JP3754229B2 - 可変磁気抵抗リニアモータにおける振動の低減制御方法およびその装置 - Google Patents

可変磁気抵抗リニアモータにおける振動の低減制御方法およびその装置 Download PDF

Info

Publication number
JP3754229B2
JP3754229B2 JP10174099A JP10174099A JP3754229B2 JP 3754229 B2 JP3754229 B2 JP 3754229B2 JP 10174099 A JP10174099 A JP 10174099A JP 10174099 A JP10174099 A JP 10174099A JP 3754229 B2 JP3754229 B2 JP 3754229B2
Authority
JP
Japan
Prior art keywords
armature
stator
linear motor
phase current
phases
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10174099A
Other languages
English (en)
Other versions
JPH11332213A (ja
Inventor
シー. ベセット スティーブン
エー. コーツ チャールズ
イー. ヨーク ジェームス
ザレスキー アンドリュー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universal Instruments Corp
Original Assignee
Universal Instruments Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universal Instruments Corp filed Critical Universal Instruments Corp
Publication of JPH11332213A publication Critical patent/JPH11332213A/ja
Application granted granted Critical
Publication of JP3754229B2 publication Critical patent/JP3754229B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/08Reluctance motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/173Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/24Casings; Enclosures; Supports specially adapted for suppression or reduction of noise or vibrations

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Linear Motors (AREA)
  • Control Of Linear Motors (AREA)
  • Control Of Electric Motors In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は可変磁気抵抗リニアモータにおける振動の大きさ及び前記振動に対する感度の両方を減少させるための方法およびその装置に関する。
【0002】
【従来の技術】
迅速な整定時間および精密な位置決めを必要とする高精度サーボシステムにおいて、当該システムが必要とする速度ループ帯域幅の周波数範囲内のあらゆる振動は、安定性に関して重要な制御システムの問題を生じさせる。これらの条件が高次の非線形または多変数依存である場合には、問題は更に深刻になる。
【0003】
【発明が解決しようとする課題】
可変磁気抵抗リニアモータを使用する高精度位置決めシステムにおいて、これらの振動問題は、主として、当該システムがゆっくり移動中か又は所要位置に接近中における時点において発生する。これら振動の一原因は、モータの固定子及び電機子と関連した法線方向の大きい力と、固定子、電機子、ベアリング、整流、フィードバック機構、等々の間の相互作用であり、これらの原因は非線形振動に共振振動数を励起させる。
【0004】
この種のモータが高加速運転中は、当該モータの相電流は相対的に大きい。これらの大電流は、対面するモータコアの間に強い磁気(法線方向)引力を発生させる。この強い法線方向の力は、モータの機械部品に予負荷をかけること、および、システム内のあらゆるヒステリシス又は「スロップ」の除去を援助する。ただし、モータは、その負荷を所要位置の近くに位置決めすると、当該モータの相電流が減少し、それによって法線方向の力を減少させ、機械システムを弛緩させる。このような剛性の効果的な減少は速度ループ安定性に悪影響を及ぼし、好ましくない共振を発生させる。
【0005】
この種の振動を除去または制御する一方法は、速度ループ帯域幅を狭くするか、或いは、当該システム内の摩擦を増加することである。ただし、これら提案済みの解決方法は、整定時間、精度、及び、温度上昇の観点から当該システムの性能に負の影響を与え兼ねない。他の方法は、例えば、ローパスフィルタ又はノッチフィルタのような低次数線形フィルタを使用することである。前記の振動/共振振動数は所要のシステム帯域幅内に含まれるので、これらの方法は速度ループ帯域幅に重要な影響を及ぼすはずである。
【0006】
【課題を解決するための手段】
従って、本発明の目的は、その振動が制御または低減される可変磁気抵抗リニアモータを提供することにある。
【0007】
本発明の他の目的は、可変磁気抵抗リニアモータの固定子と電機子との間に機械式ダンパを提供することにある。
【0008】
本発明の更なる目的は、固定子と電機子の間の法線方向の力が所要水準以上に保持される可変磁気抵抗リニアモータを提供することにある。
【0009】
本発明の更なる他の目的は、制御フィードバックループを条件付きでフィルタリングする機能を有する可変磁気抵抗リニアモータを提供することにある。
【0010】
前述および他の目的は、本発明の第1の態様に従い、固定子及び固定子の長さに沿って可動であるように設置された電機子を備えた可変磁気抵抗リニアモータによって達成される。電機子ベアリングは機械式振動ダンパを介して電機子へ取付けられ、かつ固定子の振動がベアリングに伝達されて振動ダンパにおいて消散されるように固定子に接触する。
【0011】
本発明の第2の態様において、固定子に対する電機子に関する位置データを得るために、センサが電機子へ取付けられる。次に、コントローラ、前記の位置データおよび所要の力の値に基づいて、モータの位相に関して必要な相電流を計算する。電機子と固定子の間における法線方向の最小の力を維持するように、相電流が算定される。
【0012】
本発明の第3の態様において、電機子が所要位置から所定距離内に所在する場合に、条件付きフィルタが用いられる。条件付きフィルタは、遅延時間の後で、所定の範囲への速度フィードバックをクランプし、同時に、速度ループ利得を減少させる。
【0013】
本発明のこれらの及び他の目的、特徴機能、及び、利点は、添付図面と関連した好ましい実施例に関する以下の詳細な記述から明白であり、十分に理解されるはずである。
【0014】
【発明の実施の形態】
図1は本発明に基づく可変磁気抵抗リニアモータ1を示す。モータ1は両側に歯22を備えた固定子20を有する。固定子20は固定子サポート12により安定したベース10に取付けられる。電機子アセンブリ30は固定子20の周りに取付けられ、固定子20に沿って可動であるように線形ベアリング36によって支持される。電機子アセンブリ30は、電機子キャリッジ32に取り付けられた2個の電機子モジュール34を有する。センサ90も同様にキャリッジ32に取り付けられ、固定子20に沿って電機子アセンブリ30の位置を精密に記憶するように線形エンコーダ14と相互にやりとりする。
【0015】
図2から4までに示すように、各電機子モジュール34は、独立に結合した三相電機子である。モジュール34はキャリッジ32に取付けられ、2個のモジュール34に対応する位相が単相として調和して作用するように配線される。換言すれば、電機子モジュール34の対応する位相の歯が固定子20の歯22と合致した配列状態となり、合致電流が対応する位相に供給されるように、モジュール34がキャリッジ32に取付けられる。他の構成、例えば、更に多くのモジュールを使用するか、或いは、ただ1つのモジュールを使用する上記以外の構成を用いても差し支えないが、これらの場合にも依然として本発明の範囲に含まれることは明白である。同様に、上記とは異なる個数の位相を使用しても差し支えない。
【0016】
図2および3から良く分かるように、各電機子モジュール34は、電機子モジュール34の2つのe‐コア80aおよび80bを支持する上側ハウジング40aと下側ハウジング40bによって構成される。上図に示す実施例において、上側ハウジング40aと下側ハウジング40bは同じであるので製造コストが節減される。ローラーベアリング70は、固定子20の底部に接触するように、シャフト72とプレート74によって下側ハウジング40bに取付けられる。電機子アセンブリ30がその長さに沿って移動するに際して、ベアリング70は固定子20を垂直方向に支持する。
【0017】
e‐コア80a/bは、固定子20の周りに配置された場合に当該固定子20の対面する両側面の歯22と相互作用するように、前記の対面する両側面に隣接してハウジング40a/b内に取付けられる(図4参照)。e‐コア80a/bの対応する相は相互に直線配置され、単相として作用するように同じ電流が前記位相に供給される。e‐コア80a/bは、ローラーベアリング60が取付けられているそれぞれの端部に2つのシャフト82(各々のe‐コア80a/bの4個のシャフト82)を備える。ローラーベアリング60は、e‐コア80a/bを固定子20から一定の距離に維持するようにベアリング表面24に沿った固定子20の側面に沿って歯22の上下に移動する(図1参照)。この構成により、電機子30は、図に示す実施例においては1000分の2ないし3インチ程度の著しく近接した距離を保って固定子20をたどることが可能になる(図4参照)。
【0018】
好ましい実施例におけるe‐コア80a/bはボルト62によってハウジング40a/b内に保持される。これらのボルト62の2個だけが図3に示されているが、各e‐コア80a/bに対して4個のボルト62が用いられいることを理解されたい(図2参照)。シャフト82はハウジング40a/b内の孔42にフィットする。孔42中でシャフト82が動くことを防止するために、ハウジング40a/b内の孔42はシャフト82に対して過渡的なすきまばめ状態にある。ボルト62はワッシャ64を貫通し、シャフト82にねじ込まれる。ハウジング40a/b内の孔42は片持ちバネ46の端部に位置する。前記端部はハウジング40a/bから機械工作によって作成されたものである。バネ46は、電機子30がその長さ方向に前後に移動する際に、電機子80a/bが固定子表面に従うこと可能にし、固定子20の僅かな曲がり又は心ずれ(ミスアラインメント)を補正する懸架(サスペンション)を提供する。ただし、上記以外のバイアスエレメント構成も利用可能であることは言うまでもない。
【0019】
図2を参照して、ハウジング40a/bの端部46にフェルトワイパ(図示せず)を取付けても差し支えない。これらのワイパは、酸化を防止するために固定子ベアリング表面24にオイルの薄い被膜を塗布するために役立つ。更に、前記のワイパは、ほこり及び破片がベアリング60と固定子20の間に付着することを防止する。
【0020】
(機械式ダンパ)
固定子20は疑似単純支持梁であるので、機械的振動の影響を極度に受け易い。本発明の第1の態様において、この振動は、励起源、即ち、電機子30において固定子20を減衰するために用いられる変換ダンパを用いて最小化される。図に示す実施例において、剛性のある細片50は、各モジュール34のe‐コア80aの1つに堅固に取付けられ、重合体(ポリマー)減衰グロメット56を介してモータハウジング40a/bに取り付けられる。従って、固定子20からのエネルギーは、電機子ベアリング60を介して剛性のある細片50に伝達され、減衰グロメット56内に消散される。これは、振動の大きさを減少させてシステムを一層安定した状態にする。
【0021】
図に示す実施例の各モジュール34においては、4個の剛性のある細片50がe‐コア80aに取付けられる。e‐コア80の各シャフト82(これにベアリング60が取付けられる)が細片50の1つの孔52にはめ込まれる。シャフト82と孔52との間のはめあいはぴったりしているので、固定子20の振動はベアリング60を介して細片50に伝達される。重合体(ポリマー)減衰グロメット56は、細片50のどちらの端部にも設けられた取付け孔54内に配置される。図3にはただ2個のグロメット56だけが示されているが、各細片50毎に2個のグロメット56が用いられ、図3に示すモジュール34には合計8個が用いられる。従って、細片50の端部は、ボルト58によってハウジング40a/bに取付けられ、前記ボルトはワッシャ59及びグロメット56を貫いて伸延し、孔44においてハウジング40a/bに固定される。グロメット56の摩耗を軽減するために、金属スリーブ57が各グロメット56に挿入され、ボルト58とグロメット56との間のバリヤとして作用する。
【0022】
図3に示すように、もう一方のe‐コア80bのシャフト82に間隔を提供するためにU字形の開口53が細片50に設けられている。もう一方のe‐コア80bの動きを妨害することを避けるために、これらのU字形開口53はシャフト82の外径よりも大きくしてある。これは、電機子が固定子20に従って懸垂され、電機子ベアリング60と接触状態を保つことを可能にするために必要である。
【0023】
上記とは別の代替構成も予想されるが、本発明の範囲に含まれるものとみなされることは言うまでもない。例えば、固定子20と接触するベアリング60はe‐コア80a/bに取付ける必要はなく、その代りに、例えば重合体グロメットのような機械式ダンパを経て電機子ハウジング40a/bへ直接取付けても差し支えない。このような場合には、e‐コア80a/bはハウジングへ堅固に取付けるか(細片50なしで)、または、既に述べたように取り付けても差し支えない。更に、既に述べたダンパ以外の機械式ダンパ、例えば、空気圧または油圧を用いるダンパを使用しても差し支えない。
【0024】
(電磁予負荷)
本発明の他の態様に基づき、更に振動を減少させるために、モータの位相整流システムにおける電磁予負荷が用いられる。
【0025】
図4および5を参照すれば、一般的なサーボモータ制御においては、モータに線運動方向の力を発生させるモータ位相を励起する整流が適用される。閉ループサーボ駆動システムにおいては、当該システムにおける位置/速度誤差に基づく出力を導出する閉ループ設計の結果として所要の力が得られる。当該システムは、これらの誤差値を用いて、所要とされる線形の関係にある力を得るために各位相に供給することが必要な電流を算定する。
【0026】
当該システムの非直線性を考慮して、前記の位相電流は、例えば、参考として米国特許No.5,621,294の例に従って制御される。前記の特許’294に従い、電機子30に取付けられたセンサ90(図1参照)は、固定子20に対する電機子30の位置を決定し、当該情報を整流コントローラ100及び運動コントローラ120に送る。運動コントローラ120は、このフィードバックに応答して速度コマンドを生成し、前記の速度コマンドを整流コントローラ100に送る。整流コントローラ100は、所要の横方向力を算定し、参照用テーブルと補間を用いてこの力を得るために必要な相電流を決定するために位置フィードバックデータと共に前記の情報を使用する。次に、相電流は増幅器110に送られ、この増幅器は当該電流を電機子30に送る。
【0027】
図6(a)は、14種の一定力水準に関して、1つの位相(B相)における電流を、位相Bの合致配列位置からのモータ変位の関数として示す。固定子20の歯22のピッチは6mmであり、電流の極性は歯の1ピッチ毎に変わるので(参照図4)、電流は12mm変位毎に周期性をもつ。位相AとCに関する電流波形は、位相Bに関するグラフ(図6(a))をそれぞれ8mm及び4mmだけ平行移動することによって求められる。図6(a)には、僅かに14種の個別の力水準が示されているに過ぎないが、ここに示す実施例においては、375の個別モータ位置に関して64種の力水準が用いられた。
【0028】
電機子30が所定の位置に接近すると、所要の線形の関係にある力(即ち、運動方向の力)はゼロに近付く。従って、図6(a)に示すように、目標位置に到達するまでモータ制御電流もゼロに近付く。目標位置に到達すると、図6(a)において「ゼロ力」とラベル表示されている所要の線形の関係にある力はゼロであり、全ての相電流はゼロに等しくなる。これは、電機子のe‐コア80a/bと固定子20との間の法線方向の引力も同時に減少させ、結果的にシステムの剛性を減少させる。
【0029】
モータの位相は、必要な線形の関係にある力とは関係なしに、常にある水準の励磁電流が流れていることを保証するために動的なずれ(オフセット)を整流システムに埋め込むことは本発明の1つの態様に基づく設計理念である。このように埋め込まれた電流はモータの固定子20と電機子30との間の法線方向の引力を維持し、剛性を所要水準に保持する。図6(b)は、本発明の実施例に基づくモータの変位の関数として位相Bにおける修正済み電流を示す。相電流は、モータによって生成される横方向の力に有意な影響を及ぼすことなしに或る水準の法線方向の力を維持するように選定される。換言すれば、1つの相のずれ(オフセット)電流によって発生する横方向の力のあらゆる変化は、他の2つの相のずれ(オフセット)電流によって相殺され、その結果、所要の横方向力が維持される。従って、「ゼロ力」水準の場合であっても、電機子30と固定子20との間に法線方向の力を維持するような或る水準の電流が当該位相に流れる。同時に、一方では他の2つの相の一方または両方にも或る水準の電流が流れて垂直方向の力を強化し、他方ではB相に生じたあらゆる横方向の力を相殺し、それによって、一切の横方向力成分を含まない正味の法線方向力が発生する。
【0030】
図6(b)に示す値を用いると、図に示す実施例のモータによって、ゼロ力水準の場合に、約80lbsの法線方向の引力が維持され、前記の値は第1から第8番目の力水準の場合に変化しない。更に高い力水準の場合には、この値は増加する。結果として剛性が付加されると、モータ振動の大きさを減少させ、システムを更に安定した状態にする。
【0031】
当該技術分野における熟練者にとって、本発明の電磁予負荷を実現するためにリニアモータが特許’294を用いる必要のないことは明白である。少なくとも1つの相に或る水準の電流が常時流れている場合には、法線方向の力が維持されるはずである。前述の必要条件を満足させるために用いられる電流は、力トランスデューサ、及び、モータの相電流を制御するための直流電源を用いて実験的に、或いは、理論的に見付けることが可能である。
【0032】
(条件付きフィルタリング)
本発明の第3の態様において、更に振動を減少させるために、制御フィードバックループの条件付きフィルタリングが用いられる。
【0033】
図1に示すコントローラとリニアモータの電機子との間のインタフェースに関する詳細なブロックダイアグラムを図7に示す。図に示すように、整流コントローラ100は、速度値(dx/dt)を求めるために、時間(t)に亙ってセンサ90によって読取った位置値(x)を微分するための微分ブロック104を有する。速度値(dx/dt)は速度フィルタ102を通って加算ブロック103に送られ、ここで、運動コントローラ120からの速度コマンドと比較される。比較結果は速度誤差制御ブロック101に送られ、ここで、速度ループ利得が供給されて、実際の力コマンドが出力される。整流ブロック105は、当該モータの各相に必要な電流(IA、IB、IC)を計算するために、速度誤差制御ブロック101から実際の力コマンドを、微分ブロック104から速度値(dx/dt)を、センサ90から位置値(x)を受け取る。これらの値は増幅器110に送られ、ここから、対応する増幅済み電流がモータの相に送られる。
【0034】
図8Aに示すように、先行技術に基づいて作動する場合、所要のモータ位置に到達すると、図7に示すシステムには揺動が生じる。その理由は、部分的に、モータの高速運転を達成するために、高速度ループ利得が用いられることに因る。本発明の条件付きフィルタリング(図8B)は、位置誤差(実際のモータ位置―所要位置)が或る規定値未満になるまで全速度ループ利得において駆動することによりこの問題を軽減する。運動コントローラ120のPID制御システム122によって通知された状態の位置誤差が規定値(Tf時点における)よりも小さい場合、条件付きフィルタ106が用いられる。前記フィルタにおいては、所要位置に到達した場合にシステムに起きることが経験的に予測される最大の外乱よりも大きいと経験的に判断される位置誤差の値が選択される。
【0035】
フィルタ106の第1ステージにおいては、当該システムが正常軌道を完了し、帯域幅を減少することなしに所要の位置に整定できるように遅延(タイムディレイ)が適用される。機械システムは巻き戻し(低加速度要求および関連した相電流の低下に起因して大きい法線方向の力が減少するにつれて剛性が減少すること)のための或る期間を必要とするので、前記の遅延は許容される。遅延の継続期間は、フィルタが用いられる位置から(既に述べた揺動が始まる以前の)所要位置における定常状態まで、電機子30が移動するために通常(即ち、条件付きフィルタを使用することなしに)必要とする時間よりも僅かに長い時間が選択される。遅延が(時点Tdにおいて)満了した場合、一旦所要位置に到達すると、当該所要位置を維持するための帯域幅必要条件が低下するので、速度誤差制御ブロック101によって供給される速度ループ利得が減少する。利得の減少は力コマンドを制限し、閉ループ感度を不安定な振動要素まで低下させる。
【0036】
フィルタ106の他の特徴は、加算ブロック103へ供給された速度データを所定の範囲に制限する速度クランプを速度フィルタ102において同時に導入することである(参照図8B)。これは、システムは基本的に停止状態にあり、位置を保持するためには低速における小さな変位のみを取り扱うことが必要であるという事実を利用する。あらゆる小さな変位振動(即ち、問題の非線形振動)は、それらの振動数に起因して高速要素を含む。この速度要素は、位置を保持する状態において予測されるあらゆる線形外乱よりも大きい。速度クランプは予測される最大の外乱要素の速度フィードバックを制限する。従って、速度クランプは、速度フィードバックされる値にクランプを供給することによって振動に対するシステムの感度を減少させる。低速なあらゆる位置的小外乱はフィルタのクランプの大きさによって影響されず、位置を維持するためにシステムが正常に反応することを可能にすることは言うまでもない。
【0037】
位置誤差が条件付きフィルタによって規定された値より大きい場合には(所要位置または大きい外乱のどちらかの変化に起因する)、条件付きフィルタは取り除かれ、前記の規定値よりも小さい位置誤差を再び期待するように初期化される。図8Bに示すように、このフィルタリング作用は機械的剛性の低下に関する当該システムの感度を低下させるが、所定位置に到着するために必要な整定時間に否定的には影響しない。
【0038】
図に示す実施例を用いて本発明について記述した。本願にとって有利に作用するような他の実施例、特徴、及び、変形例も特許請求の範囲に含まれることは、当該技術分野における通常の技術を持つ者にとって明白なはずである。
【図面の簡単な説明】
【図1】本発明に基づいた可変磁気抵抗リニアモータの立面図である。
【図2】図1のリニアモータの電機子モジュールの斜視図である。
【図3】図2の電機子モジュールの分解図である。
【図4】図1のモータの電機子モジュール及び固定子の概略図である。
【図5】コントローラと図1のリニアモータの電機子との間のインタフェースのブロックダイアグラムである。
【図6】(a)は14種の一定力水準に関して、先行技術によるリニアモータの1つの位相電流をモータの変位関数として示すグラフである。(b)は14種の一定力水準に関して、本発明によるリニアモータの1つの位相電流をモータの変位関数として示すグラフである。
【図7】コントローラと図1のリニアモータの電機子との間のインタフェースの更に詳細なブロックダイアグラムである。
【図8A】先行技術に従って駆動する図7のシステムの位置誤差および速度フィードバックのグラフである。
【図8B】本発明に従って駆動する図7のシステムの位置誤差および速度フィードバックのグラフである。
【符号の説明】
1 リニアモータ
20 固定子
30 電機子アセンブリ
80a e−コアa
80b e−コアb
90 センサ

Claims (31)

  1. リニアモータであって、
    固定子と、
    前記固定子の長さに沿って可動であり、前記固定子に近接して取付けられた電機子と、
    前記固定子と接触し、前記電機子へ取り付けられた少なくとも1つのベアリングと、
    前記電機子と前記ベアリングとの間に設けられた少なくとも1つの振動ダンパと、を備え、
    前記振動ダンパは前記電機子と共に移動し、
    前記固定子における振動は前記ベアリングに伝達され、前記電機子とベアリングとの間に配置された少なくとも1つの振動ダンパで消散されることを特徴とするリニアモータ。
  2. 前記振動ダンパは重合体グロメットであることを特徴とする請求項1に記載のリニアモータ。
  3. 前記電機子に取付けられ、前記固定子の底部表面に接触する固定子支持ベアリングを更に備えることを特徴とする請求項1に記載のリニアモータ。
  4. 前記電機子であって、
    電機子ハウジングと、
    前記ハウジング内に配置された少なくとも1つのコアとを備え、
    前記少なくとも1つのベアリングが前記コアに取付けられ、前記コアが前記少なくとも1つの振動ダンパによって前記ハウジングへ接続されることを特徴とする請求項1に記載のリニアモータ。
  5. 前記コアがバイアスするエレメントによって前記ハウジング内に保持されることを特徴とする請求項4に記載のリニアモータ。
  6. 前記電機子が少なくとも2つの位相を有し、前記リニアモータは更に、
    前記電機子に関する位置データに基づいて相電流を計算し、前記相電流を前記少なくとも2つの位相へ供給するためのコントローラを備え、前記相電流は前記電機子と前記固定子との間で法線方向の最小の力を維持するように算定されることを特徴とする請求項1に記載のリニアモータ。
  7. 前記電機子が所要の位置から所定距離内に位置するときに、前記相電流を減少させるための手段を更に備えることを特徴とする請求項6に記載のリニアモータ。
  8. 前記電機子は少なくとも2つの位相を有し、更に前記リニアモータは、
    前記電機子に関する位置データに基づいて相電流を計算し、前記相電流を前記少なくとも2つの位相へ供給するためのコントローラと、
    前記電機子が所要位置から所定の距離内に位置するときに前記相電流を減少させるための手段とを備えることを特徴とする請求項1に記載のリニアモータ。
  9. リニアモータであって、
    固定子と、
    前記固定子の長さに沿って可動であり、前記固定子に接近して取付けられた電機子と、
    前記固定子における振動を前記電機子へ伝達するための手段と、
    前記電機子と接続し、当該電機子と共に移動可能であり、前記振動を消散させるための手段と、
    を備えることを特徴とするリニアモータ。
  10. 前記の振動伝達手段は前記電機子に取り付けられ、前記固定子と接触する少なくとも1つのベアリングを備えることを特徴とする請求項9に記載のリニアモータ。
  11. 前記振動消散手段は少なくとも1つの重合体グロメットを備えることを特徴とする請求項9に記載のリニアモータ。
  12. 前記電機子は少なくとも2つの位相を有し、更に前記リニアモータは、
    前記電機子に関する位置データに基づいて前記少なくとも2つの位相に関する相電流を計算するための手段を備え、
    前記相電流は前記電機子と前記固定子との間において法線方向の最小の力を維持するように算定されることを特徴とする請求項9に記載のリニアモータ。
  13. 前記電機子は所要位置から所定の距離内に位置するときに前記相電流を減少させるための手段を更に備えることを特徴とする請求項12に記載のリニアモータ。
  14. 前記電機子の位置データに基づいて相電流を計算するための手段と、
    前記電機子が所要位置から所定の距離内に位置するときに前記相電流を減少させるための手段と、を更に備えることを特徴とする請求項9に記載のリニアモータ。
  15. 固定子と前記固定子の長さに沿って可動であり、前記固定子に近接して取付けられた電機子とを備えるリニアモータにおける振動を低減させるための方法であって、
    前記電機子と共に移動可能であり、当該電気子と接続した少なくとも 1 つの振動ダンパを設定するステップと、
    前記固定子から電機子へ前記振動を伝達するステップと、
    前記少なくとも 1 つの振動ダンパによって前記電機子における前記振動を消散させるステップと、
    を備えることを特徴とする方法。
  16. 前記振動を伝達するステップは、前記電機子と前記固定子との間に少なくとも1つのベアリングを取付けるステップを含むことを特徴とする請求項15に記載のリニアモータにおける振動を低減させるための方法。
  17. 前記振動を消散するステップは、振動ダンパを介して前記電機子へ少なくとも1つのベアリングを取付けるステップを含むことを特徴とする請求項16に記載のリニアモータにおける振動を低減させるための方法。
  18. 可変磁気抵抗リニアモータであって、
    固定子と、
    少なくとも2つの位相を有し、前記固定子の長さに沿って可動であり、前記固定子に近接して取付けられた電機子と、
    前記電機子に関する位置データに基づいて位相電流を計算し、前記少なくとも2つの位相へ前記相電流を供給するためのコントローラと、
    を備え、前記相電流は前記電機子と前記固定子との間において法線方向の最小の力を維持するように算定されることを特徴とする可変磁気抵抗リニアモータ。
  19. 前記電機子は所要位置から所定距離内に位置するときに前記相電流を減少させるための手段を更に備えることを特徴とする請求項18に記載の可変磁気抵抗リニアモータ。
  20. 少なくとも1つのベアリングと前記ベアリングを前記電機子に接続する少なくとも1つの振動ダンパを更に備え、前記固定子における振動が少なくとも1つのベアリングに伝達され、前記振動ダンパにおいて消散されるように前記ベアリングが前記固定子に接触し、前記振動ダンパは前記電機子と共に移動することを特徴とする請求項18に記載の可変磁気抵抗リニアモータ。
  21. 可変磁気抵抗リニアモータであって、
    固定子と、
    少なくとも2つの位相を有し、前記固定子の長さに沿って可動であり、前記固定子に近接して取付けられた電機子と、
    前記電機子に関する位置データに基づいて相電流を算定し、前記少なくとも2つの位相へ前記相電流を供給するための手段と、
    を備え、前記相電流は前記電機子と前記固定子との間において法線方向の最小の力を維持するように算定されることを特徴とする可変磁気抵抗リニアモータ。
  22. 前記電機子が所要位置から所定距離内に位置するときに前記相電流を減少させるための手段を更に備えることを特徴とする請求項21に記載の可変磁気抵抗リニアモータ。
  23. 前記固定子における振動を前記電機子へ伝達するための手段と、前記電機子において前記振動を消散させるための手段とを更に備えることを特徴とする請求項21に記載の可変磁気抵抗リニアモータ。
  24. 電機子と固定子と少なくとも2つの位相とを備えた可変磁気抵抗リニアモータにおける振動を減少させるための方法であって、
    前記固定子に対する前記電機子に関する位置データを獲得するステップと、
    前記位置データに基づき前記少なくとも2つの位相に関する相電流を算定す
    るステップと、
    前記相電流を前記少なくとも2つの位相へ供給するステップと、
    を備え、前記相電流は前記電機子と前記固定子との間において法線方向の最
    小の力を維持するように算定されることを特徴とする方法。
  25. 可変磁気抵抗リニアモータであって、
    固定子と、
    少なくとも2つの位相を有し、前記固定子の長さに沿って可動であり、前記固定子に近接して取付けられた電機子と、
    前記電機子に関する位置データに基づいて位相電流を計算し、前記少なくとも2つの位相へ前記相電流を供給するためのコントローラと、
    前記電機子が所要位置から所定距離内に位置するときに前記相電流を減少させるための手段と、を備え
    前記コントローラは速度データに基づいて前記相電流を算定し、前記相電流を減少させるための前記手段は前記速度データを所定の速度範囲に制限するための手段を備えることを特徴とする可変磁気抵抗リニアモータ。
  26. 前記コントローラは速度ループ利得を前記速度に適用することによって相電流を算定し、前記位相電流を減少させるための前記手段は前記速度ループ利得を減少させるための手段を備えることを特徴とする請求項25に記載の可変磁気抵抗リニアモータ。
  27. 可変磁気抵抗リニアモータであって、
    固定子と、
    少なくとも2つの位相を有し、前記固定子の長さに沿って可動であり、前記固定子に近接して取付けられた電機子と、
    前記電機子に関する位置データに基づいて位相電流を計算し、前記少なくとも2つの位相へ前記相電流を供給するためのコントローラと、
    前記電機子が所要位置から所定距離内に位置するときに前記相電流を減少させるための手段と、を備え
    前記コントローラは速度ループ利得を用いることによって前記相電流を算定し、前記位相電流を減少させるための前記手段は前記速度ループ利得を減少させるための手段を備えることを特徴とする可変磁気抵抗リニアモータ。
  28. 可変磁気抵抗リニアモータであって、
    固定子と、
    少なくとも2つの位相を備え、前記固定子の長さに沿って可動であり、前記固定子に近接して取付けられた電機子と、
    前記電機子の位置データおよび速度データに基づいて力コマンドを算定するための手段と、
    前記電機子が所要位置から所定距離内に位置するときに前記力コマンドを減少させるための手段と、
    前記力コマンドに基づいて位相電流を算定し、前記相電流を前記少なくとも2つの位相に供給するための手段と、
    を備えることを特徴とする可変磁気抵抗リニアモータ。
  29. 少なくとも2つの位相を備えた電機子と固定子とを有する可変磁気抵抗リニアモータにおける振動を低減させるための方法であって、
    前記固定子に対する前記電機子の位置データを獲得するステップと、
    前記電機子に関する速度データを決定するステップと、
    前記位置データ及び前記速度データに基づいて力コマンドを算定するステップと、
    前記電機子が所要位置から所定距離内に位置するときに前記力コマンドを減少させるステップと、
    前記力コマンドに基づいて相電流を算定するステップと、
    前記相電流を前記少なくとも2つの位相へ供給するステップと、
    を備えることを特徴とする方法。
  30. 前記力コマンドを減少させるステップは速度ループ利得を減少させるステップを含むことを特徴とする請求項29に記載の方法。
  31. 前記電機子は前記所要位置から前記所定距離内に位置するときに前記速度データを所定の速度範囲に制限するステップを含むことを特徴とする請求項29に記載の方法。
JP10174099A 1998-04-08 1999-04-08 可変磁気抵抗リニアモータにおける振動の低減制御方法およびその装置 Expired - Fee Related JP3754229B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/058004 1998-04-08
US09/058,004 US6078114A (en) 1998-04-08 1998-04-08 Method and apparatus for vibration reduction/control in a variable reluctance linear motor

Publications (2)

Publication Number Publication Date
JPH11332213A JPH11332213A (ja) 1999-11-30
JP3754229B2 true JP3754229B2 (ja) 2006-03-08

Family

ID=22014071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10174099A Expired - Fee Related JP3754229B2 (ja) 1998-04-08 1999-04-08 可変磁気抵抗リニアモータにおける振動の低減制御方法およびその装置

Country Status (4)

Country Link
US (1) US6078114A (ja)
EP (1) EP0961392B1 (ja)
JP (1) JP3754229B2 (ja)
DE (1) DE69925670T2 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3395155B2 (ja) * 1999-05-07 2003-04-07 株式会社日立製作所 リニアモータ及びその製造方法
AU2001251124A1 (en) * 2000-03-30 2001-10-15 Delaware Capital Formation Variable reluctance motor
AU2001289294A1 (en) 2000-03-30 2001-10-15 Delware Capital formation Variable reluctance motor with improved tooth geometry
US20030038556A1 (en) * 2000-03-30 2003-02-27 Gieskes Koenraad Alexander Variable reluctance motor
AU2001249624A1 (en) * 2000-03-30 2001-10-15 Delaware Capital Formation Variable reluctance motor with reduced noise and vibration
JP2002034232A (ja) * 2000-07-18 2002-01-31 Shinko Electric Co Ltd リニアモータシステムおよび回転形モータ
JP3945148B2 (ja) * 2000-11-02 2007-07-18 株式会社日立製作所 Xyテーブル及びxyzテーブル
JP3945150B2 (ja) * 2000-11-06 2007-07-18 株式会社日立製作所 リニアモータ
WO2003000017A2 (en) * 2001-06-25 2003-01-03 Delaware Capital Formation, Inc. Variable reluctance motor
EP2747257A3 (en) * 2002-06-05 2016-06-29 Jacobs Automation, Inc. Controlled motion system
US20050192519A1 (en) * 2004-02-27 2005-09-01 John Crunick Motor assemblies and massage assemblies using the same
DE102004045992A1 (de) * 2004-09-22 2006-04-06 Siemens Ag Elektrische Maschine
US20060131966A1 (en) * 2004-12-16 2006-06-22 Janisiewicz Stanley W Motor, motor system, motor elements and method of assembly thereof
DE102005007489A1 (de) * 2005-02-17 2006-08-24 Siemens Ag Holzbearbeitungsmaschine mit linearem Direktantrieb
US7187142B2 (en) * 2005-05-25 2007-03-06 Rockwell Automation Technologies, Inc. Motor drive with velocity noise filter
US7109670B1 (en) * 2005-05-25 2006-09-19 Rockwell Automation Technologies, Inc. Motor drive with velocity-second compensation
ES2345702B1 (es) * 2008-11-10 2011-09-05 Universitat Politècnica De Catalunya Motor de reluctancia autoconmutado.
US8616134B2 (en) 2009-01-23 2013-12-31 Magnemotion, Inc. Transport system powered by short block linear synchronous motors
US9032880B2 (en) 2009-01-23 2015-05-19 Magnemotion, Inc. Transport system powered by short block linear synchronous motors and switching mechanism
US8729745B2 (en) 2010-10-25 2014-05-20 Asm Assembly Automation Ltd Multiple-phase linear switched reluctance motor
US9802507B2 (en) 2013-09-21 2017-10-31 Magnemotion, Inc. Linear motor transport for packaging and other uses

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4282768A (en) * 1979-05-25 1981-08-11 Jsj Corporation Vibration isolation mount for gear shifter
JPS62163557A (ja) * 1986-01-09 1987-07-20 Shinko Electric Co Ltd リニアパルスモ−タ−の振動抑制機構
JP2631363B2 (ja) * 1986-03-19 1997-07-16 愛知時計電機 株式会社 電動体
JPH0640423B2 (ja) * 1986-10-13 1994-05-25 富士通株式会社 情報記憶装置の位置決め制御方式
JPS63217965A (ja) * 1987-03-05 1988-09-12 Shinko Electric Co Ltd リニアモ−タ
US5241229A (en) * 1990-01-11 1993-08-31 Sankyo Seiki Mfg. Co., Ltd. Magnetic disc drive motor
JP3087305B2 (ja) * 1990-03-05 2000-09-11 株式会社ニコン ステージ装置
JP2820820B2 (ja) * 1991-11-12 1998-11-05 ファナック株式会社 サーボモータの制御装置
US5376851A (en) * 1992-05-18 1994-12-27 Electric Power Research Institute, Inc. Variable reluctance motor with full and short pitch windings
KR0108635Y1 (en) * 1993-11-05 1997-11-08 Lg Ind Systems Co Ltd Phanlax device of an elevator using a linear motor
US5491598A (en) * 1994-05-06 1996-02-13 Seagate Technology, Inc. Rotary actuator vibration damper
EP0701314B1 (en) * 1994-09-06 2002-04-03 Bridgestone Corporation Vibration isolating apparatus and vibration isolating table
US5621294A (en) 1995-11-21 1997-04-15 Universal Instruments Corporation Apparatus and method for force compensation in a variable reluctance motor

Also Published As

Publication number Publication date
JPH11332213A (ja) 1999-11-30
DE69925670T2 (de) 2006-03-23
EP0961392A3 (en) 2000-08-30
EP0961392A2 (en) 1999-12-01
EP0961392B1 (en) 2005-06-08
DE69925670D1 (de) 2005-07-14
US6078114A (en) 2000-06-20

Similar Documents

Publication Publication Date Title
JP3754229B2 (ja) 可変磁気抵抗リニアモータにおける振動の低減制御方法およびその装置
US5757149A (en) Drive control apparatus
Futami et al. Nanometer positioning and its micro-dynamics
US6296093B1 (en) Vibration-damped machine and control method therefor
US20130193777A1 (en) Linear motor system
US6522388B1 (en) Vibration eliminator, exposure apparatus and projection exposure method
JP4753004B2 (ja) 電磁石ユニット、電磁アクチュエータ、電磁アクチュエータの浮上制御装置、およびステージ装置
JPH08312715A (ja) 防振装置
US6448723B1 (en) Stage system and exposure apparatus
JP2000330642A (ja) ステージの位置制御装置及び速度制御装置
JPH10116779A (ja) ステージ装置
JP3194246B2 (ja) X−yステージの制御装置
US6886436B2 (en) Method and device for damping a chatter oscillation in a processing machine
US6715426B1 (en) Motor driven high stability brake linear motion systems
KR100575556B1 (ko) 자기베어링 주축의 고정밀 진동제어 방법
CN109465650B (zh) 气缸式刚度切换装置及使用其的刚柔耦合运动平台和方法
JP5217217B2 (ja) 制振装置及び制振装置を備えた制振対象機器
JP2002355730A (ja) テーブル位置決め装置
KR100659479B1 (ko) 스테이지 장치용 반력 처리 시스템
JPH05234865A (ja) 複合位置決め装置
JP4891562B2 (ja) 駆動装置と駆動・案内装置
CN106026765A (zh) 非对称菱形放大机构压电粘滑直线电机及其激励方法
JPH11196561A (ja) 制動特性が調節可能なリニアモータ
JP2004357464A (ja) リニアモータ
JP4636034B2 (ja) 可動テーブルの制御装置およびそれを備えた可動テーブル装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees