JP3764483B2 - 同調制御方式 - Google Patents

同調制御方式 Download PDF

Info

Publication number
JP3764483B2
JP3764483B2 JP51804597A JP51804597A JP3764483B2 JP 3764483 B2 JP3764483 B2 JP 3764483B2 JP 51804597 A JP51804597 A JP 51804597A JP 51804597 A JP51804597 A JP 51804597A JP 3764483 B2 JP3764483 B2 JP 3764483B2
Authority
JP
Japan
Prior art keywords
circuit
tuning
phase shift
signal
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP51804597A
Other languages
English (en)
Inventor
毅 池田
忠孝 大江
明 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSC Co Ltd
Original Assignee
Nigata Semitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nigata Semitsu Co Ltd filed Critical Nigata Semitsu Co Ltd
Application granted granted Critical
Publication of JP3764483B2 publication Critical patent/JP3764483B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D13/00Circuits for comparing the phase or frequency of two mutually-independent oscillations
    • H03D13/003Circuits for comparing the phase or frequency of two mutually-independent oscillations in which both oscillations are converted by logic means into pulses which are applied to filtering or integrating means
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J3/00Continuous tuning
    • H03J3/02Details
    • H03J3/06Arrangements for obtaining constant bandwidth or gain throughout tuning range or ranges
    • H03J3/08Arrangements for obtaining constant bandwidth or gain throughout tuning range or ranges by varying a second parameter simultaneously with the tuning, e.g. coupling bandpass filter
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/24Automatic control of frequency or phase; Synchronisation using a reference signal directly applied to the generator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J1/00Details of adjusting, driving, indicating, or mechanical control arrangements for resonant circuits in general

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Networks Using Active Elements (AREA)
  • Amplifiers (AREA)

Description

技術分野
本発明は、所定の周波数信号のみを通過させる同調制御方式に関する。
背景技術
従来のフィルタあるいは同調回路として、LC共振等を利用した各種の構成が知られている。例えば、スーパーヘテロダイン受信機の中間周波増幅回路がフィルタとしての機能を包含するが、この中間周波増幅回路は一般には複数組の中間周波トランス(IFT)とキャパシタとを用いて所望の周波数特性を実現している。例えば、AM受信機の場合には、455kHzの中心周波数が設定されているとともに、この中心周波数から9kHz離調した場合に所定の減衰量となるように設定されている。また、複数組の中間周波トランス等の代わりに1個のセラミクスフィルタを用いて所望の周波数特性を実現しているものもある。
ところで、上述したスーパーヘテロダイン方式を適用した従来技術においては、同調を行うフィルタである中間周波増幅回路の構成に中間周波トランスやセラミクスフィルタが含まれるため、これらを含む全体を半導体基板上に集積化することが困難であった。
また、この中間周波増幅回路と組み合わされる局部発振回路は、簡単なものでは局部発振トランスを利用したLC発振器により実現され、高精度のものになると水晶発振を利用したPLL構成により実現される。特に、局部発振回路をPLL構成とした場合には、正弦波発振を行う電圧制御型発振器(VCO)を含むため集積化が難しく、一部にハイブリッドICを用いていた。
このように、フィルタとして動作する中間周波増幅回路のみならずこれと組み合わせて同調機構を構成する局部発振回路までを含む全体を集積化することは困難であり、同調機構の全体を集積化することができる同調制御方式が望まれていた。また、仮に従来から存在するフィルタの全体あるいはこのフィルタを含む回路の全体を集積化したとしても、回路定数に大きなばらつきが生じるため、製造したチップ毎に異なる特性を有することになる。あるいは、中心周波数が温度等によって大きく変化する場合も考えられるため、集積化した場合であっても確実に所期の周波数特性を達成することができる同調制御方式が必要となる。
発明の開示
本発明は、このような課題を解決するために考えられたものであり、その目的は集積化に適した新たな同調制御方式を提供することにある。
本発明の同調制御方式は、縦続接続された全域通過型の2つの移相回路と、後段の前記移相回路の出力を帰還信号として前段の前記移相回路の入力側に帰還させるとともに前記帰還信号と入力信号とを加算して前段の前記移相回路に入力する加算回路とを含み、所定の周波数近傍の信号のみを通過させる同調回路と、
前記同調回路に前記所定の周波数近傍の周波数を有する信号が入力されたときに、前記同調回路に含まれる一方の移相回路の入出力信号間の位相差に基づいて、前記同調回路の同調周波数を前記同調回路の入力信号の周波数に一致させる周波数制御回路と、を備える。
そして、同調回路に含まれる一方の移相回路の入出力信号間の位相差が例えば90°となるように制御を行うことにより、同調周波数は常に入力信号の周波数に追従して変化するようになり、両周波数を一致させることができる。
【図面の簡単な説明】
第1図は、本発明の同調制御方式を適用した一実施形態である同調機構の構成図、
第2図は、同調回路の詳細な構成を示す回路図、
第3図は、第2図に示す前段の移相回路の構成を抜き出して示した回路図、
第4図は、第3図に示す移相回路の入出力電圧とキャパシタ等に現れる電圧との関係とを示すベクトル図、
第5図は、第2図に示す後段の移相回路の構成を抜き出して示した回路図、
第6図は、後段の移相回路の入出力電圧とキャパシタ等に現れる電圧との関係を示すベクトル図、
第7図は、第2図に示す2つの移相回路および分圧回路の全体を伝達関数K1を有する回路に置き換えた回路図、
第8図は、第7図に示す回路をミラーの定理によって変換した回路図、
第9図は、第2図に示した同調回路の同調特性を示す図、
第10図は、2つの移相回路に入出力される信号間の位相関係を示す図、
第11図は、前段の移相回路に入力される信号の周波数より同調周波数の方が高い場合の各移相回路の入出力信号間の位相関係を示す図、
第12図は、前段の移相回路に入力される信号周波数より同調周波数の方が低い場合の各移相回路の入出力信号間の位相関係を示す図、
第13図は、周波数制御回路の構成を示す回路図、
第14図は、同調回路に入力される信号の周波数に比べて同調回路の同調周波数が高い場合のタイミング図、
第15図は、同調回路に入力される信号の周波数に比べて同調回路の同調周波数が低い場合のタイミング図、
第16図は、周波数制御回路の他の構成例を示す回路図、
第17図は、第16図に示す同調回路に入力される信号の周波数に比べて同調周波数が高い場合のタイミング図、
第18図は、第16図に示す同調回路に入力される信号の周波数に比べて同調周波数が低い場合のタイミング図、
第19図は、FM検波を兼ねた同調機構の構成を示す図、
第20図は、第19図に示す周波数制御回路の詳細構成を示す回路図、
第21図は、第19図に示す同調機構を利用したFM受信機の構成を示す図、
第22図は、同期整流によるAM検波を併用した同調機構の構成を示す図、
第23図は、第22図に示す同期整流回路の詳細構成を示す図、
第24図は、第22図に示す同調機構を利用したAM受信機の構成を示す図、
第25図は、LR回路を含む移相回路の構成を示す回路図、
第26図は、第25図に示す移相回路の入出力電圧とキャパシタ等に現れる電圧との関係を示すベクトル図、
第27図は、LR回路を含む移相回路の他の構成を示す回路図、
第28図は、第27図に示す移相回路の入出力電圧とキャパシタ等に現れる電圧との関係を示すベクトル図、
第29図は、同調回路の第2の変形例を示す回路図、
第30図は、LR回路を含む移相回路の構成を示す回路図、
第31図は、LR回路を含む移相回路の他の構成を示す回路図、
第32図は、同調回路の第4の変形例を示す回路図、
第33図は、同調回路の第5の変形例を示す回路図、
第34図は、同調回路の第6の変形例を示す回路図、
第35図は、同調回路の第7の変形例を示す回路図、
第36図は、同調回路の第8の変形例を示す回路図、
第37図は、第36図に示す前段の移相回路の構成を抜き出して示した回路図、
第38図は、第37図に示す移相回路の入出力電圧とキャパシタ等に現れる電圧との関係を示すベクトル図、
第39図は、第36図に示す後段の移相回路の構成を抜き出して示した回路図、
第40図は、第39図に示す移相回路の入出力電圧とキャパシタ等に現れる電圧との関係を示すベクトル図、
第41図は、LR回路を含む移相回路の構成を示す回路図、
第42図は、第41図に示す移相回路の入出力電圧とキャパシタ等に現れる電圧との関係を示すベクトル図、
第43図は、LR回路を含む移相回路の他の構成を示す回路図、
第44図は、第43図に示す移相回路の入出力電圧とキャパシタ等に現れる電圧との関係を示すベクトル図、
第45図は、同調回路の第10の変形例を示す回路図、
第46図は、同調回路の第11の変形例を示す回路図、
第47図は、同調回路の第12の変形例を示す回路図、
第48図は、第47図に示す前段の移相回路の構成を抜き出して示した回路図、
第49図は、第48図に示す移相回路の入出力電圧とキャパシタ等に現れる電圧との関係を示すベクトル図、
第50図は、第47図に示す後段の移相回路の構成を抜き出して示した回路図、
第51図は、第50図に示す移相回路の入出力電圧とキャパシタ等に現れる電圧との関係を示すベクトル図、
第52図は、LR回路を含む移相回路の構成を示す回路図、
第53図は、第52図に示す移相回路の入出力電圧とインダクタ等に現れる電圧との関係を示すベクトル図、
第54図は、LR回路を含む移相回路の他の構成を示す回路図、
第55図は、第54図に示す移相回路の入出力電圧とインダクタ等に現れる電圧との関係を示すベクトル図、
第56図は、同調回路の第14の変形例を示す回路図、
第57図は、同調回路の第15の変形例を示す回路図、
第58図は、第3図に示した移相回路内の可変抵抗をMOS型のFETで形成した同調回路の回路図、
第59図は、キャパシタの静電容量を変えることにより全体の同調周波数を変化させるようにした同調回路の回路図、
第60図は、第2図に示した各移相回路内の可変抵抗としてFET以外の素子を用いた同調回路の回路図、
第61図は、オペアンプの構成の中で移相回路の動作に必要な部分を抽出した回路図である。
発明を実施するための最良の形態
以下、本発明の同調制御方式の一実施形態について、図面を参照しながら具体的に説明する。
〔A.同調機構の全体構成および動作〕
本発明の同調制御方式は、同調回路に含まれる2つの移相回路の各時定数を同じに設定したときに2つの移相回路のそれぞれにおいて、入出力信号間の位相差が90°、すなわち位相シフト量が90°あるいは270°になることに着目し、ある周波数の交流信号が入力されたときに一方の移相回路の位相シフト量を90°あるいは270°に近づけるように制御することにより、同調周波数が入力信号の周波数に一致するように制御することに特徴がある。
第1図は、本発明の同調制御方式を適用した一実施形態である同調機構の構成を示す図である。
同図に示す同調機構は、ある周波数近傍の信号を通過させるフィルタとして機能する同調回路1と、この同調回路1の通過中心周波数の制御を行う周波数制御回路2とを含んでいる。
同調回路1は、2つの移相回路を含んでおり、後段の移相回路の出力を同調回路1の出力として取り出すとともに、この信号を帰還抵抗を介して帰還させ、入力抵抗を介して入力される入力信号と帰還抵抗を介して帰還される帰還信号とを加算して前段の移相回路に入力することにより、2つの移相回路全体の位相シフト量が360°となる周波数で所定の同調動作を行うようになっている。
しかも、各移相回路の時定数を同じに設定した場合には各移相回路における位相シフト量が90°となる。見方を変えれば、各移相回路の時定数を同じに設定するとともにいずれか一方の移相回路の位相シフト量が90°となるように制御すれば、入力信号の周波数に同調周波数を一致させることができる。
なお、同調回路1は、外部から入力される制御信号によって、2つの移相回路の位相シフト量を変えることにより同調周波数をある範囲で任意に設定可能な構成を有している。同調回路1の詳細構成および詳細動作については後述する。
周波数制御回路2は、同調回路1に含まれる一方の移相回路に入出力される2種類の信号が入力されており、これら2信号間の位相差が90°からずれている場合に、このずれを無くすように同調回路1の同調周波数を制御する。
このような制御を行うために、周波数制御回路2は位相差検出回路3と制御電圧発生回路4とを含んで構成されている。
位相差検出回路3は、同調回路1に含まれる一方の移相回路の位相シフト量が90°のときにデューティ比が50%となり、位相シフト量が90°からずれたときにはそのずれに対応してデューティ比が50%からずれた矩形波信号を出力する。
制御電圧発生回路4は、位相差検出回路3から出力される矩形波信号のデューティ比に応じた電圧を発生し、この発生した電圧と所定のバイアス電圧とを加算した電圧を制御信号として同調回路1に向けて出力する。
なお、上述した周波数制御回路2を構成する位相差検出回路3と制御電圧発生回路4の詳細な構成および動作については後述する。
〔B.同調回路の詳細構成および動作〕
次に、第1図に示した同調回路1の詳細について説明する。第2図は、同調回路1の詳細な構成を示す回路図である。同図に示す同調回路1は、それぞれが入力される交流信号の位相を所定量シフトさせることにより所定の周波数において合計で360°の位相シフトを行う2つの移相回路110C、130Cと、後段の移相回路130Cの出力側に設けられた抵抗162および164からなる分圧回路160と、帰還抵抗170および入力抵抗174(入力抵抗174は帰還抵抗170の抵抗値のn倍の抵抗値を有しているものとする)のそれぞれを介することにより分圧回路160の分圧出力(帰還信号)と入力端子190に入力される信号(入力信号)とを所定の割合で加算する加算回路とを含んで構成されている。
第3図は、第2図に示した前段の移相回路110Cの構成を抜き出して示したものである。同図に示す前段の移相回路110Cは、差動増幅器の一種であるオペアンプ112と、入力端122に入力された交流信号の位相を所定量シフトさせてオペアンプ112の非反転入力端子に入力する可変抵抗116およびキャパシタ114と、入力端122とオペアンプ112の反転入力端子との間に挿入された抵抗118と、オペアンプ112の出力端子に接続されて分圧回路を構成する抵抗121および123と、この分圧回路の出力端子とオペアンプ112の反転入力端子との間に接続された抵抗120とを含んで構成されている。
このような構成を有する移相回路110Cにおいて、抵抗118と抵抗120の抵抗値は同じに設定されている。また、可変抵抗116は外部からの制御電圧に応じて抵抗値が変更可能であり、例えば、第3図に示すようにFETのチャネルを抵抗体として用い、第2図に示す制御入力端子194を介して外部から供給される制御電圧をゲートに印加することにより抵抗値が設定されるようになっている。
第3図に示す入力端122に所定の交流信号が入力されると、オペアンプ112の非反転入力端子には、可変抵抗116の両端に現れる電圧VR1が印加される。また、抵抗118の両端には、コンデンサ114の両端に現れる電圧VC1と同じ電圧VC1が現れる。2つの抵抗118、120には同じ電流Iが流れ、しかも、上述したように抵抗118と抵抗120の各抵抗値は等しいので、抵抗120の両端にも電圧VC1が現れる。オペアンプ112の反転入力端子(電圧VR1)を基準にして考えると、抵抗118の両端電圧VC1をベクトル的に加算したものが入力電圧Eiに、抵抗120の両端電圧VC1をベクトル的に減算したものが抵抗121と抵抗123の接続点の電圧(分圧出力)Eo′になる。
第4図は、前段の移相回路110Cの入出力電圧とキャパシタ等に現れる電圧との関係を示すベクトル図である。
上述したように、オペアンプ112の非反転入力端子に印加される電圧VR1を基準に考えると、入力電圧Eiと分圧電圧Eo′とは電圧VC1を合成する方向が異なるだけでありその絶対値は等しくなる。したがって、入力電圧Eiと分圧出力Eo′の大きさと位相の関係は、入力電圧Eiおよび分圧出力Eo′を斜辺とし、電圧VC1の2倍を底辺とする二等辺三角形で表すことができ、分圧出力Eo′の振幅は周波数に関係なく入力信号の振幅と同じであって、位相シフト量は第4図に示すφ1で表されることがわかる。この位相シフト量φ1は、周波数に応じて、入力電圧Eiを基準として時計回り方向(位相遅れ方向)に180°から360°まで変化する。
また、移相回路110Cの出力端124はオペアンプ112の出力端子に接続されているため、抵抗121の抵抗値をR21、抵抗123の抵抗値をR23とすると、出力電圧Eoと上述した分圧出力Eo′との間には、抵抗120の抵抗値に対してR21およびR23が十分小さいときは、Eo=(1+R21/R23)Eo′の関係がある。したがって、R21およびR23の値を調整することにより1より大きな利得が得られ、しかも第4図に示すように周波数が変化しても出力電圧Eoの振幅は一定であり、位相のみを所定量シフトさせることができる。
同様に、第5図は第2図に示した後段の移相回路130Cの構成を抜き出して示したものである。同図に示す後段の移相回路130Cは、差動増幅器の一種であるオペアンプ132と、入力端142に入力された信号の位相を所定量シフトさせてオペアンプ132の非反転入力端子に入力するキャパシタ134および可変抵抗136と、入力端142とオペアンプ132の反転入力端子との間に挿入された抵抗138と、オペアンプ132の出力端子に接続されて分圧回路を構成する抵抗141および143と、この分圧回路の出力端子とオペアンプ132の反転入力端子との間に接続された抵抗140とを含んで構成されている。
このような構成を有する移相回路130Cにおいて、抵抗138と抵抗140の抵抗値は同じに設定されている。また、可変抵抗136は外部からの制御電圧に応じて抵抗値が変更可能であり、第2図に示す制御入力端子195を介して外部から供給される制御電圧をゲートに印加することにより抵抗値が設定されるようになっている。
第5図に示した入力端142に所定の交流信号が入力されると、オペアンプ132の非反転入力端子には、コンデンサ134の両端に現れる電圧VC2が印加される。また、抵抗138の両端には、可変抵抗136の両端に現れる電圧VR2と同じ電圧VR2が現れる。2つの抵抗138、140には同じ電流Iが流れ、しかも、上述したように抵抗138と抵抗140の各抵抗値が等しいので、抵抗140の両端にも電圧VR2が現れる。オペアンプ132の反転入力端子(電圧VC2)を基準にして考えると、抵抗138の両端電圧VR2をベクトル的に加算したものが入力電圧Eiに、抵抗140の両端電圧VR2をベクトル的に減算したものが抵抗41と抵抗43の接続点の電圧(分圧出力)Eo′になる。
第6図は、後段の移相回路130Cの入出力電圧とキャパシタ等に現れる電圧との関係を示すベクトル図である。
上述したように、オペアンプ132の非反転入力端子に印加される電圧VC2を基準に考えると、入力電圧Eiと分圧出力Eo′とは電圧VR2を合成する方向が異なるだけでありその絶対値は等しくなる。したがって、入力電圧Eiと分圧出力Eo′の大きさと位相の関係は、入力電圧Eiおよび分圧出力Eo′を斜辺とし、電圧VR2の2倍を底辺とする二等辺三角形で表すことができ、分圧出力Eo′の振幅は周波数に関係なく入力信号の振幅と同じであって、位相シフト量は第6図に示すφ2で表されることがわかる。この位相シフト量φ2は、周波数に応じて、入力電圧Eiを基準として時計回り方向に0°から180°まで変化する。
また、移相回路130Cの出力端144はオペアンプ132の出力端子に接続されているため、抵抗141の抵抗値をR41、抵抗143の抵抗値をR43とすると、出力電圧Eoと上述した分圧出力Eo′との間には、抵抗140の抵抗値に対してR41およびR43が十分小さいときは、Eo=(1+R41/R43)Eo′の関係がある。したがって、R41およびR43の値を調整することにより1より大きな利得が得られ、しかも第6図に示すように周波数が変化しても出力電圧Eoの振幅が一定であり、位相のみを所定量シフトすることができる。
このようにして、2つの移相回路110C、130Cのそれぞれにおいて位相が所定量シフトされ、第4図および第6図に示すように、同調回路1全体での位相シフト量は所定の周波数において360°となる。
また、後段の移相回路130Cの出力は、第2図に示すように出力端子192から同調回路1の出力として取り出されるとともに、この移相回路130Cの出力を分圧回路160を通した信号が帰還抵抗170を介して前段の移相回路110Cの入力側に帰還されている。そして、この帰還された信号と入力抵抗174を介して入力される信号とが加算され、この加算された信号が前段の移相回路110Cに入力される。
このように、2つの移相回路110C、130Cによって所定の周波数における位相シフト量の合計が360°となり、このとき2つの移相回路110C、130C、分圧回路160および帰還抵抗170による帰還ループのループゲインを1以下に設定することにより、上述した所定の周波数成分の信号のみを通過させる同調動作が行われる。
また、同調回路1の出力端子192からは、分圧回路160に入力される前の移相回路130Cの出力が取り出されているため、同調回路1自体に利得を持たせることができ、同調動作と同時に信号振幅の増幅が可能となる。
第7図は、上述した構成を有する2つの移相回路110C、130Cおよび分圧回路160の全体を伝達関数K1を有する回路に置き換えた回路図であり、伝達関数K1を有する回路と並列に抵抗R0を有する帰還抵抗170が、直列に帰還抵抗170のn倍の抵抗値(nR0)を有する入力抵抗174が接続されている。
第8図は、第7図に示す回路をミラーの定理によって変換した回路図であり、変換後のシステム全体の伝達関数Aは、
A=Vo/Vi=K1/{n(1−K1)+1} ・・・(1)
で表すことができる。
前段の移相回路11Cの伝達関数K2は、可変抵抗116とキャパシタ114からなるCR回路の時定数をT1(可変抵抗116の抵抗値をR、キャパシタ114の静電容量をCとするとT1=CR)とすると、
K2=−a1(1−T1s)/(1+T1s) ・・・(2)
となる。ここで、s=jωであり、a1は移相回路110Cの利得であってa1=(1+R21/R23)>1である。
また、後段の移相回路130Cの伝達関数K3は、キャパシタ134と抵抗136からなるCR回路の時定数をT2(キャパシタ134の静電容量をC、抵抗136の抵抗値をRとするとT2=CR)とすると、
K3=a2(1−T2s)/(1+T2s) ・・・(3)
となる。ここで、a2は移相回路130Cの利得であってa2=(1+R41/R43)>1である。
分圧回路160を介することによって信号振幅が1/a12に減衰するものとすると、2つの移相回路110C、130Cと分圧回路160を縦続接続した場合の全体の伝達関数K1は、
K1=−{1+(Ts)2−2Ts}/{1+(Ts)2+2Ts}・・・(4)
となる。なお、上述した(4)式においては、計算を簡単なものとするために、各移相回路の時定数T1、T2をともにTとした。この(4)式を上述した(1)式に代入すると、
A=−{1+(Ts)2−2Ts}/〔(2n+1){1+(Ts)2}+2Ts〕
=−{1/(2n+1)}〔{1+(Ts)2−2Ts}
/{1+(Ts)2+2Ts/(2n+1)}〕 ・・・(5)
となる。
この(5)式によれば、ω=0(直流の領域)のときにA=−1/(2n+1)となって、最大減衰量を与えることがわかる。また、ω=∞のときにもA=−1/(2n+1)となって、最大減衰量を与えることがわかる。さらに、ω=1/Tの同調点においてはA=1であって帰還抵抗170と入力抵抗174の抵抗比nに無関係であることがわかる。換言すれば、第9図に示すように、nの値を変化させても同調点がずれることなく、かつ同調点の減衰量も変化しない。
しかも、前段の移相回路110C内の可変抵抗116および後段の移相回路130Cに含まれる可変抵抗136の各抵抗値を変えることにより、移相回路110C、130Cに含まれる各CR回路の時定数を変化させることができ、同調周波数ωをある範囲で任意に変化させることができる。
ところで、上述した第7図において、伝達関数K1で示される全域通過回路が入力インピーダンスを有する場合、帰還抵抗170とこの全域通過回路の入力インピーダンスによる分圧回路が形成されるため、全域通過回路を含む帰還ループのループゲインは伝達関数K1の絶対値より小さくなる。全域通過回路の入力インピーダンスとは、前段の移相回路110Cの入力インピーダンスであり、オペアンプ112の入力抵抗118に可変抵抗116とキャパシタ114からなるCR回路の直列インピーダンスが並列に接続されて形成される入力インピーダンスに他ならない。したがって、全域通過回路の入力インピーダンスによる帰還ループのループゲインの損失を補償するには、全域通過回路自体の利得を1以上に設定することが必要である。
例えば、移相回路110Cに含まれる抵抗121、123による分圧回路を無視して考える(分圧比が1の場合であって、上述した(2)式におけるa1が1の場合を考える)と、移相回路110Cは、(2)式によれば、入力された周波数に応じて利得が1倍のホロワ回路から利得が−1倍の反転増幅器としての範囲で動作しなければならないので、抵抗118と120の抵抗比を1以外にすることは好ましくない。なぜなら、抵抗118、120の各抵抗値をR18、R20とすると、移相回路110Cが反転増幅器として動作するときの利得は−R20/R18であるが、ホロワ回路として動作する場合の利得は抵抗118と抵抗120の抵抗比にかかわらず常に1であるから、抵抗118と抵抗120の抵抗比が1でない場合には、移相回路110Cが動作する全領域において、その入出力間の位相だけが変化し、出力振幅が変化しない理想条件が満足できなくなるからである。
移相回路110Cの出力側に抵抗121と抵抗123からなる分圧回路を付加し、この分圧回路を介してオペアンプ112の反転入力端子への帰還を施すことにより、抵抗118と抵抗120の抵抗比を1に保持したまま移相回路110Cの利得を1以上に設定することが可能となる。同様に、移相回路130Cの出力側に抵抗141と抵抗143からなる分圧回路を付加し、この分圧回路を介してオペアンプ132の反転入力端子への帰還を施すことにより、抵抗138と抵抗140の抵抗比を1に保持したまま移相回路130Cの利得を1以上に設定することが可能となる。
なお、(2)式あるいは(3)式から第4図、第6図に示したφ1(入力電圧Eiを基準として時計回り方向(位相遅れ方向)に180°≦φ1≦360°)、φ2(入力電圧Eiを基準として時計回り方向に0°≦φ2≦180°)を求めると、
φ1=tan{2ωT1/(1−ω21 2)} ・・・(6)
φ2=tan{2ωT2/(1−ω22 2)} ・・・(7)
となる。
1=T2(=T)の場合には、ω=1/Tのときに2つの移相回路110C、130Cによる位相シフト量の合計は360°となって上述した同調動作が行われ、このときφ1=270°、φ2=90°となる。
第10図は、2つの移相回路110C、130Cに入出力される信号間の位相関係を示す図であり、前段の移相回路110Cに入力される信号の周波数と同調周波数が等しい場合を示している。
前段の移相回路110Cの出力信号S2は、第10図(A)に示すように、入力信号S1を基準として、時計回り方向にφ1=270°位相がシフトする。また、後段の移相回路130Cの出力信号S3は、第10図(B)に示すように、入力信号S2を基準として時計回り方向にφ2=90°位相がシフトする。したがって、2つの位相回路110C、130Cを縦続接続すると、第10図(C)に示すように、全体として360°位相がシフトする。
ところが、前段の移相回路110Cに入力される信号の周波数より設定されている同調周波数の方が高い場合には、上述したφ1とφ2を足し合わせた結果が360°とはならない。
第11図は、前段の移相回路110Cに入力される信号の周波数より同調周波数の方が高い場合の各移相回路の入出力信号間の位相関係を示す図である。
前段の移相回路110Cに入力される信号の周波数より同調周波数の方が高い場合とは、入力される信号の周波数が同調周波数より相対的に低い場合であり、この場合には、第4図および第6図から明らかなように、前段の移相回路110Cの位相シフト量φ1は270°より小さくなり、後段の移相回路130Cの位相シフト量φ2は90°より小さくなる。したがって、φ1およびφ2はそれぞれ第11図(A)、第11図(B)のように表され、2つの移相回路110C、130Cを縦続接続した場合の位相シフト量の合計は、第11図(C)に示すように、360°よりも小さくなる。
ところで、このような場合に同調周波数を実際に入力される信号の周波数に近づけるには、上述したφ1およびφ2を大きくすればよく、具体的には、第2図に示した可変抵抗116の両端電圧VR1と可変抵抗136の両端電圧VR2を大きくすればよい。例えば、可変抵抗116あるいは136をnチャネル型のFETで形成した場合には、ゲート電圧を下げてチャネル抵抗を大きくすればよい。
一方、前段の移相回路110Cに入力される信号の周波数より同調周波数の方が低い場合も、上述したφ1とφ2を足し合わせた結果が360°とはならない。
第12図は、前段の移相回路110Cに入力される信号周波数より同調周波数の方が低い場合の各移相回路の入出力信号間の位相関係を示す図である。
前段の移相回路110Cに入力される信号の周波数より同調周波数の方が低い場合とは、入力される信号の周波数が同調周波数より相対的に高い場合であり、この場合には、第4図および第6図から明らかなように、前段の移相回路110Cの位相シフト量φ1は270°より大きくなり、後段の移相回路130Cの位相シフト量φ2は90°より大きくなる。したがって、φ1およびφ2はそれぞれ第12図(A)、第12図(B)のように表され、2つの移相回路110C、130Cを縦続接続した場合の位相シフト量の合計は、第12図(C)に示すように、360°よりも大きくなる。
ところで、このような場合に同調周波数を実際に入力される信号の周波数に近づけるには、上述したφ1およびφ2の絶対値を小さくすればよく、具体的には、第2図に示した可変抵抗116の両端電圧VR1と可変抵抗136の両端電圧VR2を小さくすればよい。例えば、可変抵抗116および136をnチャネル型のFETで形成した場合には、ゲート電圧を上げてチャネル抵抗を小さくすればよい。
以上に説明したように、上述した同調回路1では、移相回路110C内の抵抗118と抵抗120の抵抗値を同じ値に設定するとともに移相回路130C内の抵抗138と抵抗140の抵抗値を同じ値に設定しているため、同調周波数を変えた際の振幅変動を防止でき、ほぼ一定の振幅を有する同調出力が得られる。
特に、同調出力の振幅変動を抑えたことにより、上述した抵抗比nを大きくして同調回路1のQの値を大きくすることができる。すなわち、ループゲインに周波数依存性があると、利得の低い周波数では抵抗比nを大きくしてもQが上がらず、利得の高い周波数ではループゲインが1を越えて発振することがある。したがって、振幅変動が大きい場合には、このような発振を防止するために抵抗比nをあまり大きな値に設定することができず、同調回路1のQの値も小さくなる。一方、第2図に示す同調回路1によれば、抵抗比nを大きく設定しても同調回路1の同調出力は振幅変動を起こさないため、抵抗比nを大きくしてQの値を大きくすることができる。
また、分圧回路160を介して減衰した信号を帰還信号として用いるとともに、分圧回路160に入力前の信号を同調回路1の出力として取り出すことにより、入力信号の中から所定の周波数成分のみを抽出する同調動作とともに、この抽出された信号に対して所定の増幅を行うことができる。
なお、上述した第2図に示した同調回路1において、同調回路1に含まれる各移相回路内のオペアンプ112あるいは132の出力端に接続された分圧回路のうち、いずれか一方の分圧回路を省略し、あるいは分圧比を1に設定してもよい。例えば、移相回路110C内の分圧回路を省略してオペアンプ112の出力端子を抵抗120の一方端に直接接続してもよい。
このように、縦続接続された2つの移相回路の一方について分圧回路を省略してゲインを1に設定すると、他方の移相回路110Cのゲインを1より大きな値に設定することにより、第2図に示した同調回路1と同様の同調動作が行われる。
また、増幅動作が不要な場合には、移相回路130Cの後段の分圧回路160を省略し、移相回路130Cの出力を直接前段側に帰還してもよい。あるいは、分圧回路160内の抵抗162の抵抗値を極端に小さな値にして分圧比を1に設定してもよい。
〔C.周波数制御回路の詳細構成および動作〕
次に、第1図に示した周波数制御回路2の詳細について説明する。第13図は、周波数制御回路2の構成を示す回路図であり、周波数制御回路2に含まれる位相差検出回路3、制御電圧発生回路4の詳細構成が示されている。
第13図に示す位相差検出回路3は、ソースホロワ等のバッファ30と、2つの電圧比較器31、32と、EX−OR(排他的論理和)ゲート33とを含んで構成されている。
2つの電圧比較器31、32の反転入力端子はともに接地されており、一方の電圧比較器31の非反転入力端子には同調回路1の制御出力端子196から出力される信号(後段の移相回路130Cの入力信号)がバッファ30を介して入力されており、他方の電圧比較器32の非反転入力端子には同調回路1の制御出力端子197から出力される信号(後段の移相回路130Cの出力信号)が入力されている。
各電圧比較器31、32は、非反転入力端子に入力される信号の電圧レベルが0Vより高いか低いかによって、正負いずれかの電圧レベルを有する矩形波信号を出力する。すなわち、電圧比較器31、32はそれぞれ同調回路1の制御出力端子196、197から出力される信号と周波数および位相が等しい矩形波信号を出力する。
EX−ORゲート33は、各電圧比較器31、32からそれぞれ出力される矩形波信号を入力としており、各矩形波信号が有する正極性の電圧レベルを論理Hに、負極性の電圧レベルを論理Lに対応させて、これら2入力の排他的論理和を求める。
したがって、例えば同調回路1の2つの制御出力端子196、197から出力される2つの信号の位相差が90°である場合には、電圧比較器31、32からそれぞれ出力される矩形波信号の位相差は90°となり、EX−ORゲート33からはこれら矩形波信号の2倍の周波数を有しデューティ比が50%の矩形波信号が出力される。
第13図に示す制御電圧発生回路4は、抵抗40およびキャパシタ41を含んで構成されるローパスフィルタと、所定のバイアス電圧を発生する可変抵抗42と、オペアンプ44、抵抗45および抵抗46を含んで構成される増幅器とを備えている。
ローパスフィルタは、抵抗40およびキャパシタ41により定まる時定数に応じて、EX−ORゲート33から出力される矩形波信号から高周波成分を除去する。したがって、ローパスフィルタの出力電圧は、EX−ORゲート33から出力される矩形波信号のデューティ比が50%より大きい場合(論理Hの相対的割合が多い場合)には徐々に上昇し、反対にEX−ORゲート33から出力される矩形波信号のデューティ比が50%より小さい場合(論理Lの相対的割合が多い場合)には徐々に低下する。なお、第13図に示すローパスフィルタは、増幅器の前段に挿入されているが、増幅器の帰還抵抗と並列にキャパシタを接続する等により、増幅器と一体的に形成してもよい。
オペアンプ44の出力端子と反転入力端子の間には抵抗45が接続され、また反転入力端子は抵抗46を介して接地されている。このような接地により、オペアンプ44は、抵抗45、46の抵抗比に応じた増幅度を有する増幅器として機能する。オペアンプ44で増幅された電圧は、以下に説明するように所定のバイアス電圧と加算されて制御電圧が生成された後、同調回路1に入力される。
オペアンプ44の反転入力端子には、2つの固定端子が正電源Vddと負電源Vssに接続された可変抵抗42の可動端子が抵抗43を介して接続されている。したがって、この可変抵抗42を含んで構成されるバイアス回路によって、オペアンプ44の出力端の電圧は所定のバイアス電圧に設定される。なお、この可変抵抗42を実際に半導体基板上に形成する場合にはFET等の能動素子を利用して形成することができる。
このバイアス回路は、同調回路1の同調周波数と入力信号の周波数とが一致したときに(すなわち誤差がないときに)、同調回路1の一方の移相回路110Cに含まれる可変抵抗116および他方の移相回路130Cに含まれる可変抵抗136の各ゲートに印加すべき電圧を設定するために設けられている。
なお、可変抵抗116および136をFETを用いて構成した場合には、各FETに同一のゲート電圧を印加しても、各FETのソース電位等が異なると、抵抗値が等しくならないことがある。このため、実際に回路を組む場合には、制御電圧発生回路4の出力電圧に応じて互いに連動して可変可能な2種類のゲート電圧を発生する分配器5を制御電圧発生回路4と同調回路1の間に接続するのが望ましい。あるいは、同一のゲート電圧が印加されたときに抵抗値が等しくなるようにFETを選別してもよく、このような選別を行えば第13図に示した分配器5を省略することができる。
本実施形態の周波数制御回路2はこのような詳細構成を有しており、次にその詳細動作を場合を別けて説明する。
〔C−1.入力信号の周波数より同調周波数が高い場合〕
第14図は、同調回路1に入力される信号の周波数に比べて同調回路1の同調周波数が高い場合のタイミング図であり、周波数制御回路2内の各構成の入出力タイミングが示されている。同図(A)〜(F)は第13図の回路図において示した符号A〜Fに対応している。
同調回路1の入力信号の周波数より同調周波数の方が高い場合には、第11図に示したように後段の移相回路130Cの位相シフト量φ2が90°より小さくなるため、同調回路1の2つの制御出力端子196、197から出力される2つの信号はそれぞれ、第14図(A)に示す制御出力▲1▼および第14図(B)に示す制御出力▲2▼のような位相関係を有する。
位相差検出回路3内の一方の電圧比較器31は、上述した制御出力▲1▼の電圧レベルが0Vより高いときにはHレベルの信号を出力する。したがって、電圧比較器31からは、第14図(C)に示すように制御出力▲1▼と同じ周波数および位相を有する信号、すなわち、制御出力▲1▼の電圧レベルが正極性のときにHレベル、反対に制御出力▲1▼の電圧レベルが負極性のときにLレベルとなる矩形波信号が出力される。
同様に、位相差検出回路3内の他方の電圧比較器32は、上述した制御出力▲2▼の電圧レベルが0Vより高いときにはHレベルの信号を出力する。したがって、電圧比較器32からは、第14図(D)に示すように制御出力▲2▼と同じ周波数および位相を有する信号、すなわち、制御出力▲2▼の電圧レベルが正極性のときにHレベル、反対に制御出力▲2▼の電圧レベルが負極性のときにLレベルとなる矩形波信号が出力される。
EX−ORゲート33は、2つの電圧比較器31、32の各出力の論理が異なるときにHレベルとなり、各出力の論理が同じときにLレベルとなる矩形波信号を出力する。同調回路1の入力信号の周波数より同調周波数の方が高い場合には、後段の移相回路130Cの位相シフト量φ2が90°より小さくなるため、第14図(E)に示すように、デューティ比が50%より小さい矩形波信号が出力される。
このEX−ORゲート33から出力される矩形波信号は、制御電圧発生回路4内の抵抗40とキャパシタ41からなるローパスフィルタを介してオペアンプ44の非反転入力端子に入力される。このローパスフィルタは、入力される矩形波信号から高周波成分を除去するために用いられており、この入力される矩形波信号のデューティ比が50%より小さい場合には、第14図(F)に示すように、ローパスフィルタの出力電圧は0Vより低くなる。
このローパスフィルタの出力電圧はオペアンプ44を含んで構成される増幅器によって所定の増幅度で増幅され、さらに可変抵抗42によって設定された所定のバイアス電圧が加算される。そして、この加算された電圧を分配器5に印加することにより、同調回路1の制御入力端子194、195に印加される各制御電圧が生成される。したがって、EX−ORゲート33から出力される矩形波信号のデューティ比が50%より小さい場合には、これらの制御電圧も低い方に変化する。
このようにして、同調回路1にフィードバックされる制御電圧が低くなって同調回路1の同調周波数を低い方に変化させる。このような制御は、同調回路1の入力信号の周波数と同調周波数のずれがなくなるまで繰り返され、所定時間経過後に同調周波数が入力信号の周波数に一致する。
〔C−2.入力信号の周波数より同調周波数の方が低い場合〕
第15図は、同調回路1に入力される信号の周波数に比べて同調回路1の同調周波数が低い場合のタイミング図であり、周波数制御回路2内の各構成の入出力タイミングが示されている。第14図と同様に、第15図(A)〜(F)は第13図の回路図において示した符号A〜Fに対応している。
同調回路1の入力信号の周波数より同調周波数の方が低い場合には、第12図に示したように後段の移相回路130Cの位相シフト量φ2が90°より大きくなるため、同調回路1の2つの制御出力端子196、197から出力される2つの信号を観察すると、第15図(A)に示す制御出力▲1▼および第15図(B)に示す制御出力▲2▼のような位相関係となる。
上述したように、位相差検出回路3内の電圧比較器31は制御出力▼1▲の電圧レベルが0Vより高いときにHレベルとなる矩形波信号を出力し(第15図(C))、電圧比較器32は制御出力▼2▲の電圧レベルが0Vより高いときにHレベルとなる矩形波信号を出力する(第15図(D))。
また、EX−ORゲート33は、これら2つの電圧比較器31、32の各出力の論理が異なるときにHレベル、同じときにLレベルとなる矩形波信号を出力する。したがって、同調回路1の入力信号の周波数より同調周波数の方が低い場合には後段の移相回路130Cの位相シフト量φ2が90°より大きくなるため、第15図(E)に示すように、EX−ORゲート33が出力する矩形波信号のデューティ比は50%より大きくなる。
したがって、制御電圧発生回路4内のローパスフィルタの出力電圧は、第15図(F)に示すように0Vより高くなり、これに伴って制御電圧発生回路4から分配器5を介して同調回路1に印加される制御電圧も高い方に変化する。
このようにして、同調回路1にフィードバックされる制御電圧が高くなって同調回路1の同調周波数を高い方に変化させる。このような制御は、同調回路1の入力信号の周波数と同調周波数のずれがなくなるまで繰り返され、所定時間経過後に同調周波数が入力信号の周波数に一致する。
このように、本実施形態の同調機構によれば、同調回路1の一方の移相回路130Cの入出力信号間の位相差が90°となるように制御を行うため、同調周波数は常に入力信号の周波数に追従して変化し、両周波数は必ず一致する。したがって、本実施形態の同調機構を例えばスーパーヘテロダイン方式の受信機に適用した場合においては、入力される放送波等のキャリアの周波数に容易に同調周波数を一致させることができる。
また、本実施形態の同調機構の内部に含まれる同調回路1および周波数制御回路2は、電圧比較器やゲートあるいはオペアンプ、キャパシタ、抵抗等によって構成されており、いずれの素子も半導体基板上に形成することができることから、同調機構全体あるいは同調機構やその周辺回路を含む全体を半導体基板上に集積化することができる。
特に、同調機構全体を集積化した場合には、製造したチップ毎に回路定数に大きなばらつきが生じて周波数特性が一致しないことが考えられるが、このような場合であっても本実施形態の同調機構によれば、所定周波数を有する入力信号に追随するように同調回路1の同調周波数が変化するため、回路素子の特性がばらついても実際の同調特性に影響することはなく、常に安定した同調特性が得られる。
また、同調機構全体を集積化した場合には、使用時の温度変化に伴って抵抗等の各種の素子定数が変化することも考えられるが、本実施形態の同調制御方式では常に入力信号の周波数に一致するような制御を行っているため、各種の素子定数が変化した場合であっても適度なフィードバックがかかり、入力信号の周波数と同調周波数のずれがなくなる。
〔D.周波数制御回路の他の例〕
次に、第1図に示した周波数制御回路2の他の構成例について説明する。第13図に詳細構成を示した周波数制御回路2内の位相差検出回路3は、EX−ORゲート33を用いて構成されているが、それ以外の素子を用いて構成することもできる。
第16図は、周波数制御回路の他の構成例を示す詳細回路図であり、第13図に示した位相差検出回路3を位相差検出回路3Aに置き換えた構成を有している。
第16図に示す位相差検出回路3Aは、バッファ30と、2つの電圧比較器31、32と、一方の電圧比較器31の出力に応じて動作が制御されるトライステートバッファ34とを含んで構成されている。この位相差検出回路3Aは、第13図に示した位相差検出回路3内のEX−ORゲート33をトライステートバッファ34に置き換えるとともに、一方の電圧比較器32の2つの入力端子の接続を入れ換えた構成を有している。なお、このトライステートバッファ34をアナログスイッチに置き換えるようにしてもよい。
第17図は、第16図に示す同調回路1に入力される信号の周波数に比べて同調周波数が高い場合のタイミング図であり、周波数制御回路を構成する位相差検出回路3Aおよび制御電圧発生回路4のそれぞれの各構成における入出力タイミングが示されている。第17図(A)〜(F)は第16図の回路図において示した符号A〜Fに対応している。
なお、第17図(A)〜(C)に示すタイミングは、第14図(A)〜(C)に示した各タイミングと同じであり、以下では主にトライステートバッファ34の動作に着目して説明する。
上述したように、トライステートバッファ34の制御端子には一方の電圧比較器31の出力信号が入力され、この制御端子の電圧レベルに応じてトライステートバッファ34は電圧比較器32の出力を通過させあるいは遮断する。例えば電圧比較器31の出力信号はHレベルのときに他方の電圧比較器32から出力される信号をそのまま通過させ、反対に電圧比較器31の出力がLレベルのときにハイインピーダンス状態になる。
ところで、同調回路1の入力信号の周波数より同調周波数の方が高い場合であって、トライステートバッファ34がバッファとして動作するとき、すなわち一方の電圧比較器31の出力がHレベルのとき、他方の電圧比較器32の出力はHレベルの期間よりもLレベルの期間の方が長くなる。
したがって、トライステートバッファ34からは、第17図(E)に示すように、一方の電圧比較器31の出力がLレベルにあるときには0Vとなり、電圧比較器31の出力がHレベルにあるときにはLレベルあるいはHレベルとなる信号が出力される。
このように、入力信号の周波数より同調周波数の方が高い場合には、トライステートバッファ34の出力はHレベル期間よりもLレベル期間の方が長くなるため、制御電圧発生回路4内の抵抗40、キャパシタ41により構成されるローパスフィルタの出力電圧は、第17図(F)に示すように0Vより低くなり、これに伴い同調回路1にフィードバックされる制御電圧も低い方に変化する。
なお、トライステートバッファ34の出力は、1周期のうち半周期は必ず0Vになるため、第13図に示したようにEX−ORゲート33を使った場合と比べると検出感度が低く、制御の応答速度は遅くなる。
第18図は、第16図に示す同調回路1に入力される信号の周波数に比べて同調周波数が低い場合のタイミング図であり、周波数制御回路を構成する位相差検出回路3Aおよび制御電圧発生回路4のそれぞれの各構成における入出力タイミングが示されている。第18図(A)〜(F)は第16図の回路図において示した符号A〜Fに対応している。
同調回路1の入力信号の周波数より同調周波数の方が低い場合には、電圧比較器31の出力がHレベルのときのトライステートバッファ34の出力レベルが上述した場合と異なる。すなわち、電圧比較器31の出力がHレベルの場合には、トライステートバッファ34の出力はLレベル期間よりもHレベル期間の方が長くなる。なお、電圧比較器31の出力がLレベルの場合には、トライステートバッファ34の出力は常に0Vとなる。
このように、入力信号の周波数より同調周波数の方が低い場合には、トライステートバッファ34の出力は、Lレベル期間よりもHレベル期間の方が長くなるため、制御電圧発生回路4内の抵抗40、キャパシタ41により構成されるローパスフィルタの出力電圧は、第18図(F)に示すように0Vより高くなり、これに伴い同調回路1にフィードバックされる制御電圧も高い方に変化する。
このようにして、同調回路1の入力信号の周波数よりも同調周波数の方が高い場合にはフィードバックされる制御電圧が低くなって同調周波数を低い方に変化させ、反対に同調周波数の方が低い場合にはフィードバックされる制御電圧が高くなって同調周波数を高い方に変化させるため、同調周波数が常に入力信号の周波数に追従して一致するように制御が行われる。
〔E.FM受信機に適用した場合の例〕
次に、上述した本実施形態の同調機構をFM受信機に適用した場合について説明する。第1図に示した周波数制御回路2は、同調回路1の入力信号の周波数が変化した場合に、この周波数変化に追従させて同調回路1に帰還する制御電圧を変化させている。したがって、原理的にはこの制御電圧には同調回路1の入力信号の周波数変化、すなわち入力信号としてFM波を考えた場合にこのFM波の変調信号と同じ周波数成分が含まれており、本実施形態はこの周波数成分をFM検波信号として取り出すものである。
第19図は、FM検波を兼ねた同調機構の構成を示す図である。同図に示す構成は、第1図に示した周波数制御回路2内の制御電圧発生回路4を制御電圧発生回路4Aに置き換え、この制御電圧発生回路4Aから同調回路1へ帰還する制御電圧と並行してFM検波信号を取り出している。
第20図は、第19図に示す周波数制御回路2の詳細構成を示す回路図である。周波数制御回路2を構成する位相差検出回路3の詳細構成は第13図に示した構成と同じであり、制御電圧発生回路4Aの構成が第13図に示した制御電圧発生回路4とは若干異なっている。
制御電圧発生回路4Aは、抵抗40およびキャパシタ41により構成されるローパスフィルタと、オペアンプ44と、抵抗45、46により構成される増幅器とを含んでいる点や、可変抵抗42を操作することにより制御電圧発生回路4Aから同調回路1に印加する制御電圧のバイアス電圧を任意に変更できる点は第13図に示した制御電圧発生回路4と同じである。
制御電圧発生回路4Aは、第13図に示した制御電圧発生回路と同様の構成を備えており、その他に抵抗47とキャパシタ48により構成される第2のローパスフィルタと、オペアンプ49および抵抗50、51により構成される第2の増幅器とを備えている。
抵抗40およびキャパシタ41により構成される第1のローパスフィルタは、位相差検出回路3から出力される矩形波信号から高周波成分を除去するために設けられている。この第1のローパスフィルタからは、上述した矩形波信号のデューティ比に応じて直流電圧レベルがなだらかに変化する信号が出力される。
これに対し、抵抗47およびキャパシタ48により構成される第2のローパスフィルタは、位相差検出回路3から出力される矩形波信号から約20kHz以上の高周波成分を除去するために設けられている。この第2のローパスフィルタからは、FM音声等のFM変調信号がFM検波信号として出力される。このFM検波信号は、オペアンプ49等により構成される増幅器によって増幅され、制御電圧発生回路4Aの外部に取り出される。
第21図は、第19図に示した同調機構を利用したFM受信機の構成を示す図である。
第21図に示すFM受信機は、第19図および第20図に示した同調回路1および周波数制御回路2と、高周波増幅回路10と、低周波増幅回路12と、スピーカ14と、アンテナ16とを含んで構成されている。
高周波増幅回路10は、アンテナ16によって受信したFM波を高周波増幅して同調回路1に入力する。上述したように、同調回路1は、周波数制御回路2からの制御電圧に応じて、入力されるFM波の周波数に同調周波数を一致させる制御を行う。
低周波増幅回路12は、周波数制御回路2内の制御電圧発生回路4Aから出力されるFM検波信号に対して低周波増幅を行い、スピーカ14から音声を出力する。なお、スピーカ14を用いずに、イヤホン等によって音声に変換するようにしてもよい。
また、第21図に示すFM受信機は、アンテナ16からの入力部分にバリコンとバーアンテナによるLC回路を用いずに、同調回路1によって直接所望周波数のFM波を抽出しているため、入力部分の設計が容易となる。このため、アンテナ16を短い棒状あるいは紐状の導電性材料で形成することができ、FM波を効率良く受信することができる。具体的には、カーラジオ等に使用されるロッドアンテナによってアンテナ16を形成したり、イヤホンのリード部分をアンテナ16として使用するだけで、所望のFM波を感度良く受信することができ、従来不可欠であったバーアンテナをなくすことができる。
また、バーアンテナを用いずに済むため、同調回路1や周波数制御回路2および高周波増幅回路10等を含むFM受信機のほとんど全ての構成回路を半導体基板上に集積化することができ、構成回路を1チップ上に形成することも可能となる。
このように、制御電圧発生回路4Aに含まれるローパスフィルタの時定数を調整することにより、同調回路1に入力されるFM変調がかかった信号から容易にFM変調信号のみを取り出すことができ、第19図に示した同調機構をFM受信機に適用した場合には、本来であれば同調機構の後段に別に設けるFM検波回路が不要となり、回路構成の簡素化が可能となる。
また、従来のFM受信機では同調機構とFM検波回路の間に、振幅変動の影響を除去した後にFM検波を行うためにリミッタ回路を設けていたが、第20図に示した同調機構では位相差検出回路3内の2つの電圧比較器で矩形波信号に変換しているため振幅変動の影響がなく、従来必要であったリミッタ回路も不要となる。
なお、第19図および第20図は、周波数制御回路2内の制御電圧発生回路4AからFM検波信号を取り出す場合を説明したが、当然ながら、従来の受信機で行っているように、同調回路1の後段にリミッタ回路および各種の検波方式を用いたFM検波回路を接続してFM検波信号を得るようにしてもよい。
〔F.AM受信機に適用した場合の例〕
次に、上述した本実施形態の同調機構をAM受信機に適用した場合について説明する。本実施形態の同調回路1は、同調時には2つの移相回路110C、130Cの全体により合計で360°の位相シフトを行う。したがって、同調回路1の出力信号を参照信号として入力信号に対する同期整流を行うことにより、入力信号に含まれる各種の周波数成分の中から同調周波数と同じ周波数成分のみを抽出し、この同期整流出力をAM検波信号として用いることができる。
第22図は、同期整流によるAM検波を併用した同調機構の構成を示す図である。同図に示す同調機構は、第1図に示した同調回路1と周波数制御回路2に加え、同期整流回路6とその後段に接続されたローパスフィルタ(LPF)6とを含んで構成されている。
一般に、ある参照信号に同期して入力信号に対するスイッチングを行うという操作は、参照信号と入力信号とをミキシングすることに等価であるといえる。いま、入力信号として互いに周波数が接近した第1および第2の信号を考え、第1の信号の周波数をf1、第2の信号の周波数をf2(=f1+Δf)とする。また、参照信号の周波数をfrとする。
このような参照信号を用いて入力信号に対する同期整流を行うと、三角関数で表すことができる各信号同士を掛け算することに相当するため、結果として入力信号の周波数f1およびf2と参照信号の周波数frとの和と差の成分が生じる。したがって、入力信号の中の第1の信号と参照信号とを掛け合わせることによりf1+fr、f1−frの各周波数成分が現れ、入力信号の中の第2の信号と参照信号とを掛け合わせることにより、f1+Δf+fr、f1+Δf−frの各周波数成分が現れる。
今、fr=f1とすると、第1の信号と参照信号を掛け合わせることにより2f1、0の各周波数成分が現れ、第2の信号と参照信号とを掛け合わせることにより2f+Δf、Δfの周波数成分が現れる。したがって、同期整流出力としては2f+Δf、2f1、Δf、0の各周波数成分が現れる。ここで、周波数「0」の成分とは直流成分であり、実際にはこの直流成分には変調信号が含まれるため、この直流成分とそれ以外の交流成分(2f+Δf、2f1、Δf)を分離して直流成分のみを取り出すことにより、同期整流を利用した検波と同調分離を同時に行うことができる。
国内のAM放送を考えた場合、上述したΔfは9kHzであるため、この9kHz以上の周波数成分を除去可能なローパスフィルタ7を用いることにより、参照信号と同じ周波数を有する所望の放送波のみを取り出すことが可能となる。
第23図は、第22図に示す同期整流回路6の詳細構成を示す図である。同図に示す同期整流回路6は、電圧比較器60およびアナログスイッチ(AS)61を備えている。
この電圧比較器60は、反転入力端子が接地されており、非反転入力端子に同調回路1の出力信号が入力されている。したがって、電圧比較器60は、同調回路1の出力信号が0Vより高い電圧レベルにあるときに所定の正電圧を有し、反対に0Vより低い電圧レベルにあるときに所定の負電圧を有する矩形波信号を出力する。
アナログスイッチ61は、電圧比較器60から出力される矩形波信号の電圧レベルに応じてスイッチング状態を切り換える。すなわち、電圧比較器60から出力された矩形波信号が所定の正電圧のときに同調回路1の入力信号を通過させ、矩形波信号が所定の負電圧のときに同調回路1の入力信号を遮断する。アナログスイッチ61の出力はローパスフィルタ7に入力され、このローパスフィルタ7により同調周波数に等しい周波数成分のみが抽出され、AM検波信号が得られる。
本実施形態で用いた同調回路1は、第2図に示す詳細構成を用いて説明したように、理論的には信号振幅の減衰がなく、同調周波数が変化した場合であっても常に一定振幅の出力信号を得ることができる。しかし、実際に同調回路1を組み立てたりシミュレーションを行ってみると、同調周波数の変化によって出力振幅が若干変化したり、可変抵抗116、136を構成するFETの種類は可変幅等によっては出力信号に歪みが生じることがある。ところが、第22図に示したように同調回路1の入力信号に対して同期整流を行うことにより、同調回路1と通すことによる振幅変動や歪みの発生等によるAM検波信号への影響がなくなり、SN比が良好なAM検波信号を取り出すことができる。
また、同期整流出力をAM検波に用いる場合には、例えばダイオードを用いてAM検波を行う場合のような順方向電圧以下の不感帯領域が存在しないため、直線性の良いAM受信が可能となる。特に、AM検波回路を含む同調機構の全体を半導体基板上に集積化する場合には、順方向電圧が低いゲルマニウムダイオードが使えず順方向電圧が高いシリコンダイオード等を使うことになるため、ダイオードを使わない検波方式の方が望ましい。したがって、第22図に示す同調機構は、集積化する場合に特に有効である。
なお、第22図に示した同調機構では同調回路1の入力信号に対して同期整流を行ったが、当然ながら、従来の受信機のように、同調回路1の後段に同期整流を利用したAM検波回路を接続して、あるいは同調回路1の後段にその他の検波方式を用いたAM検波回路を接続してAM検波信号を得るようにしてもよい。
第24図は、第22図に示した同調機構を利用したAM受信機の構成を示す図である。
第24図に示すAM受信機は、第22図に示す同調回路1、周波数制御回路2、同期整流回路6およびローパスフィルタ7に加えて、高周波増幅回路10、ローパスフィルタ7、低周波増幅回路12、スピーカ14およびアンテナ16を含んで構成されている。
アンテナ16で受信したAM波を高周波増幅回路10で高周波増幅した後に同調回路1に入力する。周波数制御回路2によって同調回路1の同調周波数が制御され、このとき同調回路1から出力される信号を用いて同期整流が行われ、ローパスフィルタ7からAM検波信号が出力される。このAM検波信号は低周波増幅回路12によって増幅された後スピーカ14から出力される。
〔同調回路の第1の変形例〕
第2図に示した同調機構に含まれる同調回路1は各移相回路110C、130CをCR回路を含んで構成したが、CR回路を抵抗とインダクタからなるLR回路に置き換えた移相回路を用いて同調回路を構成することもできる。
第25図は、LR回路を含む移相回路の他の構成を示す回路図であり、第2図に示した同調回路1の前段の移相回路110Cと置き換え可能な構成が示されている。同図に示す移相回路110Lは、第3図に示した移相回路110C内のキャパシタ114と可変抵抗116からなるCR回路を、可変抵抗116とインダクタ117からなるLR回路に置き換えた構成を有している。
したがって、第25図に示す移相回路110Lの入出力電圧等の関係は、第26図のベクトル図に示すように、第4図に示した電圧VC1を可変抵抗116の両端電圧VR1に、第4図に示した電圧VR1をインダクタ117の両端電圧VL1にそれぞれ置き換えて考えることができる。
また、移相回路110Lの位相シフト量φ3は、インダクタ117と可変抵抗116により構成されるLR回路の時定数をT1(インダクタ117のインダクタンスをL、可変抵抗116の抵抗値をRとするとT1=L/R)とすると、上述した(6)式に示したφ1と同じとなる。
第27図は、LR回路を含む移相回路の他の構成を示す回路図であり、第2図に示した同調回路1の後段の移相回路130Cと置き換え可能な構成が示されている。同図に示す移相回路130Lは、第5図に示した移相回路130C内の可変抵抗136とキャパシタ134からなるCR回路を、インダクタ137と可変抵抗136からなるLR回路に置き換えた構成を有している。
したがって、第27図に示す移相回路130Lの入出力電圧等の関係は、第28図のベクトル図に示すように、第6図に示した電圧VC2を可変抵抗136の両端電圧VR2に、第6図に示した電圧VR2をインダクタ137の両端電圧VL2にそれぞれ置き換えて考えることができる。
また、移相回路130Lの位相シフト量φ4は、可変抵抗136とインダクタ137により構成されるLR回路の時定数をT2(可変抵抗136の抵抗値をR、インダクタ137のインダクタンスをLとするとT2=L/R)とすると、上述した(7)式に示したφ2と同じとなる。
このように、第25図に示した移相回路110Lおよび第27図に示した移相回路130Lのそれぞれは、第3図あるいは第5図に示した移相回路110C、130Cと等価であり、第2図に示した同調回路1において、前段の移相回路110Cを第25図に示した移相回路110Lに、後段の移相回路130Cを第27図に示した移相回路130Lにそれぞれ置き換えることが可能である。移相回路110L、130Lを含んで構成した同調回路の同調周波数は、例えば各移相回路110L、130L内のLR回路の時定数の逆数R/Lに比例し、この中でインダクタンスLは集積化等により小さくすることが容易であるため、2つの移相回路110L、130Lを含んで構成した同調回路全体を集積化することにより同調周波数の高周波化が容易となる。
なお、第2図に示す移相回路110C、130Cをそれぞれ、第25図に示す移相回路110Lと第27図に示す移相回路130Lに置き換えた場合には、可変抵抗116および136を形成するFETのゲート電圧を変化させた場合の各位相シフト量の変化の方向が反対となるため、第13図に示した位相差検出回路3内のEX−ORゲート33をEX−NOR(イクスクルシブ・ノア)ゲートに置き換えたり、第13図に示した電圧比較器31、32のいずれか一方の2つの入力を入れ換える等して制御電圧の変化の方向を反転させる必要がある。
また、第2図に示した同調回路1内の移相回路110C、130Cのそれぞれを、移相回路110L、130Lに置き換えた場合には、各移相回路内のオペアンプ112あるいは132の出力端に接続された分圧回路のうち、いずれか一方の分圧回路を省略してもよい。あるいは、双方の分圧回路を省略し、抵抗118および120の抵抗比と、抵抗138および140の抵抗比とを調整することにより、同調回路1の帰還ループで生じる損失を補うようにしてもよい。
また、増幅動作が不要な場合には、後段の移相回路のさらに後段の分圧回路160を省略し、後段の移相回路の出力を直接前段側に帰還してもよい。あるいは、分圧回路160内の抵抗162の抵抗値を極端に小さな値にして分圧比を1に設定してもよい。
〔同調回路の第2の変形例〕
第29図は、同調回路の第2の変形例を示す回路図である。同図に示す同調回路1Aは、それぞれが入力される交流信号の位相を所定量シフトさせることにより所定の周波数において合計で360°の位相シフトを行う2つの移相回路210C、230Cと、帰還抵抗170および入力抵抗174(入力抵抗174は帰還抵抗170の抵抗値のn倍の抵抗値を有しているものとする)のそれぞれを介することにより後段の移相回路230Cの出力(帰還信号)と入力端子190に入力される信号(入力信号)とを所定の割合で加算する加算回路とを含んで構成されている。
第2図に示した同調回路1においては、前段の移相回路110C内の抵抗118と抵抗120の各抵抗値を同じに設定することで、入力される交流信号の周波数が変わったときの振幅変化を抑え、オペアンプ112の出力側に抵抗121と123による分圧回路を接続することで、移相回路110Cの利得を1より大きな値に設定している。これに対し、第29図に示す同調回路1Aに含まれる前段の移相回路210Cは、移相回路内に分圧回路を設けずに、抵抗118′の抵抗値よりも抵抗120′の抵抗値を大きく設定することにより、移相回路210Cの利得を1より大きな値に設定している。
後段の移相回路230Cについても同様であり、抵抗138′の抵抗値よりも抵抗140′の抵抗値を大きく設定することで、移相回路230Cの利得を1より大きな値に設定している。また、移相回路230Cの出力端子には、帰還抵抗170、出力端子192および抵抗178が接続されている。
なお、第29図に示す同調回路1Aでは、後段の移相回路230Cの出力を直接帰還させているが、後段の移相回路230Cのさらに後段に分圧回路を接続し、その分圧出力を帰還抵抗170を介して帰還させるようにしてもよい。
ところで、上述したように、各抵抗の値を設定して移相回路の利得を1より大きな値にすると、入力される信号の周波数に応じて利得変動が生じる。例えば、前段の移相回路210Cについて考えると、入力信号の周波数が低い場合には移相回路210Cはボルテージホロワ回路となるためこのときの利得は1倍となるのに対し、周波数が高い場合には移相回路210Cは反転増幅器となるためこのときの利得は−m倍(mは抵抗120′と抵抗118′の抵抗比)となり、入力信号の周波数が変化したときに移相回路210Cの利得も変化して出力信号の振幅変動が生じる。
このような振幅変動は、オペアンプ112の反転入力端子に抵抗119を接続して、入力信号の周波数が低い場合と高い場合の利得を一致させることにより抑えることができる。具体的には、抵抗118′の抵抗値をr、抵抗120′の抵抗値をmrとすると、抵抗119の抵抗値をmr/(m−1)に設定することにより、入力信号の周波数が0と無限大のときの移相回路210Cの各利得を一致させることができる。同様に、移相回路230Cについてもオペアンプ132の反転入力端子に所定の抵抗値を有する抵抗139を接続することにより、出力信号の振幅変動を抑えることができる。なお、抵抗119および抵抗139の一方端がグランドレベル以外の固定電位に接続してもよい。
〔同調回路の第3の変形例〕
第29図に示す同調回路1Aでは、移相回路210Cおよび230C内にCR回路を含む例を説明したが、CR回路の代わりにLR回路を含む場合にも、同様の移相回路を構成できる。
第30図は、LR回路を含む移相回路の構成を示す回路図であり、第29図に示した同調回路1Aの前段の移相回路210Cと置き換え可能な構成が示されている。同図に示す移相回路210Lは、第29図に示した前段の移相回路210C内のキャパシタ114と可変抵抗116からなるCR回路を、可変抵抗116とインダクタ117からなるLR回路に置き換えた構成を有している。
一方、第31図はLR回路を含む移相回路の他の構成を示す回路図であり、第29図に示した同調回路1Aの後段の移相回路230Cと置き換え可能な構成が示されている。同図に示す移相回路230Lは、第29図に示した後段の移相回路230C内の可変抵抗136とキャパシタ134からなるCR回路を、インダクタ137と可変抵抗136からなるLR回路に置き換えた構成を有している。
第30図に示す移相回路210Lは第29図に示した前段の移相回路210Cと等価であって、第29図に示した同調回路1Aの前段の移相回路210Cを第30図に示した移相回路210Lに置き換えることが可能である。同様に、第31図に示す移相回路230Lは第29図に示した後段の移相回路230Cと等価であって、第29図に示した同調回路1Aの後段の移相回路230Cを第31図に示した移相回路230Lに置き換えることが可能である。
2つの移相回路210C、230Cのそれぞれを移相回路210L、230Lに置き換えた場合には、同調回路全体を集積化することにより同調周波数の高周波化が容易となる。
なお、第29図に示す移相回路210C、230Cをそれぞれ第30図に示す移相回路210Lと第31図に示す移相回路230Lに置き換えた場合には、可変抵抗116および136を形成するFETのゲート電圧を変化させた場合の各位相シフト量の変化の方向が反対となるため、第13図に示した位相差検出回路3内のEX−ORゲート33をEX−NOR(イクスクルシブ・ノア)ゲートに置き換えたり、第13図に示した電圧比較器31、32のいずれか一方の2つの入力を入れ換える等して制御電圧の変化の方向を反転させる必要がある。
ところで、第29図に示した同調回路1Aは、2つの移相回路210C、230Cのそれぞれに抵抗119あるいは139を接続することにより、同調周波数を可変したときの振幅変動を防止したが、周波数の可変範囲が狭い場合には振幅変動も少なくなるため上述した抵抗119、139を取り除いて同調回路を構成することもできる。あるいは、一方の抵抗119あるいは139のみを取り除いて同調回路を構成することもできる。
〔同調回路の第4の変形例〕
上述した同調回路1、1Aにおいて、2つの移相回路110C等を含む全域通過回路と帰還抵抗170からなる帰還ループのループゲインの損失は、前段の移相回路110C等の入力インピーダンスに起因するものであるから、この入力インピーダンスに起因する損失の発生を抑えるために、前段の移相回路110C等のさらに前段にトランジスタによるホロワ回路を挿入し、帰還される信号をこのホロワ回路を介して前段の移相回路(例えば110Cや110L等)に入力するようにしてもよい。
第32図は、ホロワ回路を内部に含む同調回路の一例を示す回路図である。同図に示す同調回路1Bは、前段の移相回路110Cの前段側にトランジスタによるホロワ回路150を挿入した点で第2図に示す同調回路1と相違している。なお、第32図に示すホロワ回路150は、いわゆるソースホロワ回路で構成されているが、エミッタホロワ回路で構成してもよい。また、第32図において、分圧回路160の分圧比を1に設定し、あるいはこの分圧回路160自体を省略することにより、同調回路全体により増幅動作は行わずに単に同調動作のみを行うようにしてもよい。
このように、前段の移相回路110C等の前段側にトランジスタによるホロワ回路150を縦続接続すれば、第2図の同調回路1等と比較して、帰還抵抗170および入力抵抗174の抵抗値を大きくすることができる。特に、同調回路全体を半導体基板上に集積化するような場合には、帰還抵抗170等の抵抗値を小さくしようとすると素子の占有面積を大きくしなければならないため、ある程度抵抗値が大きい方が望ましい。したがって、集積化する場合などは特に、第32図に示すようなホロワ回路50を接続するのが有効である。
〔同調回路の第5の変形例〕
第2図に示した同調回路1では、2つの移相回路110Cと130Cを合わせた位相シフト量を360°としているが、縦続接続された移相回路110Cと130Cに、位相をシフトさせない非反転回路を接続して同調回路を構成してもよい。
第33図は、2つの移相回路の前段に非反転回路350を接続した同調回路1Cの構成を示す回路図である。同図に示すように、同調回路1Cは、第3図に示した移相回路110Cから抵抗121および123を省いた構成を有する移相回路310Cと、第5図に示した移相回路130Cから抵抗141および143を省いた構成を有する移相回路330Cと、移相回路310Cの前段に接続された非反転回路350と、抵抗162および164からなる分圧回路160と、帰還抵抗170および入力抵抗174からなる加算回路とを含んで構成される。
第33図に示す移相回路310C、330Cは、オペアンプ112あるいは132の出力端子に分圧回路が接続されていない点以外が第3図に示した各移相回路110C、130Cと同じ構成を有しており、伝達関数や位相シフト量も移相回路110C、130Cと同じである。ただし、(2)式においてa1=1、(3)式においてa2=1となる。
非反転回路350は、非反転入力端子に交流信号が入力され反転入力端子が抵抗354を介して接地されたオペアンプ352と、このオペアンプ352の反転入力端子と出力端子との間に接続された抵抗356とにより構成されている。オペアンプ352は、2つの抵抗354、356の抵抗比によって定まる所定の増幅度を有する。
移相回路310Cは、抵抗118および120の各抵抗値が同じであるため、利得が1となる。同様に、移相回路330Cも抵抗138および140の各抵抗値が同じであるため、利得が1となる。したがって、上述した同調回路1Cでは、各移相回路で利得を稼ぐ代わりに、上述した非反転回路350の利得を1より大きな値に設定している。
このような構成を有する非反転回路350は、入力信号の位相を変えずに出力しており、利得を調整することにより、分圧回路160による信号振幅の減衰や帰還ループで生じる損失を補うことが容易となる。また、非反転回路350は、上述したトランジスタによるホロワ回路と同様に、前段の移相回路310Cの前段側に接続されたバッファとしても機能する。
なお、第33図に示す非反転回路350は、第2図や第29図に示した同調回路1、1Aの前段等に接続してもよい。
〔同調回路の第6の変形例〕
上述した各同調回路1、1A、1B、1Cは、2つの移相回路による移相シフト量の合計が360°となる周波数で所定の同調動作を行っていたが、基本的に同じ動作を行う2つの移相回路を組み合わせて同調回路を構成することにより、2つの移相回路による位相シフト量の合計が180°となる周波数で所定の同調動作を行うようにしてもよい。
第34図は同調回路の第6の変形例を示す回路図であって、第33図の後段の移相回路330Cの代わりに移相回路310Cを接続し、非反転回路350の代わりに位相反転回路380を接続したものである。
位相反転回路380は、入力される交流信号が抵抗384を介して反転入力端子に入力されるとともに非反転入力端子が接地されたオペアンプ382と、このオペアンプ382の反転入力端子と出力端子との間に接続された抵抗386とにより構成されている。抵抗384を介してオペアンプ382の反転入力端子に交流信号が入力されると、オペアンプ382の出力端子からは位相が反転した逆相の信号が出力され、この逆相の信号が前段の移相回路310Cに入力される。また、この位相反転回路380は、2つの抵抗384、386の抵抗比によって定まる所定の増幅度を有しており、抵抗384の抵抗値より抵抗386の抵抗値を大きくすることにより1より大きな利得が得られる。
ところで、上述したように、移相回路310Cは入力信号の周波数ωが0から∞まで変化するに従って、入力電圧Eiを基準として時計回り方向に180°から360°まで位相がシフトする。2つの移相回路310C内のCR回路の時定数が同じ(これをTとおく)である場合には、ω=1/Tの周波数では2つの移相回路310Cのそれぞれにおける位相シフト量が270°となる。したがって、2つの移相回路310Cの全体によって位相が270°×2=540°(=180°)シフトされ、しかも2つの移相回路310Cの前段に接続された位相反転回路380によって位相が反転されるため、全体として、位相が一巡して位相シフト量が360°となる信号が後段の移相回路310C′から出力される。
また、第34図に示す同調回路1Dでは、各移相回路で利得を稼ぐ代わりに、上述した位相反転回路380の利得を1より大きな値に設定しており、分圧回路160による信号振幅の減衰や帰還ループで生じる損失を補うことが容易となる。
〔同調回路の第7の変形例〕
第34図に示した同調回路1Dは、移相回路310Cを縦続接続する例を示したが、第33図に示した移相回路330Cを縦続接続した場合も同調動作を行わせることができる。
第35図は、同調回路の第7の変形例を示す回路図である。同図に示す同調回路1Eは、第34図の移相回路310Cの代わりに、移相回路330Cを縦続接続したものである。
ところで、上述したように、移相回路330Cは、入力信号の周波数ωが0から∞まで変化するに従って、入力電圧Eiを基準として時計回り方向に0°から180°まで位相がシフトする。2つの移相回路330C内のCR回路の時定数が同じ(これをTとおく)である場合には、ω=1/Tの周波数では、2つの移相回路330Cのそれぞれにおける位相シフト量が90°となる。したがって、2つの移相回路330Cの全体によって位相が180°シフトされ、しかも2つの移相回路330Cの前段に接続された位相反転回路380によって位相が反転されるため、全体として、位相が一巡して位相シフト量が360°となる信号が後段の移相回路330Cから出力される。
また、第34図に示した同調回路1Dと同様に、上述した同調回路1Eでは、各移相回路で利得を稼ぐ代わりに、上述した位相反転回路380の利得を1より大きな値に設定しており、分圧回路160による信号振幅の減衰や帰還ループで生じる損失を補うことが容易となる。
また、第33図〜第35図に示した同調回路1C、1D、1Eは、いずれも2つの移相回路をCR回路を含んで構成したが、LR回路を含んで構成するようにしてもよい。例えば、第33図に示した同調回路1Cにおいて、前段の移相回路310Cを第25図に示した移相回路110Lから分圧回路を省略した移相回路に置き換えるとともに、後段の移相回路330Cを第27図に示した移相回路130Lから分圧回路を省略した移相回路に置き換えてもよい。
なお、第33図〜第35図に示した同調回路1C、1D、1Eにおいて、信号振幅の増幅を行わずに同調動作のみを行わせたい場合には、分圧回路160を省略すればよい。また、2つの移相回路内のオペアンプの少なくとも一方の出力端に分圧回路を接続してもよい。例えば、第33図の同調回路1Cにおいて、前段の移相回路310C内のオペアンプ112の出力端と、後段の移相回路330C内のオペアンプ132の出力端にそれぞれ分圧回路を接続すれば、第2図に示した同調回路1内の前段の移相回路110Cのさらに前段に非反転回路350を接続した構成と同じになる。
ところで、第33図〜第35図に示した同調回路1C、1D、1E等は、2つの移相回路と非反転回路、あるいは2つの移相回路と位相反転回路によって構成されており、接続された3つの回路の全体によって所定の周波数において合計の位相シフト両を360°にすることにより所定の同調動作を行うようになっている。したがって、位相シフト量だけに着目すると、3つの回路をどのような順序で接続するかはある程度の自由度があり、必要に応じて接続順序を決めることができる。
〔同調回路の第8の変形例〕
上述した同調回路の第1〜第7の変形例はいずれも、移相回路の内部にオペアンプを含んでいるが、オペアンプの代わりにトランジスタを用いて移相回路を構成することも可能である。
第36図に示す同調回路1Fは、それぞれが入力される交流信号の位相を所定量シフトさせることにより所定の周波数において合計で360°の位相シフトを行う2つの移相回路410C、430Cと、移相回路430Cの出力信号の位相を変えずに所定の増幅度で増幅して出力する非反転回路450と、非反転回路450の後段に設けられた抵抗162および164からなる分圧回路160と、帰還抵抗170および入力抵抗174(入力抵抗174は帰還抵抗170のn倍の抵抗値を有しているものとする)のそれぞれを介することにより分圧回路160の分圧出力(帰還信号)と入力端子190に入力される信号(入力信号)とを所定の割合で加算する加算回路とを含んで構成されている。
帰還抵抗170と直列に接続されたキャパシタ172、および入力抵抗174と入力端子190との間に挿入されたキャパシタ176はともに直流電流を阻止するためのものであり、そのインピーダンスは動作周波数において極めて小さく、すなわち大きな静電容量を有している。
第37図は、第36図に示した前段の移相回路410Cの構成を抜き出して示したものである。同図に示す前段の移相回路410Cは、ゲートが入力端122に接続されたFET412と、このFET412のソース・ドレイン間に直列に接続されたキャパシタ414および可変抵抗416と、FET412のドレインと正電源との間に接続された抵抗418と、FET412のソースとアースとの間に接続された抵抗420とを含んで構成されている。なお、FET412および後述するFET432は、少なくとも一方をバイポーラトランジスタに置き替えるようにしてもよい。
ここで、上述したFET412のソースおよびドレインに接続された2つの抵抗418、420の抵抗値はほぼ等しく設定されており、入力端122に印加される入力電圧の交流成分に着目すると、位相が一致した信号がFET412のソースから、位相が反転した(位相が180°シフトした)信号がFET412のドレインからそれぞれ出力されるようになっている。
なお、第36図に示した移相回路410内の抵抗426は、FET412に適切なバイアス電圧を印加するためのものである。また、可変抵抗416は、例えば第37図に示すように、接合型のFETのソース・ドレイン間に形成されるチャンネルを抵抗体として用いており、ゲート電圧を可変することにより抵抗値をある範囲で任意に変化させることができる。
このような構成を有する移相回路410Cにおいて、所定の交流信号が入力端122に入力されると、すなわちFET412のゲートに所定の交流電圧(入力電圧)が印加されると、FET412のソースにはこの入力電圧と同相の交流電圧が現れ、反対にFET412のドレインにはこの入力電圧と逆相であってソースに現れる電圧と振幅が等しい交流電圧が現れる。このソースおよびドレインに現れる交流電圧の振幅をともにEiとする。
このFET412のソース・ドレイン間には可変抵抗416とキャパシタ414により構成される直列回路(CR回路)が接続されている。したがって、FET412のソースおよびドレインに現れる電圧のそれぞれを可変抵抗416あるいはキャパシタ414を介して合成した信号が出力端124から出力される。
第38図は、前段の移相回路410Cの入出力電圧とキャパシタ等に現れる電圧との関係を示すベクトル図である。
FET412のソースとドレインにはそれぞれ入力電圧と同相および逆相であって電圧振幅がEiの交流電圧が現れるため、ソース・ドレイン間の電位差(交流成分)は2Eiとなる。また、キャパシタ414の両端に現れる電圧VC1と可変抵抗416の両端に現れる電圧VR1とは互いに90°位相がずれており、これらをベクトル的に合成したものが、FET412のソース・ドレイン間の電圧2Eiに等しくなる。
したがって、第38図に示すように、電圧Eiの2倍を斜辺とし、キャパシタ414の両端電圧VC1と可変抵抗416の両端電圧VR1とが直交する2辺を構成する直角三角形を形成することになる。このため、入力信号の振幅が一定で周波数のみが変化した場合には、第38図に示す半円の円周に沿ってキャパシタ414の両端電圧VC1と可変抵抗416の両端電圧VR1とが変化する。
ところで、キャパシタ414と可変抵抗416の接続点とグランドレベルとの電位差を出力電圧Eoとして取り出すものとすると、この出力電圧Eoは、第38図に示した半円においてその中心点を始点とし、電圧VC1と電圧VR1とが交差する円周上の一点を終点とするベクトルで表すことができ、その大きさは半円の半径Eiに等しくなる。しかも、入力信号の周波数が変化しても、このベクトルの終点は円周上を移動するだけであるため、周波数に応じて出力振幅が変化しない安定した出力を得ることができる。
また、第38図から明らかなように、電圧VR1と電圧VC1とは円周上で直角に交わるため、理論的にはFET412のゲートに印加される入力電圧と電圧VR1との位相差は、周波数がωが0から∞まで変化するに従って、入力電圧と同相の電圧Eiを基準として時計回り方向に270°から360°まで変化する。そして、移相回路410C全体の位相シフト量φ5は、周波数に応じて180°から360°まで変化する。しかも、可変抵抗416の抵抗値を可変することにより、位相シフト量φ5を変化させることができる。
また、第37図に示した移相回路410Cの伝達関数は、キャパシタ414と可変抵抗416からなるCR回路の時定数をT1(キャパシタ414の静電容量をC、可変抵抗416の抵抗値をRとするとT1=CR)とすると、(2)式に示したK2をそのまま適用でき(ただし、a1<1)、第38図に示す位相シフト量φ5も上述した(6)式に示したφ1と同じになる。
同様に、第39図は第36図に示した後段の移相回路430Cの構成を抜き出して示したものである。同図に示す後段の移相回路430Cは、ゲートが入力端142に接続されたFET432と、このFET432のソース・ドレイン間に直列に接続されたキャパシタ434および可変抵抗436と、FET432のドレインと正電源との間に接続された抵抗438と、FET432のソースとアースとの間に接続された抵抗440とを含んで構成されている。
第37図に示した移相回路410Cと同様に、第39図に示したFET432のソースおよびドレインに接続された2つの抵抗438、440の抵抗値はほぼ等しく設定されており、入力端142に印加される入力電圧の交流成分に着目すると、位相が一致した信号がFET432のソースから、位相が反転した信号がFET432のドレインからそれぞれ出力されるようになっている。
なお、第36図に示した移相回路430C内の抵抗446は、FET432に適切なバイアス電圧を印加するためのものである。また、移相回路430Cの入力側に設けられたキャパシタ148は、移相回路410Cの出力から直流成分を取り除く直流電流阻止用であり、交流成分のみが移相回路430Cに入力される。
このような構成を有する移相回路430Cにおいて、所定の交流信号が入力端142に入力されると、すなわちFET432のゲートに所定の交流電圧(入力電圧)が印加されると、FET432のソースにはこの入力電圧と同相の交流電圧が現れ、反対にFET432のドレインにはこの入力電圧と逆相であってソースに現れる電圧と振幅が等しい交流電圧が現れる。このソースおよびドレインに現れる交流電圧の振幅をともにEiとする。
このFET432のソース・ドレイン間にはキャパシタ434と可変抵抗436とにより構成される直列回路(CR回路)が接続されている。したがって、FET432のソースおよびドレインに現れる電圧のそれぞれをキャパシタ434あるいは可変抵抗436を介して合成した信号が出力端144から出力される。
第40図は、後段の移相回路430Cの入出力電圧とキャパシタ等に現れる電圧との関係を示すベクトル図である。
FET432のソースとドレインにはそれぞれ入力電圧と同相および逆相であって電圧振幅がEiの交流電圧が現れるため、ソース・ドレイン間の電位差は2Eiとなる。また、可変抵抗436の両端に現れる電圧VR2とキャパシタの両端に現れる電圧VC2とは互いに90°位相がずれており、これらをベクトル的に加算したものが、FET432のソース・ドレイン間の電位差2Eiに等しくなる。
したがって、第40図に示すように、電圧Eiの2倍を斜辺とし、可変抵抗436の両端電圧VR2とキャパシタ434の両端電圧VC2とが直交する2辺を構成する直角三角形を形成することになる。このため、入力信号の振幅が一定で周波数のみが変化した場合には、第40図に示す半円の円周に沿って可変抵抗436の両端電圧VR2とキャパシタ134の両端電圧VC2とが変化する。
可変抵抗436とキャパシタ434の接続点とグランドレベルとの電位差を出力電圧Eoとして取り出すものとすると、この出力電圧Eoは、第40図に示した半円においてその中心点を始点とし、電圧VR2と電圧VC2とが交差する円周上の一点を終点とするベクトルで表すことができ、その大きさは半円の半径Eiに等しくなる。しかも、入力信号の周波数が変化しても、このベクトルの終点は円周上を移動するだけであるため、周波数に応じて出力振幅が変化しない安定した出力を得ることができる。
また、第40図から明らかなように、電圧VR2と電圧VC2とは円周上で直角に交わるため、理論的にはFET432のゲートに印加される入力電圧と電圧VC2との位相差は、周波数ωが0から∞まで変化するに従って0°から90°まで変化する。そして、移相回路430C全体の位相シフト量φ6は、周波数に応じて0°から180°まで変化する。
また、第37図に示した移相回路430Cの伝達関数は、キャパシタ434と可変抵抗436からなるCR回路の時定数をT2(キャパシタ434の静電容量をC、可変抵抗の抵抗値をRとするとT2=CR)とすると、(3)式に示したK3をそのまま適用でき(ただし、a2<1)、第40図に示す位相シフト量φ6も上述した(7)式に示したφ2と同じになる。
このようにして、2つの移相回路410C、430Cのそれぞれにおいて位相が所定量シフトされ、第38図および第40図に示すように、所定の周波数において2つの移相回路410C、430C全体により位相シフト量の合計が360°となる信号が出力される。
また、第36図に示した非反転回路450は、ドレインと正電源との間に抵抗454が、ソースとアースとの間に抵抗456がそれぞれ接続されたFET452と、ベースがFET452のドレインに接続されているとともにコレクタが抵抗460を介してFET452のソースに接続されたトランジスタ458と、FET452に適切なバイアス電圧を印加するための抵抗462とを含んで構成されている。なお、第36図に示した非反転回路450の前段に設けられたキャパシタ164は、後段の移相回路430Cの出力から直流成分を取り除く直流電流阻止用であり、交流成分のみが非反転回路450に入力される。
FET452は、ゲートに交流信号が入力されると、逆相の信号をドレインから出力する。また、トランジスタ458は、ベースにこの逆相の信号が入力されると、さらに位相を反転した信号、すなわちFET452のゲートに入力された信号の位相を基準に考えると同相の信号をコレクタから出力し、この同相の信号が非反転回路450から出力される。
この非反転回路450の出力は、出力端子192から同調回路1Fの出力として取り出されるとともに、この非反転回路450の出力を分圧回路160を通した信号が帰還抵抗170を介して前段の移相回路410Cの入力側に帰還されている。そして、この帰還された信号と入力抵抗174を介して入力される信号とが加算され、この加算された信号の電圧が前段の移相回路410Cの入力端(第37図に示した入力端122)に印加されている。
また、上述した非反転回路450の利得は、上述した抵抗454、456、460の各抵抗値によって決まり、これら各抵抗の抵抗値を調整することにより、第36図に示した2つの移相回路410C、430Cあるいは分圧回路160による減衰や帰還ループで生じる損失を補い、かつ同調回路全体のループゲインが1以下になるように設定されている。
また、同調回路1の出力端子192からは、分圧回路160に入力される前の非反転回路450の出力信号が取り出されているため、同調回路1F自体に利得を持たせることができ、同調動作と同時に信号振幅の増幅が可能となる。
〔同調回路の第9の変形例〕
第36図に示した同調回路は、各移相回路410C、430Cの内部にCR回路を含んでいるが、CR回路を抵抗とインダクタからなるLR回路に置き換えた移相回路を用いて同調回路を構成することも可能である。
第41図は、LR回路を含む移相回路の構成を示す回路図であり、第36図に示した同調回路1Fの前段の移相回路410Cと置き換え可能な構成が示されている。同図に示す移相回路410Lは、第36図に示した前段の移相回路410C内のキャパシタ414と可変抵抗416からなるCR回路を、可変抵抗416とインダクタ417からなるLR回路に置き換えた構成を有しており、抵抗418と抵抗420の各抵抗値が同じ値に設定されている。なお、インダクタ417とFET412のドレインとの間に挿入されたキャパシタ419は直流電流阻止用である。
上述した移相回路410Lの入出力電圧等の関係は、第42図のベクトル図に示すように、第38図に示した電圧VC1を可変抵抗416の両端電圧VR1に、第38図に示した電圧VR1をインダクタ417の両端電圧VL1にそれぞれ置き換えて考えることができる。
また、第41図に示した移相回路410Lの伝達関数は、インダクタ417と可変抵抗416からなるLR回路の時定数をT1(インダクタ417のインダクタンスをL、可変抵抗416の抵抗値をRとするとT1=L/R)とすると、(2)式に示したK2をそのまま適用でき(ただしa1<1)、第42図に示す位相シフト量φ7も上述した(6)式に示したφ1と同じになる。
したがって、第41図に示す移相回路410Lは、第37図に示した移相回路410Cと基本的に等価であり、第37図に示した移相回路410Cを第41図に示した移相回路410Lに置き換えることができる。
第43図は、LR回路を含む移相回路の他の構成を示す回路図であり、第36図に示した同調回路1Fの後段の移相回路430Cと置き換え可能な構成が示されている。同図に示す移相回路430Lは、第39図に示した後段の移相回路430C内のキャパシタ434と可変抵抗436からなるCR回路を、可変抵抗436とインダクタ437からなるLR回路に置き換えた構成を有しており、抵抗438と抵抗440の各抵抗値は同じ値に設定されている。なお、可変抵抗436とFET432のドレインとの間に挿入されたキャパシタ439は直流電流阻止用である。
上述した移相回路430Lの入出力電圧等の関係は、第44図のベクトル図に示すように、第40図に示した電圧VR2をインダクタ437の両端電圧VL2に、第40図に示した電圧VC2を可変抵抗436の両端電圧VR2にそれぞれ置き換えて考えることができる。
また、第43図に示した移相回路430Lの伝達関数は、可変抵抗436とインダクタ437からなるLR回路の時定数をT2(可変抵抗436の抵抗値をR、インダクタ437のインダクタンスをLとするとT2=L/R)とすると、(3)式に示したK3をそのまま適用でき(ただし、a2<1)、第44図に示す位相シフト量φ8も上述した(7)式に示したφ2と同じになる。
したがって、第43図に示す移相回路430Lは、第39図に示した移相回路430Cと基本的に等価であり、第39図に示した移相回路430Cを第43図に示した移相回路430Lに置き換えることができる。
このように、第36図に示した2つの移相回路410Cおよび430Cの両方を第41図、第43図に示した移相回路410L、430Lに置き換えることができ、同調回路全体を集積化することにより同調周波数の高周波化が容易となる。
なお、第36図に示す移相回路410C、430Cをそれぞれ第41図に示す移相回路410Lと第43図に示す移相回路430Lに置き換えた場合には、可変抵抗416および436を形成するFETのゲート電圧を変化させた場合の各位相シフト量の変化の方向が反対となるため、第13図に示した位相差検出回路3内のEX−ORゲート33をEX−NOR(イクスクルシブ・ノア)ゲートに置き換えたり、第13図に示した電圧比較器31、32のいずれか一方の2つの入力を入れ換える等して制御電圧の変化の方向を反転させる必要がある。
また、第36図に示した移相回路410C、430Cをそれぞれ移相回路410L、430Lに置き換えた場合に、分圧回路160を省略して後段の移相回路の出力を直接前段側に帰還してもよい。あるいは分圧回路160内の抵抗162を取り除いて抵抗164だけにしてもよい。分圧回路160を省略した場合、あるいは抵抗162を取り除いた場合には、同調動作のみを行うことができる。
〔同調回路の第10の変形例〕
第45図は、同調回路の他の変形例を示す回路図である。同図に示す同調回路1Gは、それぞれが入力される交流信号の位相を所定量シフトさせることにより所定の周波数において合計で180°の位相シフトを行う2つの移相回路410Cと、後段の移相回路410Cの出力信号の位相をさらに反転する位相反転回路480と、帰還抵抗170および入力抵抗174のそれぞれを介することにより位相反転回路480から出力される信号(帰還信号)と入力端子190に入力される信号(入力信号)とを所定の割合で加算する加算回路とを含んで構成されている。
各移相回路410Cは、その詳細構成および入出力の位相関係は第37図および第38図を用いて説明した通りであり、例えばキャパシタ414と可変抵抗416からなるCR回路の時定数をT1とすると、ω=1/T1の周波数における位相シフト量φ5は時計回り方向(位相遅れ方向)に270°となる。
したがって、2つの移相回路410Cの全体による位相遅れ方向の位相シフト量の合計が所定の周波数において、φ5+φ5=270°+270°=540°(=180°)となる。
また、位相反転回路480は、ドレインと正電源との間に抵抗484が、ソースとアースとの間に抵抗486がそれぞれ接続されたFET482と、FET482のゲートに所定のバイアス電圧を印加する抵抗488とを含んで構成されている。FET482のゲートに交流信号が入力されると、FET482のドレインからは位相を反転した逆相の信号が出力される。また、この位相反転回路480は、2つの抵抗484、486の抵抗比によって定まる所定の利得を有する。
このように、所定の周波数において、2つの移相回路410Cによって位相が180°シフトされ、さらに後段に接続された位相反転回路480によって位相が反転され、これら3つの回路の全体による位相シフト量の合計が360°となる。したがって、位相反転回路480の出力を帰還抵抗170を介して前段の移相回路410Cの入力側に帰還させ、この帰還信号に入力抵抗174を介して入力した信号を加算するとともに、位相反転回路480の利得を調整することにより、第2図に示した同調回路1と同様の同調動作が行われる。
なお、第45図に示した同調回路1Gにおいては、位相反転回路480の出力を直接帰還抵抗170を介して帰還させたが、第36図に示す同調回路1Fと同様に、この位相反転回路480の後段に分圧回路160を接続して分圧出力を帰還させてもよい。
〔同調回路の第11の変形例〕
第46図は、同調回路の他の変形例を示す回路図であり、第45図とは反対に第36図に示す後段の移相回路430Cを含んで構成されている。
第46図に示す同調回路1Hは、それぞれが入力される交流信号の位相を所定量シフトさせることにより所定の周波数において合計で180°の位相シフトを行う2つの移相回路430Cと、後段の移相回路430Cの出力信号の位相をさらに反転する位相反転回路480と、帰還抵抗170および入力抵抗174のそれぞれを介することにより位相反転回路480から出力される信号(帰還信号)と入力端子190に入力される信号(入力信号)とを所定の割合で加算する加算回路とを含んで構成されている。
各移相回路430Cは、その詳細構成および入出力の位相関係は第39図および第40図を用いて説明した通りであり、例えばキャパシタ434と可変抵抗436からなるCR回路の時定数をT2とすると、ω=1/T2の周波数における位相シフト量φ6は時計回り方向(位相遅れ方向)に90°となる。
したがって、所定の周波数において、2つの移相回路430Cによって位相が180°シフトされ、さらに後段に接続された位相反転回路480によって位相が反転され、これら3つの回路の全体による位相シフト量の合計が360°となる。このため、位相反転回路480の出力を帰還抵抗170を介して前段の移相回路430Cの入力側に帰還させ、この帰還信号に入力抵抗174を介して入力した信号を加算するとともに、位相反転回路480の利得を調整することにより、第2図に示した同調回路1と同様の同調動作が行われる。
なお、第36図に示した同調回路1Fと同様に、第46図に示した同調回路1Hにおいても、位相反転回路480の後段に分圧回路160を接続して同調と同時に増幅を行うようにしてもよい。
ところで、上述した各種の同調回路1F、1G、1H等は、2つの移相回路と非反転回路あるいは2つの移相回路と位相反転回路によって構成されており、接続された3つの回路の全体によって所定の周波数において合計の位相シフト量を360°にすることにより所定の同調動作を行うようになっている。したがって、位相シフト量だけに着目すると、3つの回路をどのような順番で接続するかはある程度の自由度があり、必要に応じて接続順番を決めることができる。
また、上述した第45図および第46図に示す同調回路1G、1Hでは、移相回路内部にCR回路を含む例を示したが、LR回路を内部に含む移相回路を縦続接続して同調回路を構成してもよい。例えば、第45図に示す同調回路1Gの2つの移相回路410Cの代わりに第41図に示す移相回路410Lを接続してもよい。あるいは、第46図に示す同調回路1Hの2つの移相回路430Cの代わりに第43図に示す移相回路430Lを接続してもよい。
ただし、CR回路を含む移相回路をLR回路を含む移相回路に置き換えた場合には、可変抵抗416および436を形成するFETのゲート電圧を変化させた場合の各位相シフト量の変化の方向が反対となるため、第13図に示した位相差検出回路3内のEX−ORゲート33をEX−NOR(イクスクルシブ・ノア)ゲートに置き換えたり、第13図に示した電圧比較器31、32のいずれか一方の2つの入力を入れ換える等して制御電圧の変化の方向を反転させる必要がある。
なお、上述した同調回路1F、1G、1Hでは、FET412あるいはFET432を用いて移相回路を構成しているが、FETの代わりにバイポーラトランジスタを用いて移相回路を構成してもよい。
〔同調回路の第12の変形例〕
第47図は、同調回路の第12の変形例を示す回路図である。同図に示す同調回路1Jは、入力される交流信号の位相を変えずに出力する非反転回路550と、それぞれが入力信号の位相を所定量シフトさせることにより所定の周波数において合計で360°の位相シフトを行う2つの移相回路510C、530Cと、後段の移相回路530Cのさらに後段に設けられた抵抗162および164からなる分圧回路160と、帰還抵抗170および入力抵抗174(入力抵抗174は帰還抵抗170のn倍の抵抗値を有しているものとする)のそれぞれを介することにより分圧回路160の分圧出力(帰還信号)と入力端子190に入力される信号(入力信号)とを所定の割合で加算する加算回路とを含んで構成されている。
なお、非反転回路550は、バッファ回路として機能するものであり、前段の移相回路510Cと上述した加算回路とを直接接続した場合に生じる信号の損失等を防止するために設けられている。非反転回路550は、例えばエミッタホロワ回路やソースホロワ回路等により構成されている。なお、直接接続した場合の損失等を最小限に抑えるように帰還抵抗170等の各素子の素子定数を選定した場合には、この非反転回路550を省略して同調回路を構成してもよい。
第48図は、第47図に示した前段の移相回路510Cの構成を抜き出して示したものである。同図に示す前段の移相回路510Cは、2入力の差分電圧を所定の増幅度で増幅して出力する差動増幅器512と、入力端122に入力された信号の位相を所定量シフトさせて差動増幅器512の非反転入力端子に入力するキャパシタ514および可変抵抗516と、入力端122に入力された信号の位相を変えずにその電圧レベルを約1/2に分圧して差動増幅器512の反転入力端子に入力する抵抗518および520とを含んで構成されている。
上述した可変抵抗516は、例えば第48図に示すように、接合型にFETのソース・ドレイン間に形成されるチャネルを抵抗体として用いており、ゲート電圧を可変することにより抵抗値をある範囲で任意に変化させることができる。
第48図に示す入力端122に所定の交流信号が入力されると、差動増幅器512の反転入力端子には、入力端122に印加される電圧Eiを抵抗518と抵抗520とによって約1/2に分圧した電圧が印加される。
一方、入力信号が入力端122に入力されると、差動増幅器512の非反転入力端子には、キャパシタ514と可変抵抗516の接続点に現れる信号が入力される。キャパシタ514と可変抵抗516により構成されるCR回路の一方端には入力信号が入力されているため、入力信号の位相をこのCR回路によって所定量シフトした信号の電圧が差動増幅器512の非反転入力端子には印加される。差動増幅器512は、このようにして2つの入力端子に印加される電圧の差分を所定の増幅度で増幅した信号を出力する。
第49図は、第48図に示す移相回路510Cの入出力電圧とキャパシタ等に現れる電圧との関係を示すベクトル図である。
同図に示すように、可変抵抗516の両端に現れる電圧VR1とキャパシタ514の両端に現れる電圧VC1は、互いに位相が90°ずれており、これらをベクトル的に加算したものが入力電圧Eiとなる。したがって、入力信号の振幅が一定で周波数のみが変化した場合には、第49図に示す半円の円周に沿って可変抵抗516の両端電圧VR1とキャパシタ514の両端電圧VC1とが変化する。
また、差動増幅器512の非反転入力端子に印加される電圧(可変抵抗516の両端電圧VR1)から反転入力端子に印加される電圧(抵抗520の両端電圧Ei/2)をベクトル的に減算したものが差分電圧Eo′となる。この差分電圧Eo′は、第49図に示した半円において、その中心点を始点とし、電圧VR1と電圧VC1とが交差する円周上の一点を終点とするベクトルで表すことができ、その大きさは半円の半径Ei/2に等しくなる。
差動増幅器512の出力電圧Eoはこの差分電圧Eo′を所定の増幅度で増幅したものとなる。したがって、上述した移相回路510Cにおいて、出力電圧Eoは入力信号の周波数によらず一定であって、全域通過回路として動作する。
また、第49図から明らかなように、電圧VR1と電圧VC1とは円周上で直角に交わるため、入力電圧Eiと電圧VR1との位相差は、周波数ωが0から∞まで変化するに従って、入力電圧Eiを基準として時計回り方向(位相遅れ方向)に270°から360°まで変化する。そして、移相回路510C全体の位相シフト量φ9は、周波数に応じて、180°から360°まで変化する。
同様に、第50図は第47図に示した後段の移相回路530Cの構成を抜き出して示したものである。同図に示す後段の移相回路530Cは、2入力の差分電圧を所定の増幅度で増幅して出力する差動増幅器532と、入力端142に入力された信号の位相を所定量シフトさせて差動増幅器532の非反転入力端子に入力する可変抵抗536およびキャパシタ534と、入力端142に入力された信号の位相を変えずにその電圧レベルを約1/2に分圧して差動増幅器532の反転入力端子に入力する抵抗538および540とを含んで構成されている。
第50図に示した入力端142に所定の交流信号が入力されると、差動増幅器532の反転入力端子には、入力端142に印加される電圧Eiを抵抗538と抵抗540とによって約1/2に分圧した電圧が印加される。
一方、入力信号が入力端142に入力されると、差動増幅器532の非反転入力端子には、可変抵抗536とキャパシタ534の接続点に現れる信号が入力される。可変抵抗536とキャパシタ534により構成されるCR回路の一方端には入力信号が入力されているため、入力信号の位相をこのCR回路によって所定量シフトした信号の電圧が差動増幅器532の非反転入力端子には印加される。差動増幅器532は、このようにして2つの入力端子に印加される電圧の差分を所定の増幅度で増幅した信号を出力する。
第51図は、移相回路530Cの入出力電圧とキャパシタ等に現れる電圧との関係を示すベクトル図である。
同図に示すように、キャパシタ534の両端に現れる電圧VC2と可変抵抗536の両端に現れる電圧VR2は、互いに位相が90°ずれており、これらをベクトル的に加算したものが入力電圧Eiとなる。したがって、入力信号の振幅が一定で周波数のみが変化した場合には、第51図に示す半円の円周に沿ってキャパシタ534の両端電圧VC2と可変抵抗536の両端電圧VR2とが変化する。
また、差動増幅器532の非反転入力端子に印加される電圧(キャパシタ534の両端電圧VC2)から反転入力端子に印加される電圧(抵抗540の両端電圧Ei/2)をベクトル的に減算したものが差分電圧Eo′となる。この差分電圧Eo′は、第51図に示した半円において、その中心点を始点とし、電圧VC2と電圧VR2とが交差する円周上の一点を終点とするベクトルで表すことができ、その大きさは半円の半径Ei/2に等しくなる。
差動増幅器532の出力電圧Eoはこの差分電圧Eo′を所定の増幅度で増幅したものとなる。したがって、上述した移相回路530Cにおいて、出力電圧Eoは入力信号の周波数によらず一定であって、全域通過回路として動作する。
また、第51図から明らかなように、電圧VC2と電圧VR2とは円周上で直角に交わるため、入力電圧Eiと電圧VC2との位相差は、周波数ωが0から∞まで変化するに従って0°から90°まで変化する。そして、位相回路530C全体の位相シフト量φ10は周波数に応じて0°から180°まで変化する。
このようにして、2つの移相回路510C、530Cのそれぞれにおいて位相が所定量シフトされ、第49図および第51図に示すように、所定の周波数において2つの移相回路510C、530Cの全体により位相シフト量の合計が360°となる信号が出力される。
また、後段の移相回路530Cの出力は、出力端子192から同調回路1Jの出力として取り出されるとともに、この移相回路530Cの出力を分圧回路160を通した信号が帰還抵抗170を介して非反転回路550の入力側に帰還されている。そして、この帰還された信号と入力抵抗174を介して入力される信号とが加算され、この加算された信号が非反転回路550を介して前段の移相回路510Cに入力されている。
また、上述した2つの移相回路510C、530Cの各利得を調整することにより、第47図に示した2つの移相回路510C、530C、分圧回路160による減衰や帰還ループで生じる損失を補い、かつ同調回路全体のループゲインが1以下になるように設定されている。なお、移相回路510C、530Cの各利得を調整する代わりに、非反転回路550に1以上の利得を持たせ、この値を調整してもよい。
また、同調回路1Jの出力端子192からは、分圧回路160に入力される前の移相回路530Cの出力が取り出されているため、同調回路1J自体に利得を持たせることができ、同調動作と同時に信号振幅の増幅が可能となる。
なお、第47図に示した同調回路において、増幅動作が不要な場合には、分圧回路160を省略して移相回路530Cの出力を直接前段側に帰還してもよい。あるいは、分圧回路160内の抵抗162の抵抗値を極端に小さな値にして分圧比を1に設定してもよい。
〔同調回路の第13の変形例〕
第47図に示した同調回路1Jは、各移相回路510C、530CをCR回路を含んで構成したが、CR回路を抵抗とインダクタからなるLR回路に置き換えた移相回路を用いて同調回路を構成することもできる。
第52図は、LR回路を含む移相回路の他の構成を示す回路図であり、第47図に示した同調回路1Jの前段の移相回路510Cと置き換え可能な構成が示されている。同図に示す移相回路510Lは、第48図に示した移相回路510C内のキャパシタ514と可変抵抗516からなるCR回路を、可変抵抗516とインダクタ517からなるLR回路に置き換えた構成を有している。なお、インダクタ517に直列に接続されたキャパシタ519は直流電流阻止用であり、そのインピーダンスは動作周波数において極めて小さく設定され、すなわち大きな静電容量を有している。
第53図は、移相回路510Lの入出力電圧とインダクタ等に現れる電圧との関係を示すベクトル図である。同図に示す移相回路510Lの位相シフト量φ11は、可変抵抗516とインダクタ517により構成されるLR回路の時定数をT1(可変抵抗516の抵抗値をR、インダクタ517のインダクタンスをLとするとT1=L/R)とすると、上述した(6)式に示したφ1と同じとなる。
第54図は、LR回路を含む移相回路の他の構成を示す回路図であり、第47図に示した同調回路1Jの後段の移相回路530Cと置き換え可能な構成が示されている。同図に示す移相回路530Lは、第50図に示した移相回路530C内の可変抵抗536とキャパシタ534からなるCR回路を、インダクタ537と可変抵抗536からなるLR回路に置き換えた構成を有している。なお、インダクタ537に直列に接続されたキャパシタ539は直流電流阻止用であり、そのインピーダンスは動作周波数において極めて小さく設定され、すなわち大きな静電容量を有している。
第55図は、移相回路530Lの入出力電圧とインダクタ等に現れる電圧との関係を示すベクトル図である。同図に示す移相回路530Lの位相シフト量φ12は、インダクタ537と可変抵抗536により構成されるLR回路の時定数をT2(インダクタ137のインダクタンスをL、可変抵抗536の抵抗値をRとするとT2=L/R)とすると、上述した(7)式に示したφ2と同じとなる。
なお、第47図に示す移相回路510C、530Cをそれぞれ第52図に示す移相回路510Lと第54図に示す移相回路530Lに置き換えた場合には、可変抵抗536を形成するFETのゲート電圧を変化させた場合の各位相シフト量の変化の方向が反対となるため、第13図に示した位相差検出回路3内のEX−ORゲート33をEX−NOR(イクスクルシブ・ノア)ゲートに置き換えたり、第13図に示した電圧比較器31、32のいずれか一方の2つの入力を入れ換える等して制御電圧の変化の方向を反転させる必要がある。
このように、第52図に示した移相回路510Lおよび第54図に示した移相回路530Lのそれぞれは、第48図あるいは第50図に示した移相回路510C、530Cと等価であり、第47図に示した同調回路1Jにおいて、前段の移相回路510Cを第52図に示した移相回路510Lに、後段の移相回路530Cを第54図に示した移相回路530Lにそれぞれ置き換えることが可能である。2つの移相回路510C、530Cの両方を移相回路510L、530Lに置き換えた場合には、同調回路全体を集積化することにより同調周波数の高周波化が容易となる。
〔同調回路の第14の変形例〕
第47図に示した同調回路1Jは、互いに移相方向が異なる2つの移相回路を含んでいるが、基本的に同じ構成を有する2つの移相回路を組み合わせて同調回路を構成することもできる。
第56図は、同調回路の他の構成を示す回路図である。同図に示す同調回路1Kは、入力される交流信号の位相を反転して出力する位相反転回路580と、それぞれが入力される交流信号の位相を所定量シフトさせることにより所定の周波数において合計で180°の位相シフトを行う2つの移相回路510Cと、後段の移相回路510Cのさらに後段に設けられた抵抗162および164からなる分圧回路160と、帰還抵抗170および入力抵抗174のそれぞれを介することにより分圧回路160の分圧出力(帰還信号)と入力端子190に入力される信号(入力信号)との所定の割合で加算する加算回路とを含んで構成されている。
2つの移相回路510Cの詳細構成および入出力信号の位相関係は第48図および第49図を用いて説明した通りであり、所定の周波数において、2つの移相回路510Cの全体による位相シフト量の合計が180°となる。
また、2つの移相回路510Cの前段に接続された位相反転回路580は、入力される交流信号の位相を反転するものであり、例えば、エミッタ接地回路やソース接地回路あるいはオペアンプと抵抗を組み合わせた回路によって実現される。
このように、所定の周波数において、2つの移相回路510Cによって位相が180°シフトされ、さらにその前段に接続された位相反転回路580によって位相が反転され、これら3つの回路の全体による位相シフト量の合計が360°となる。
また、後段の移相回路510Cの出力は出力端子192から同調回路1Kの出力として取り出されるとともに、後段の移相回路510Cの出力を分圧回路160を通した信号が帰還抵抗170を介して位相反転回路580の入力側に帰還されている。そして、この帰還される信号と入力抵抗174を介して入力される信号とが加算され、この加算された信号が位相反転回路580に入力されている。
このように、分圧回路160の出力を帰還抵抗170を介して位相反転回路580の入力側に帰還させ、この帰還信号に入力抵抗174を介して入力した信号を加算するとともに、2つの移相回路510Cの利得を調整して分圧回路160や帰還抵抗170と入力抵抗174の接続部において生じる損失等を補うことにより、第47図に示した同調回路1Jと同様の同調動作および増幅動作を行うことができる。なお、移相回路510Cの各利得を調整する代わりに、位相反転回路580の利得を調整してもよい。
なお、第56図に示した同調回路1Kにおいて、増幅動作が不要な場合には分圧回路160を省略し、移相回路510Cの出力を直接前段側に帰還してもよい。あるいは、分圧回路160内の抵抗162の抵抗値を極端に小さな値にして分圧比を1に設定してもよい。
〔同調回路の第15の変形例〕
第57図は、同調回路の他の変形例を示す回路図であり、第56図とは反対に第47図に示す後段の移相回路530Cを含んで構成されている。
第57図に示す同調回路1Lは、それぞれが入力される交流信号の位相を所定量シフトさせることにより所定の周波数において合計で180°の位相シフトを行う2つの移相回路530Cと、後段の移相回路530Cの出力信号の位相をさらに反転する位相反転回路580と、帰還抵抗170および入力抵抗174のそれぞれを介することにより位相反転回路580から出力される信号(帰還信号)と入力端子190に入力される信号(入力信号)とを所定の割合で加算する加算回路とを含んで構成されている。
各移相回路530Cの詳細構成および入出力の位相関係は第50図および第51図を用いて説明した通りであり、例えばキャパシタ534と可変抵抗536からなるCR回路の時定数をT2とすると、ω=1/T2の周波数における位相シフト量φ10は時計回り方向(位相遅れ方向)に90°となる。したがって、所定の周波数において、2つの移相回路530Cの全体による位相シフト量の合計は180°となる。
このように、上述した2つの移相回路530Cを用いた場合であっても、所定の周波数において2つの移相回路530Cによって位相が180°シフトされ、さらにその前段に接続された位相反転回路580によって位相が反転され、これら3つの回路の全体による位相シフト量の合計が360°となる。
したがって、上述した同調回路1Lは、分圧回路160の出力を帰還抵抗170を介して位相反転回路580の入力側に帰還させ、この帰還信号に入力抵抗174を介して入力した信号を加算するとともに、2つの移相回路530Cの利得を調整して分圧回路160や帰還抵抗170と入力抵抗174の接続部において生じる損失等を補い、かつ帰還ループのループゲインを1以下に設定することにより、第56図に示した同調回路1K等と同様の同調動作および増幅動作を行うことができる。
なお、第56図、第57図に示した同調回路1K、1Lは、CR回路を内部に含む移相回路を縦続接続しているが、両方の移相回路についてLR回路を内部に含んで構成するようにしてもよい。
具体的には、第56図に示した同調回路1Kにおいて、2つの移相回路510Cを第52図に示した移相回路510Lに置き換えてもよい。また、第57図に示した同調回路1Lにおいて、2つの移相回路530Cを第54図に示した移相回路530Lに置き換えてもよい。
ただし、CR回路を含む移相回路をLR回路に含む移相回路に置き換えた場合には、可変抵抗116あるいは136を形成するFETのゲート電圧を変化させた場合の各位相シフト量の変化の方向が反対となるため、第13図に示した位相差検出回路3内のEX−ORゲート33をEX−NOR(イクスクルシブ・ノア)ゲートに置き換えたり、第13図に示した電圧比較器31、32のいずれか一方の2つの入力を入れ換える等して制御電圧の変化の方向を反転させる必要がある。
ところで、上述した同調回路1J、1K、1Lは、非反転回路と2つの移相回路あるいは位相反転回路と2つの移相回路を含んで構成されており、接続された3つの回路の全体によって所定の周波数において合計の位相シフト量を360°にすることにより所定の同調動作を行うようになっている。したがって、位相シフト量だけに着目すると、2つの移相回路のどちらを前段に用いるか、あるいは上述した3つの回路をどのような順番で接続するかはある程度の自由度があり、必要に応じて接続順番を決めることができる。
上述した各同調回路において、CR回路を含む移相回路をLR回路を含む移相回路に置き換える場合には、縦続接続された2つの移相回路のうちいずれか一方の移相回路のみを、LR回路を含む移相回路に置き換えてもよい。ただし、その場合には、前段の移相回路内の可変抵抗116の抵抗値の制御方向と、後段の移相回路内の可変抵抗136の抵抗値の制御方向とが反対であるため、第13図に示す分配器5の出力レベルを反転させる等の若干の回路の修正が必要となる。このように、CR回路を含む移相回路とLR回路を含む移相回路とを縦続接続して同調回路を構成し、同調回路全体を集積化した場合には、温度変化による同調周波数の変動を防止する、いわゆる温度補償が可能となる。
上述した各同調回路では、後段の移相回路の入出力信号間の位相差を検出しているが、前段の移相回路の入出力信号間の位相差を検出してもよい。ただし、その場合には、後段の移相回路の入出力信号間の位相差を検出する場合とは位相シフト量の変化の方向が反対となるため、第13図に示した位相差検出回路3内のEX−ORゲート33をEX−NORゲートに置き換える等の若干の回路の修正が必要となる。
〔J.その他の変形例〕
ところで、第1図や第20図等に示した各種の同調機構は、同調回路を構成する2つの移相回路内の可変抵抗116等を接合型のFETを用いて形成したが、可変抵抗を他の素子で形成するようにしてもよい。
第58図に示す同調回路1Mは、第3図に示した移相回路110C、130C内の可変抵抗116、136をMOS型のFETで形成した可変抵抗115、135にそれぞれ置き換えたものである。このように、MOS型のFETのソース・ドレイン間に形成されるチャネルを抵抗体として用いることもできる。この場合に、ゲートに印加する制御電圧を変えることによりこのFETのチャネル抵抗を変化させることができるため、同調回路1の同調周波数をある範囲で任意に変化させることができる。
また、上述した移相回路110C等は、キャパシタ114等と直列に接続された可変抵抗116等の抵抗値を変化させて位相シフト量を変化させることにより全体の同調周波数を変えるようにしたが、キャパシタ114等の静電容量を変化させることにより全体の同調周波数を変えるようにしてもよい。
第59図は、キャパシタの静電容量を変えることにより全体の同調周波数を変化させるようにした同調回路の構成を示す図である。同図に示す同調回路1Nは、第2図に示した移相回路110C、130Cを元にして構成されているが、第29図や第46図等に示す各種の移相回路を元にして構成してもよい。
第59図において、可変容量ダイオード127、147に直列に接続されたキャパシタ128、148は、可変容量ダイオードに逆バイアス電圧を印加する際の直流電流阻止用であり、そのインピーダンスは動作周波数において極めて小さく、すなわち大きな静電容量を有している。
なお、第59図に示した同調回路では、可変容量素子として可変容量ダイオードを用いてその静電容量を可変したが、ゲートに印加する制御電圧に応じてそのゲート容量がある範囲で変更可能なFETを可変容量素子として用いるようにしてもよい。
第60図は、第2図に示した移相回路110C、130C内の可変抵抗としてFET以外の素子を利用した場合の一例を示す回路図である。
第60図に示す移相回路110C″は、第2図に示した移相回路110C内のFETを用いて形成された可変抵抗116を、CdSフォトセンサと発光ダイオードからなるCdSフォトカプラ177に置き換えた構成を有している。このフォトカプラ177に含まれるCdSフォトセンサは、発光ダイオードの発光量が多いほど抵抗値が小さくなる特性を有しているため、このようなCdSフォトカプラ177を外部からの制御電流に応じて抵抗値が変更可能な可変抵抗として用いることができる。
同様に、第60図に示す移相回路130C″は、第2図に示した移相回路130C内のFETを用いて形成された可変抵抗136を、CdSフォトセンサと発光ダイオードからなるCdSフォトカプラ179に置き換えた構成を有している。
第60図に示す制御電圧発生回路4Bは、第13図に示した制御電圧発生回路4を部分的に変形した構成を有しており、制御電圧発生回路4に対して、可変抵抗42および抵抗43を含んで構成されたバイアス回路が取り除かれている点が異なっている。
また、第60図に示す電圧−電流変換回路200は、制御電圧発生回路4Bの出力である制御電圧が抵抗202を介して反転入力端子に入力されるオペアンプ204と、可変のバイアス電圧を発生させるために用いる可変抵抗206とを含んで構成されている。
オペアンプ204は、出力端子と反転入力端子との間に上述したフォトカプラ177、179内の2つの発光ダイオードが直列に接続されており、非反転入力端子が接地されている。したがって、制御電圧発生回路4Bの出力電圧(制御電圧)が定まると、抵抗202と可変抵抗206の抵抗比によって決まる所定の電流がフォトカプラ177、179内の各発光ダイオードに流れ、この発光ダイオードと対になるCdSフォトセンサが発光ダイオードの発光量に応じたある一定の抵抗値を有するようになる。
したがって、制御電圧発生回路4Bの出力電圧を下げることにより発光ダイオードに流す電流値が小さくなって発光量が少なくなり、CdSフォトセンサが有する抵抗値が高くなって第60図に示す同調回路の同調周波数が低くなる。反対に、制御電圧発生回路4Bの出力電圧を上げることにより発光ダイオードに流す電流値も大きくなって発光量が多くなり、CdSフォトセンサが有する抵抗値が低くなって同調回路1の同調周波数が高くなる。この関係は、上述したFETによって形成した可変抵抗と制御電圧の関係と同じであり、全く同じ制御手順によって同調回路1の同調周波数を入力信号の周波数に一致させることができる。
このように、フォトカプラ177、179を可変抵抗として用いることによっても上述した実施形態の同調機構を実現する同調回路を構成することができる。フォトカプラ177、179を可変抵抗として用いた場合には、この可変抵抗の両端電圧等によらず常に一定の抵抗値が得られるため、歪みの少ない同調出力を容易に得ることができる利点がある。但し、フォトカプラ177、179を含む同調回路1の全体を半導体基板上に集積化することはできないため、フォトカプラ177、179は単体の部品を接続線等を用いて結線することになる。
また、上述した各同調回路においては、オペアンプを用いた移相回路110C、130Cによって同調回路1を構成することにより高い安定度を実現することができるが、本実施形態の移相回路110C、130Cのような使い方をする場合にはオフセット電圧や電圧利得はそれほど高性能なものが要求されないため所定の増幅度を有する差動増幅器を各移相回路内のオペアンプの代わりに使用するようにしてもよい。
第61図は、オペアンプの構成の中で移相回路の動作に必要な部分を抽出した回路図であり、全体が所定の増幅度を有する差動増幅器として動作する。同図に示す差動増幅器は、FETにより構成された差動入力段100と、この差動入力段100に定電流を与える定電流回路102と、定電流回路102に所定のバイアス電圧を与えるバイアス回路104と、差動入力段100に接続された出力アンプ106とによって構成されている。同図に示すように、実際のオペアンプに含まれている電圧利得を稼ぐための多段増幅回路を省略して、差動増幅器の構成を簡略化し、広帯域化を図ることができる。このように、回路の簡略化を行うことにより、動作周波数の上限を高くすることができるため、その分この差動増幅器を用いて構成した同調回路1の同調周波数の上限を高くすることができる。
なお、この発明は上述した各種の実施形態に限定されるものではなく、この発明の要旨の範囲内で種々の変形実施が可能である。
例えば、第2図に詳細構成を示した同調回路1は、帰還インピーダンス素子として帰還抵抗170を、入力インピーダンス素子として入力抵抗174を用いたが、それぞれの素子に入力された信号の位相関係を変えることなく加算できればよいことから、帰還インピーダンス素子および入力インピーダンス素子を抵抗の代わりにキャパシタにより形成したり、抵抗やキャパシタ等を組み合わせてインピーダンスの実数分および虚数分の比を同時に調整しうるようにしてもよい。
また、帰還抵抗170と入力抵抗174のうち少なくとも一方の抵抗を可変抵抗により構成して、同調増幅器1等における同調帯域幅を可変するようにしてもよい。
また、第2図に示した移相回路110C等では、可変抵抗116を1つのFETによって構成したが、pチャネルのFETとnチャネルのFETとを並列接続して1つの可変抵抗を構成してもよい。このように、2つのFETを組み合わせて可変抵抗を構成することにより、FETの非線形領域の改善を行うことができるため、同調出力の歪みを少なくすることができる。
産業上の利用可能性
以上のように、本発明の同調制御方式は、同調回路の入力信号の周波数と同調周波数のずれがなくなるように同調回路の同調周波数をフィードバック制御するため、入力信号の周波数に同調周波数を確実に合わせることができる。したがって、同調機構全体を集積化した場合に、製造したチップごとに周波数特性がばらついても同調特性はばらつかなくなる。また、同調周波数を決定する各素子の素子定数が温度等によって変動しても同調周波数は変動しなくなるため、集積化にも適する。

Claims (53)

  1. 入力周波数に関係なく出力振幅がほぼ一定であって入力周波数に応じて信号の位相をシフトさせる縦続接続された全域通過型の2つの移相回路と、後段の前記移相回路の出力を帰還信号として前段の前記移相回路の入力側に帰還させるとともに前記帰還信号と入力信号とを加算して前段の前記移相回路に入力する加算回路とを含み、出力信号が発振しない状態で前記入力信号の中から所定の周波数近傍の信号のみを通過させる同調回路と、
    前記2つの移相回路のうち一方の移相回路の入出力信号の位相差が90°になるように前記2つの移相回路を制御することにより、前記同調回路の同調周波数を前記同調回路の入力信号の周波数に一致させる周波数制御回路とを備えることを特徴とする同調制御方式。
  2. 前記同調回路に含まれる前記2つの移相回路のそれぞれは、時定数が変更可能な直列回路を含んでおり、
    前記周波数制御回路は、前記同調回路の入力信号の周波数と前記同調回路の同調周波数とが異なる場合に、双方の前記直列回路の時定数を互いに等しく維持しながら各移相回路の位相シフト量を変化させることにより、前記同調回路の同調周波数を前記同調回路の入力信号の周波数に一致させることを特徴とする請求の範囲第1項記載の同調制御方式。
  3. 前記直列回路のそれぞれは、キャパシタあるいはインダクタによるリアクタンス素子と第1の抵抗とを含んで構成され、
    双方の前記直列回路の時定数は、前記周波数制御回路から出力される制御信号によって変更可能とされ、
    前記周波数制御回路は、前記同調回路の同調周波数が前記同調回路の入力信号の周波数に一致するように前記制御信号を出力することを特徴とする請求の範囲第2項記載の同調制御方式。
  4. 前記周波数制御回路は、前記同調回路に含まれるいずれか一方の前記移相回路の入出力信号の位相差が90°からずれているときに、前記2つの移相回路のそれぞれに含まれる前記直列回路の時定数を変化させることにより、前記一方の移相回路の入出力信号の位相差を90°に制御することを特徴とする請求の範囲第3項記載の同調制御方式。
  5. 前記周波数制御回路は、
    前記同調回路に含まれるいずれか一方の移相回路の入出力信号の位相差に応じてデューティ比が変化する第1の矩形波信号を出力する位相差検出回路と、
    前記第1の矩形波信号を平滑することにより、前記第1の矩形波信号のデューティ比に応じて電圧レベルが変化する制御電圧を発生させる制御電圧発生回路と、
    を備え、前記制御電圧を前記制御信号として出力することを特徴とする請求の範囲第4項記載の同調制御方式。
  6. 前記位相差検出回路は、
    前記同調回路に含まれるいずれか一方の移相回路の入力信号に同期した第2の矩形波信号を出力する第1の電圧比較器と、
    前記一方の移相回路の出力信号に同期した第3の矩形波信号を出力する第2の電圧比較器と、
    前記第2および第3の矩形波信号を合成して前記第1の矩形波信号を出力する矩形波合成手段と、
    を備えることを特徴とする請求の範囲第5項記載の同調制御方式。
  7. 前記矩形波合成手段は、前記第2および第3の矩形波信号の排他的論理和を演算する論理ゲートを含んで構成され、この論理ゲートの出力を前記第1の矩形波信号とする請求の範囲第6項記載の同調制御方式。
  8. 前記矩形波合成手段は、制御端子の電圧レベルに応じて入力端子に入力された信号を通過させあるいは遮断するトライステートバッファを含んで構成され、前記第2および第3の矩形波信号のいずれか一方を前記制御端子に入力し、他方を前記入力端子に入力し、前記トライステートバッファの出力を前記第1の矩形波信号とする請求の範囲第6項記載の同調制御方式。
  9. 前記制御電圧発生回路は、前記位相差検出回路から出力される前記第1の矩形波信号を平滑する平滑回路と、前記平滑回路の出力電圧を増幅して前記制御電圧を出力する増幅器とを備えることを特徴とする請求の範囲第5項記載の同調制御方式。
  10. 前記同調回路に含まれる前記2つの移相回路の少なくとも一方は、反転入力端子に第2の抵抗の一方端が接続され前記第2の抵抗を介して交流信号が入力される差動増幅器と、前記差動増幅器の出力端と前記差動増幅器の反転入力端子との間に接続された第3の抵抗とを含み、前記第2の抵抗の他方端に前記直列回路を接続し、前記直列回路を構成する前記第1の抵抗および前記リアクタンス素子との接続部を前記差動増幅器の非反転入力端子に接続したことを特徴とする請求の範囲第3項記載の同調制御方式。
  11. 前記同調回路は、入力される交流信号の位相を変えずに出力する非反転回路を備えており、前記非反転回路は前記縦続接続された2つの移相回路によって形成される帰還ループの一部に挿入され、
    前記同調回路は、前記縦続接続された2つの移相回路の全体により位相シフト量の合計が360°となる周波数近傍の信号のみを通過させることを特徴とする請求の範囲第10項記載の同調制御方式。
  12. 前記同調回路は、入力される交流信号の位相を反転して出力する位相反転回路を備えており、前記位相反転回路は前記縦続接続された2つの移相回路によって形成される帰還ループの一部に挿入され、
    前記同調回路は、前記縦続接続された2つの移相回路の全体により位相シフト量の合計が180°となる周波数近傍の信号のみを通過させることを特徴とする請求の範囲第10項記載の同調制御方式。
  13. 前記縦続接続された2つの移相回路の前段にトランジスタによるホロワ回路を挿入することを特徴とする請求の範囲第10項記載の同調制御方式。
  14. 前記縦続接続された2つの移相回路によって形成される帰還ループの一部に分圧回路を挿入し、
    前記同調回路は、前記分圧回路に入力される交流信号を同調信号として出力することを特徴とする請求の範囲第10項記載の同調制御方式。
  15. 前記直列回路内の前記第1の抵抗を可変抵抗により形成し、前記可変抵抗の抵抗値を前記制御信号の電圧レベルに応じて変えることで前記同調回路の同調周波数を可変することを特徴とする請求の範囲第10項記載の同調制御方式。
  16. 前記差動増幅器は演算増幅器であることを特徴とする請求の範囲第10項記載の同調制御方式。
  17. 構成部品を半導体基板上に一体形成したことを特徴とする請求の範囲第10項記載の同調制御方式。
  18. 前記同調回路に含まれる前記2つの移相回路の少なくとも一方は、反転入力端子に第2の抵抗の一方端が接続され前記第2の抵抗を介して交流信号が入力される差動増幅器と、前記差動増幅器の出力端子に接続された第1の分圧回路と、前記第1の分圧回路の出力端と前記差動増幅器の反転入力端子との間に接続された第3の抵抗とを含み、前記第2の抵抗の他方端に前記直列回路を接続し、前記直列回路を構成する前記第1の抵抗および前記リアクタンス素子の接続部を前記差動増幅器の非反転入力端子に接続したことを特徴とする請求の範囲第3項記載の同調制御方式。
  19. 前記同調回路は、入力される交流信号の位相を変えずに出力する非反転回路を備えており、前記非反転回路は前記縦続接続された2つの移相回路によって形成される帰還ループの一部に挿入され、
    前記同調回路は、前記縦続接続された2つの移相回路の全体により位相シフト量の合計が360°となる周波数近傍の信号のみを通過させることを特徴とする請求の範囲第18項記載の同調制御方式。
  20. 前記同調回路は、入力される交流信号の位相を反転して出力する位相反転回路を備えており、前記位相反転回路は前記縦続接続された2つの移相回路によって形成される帰還ループの一部に挿入され、
    前記同調回路は、前記縦続接続された2つの移相回路の全体により位相シフト量の合計が180°となる周波数近傍の信号のみを通過させることを特徴とする請求の範囲第18項記載の同調制御方式。
  21. 前記縦続接続された2つの移相回路の前段にトランジスタによるホロワ回路を挿入することを特徴とする請求の範囲第18項記載の同調制御方式。
  22. 前記縦続接続された2つの移相回路によって形成される帰還ループの一部に第2の分圧回路を挿入し、
    前記同調回路は、前記第2の分圧回路に入力される交流信号を同調信号として出力することを特徴とする請求の範囲第18項記載の同調制御方式。
  23. 前記直列回路内の前記第1の抵抗を可変抵抗により形成し、前記可変抵抗の抵抗値を前記制御信号の電圧レベルに応じて変えることで前記同調回路の同調周波数を可変することを特徴とする請求の範囲第18項記載の同調制御方式。
  24. 前記差動増幅器は演算増幅器であることを特徴とする請求の範囲第18項記載の同調制御方式。
  25. 構成部品を半導体基板上に一体形成したことを特徴とする請求の範囲第18項記載の同調制御方式。
  26. 前記同調回路に含まれる前記2つの移相回路の少なくとも一方は、反転入力端子に第2の抵抗の一方端が接続され前記第2の抵抗を介して交流信号が入力される差動増幅器と、前記差動増幅器の反転入力端子と出力端子との間に接続された第3の抵抗と、一方端が前記差動増幅器の反転入力端子に接続され他方端が接地された第4の抵抗とを含み、前記第2の抵抗の他方端に前記直列回路を接続し、前記直列回路を構成する前記第1の抵抗および前記リアクタンス素子の接続部を前記差動増幅器の非反転入力端子に接続したことを特徴とする請求の範囲第3項記載の同調制御方式。
  27. 前記同調回路は、入力される交流信号の位相を変えずに出力する非反転回路を備えており、前記非反転回路は前記縦続接続された2つの移相回路によって形成される帰還ループの一部に挿入され、
    前記同調回路は、前記縦続接続された2つの移相回路の全体により位相シフト量の合計が360°となる周波数近傍の信号のみを通過させることを特徴とする請求の範囲第26項記載の同調制御方式。
  28. 前記同調回路は、入力される交流信号の位相を反転して出力する位相反転回路を備えており、前記位相反転回路は前記縦続接続された2つの移相回路によって形成される帰還ループの一部に挿入され、
    前記同調回路は、前記縦続接続された2つの移相回路の全体により位相シフト量の合計が180°となる周波数近傍の信号のみを通過させることを特徴とする請求の範囲第26項記載の同調制御方式。
  29. 前記縦続接続された2つの移相回路の前段にトランジスタによるホロワ回路を挿入することを特徴とする請求の範囲第26項記載の同調制御方式。
  30. 前記縦続接続された2つの移相回路によって形成される帰還ループの一部に分圧回路を挿入し、
    前記同調回路は、前記分圧回路に入力される交流信号を同調信号として出力することを特徴とする請求の範囲第26項記載の同調制御方式。
  31. 前記直列回路内の前記第1の抵抗を可変抵抗により形成し、前記可変抵抗の抵抗値を前記制御信号の電圧レベルに応じて変えることで前記同調回路の同調周波数を可変することを特徴とする請求の範囲第26項記載の同調制御方式。
  32. 前記差動増幅器は演算増幅器であることを特徴とする請求の範囲第26項記載の同調制御方式。
  33. 構成部品を半導体基板上に一体形成したことを特徴とする請求の範囲第26項記載の同調制御方式。
  34. 前記同調回路は、入力される交流信号の位相を変えずに出力する非反転回路を備えており、前記非反転回路は前記縦続接続された2つの移相回路によって形成される帰還ループの一部に挿入され、
    前記2つの移相回路の少なくとも一方は、入力された交流信号を同相および逆相の交流信号に変換して出力する変換手段と、この変換手段によって変換された一方の交流信号を前記直列回路の一方端を介して、他方の交流信号を前記直列回路の他方端を介して合成する合成手段とを含むことを特徴とする請求の範囲第3項記載の同調制御方式。
  35. 前記同調回路は、前記縦続接続された2つの移相回路の全体により位相シフト量の合計が360°となる周波数近傍の信号のみを通過させることを特徴とする請求の範囲第34項記載の同調制御方式。
  36. 前記縦続接続された2つの移相回路および前記非反転回路によって形成される帰還ループの一部に分圧回路を挿入し、
    前記同調回路は、前記分圧回路に入力される交流信号を同調信号として出力することを特徴とする請求の範囲第34項記載の同調制御方式。
  37. 前記2つの移相回路内の前記変換手段はトランジスタを含んでおり、前記トランジスタのソースおよびドレイン、あるいはエミッタおよびコレクタにそれぞれ抵抗値がほぼ等しい第2の抵抗を接続し、前記トランジスタのゲートあるいはベースに交流信号を入力し、前記トランジスタのソース・ドレイン間あるいはエミッタ・コレクタ間に前記合成手段を構成する前記直列回路を接続したことを特徴とする請求の範囲第34項記載の同調制御方式。
  38. 前記直列回路内の前記第1の抵抗を可変抵抗により形成し、前記可変抵抗の抵抗値を前記制御信号の電圧レベルに応じて変えることで前記同調回路の同調周波数を可変することを特徴とする請求の範囲第34項記載の同調制御方式。
  39. 構成部品を半導体基板上に一体形成したことを特徴とする請求の範囲第34項記載の同調制御方式。
  40. 前記同調回路は、入力される交流信号の位相を反転して出力する位相反転回路を備えており、前記位相反転回路は前記縦続接続された2つの移相回路によって形成される帰還ループの一部に挿入され、
    前記2つの移相回路の少なくとも一方は、入力された交流信号を同相および逆相の交流信号に変換して出力する変換手段と、この変換手段によって変換された一方の交流信号を前記直列回路の一方端を介して、他方の交流信号を前記直列回路の他方端を介して合成する合成手段とを含むことを特徴とする請求の範囲第3項記載の同調制御方式。
  41. 前記同調回路は、前記縦続接続された2つの移相回路の全体により位相シフト量の合計が180°となる周波数近傍の信号のみを通過させることを特徴とする請求の範囲第40項記載の同調制御方式。
  42. 前記縦続接続された2つの移相回路および前記位相反転回路によって形成される帰還ループの一部に分圧回路を挿入し、
    前記同調回路は、前記分圧回路に入力される交流信号を同調信号として出力することを特徴とする請求の範囲第40項記載の同調制御方式。
  43. 前記2つの移相回路内の前記変換手段はトランジスタを含んでおり、前記トランジスタのソースおよびドレイン、あるいはエミッタおよびコレクタにそれぞれ抵抗値がほぼ等しい第2の抵抗を接続し、前記トランジスタのゲートあるいはベースに交流信号を入力し、前記トランジスタのソース・ドレイン間あるいはエミッタ・コレクタ間に前記合成手段を構成する前記直列回路を接続したことを特徴とする請求の範囲第40項記載の同調制御方式。
  44. 前記直列回路内の前記第1の抵抗を可変抵抗により形成し、前記可変抵抗の抵抗値を前記制御信号の電圧レベルに応じて変えることで前記同調回路の同調周波数を可変することを特徴とする請求の範囲第40項記載の同調制御方式。
  45. 構成部品を半導体基板上に一体形成したことを特徴とする請求の範囲第40項記載の同調制御方式。
  46. 前記同調回路に含まれる前記2つの移相回路の少なくとも一方は、抵抗値がほぼ等しい第2および第3の抵抗により構成される第1の分圧回路と、前記第1の分圧回路の出力端の電位と前記直列回路を構成する前記リアクタンス素子および前記第1の抵抗の接続点の電位との差分を所定の増幅度で増幅して出力する差動増幅器とを含み、前記第1の分圧回路および前記直列回路の一端にそれぞれ交流信号を入力することを特徴とする請求の範囲第3項記載の同調制御方式。
  47. 前記同調回路は、入力される交流信号の位相を変えずに出力する非反転回路を備えており、前記非反転回路は前記縦続接続された2つの移相回路によって形成される帰還ループの一部に挿入され、
    前記同調回路は、前記縦続接続された2つの移相回路の全体により位相シフト量の合計が360°となる周波数近傍の信号のみを通過させることを特徴とする請求の範囲第46項記載の同調制御方式。
  48. 前記同調回路は、入力される交流信号の位相を反転して出力する位相反転回路を備えており、前記位相反転回路は前記縦続接続された2つの移相回路によって形成される帰還ループの一部に挿入され、
    前記同調回路は、前記縦続接続された2つの移相回路の全体により位相シフト量の合計が180°となる周波数近傍の信号のみを通過させることを特徴とする請求の範囲第46項記載の同調制御方式。
  49. 前記縦続接続された2つの移相回路によって形成される帰還ループの一部に第2の分圧回路を挿入し、
    前記同調回路は、前記第2の分圧回路に入力される交流信号を同調信号として出力することを特徴とする請求の範囲第46項記載の同調制御方式。
  50. 前記直列回路内の前記第1の抵抗を可変抵抗により形成し、前記可変抵抗の抵抗値を前記制御信号の電圧レベルに応じて変えることで前記同調回路の同調周波数を可変することを特徴とする請求の範囲第46項記載の同調制御方式。
  51. 構成部品を半導体基板上に一体形成したことを特徴とする請求の範囲第46項記載の同調制御方式。
  52. 前記同調回路は、入力信号が一方端に入力される入力インピーダンス素子と、帰還信号が一方端に入力される帰還インピーダンス素子とを含んでおり、前記加算回路は、前記入力インピーダンス素子を介して入力される前記入力信号と、前記帰還インピーダンス素子を介して入力される前記帰還信号とを前記加算回路によって加算することを特徴とする請求の範囲第3項記載の同調制御方式。
  53. 前記入力インピーダンス素子と前記帰還インピーダンス素子との素子定数の比を変えることにより、前記同調回路の帯域幅を変えることを特徴とする請求の範囲第52項記載の同調制御方式。
JP51804597A 1995-11-09 1996-04-23 同調制御方式 Expired - Fee Related JP3764483B2 (ja)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP31739495 1995-11-09
JP31612195 1995-11-09
JP31612295 1995-11-09
JP34665895 1995-12-13
JP3888196 1996-02-01
JP3887896 1996-02-01
PCT/JP1996/001097 WO1997017759A1 (fr) 1995-11-09 1996-04-23 Systeme de commande d'accord

Publications (1)

Publication Number Publication Date
JP3764483B2 true JP3764483B2 (ja) 2006-04-05

Family

ID=27549919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51804597A Expired - Fee Related JP3764483B2 (ja) 1995-11-09 1996-04-23 同調制御方式

Country Status (6)

Country Link
JP (1) JP3764483B2 (ja)
KR (1) KR100350400B1 (ja)
CN (1) CN1113462C (ja)
AU (1) AU5348196A (ja)
HK (1) HK1015979A1 (ja)
WO (1) WO1997017759A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011066733A (ja) * 2009-09-18 2011-03-31 Mitsumi Electric Co Ltd スーパーヘテロダイン方式の受信装置及び受信方法、並びに受信装置用半導体集積回路
CN106462119B (zh) * 2014-03-31 2019-09-17 瑞典爱立信有限公司 开关模式电源补偿环路
CN106680594B (zh) * 2016-12-14 2019-01-01 浙江大学 一种用于lc振荡器特征参数的非接触式测量方法
CN106972487B (zh) * 2017-04-26 2020-06-02 广东电网有限责任公司电力科学研究院 一种电抗器及其实现方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910092B2 (ja) * 1979-10-22 1984-03-07 防衛庁技術研究本部長 同期発振afc方式
JPS6290016A (ja) * 1986-06-25 1987-04-24 Nippon Columbia Co Ltd 周波数特性補正回路
JPH03178205A (ja) * 1989-12-07 1991-08-02 Matsushita Electric Ind Co Ltd 移相型cr発振装置
JPH0575387A (ja) * 1991-09-17 1993-03-26 Sanyo Electric Co Ltd 可変遅延回路
JPH05183406A (ja) * 1991-12-27 1993-07-23 Nec Eng Ltd 自動位相補正回路

Also Published As

Publication number Publication date
CN1201567A (zh) 1998-12-09
KR19990067078A (ko) 1999-08-16
HK1015979A1 (en) 1999-10-22
AU5348196A (en) 1997-05-29
CN1113462C (zh) 2003-07-02
KR100350400B1 (ko) 2002-12-18
WO1997017759A1 (fr) 1997-05-15

Similar Documents

Publication Publication Date Title
JP5027472B2 (ja) 発振器およびそれを用いた情報機器
JP3628334B2 (ja) 同調増幅器
JP2007282244A (ja) カップリングキャパシタを備える4位相電圧制御発振器
CA2143427A1 (en) Monolithically integrated, tunable resonant circuit and circuit arrangement formed therefrom
JP3764483B2 (ja) 同調制御方式
JP4793595B2 (ja) 周波数シンセサイザ
KR100372873B1 (ko) 동조증폭기
JP5553855B2 (ja) 電圧制御発振器およびそれを用いた情報機器
JP3798078B2 (ja) 同調制御方式
JP3764484B2 (ja) 同調制御方式
CN112886928A (zh) 正交振荡器电路***及含正交振荡器电路***的电路***
JPH0974319A (ja) 受信機
JP3628402B2 (ja) 同調増幅器
JP3798077B2 (ja) 同調制御方式
JP3766472B2 (ja) 同調回路
JP3628408B2 (ja) 同調制御方式
JPH09191229A (ja) 同調制御方式
JP3766469B2 (ja) 同調回路
JP3142857B2 (ja) 電圧制御発振器
JP3628407B2 (ja) 同調増幅器
JPH0974318A (ja) 受信機
JPH0865100A (ja) 同調増幅器
JPH08274660A (ja) Fmワイヤレスマイク
JPH09252233A (ja) 同調制御方式
JPH08154034A (ja) 同調増幅器

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees