition is extruded under a lower pressure than the inside of the extruder through an annular die provided at the tip of the extruder and foamed into a cylindrical shape. The cylindrical foam is sandwiched and the inner surface side is fused to form a plate-like foam. Or a method of cutting a cylindrical foam along the extrusion direction into a sheet-like foam is adopted. The sheet-like or plate-like foam thus obtained usually has an expansion ratio of 3 to 30 times and a thickness of 0.3 to 10 mm.
[0035]
As the foaming agent, an inorganic foaming agent, a volatile foaming agent, or a decomposable foaming agent is used. Examples of the inorganic foaming agent include carbon dioxide, air, and nitrogen.
[0036]
The volatile blowing agents include aliphatic hydrocarbons such as propane, n-butane, i-butane, pentane and hexane, cyclic aliphatic hydrocarbons such as cyclobutane and cyclopentane, chlorofluoromethane, trifluoromethane, 1 , 1-difluoroethane, 1-chloro-1,1-difluoroethane, 1,1,1,2-tetrafluoroethane, 1-chloro-1,2,2,2-tetrafluoroethane, methyl chloride, ethyl chloride, methylene Halogenated hydrocarbons such as chloride can be used. As the decomposable foaming agent, azodicarbonamide, dinitrosopentamethylenetetramine, azobisisobutyronitrile, sodium bicarbonate, or the like can be used.
[0037]
The said foaming agent can be mixed suitably and can be used. The amount of foaming agent used varies depending on the type of foaming agent, the desired foaming ratio, etc., for example, a density of 0.2 to 0.013 g / cm.Three The standard of the amount of the foaming agent used to obtain a foam having a degree is about 0.5 to 25 parts by weight (in terms of butane) in the case of a volatile foaming agent per 100 parts by weight of the polypropylene resin. Also, density 0.09g / cmThree The standard of the amount of the foaming agent used to obtain a foam exceeding 100 parts by weight is about 0.1 to 10 parts by weight in the case of an inorganic foaming agent and 0.1 to 5 parts by weight in the case of a decomposable foaming agent Degree.
[0038]
In producing the extruded foam, a cell regulator may be added to the base resin or the foamable resin composition melt-kneaded with the foaming agent in the extruder, if necessary. Examples of the air conditioner include inorganic powders such as talc and silica, acidic salts of polyvalent carboxylic acids, and reaction mixtures of polyvalent carboxylic acids with sodium carbonate or sodium bicarbonate. In general, the amount of the bubble regulator added is preferably about 3 parts by weight or less per 100 parts by weight of the resin. Furthermore, if necessary, various additives such as an antistatic agent, a fluidity improver and the like, and an amount of a coloring agent in a range not impeding the intended purpose can be blended. Furthermore, talc, silica, calcium carbonate, clay, zeolite, alumina, barium sulfate and the like can be added as inorganic fillers. The amount of these inorganic fillers added is preferably 40% by weight of the total weight of the total of the resin and other additives. The inorganic powder or inorganic filler preferably has an average particle size of 1 to 70 μm. When an inorganic filler is added, the heat resistance of the obtained foam is improved, and the calorie burned when the foam is incinerated can be reduced.
[0039]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
[0040]
  Example 15Comparative Examples 1 and 2
  In an autoclave having a volume of 500 liters, an aqueous medium obtained by adding 0.01 parts by weight of sodium dodecylbenzenesulfonate to 250 parts by weight of water is added, and in this aqueous medium, the raw material polypropylene resin particles and peroxides shown in Table 1 are added. The autoclave lid was closed by adding a product and a main chain cleavage inhibitor. Next, nitrogen gas was introduced into the upper space in the autoclave, and nitrogen substitution was performed so that the oxygen concentration in the space became 0.2% by volume or less.
[0041]
In Table 1, the amounts of peroxide and main chain cleavage inhibitor used are expressed in parts by weight per 100 parts by weight of the raw material polypropylene resin particles. Moreover, about Example 3 and Comparative Examples 1 and 2, operation was different from the other examples in the following points, and other operations were performed in the same manner as the other examples.
[0042]
In Example 3, since the raw material polypropylene resin particles preliminarily containing the main chain cleavage inhibitor were used, the main chain cleavage inhibitor was not introduced into the aqueous medium. In Comparative Example 1, the aqueous polypropylene was not used, and only the raw material polypropylene resin particles, peroxide, and main chain cleavage inhibitor shown in Table 1 were put into the autoclave and the subsequent operation was performed. In Comparative Example 2, no main chain cleavage inhibitor was used.
[0043]
Next, while the inside of the autoclave was stirred, it was heated to the 10-hour half-life temperature of the peroxide used at a temperature rising rate of 2 ° C./min, and held at that temperature for 2 hours. Then, it heated to the 1 minute half life temperature of the peroxide used with the temperature increase rate of 2 degree-C / min, and cooled, after hold | maintaining at the temperature for 20 minutes. Table 2 shows the properties of the polypropylene resin particles thus obtained.
[0044]
The raw material polypropylene resin particles used in Examples and Comparative Examples are as follows.
[0045]
X: Polypropylene particles having an average weight of 18.0 mg / 1 [E250G manufactured by Idemitsu Petrochemical; melting point: 163.7 ° C.]
[0046]
Y: polypropylene particles having an average weight of 18.0 mg / 1 piece [M7500 made by Nippon Polyolefin; melting point: 162.8 ° C.]
[0047]
MX: The above-mentioned particle X is melt-kneaded in an extruder and extruded into a strand shape and cut so as to have an average weight of 2.5 mg / 1.
[0048]
MY: The above-mentioned particle Y is melt-kneaded in an extruder and extruded into a strand shape, which is cut to an average weight of 2.5 mg / 1.
[0049]
XY1: Particle X and particle Y blended at a weight ratio of 2: 8, melt kneaded in an extruder, extruded into a strand, and cut to an average weight of 2.5 mg / 1 piece [melting point 162 .7 ° C.].
[0051]
YDVB: 0.1 part by weight of divinylbenzene (DVB) per 100 parts by weight of the particles Y was blended as a main chain breakage inhibitor, and these were melt-kneaded in an extruder and extruded into a strand shape, with an average weight of 2.5 mg / 1. Cut to be individual.
[0052]
Moreover, the thing of AD shown below was used as a peroxide. The 1-minute half-life temperature and 10-hour half-life temperature of the peroxides used in Examples and Comparative Examples are shown in Table 1.
A: Lauroyl peroxide [Nippon Yushi Parroyl L]
B: m-toluoyl-benzoyl peroxide [NIPPER BMT-K40 made by NOF Corporation]
C: Benzoyl peroxide [NIPPER FF made by NOF Corporation]
D: Bis (4-butylcyclohexyl) peroxydicarbonate [NIPPON OIL PALOYL TCP]
[0053]
In addition, divinylbenzene (hereinafter abbreviated as DVB) and triallyl cyanurate (hereinafter abbreviated as TAC) were used as the main chain cleaving inhibitors, and the types of main chain cleaving inhibitors used are shown in Table 1. Are abbreviated.
[0054]
  (Table 1)
Figure 0003767992
[0055]
  (Table 2)
Figure 0003767992
  In the resin properties shown in Table 2, MT and MFR were measured as follows.
[0056]
Melt tension: MT is a melt tension tester type II manufactured by Toyo Seiki Seisakusho Co., Ltd., using a nozzle having a nozzle diameter of 2.095 mm and a length of 8 mm, a resin temperature of 230 ° C., and an extrusion piston speed of 10 mm / min. The resin was extruded into a string shape, and the string-like product was measured by the method described above.
[0057]
Melt flow rate: MFR was measured under condition 14 in Table 1 of JIS K7210.
[0058]
Next, butane and an air conditioner (monosodium citrate) were added to the polypropylene particles obtained as described above so as to have the ratio shown in Table 3 (butane and air conditioner shown in Table 3). The ratio is shown in% by weight with respect to the total amount of polypropylene particles, butane and a foam regulator.), Blended into an extruder (L / D is 46) equipped with a single screw of 50 mmφ, melt kneaded, and extruded A foamed tube was obtained by extrusion foaming through a circular die having a lip with a diameter of 75 mmφ and a gap of 0.3 mm attached to the tip of the machine, and then the tube was cut open to obtain a foamed sheet. Table 3 shows the extrusion foamability during the production of the foamed sheet and the density of the obtained foamed sheet. The obtained foamed sheet was molded by attaching a mold for yakisoba tray to a single molding machine (“PLAVAC-FE36HP type” manufactured by Sanwa Kogyo Co., Ltd.). The lower limit of the sheet surface temperature immediately before molding at which molding is performed while changing the time for heating the foamed sheet, and so-called cracking occurs in the molded product obtained due to insufficient heating: TL(° C.) and the upper limit of the sheet surface temperature immediately before molding that causes so-called burns due to excessive heating: TUTable 3 shows the difference from (° C.) as the moldable heating temperature range.
[0059]
In this molding test, the 40 dial scales of the upper heater voltage regulator were all set to 30, and the 6 dial scales of the lower heater voltage regulator were all set to 40. Moreover, the above-mentioned “surface temperature of the sheet immediately before forming” means the temperature of the sheet surface immediately after the heater is retracted after heating the sheet, and this temperature is “THERMO-HUNTER PT-3LF” manufactured by Optex Corporation. Was measured using.
For each sheet, the amount of drawdown, which is the amount of sheet sag during heating, was measured, and the results are shown in Table 3. The amount of drawdown is about 25cm square foam sheet firmly sandwiched between 20cm vertical and horizontal wooden frames, and a 100g weight is placed in the center of the foam sheet. Was left in an oven set at 145 ° C. for 5 minutes, then immediately removed, and the maximum sag distance of the sheet from the wooden frame sandwiching surface was measured, and this was taken as the drawdown amount (mm).
[0060]
  (Table 3)
Figure 0003767992
  The numerical value on the left side in parentheses at the bottom of the moldable heating temperature range is TL(℃), the value on the right is TU(° C.).
[0061]
Reference example
The values of MT, MFR, lnMT and -0.83 lnMFR + 2.82 for commercially available long-chain branched polypropylene resins (trade name “SD632” relating to production by Montell, USA) are shown together in Table 2. . In addition, a foamed sheet was produced using this long-chain branched polypropylene resin in the same manner as in Examples and Comparative Examples, and a molding test of the foamed sheet was performed and the drawdown amount was measured. These results are also shown in Table 3.
[0062]
【The invention's effect】
As described above, the polypropylene resin for extrusion foaming of the present invention is excellent in extrusion foamability, and the extruded foam obtained from the resin of the present invention has a small drawdown during thermoforming, so the incidence of defective products during molding is low. Can be reduced. In addition, when MT is 20 gf or more, particularly 25 gf or more, as a result of higher thermal stability of the obtained extruded foam, there is less possibility of forming defects due to slight fluctuations in heating time (temperature). The occurrence rate of defective molded products due to fluctuations in time (temperature) is greatly reduced, and since the heating can be performed for a longer time, the defective product occurrence rate during deep drawing is also greatly reduced. Furthermore, the polypropylene resin for extrusion foaming of the present invention has advantages such as being recyclable because the gel fraction is substantially 0%.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between MT and MFR of a polypropylene resin for extrusion foaming according to the present invention.
FIG. 2 is a graph showing a change over time in melt tension (MT) when a resin is extruded from a nozzle of a melt tension tester into a string shape, and the string-like resin is scraped by a scraping roller with a constant tacking speed. .

Claims (3)

原料ポリプロピレン系樹脂と、1分間半減期温度が100℃〜(原料ポリプロピレン系樹脂の融点−10℃)の過酸化物と、主鎖切断防止剤とを水性媒体中で加熱、攪拌して得られるポリプロピレン系樹脂であるとともに、メルトテンションが15(gf)以上、メルトフローレイトが0.3〜12(g/10分)であり、且つメルトテンション:MT(gf)の自然対数値:lnMTと、メルトフローレイト:MFR(g/10分)の自然対数値:lnMFRとの間に、下記(1)式が成り立ち、
(数1)
lnMT > −0.83lnMFR+2.82 (1)
ポリプロピレン系樹脂の重量( G 1 )と、該ポリプロピレン系樹脂における沸騰キシレン不溶分の重量(G 2 )を用い下記(2)式にて定まるゲル分率が0.5%未満であることを特徴とする押出発泡用ポリプロピレン系樹脂。
(数2)
ゲル分率(%)=G 2 (g)÷G 1 (g)×100 (2)
It is obtained by heating and stirring a raw material polypropylene resin, a peroxide having a half-life temperature of 100 ° C. to (melting point of the raw material polypropylene resin −10 ° C.) and a main chain cleavage inhibitor in an aqueous medium. A polypropylene resin, a melt tension of 15 (gf) or more, a melt flow rate of 0.3 to 12 (g / 10 min) , and a natural logarithm of melt tension: MT (gf): lnMT; melt flow rate: MFR (g / 10 min) of natural logarithm: between LnMFR, the following equation (1) is made upright Chi,
(Equation 1)
lnMT> −0.83 lnMFR + 2.82 (1)
The gel fraction determined by the following formula (2) using the weight ( G 1 ) of the polypropylene resin and the weight (G 2 ) of the boiling xylene insoluble in the polypropylene resin is less than 0.5%. Polypropylene resin for extrusion foaming.
(Equation 2)
Gel fraction (%) = G 2 (g) ÷ G 1 (g) × 100 (2)
メルトテンションが20〜60(gf)である請求項1記載の押出発泡用ポリプロピレン系樹脂。 The polypropylene resin for extrusion foaming according to claim 1 , wherein the melt tension is 20 to 60 (gf) . 原料ポリプロピレン系樹脂と、該樹脂100重量部に対して0.1〜3.0重量部の1分間半減期温度が100℃〜(原料ポリプロピレン系樹脂の融点−10℃)である過酸化物と、該樹脂100重量部に対して0.01〜5.0重量部の主鎖切断防止剤とを、水性媒体中で攪拌し、過酸化物の投入量の半分以上が残存する温度と時間にて原料ポリプロピレン系樹脂に過酸化物と主鎖切断防止剤とを含浸させ、次いで過酸化物の10時間半減期温度以上の温度にて原料ポリプロピレン系樹脂中に含浸させた過酸化物を分解させて請求項1または2に記載の押出発泡用ポリプロピレン系樹脂を得ることを特徴とする押出発泡用ポリプロピレン系樹脂の製造方法。  A raw material polypropylene-based resin, and a peroxide having a one-minute half-life temperature of 100 to 100 parts by weight with respect to 100 parts by weight of the resin and having a one-minute half-life temperature of 100 ° C. Then, 0.01 to 5.0 parts by weight of the main chain cleavage inhibitor with respect to 100 parts by weight of the resin is stirred in an aqueous medium, at a temperature and time at which more than half of the amount of the peroxide is left. The raw material polypropylene resin is impregnated with a peroxide and a main chain cleavage inhibitor, and then the peroxide impregnated in the raw material polypropylene resin is decomposed at a temperature equal to or higher than the 10-hour half-life temperature of the peroxide. A method for producing a polypropylene resin for extrusion foaming, wherein the polypropylene resin for extrusion foaming according to claim 1 or 2 is obtained.
JP1815998A 1997-07-18 1998-01-13 Polypropylene resin for extrusion foaming and method for producing the same Expired - Fee Related JP3767992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1815998A JP3767992B2 (en) 1997-07-18 1998-01-13 Polypropylene resin for extrusion foaming and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP20997297 1997-07-18
JP9-209972 1997-07-18
JP1815998A JP3767992B2 (en) 1997-07-18 1998-01-13 Polypropylene resin for extrusion foaming and method for producing the same

Publications (2)

Publication Number Publication Date
JPH1180262A JPH1180262A (en) 1999-03-26
JP3767992B2 true JP3767992B2 (en) 2006-04-19

Family

ID=26354802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1815998A Expired - Fee Related JP3767992B2 (en) 1997-07-18 1998-01-13 Polypropylene resin for extrusion foaming and method for producing the same

Country Status (1)

Country Link
JP (1) JP3767992B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6956067B2 (en) 2000-09-20 2005-10-18 Jsp Corporation Expanded polypropylene resin bead and process of producing same
CN1271125C (en) * 2000-09-20 2006-08-23 株式会社Jsp Expanded Polypropylene resin bead and its making process
JP2003048996A (en) * 2001-08-02 2003-02-21 Grand Polymer Co Ltd Polypropylene resin for sheet and method of producing the same
KR100881039B1 (en) 2001-11-01 2009-02-05 가부시키가이샤 제이에스피 Process of producing expanded polypropylene resin beads
JP2008222811A (en) * 2007-03-12 2008-09-25 Japan Polypropylene Corp Preparation method of modified polypropylene resin composition
CN101835829B (en) * 2007-10-26 2013-10-23 株式会社钟化 Polypropylene resin foamed beads and foam moldings
EP2520425B1 (en) 2011-05-02 2017-11-08 Borealis AG Polypropylene for foam and polypropylene foam
JPWO2021172016A1 (en) * 2020-02-25 2021-09-02

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3260171B2 (en) * 1992-09-02 2002-02-25 昭和電工株式会社 Propylene polymer and method for producing the same
TW341579B (en) * 1996-06-24 1998-10-01 Akzo Nobel Nv Process for enhancing the melt strength of polypropylene (co)polymers

Also Published As

Publication number Publication date
JPH1180262A (en) 1999-03-26

Similar Documents

Publication Publication Date Title
JP3745960B2 (en) Foam blow molded article and method for producing the same
US20070149630A1 (en) Composition for polyolefin resin foam and foam thereof, and method for producing foam
US20030166782A1 (en) Blends of ethylenic polymers with improved modulus and melt strength and articles fabricated from these blends
JP4953891B2 (en) Black polypropylene resin pre-expanded particles
JP3767992B2 (en) Polypropylene resin for extrusion foaming and method for producing the same
EP1870434B1 (en) Blends of ethylenic polymers with improved modulus and melt strength and articles fabricated from these blends
JP4157206B2 (en) Polypropylene resin foamed particles and molded polypropylene resin foam particles
JP4064754B2 (en) Polypropylene resin foam sheet
JP2859983B2 (en) Extruded propylene resin foam, molded article and method for producing the same
JP2918135B2 (en) Propylene resin foam sheet
JP5161409B2 (en) Polypropylene resin extruded foam sheet and thermoformed product of the extruded foam sheet
JP3580357B2 (en) Polypropylene resin foam sheet
JP4119539B2 (en) Method for producing polyolefin resin extruded foam, extruded foam, and method for thermoforming extruded foam
JP4940688B2 (en) Method for producing polypropylene resin pre-expanded particles
JP2898460B2 (en) Propylene resin foam sheet for molding
JP3867941B2 (en) Cross-linked polypropylene resin foam and method for producing the same
JPH11152361A (en) Propylene-based resin extruded foam
JP2002331572A (en) Molding method for foamed polypropylene resin sheet, and foamed molded body
JPH1180404A (en) Polypropylene resin foam for thermoforming
JPH07268121A (en) Polypropylene-based resin composition for expansion and expanded polypropylene-based resin sheet using the same
JP3775615B2 (en) Method for producing polypropylene resin foam
JP2986993B2 (en) Propylene resin foam sheet and method for producing the same
JPH1192526A (en) Extrusion foaming polypropylene-based resin
JPH02240145A (en) Preparation of polyolefin resin foam
JP2918130B2 (en) Propylene resin foam and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060131

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees