JP3721116B2 - 駆動装置,動力出力装置およびその制御方法 - Google Patents

駆動装置,動力出力装置およびその制御方法 Download PDF

Info

Publication number
JP3721116B2
JP3721116B2 JP2001331175A JP2001331175A JP3721116B2 JP 3721116 B2 JP3721116 B2 JP 3721116B2 JP 2001331175 A JP2001331175 A JP 2001331175A JP 2001331175 A JP2001331175 A JP 2001331175A JP 3721116 B2 JP3721116 B2 JP 3721116B2
Authority
JP
Japan
Prior art keywords
phase
motor
power
current
coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001331175A
Other languages
English (en)
Other versions
JP2002218793A (ja
Inventor
一成 守屋
幸雄 稲熊
英雄 中井
裕樹 大谷
正一 佐々木
純和 社本
雅行 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2001331175A priority Critical patent/JP3721116B2/ja
Priority to EP01127077A priority patent/EP1206028B1/en
Priority to US09/987,282 priority patent/US6630804B2/en
Priority to DE60135427T priority patent/DE60135427D1/de
Publication of JP2002218793A publication Critical patent/JP2002218793A/ja
Application granted granted Critical
Publication of JP3721116B2 publication Critical patent/JP3721116B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/005Arrangements for controlling doubly fed motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、駆動装置,動力出力装置およびその制御方法に関する。
【0002】
【従来の技術】
従来、この種の動力出力装置としては、電動機に三相交流を印加するインバータ回路の正極母線と負極母線とに接続されたコンデンサとインバータ回路の正極母線または負極母線と電動機の中性点とに接続された直流電源とを備えるものが提案されている(例えば、特開平10−337047号公報や特開平11−178114号公報など)。この装置では、電動機の各相のコイルとインバータ回路のスイッチング素子からなる回路を直流電源の電圧を昇圧してコンデンサを充電する昇圧チョッパ回路として機能させる動作とインバータ回路をコンデンサの電圧を用いて電動機を駆動する本来の回路として機能させる動作とを時間分割により実現してコンデンサの充電と電動機の駆動の機能を有するものとしている。
【0003】
【発明が解決しようとする課題】
しかしながら、こうした動力出力装置では、インバータ回路の入力電圧、即ちコンデンサの端子間電圧は、電動機の中性点からみた正負の母線の電圧の差の広がりを考慮すると、直流電源の電圧からその3倍程度の電圧までの範囲内に制御する必要がある。電動機の状態に応じてインバータ回路の入力電圧を制御できれば、効率よく電動機を駆動することができるが、その範囲が制限されると電動機の効率運転も制限されてしまう。
【0004】
本発明の駆動装置,動力出力装置およびその制御方法は、インバータ回路の入力電圧を広い範囲で制御することを目的の一つとする。また、本発明の動力出力装置およびその制御方法は、電動機をより効率的に駆動することを目的の一つとする。
【0005】
【課題を解決するための手段およびその作用・効果】
本発明の駆動装置,動力出力装置およびその制御方法は、上述の目的の少なくとも一部を達成するために以下の手段を採った。
【0006】
本発明の駆動装置は、
巻線群を有する複数の多相交流負荷と、
該複数の多相交流負荷のうちの一つの多相交流負荷に接続されたインバータ回路と、
該インバータ回路が接続された多相交流負荷と該多相交流負荷とは異なる少なくとも一つの多相交流負荷との巻線群の中性点間に接続された少なくとも一つの副電源と、
該副電源が接続された多相交流負荷のうち前記インバータ回路が接続されていない多相交流負荷の有する巻線群の中性点の電位を制御する少なくとも一つの中性点電位制御手段と
を備えることを要旨とする。
【0007】
この本発明の駆動装置では、インバータ回路の入力電圧は、副電源が接続された各々の巻線群の中性点電位により定まるが、インバータ回路が接続された多相交流負荷の巻線群の中性点電位はインバータ回路により可変であり、インバータ回路が接続されていない多相交流負荷の巻線群の中性点電位は中性点電位制御手段により可変であるから、副電源の電圧に拘わらず、インバータ回路の入力電圧を自由に設定することができる。
【0008】
こうした本発明の駆動装置において、前記中性点電位制御手段は、該制御に係る多相交流負荷に接続されたインバータ回路を備える手段であるものとすることもできる。
【0009】
また、本発明の駆動装置において、前記複数の多相交流負荷は、単一の電気機器が備える負荷であっても、複数の電気機器が備える負荷であってもよい。
【0010】
本発明の動力出力装置は、
動力の出力が可能な動力出力装置であって、
二つの星形結線コイルと、
正極母線と負極母線とを共用して前記二つの星形結線コイルの各々に多相交流電力を供給可能な二つのインバータ回路と、
前記正極母線と前記負極母線とに接続された第1電源と、
前記二つの星形結線コイルの中性点間に接続された第2電源と
を備えることを要旨とする。
【0011】
この本発明の動力出力装置では、正極母線と負極母線とを共用する二つのインバータ回路を制御することにより正極母線と負極母線とに接続された第1電源と電動機の二つの星形結線コイルの中性点間に接続された第2電源との電力授受を行なうと共に二つの星形結線コイルに多相交流電力を供給することにより、正極母線と負極母線との間の電圧を広い範囲で制御することができると共に二つの星形結線コイルに供給する電流を制御することができる。したがって、正極母線と負極母線との間の電位差、即ち二つのインバータ回路の入力電圧を制御することができ、電動機をより効率的に駆動することができる。
【0012】
ここで、本発明の第1の動力出力装置において、前記第1電源として充放電可能な蓄電手段を用いることもできる。この蓄電手段を用いる場合、蓄電手段の端子間電圧を制御できるから、蓄電手段として容量の小さなものを用いることができる。
【0013】
また、前記二つのインバータ回路は、前記正極母線と負極母線との間に配置された上側スイッチング素子と下側スイッチング素子の直列接続をそれぞれ複数有し、上側スイッチング素子と下側スイッチング素子の接続点が対応する星形結線コイルの複数の端子にそれぞれ接続されており、前記二つのインバータ回路における、上側スイッチング素子と下側スイッチング素子のオン期間の比である変調率をそれぞれ個別に制御することで、前記第1電源の電圧を制御することが好適である。この場合に、前記二つのインバータの一方における変調率をd1、前記二つのインバータの他方における変調率をd2、前記第2電源の出力電圧をVb、前記第1電源の出力電圧をVcとしたときに、Vc=Vb/(d1−d2)という式に基づいて、前記二つのインバータにおける変調率をそれぞれ制御することができる。これによって、第1電源の電圧値を容易に制御することができる。
【0014】
また、前記二つのインバータにおける上側スイッチング素子および下側スイッチング素子の複数の直列接続について、すべてのスイッチング素子をオフとするデッドタイムを有する場合には、このデッドタイムを考慮して上記式を補正することが好適である。
【0015】
さらに、前記二つのインバータにおけるオンオフ周期を決定する搬送波の周期をTs、その搬送波の1周期に対する前記デッドタイムをTdとしたときに、上記補正された式は、Vc=Vb/{(d1−Td/Ts)−(d2+Td/Ts)}であることが好適である。
【0016】
また、前記二つの星形結線コイルは、一つのロータに対応して設けられ、1つの電動機を構成することが好適である。この場合、前記電動機の二つの星形結線コイルに供給される各々の多相交流電力の位相差を該二つの星形結線コイルの位相差と同一として該電動機から所望のトルクを出力すると共に前記第1電源の電圧を目標電圧に保持するよう前記二つのインバータ回路の複数のスイッチング素子をスイッチング制御するとよい。
【0017】
また、前記二つの星形結線コイルは、それぞれ別のロータに対応して設けられ、2つの別のモータを構成することも好適である。この場合、二つの電動機からそれぞれ所望のトルクを出力し、かつ、前記第1電源の電圧を目標電圧に保持するよう前記二つのインバータ回路の各々の複数のスイッチング素子をスイッチング制御するとよい。また、一方の星形結線コイルに供給する電流の振幅最大値を減少させ、その減少分に対応する電流を他方の星形結線コイルへ供給する電流に加算することが好適である。これによって、電流の振幅最大値を減少させることができ、インバータの耐圧など低くすることができる。
【0018】
また、前記電動機の出力トルクに変動を生じないという条件で、前記振幅最大値を減少分および他方への加算を決定することが好適である。これによって、出力トルクへの影響を排除することができる。
【0019】
また、前記二つの星形コイルの中性点間に流れる電流への影響を発生しないという条件で、前記振幅最大値を減少分および他方への加算を決定することが好適である。これによって、第1電源の電圧制御に悪影響がでることを防止できる。
【0020】
なお、本動力出力装置において、「電動機」には、発電可能な発電電動機も含まれる。
【0021】
本発明の第1の動力出力装置の制御方法は、
二つの星形結線コイルを有する電動機と、正極母線と負極母線とを共用して前記二つの星形結線コイルの各々に多相交流電力を供給可能な二つのインバータ回路と、前記正極母線と前記負極母線とに接続された蓄電手段と、前記電動機の二つの星形結線コイルの中性点間に接続された電源とを備える動力出力装置の制御方法であって、
前記電動機の二つの星形結線コイルに供給される各々の多相交流電力の位相差を該二つの星形結線コイルの位相差と同一とすると共に前記二つの星形結線コイルの中性点間の電位差を調節可能に前記二つのインバータ回路の複数のスイッチング素子をスイッチング制御することにより、該電動機から所望のトルクを出力すると共に前記正極母線と前記負極母線との間の電位差を所望の電位差にする
ことを要旨とする。
【0022】
この本発明の第1の動力出力装置の制御方法によれば、正極母線と負極母線とを共用する二つのインバータ回路を制御することにより正極母線と負極母線とに接続された蓄電手段と電動機の二つの星形結線コイルの中性点間に接続された電源との電力授受を行なうと共に二つの星形結線コイルに多相交流電力を供給することにより、正極母線と負極母線との間の電圧を広い範囲で制御することができると共に電動機を駆動制御することができる。したがって、電動機の状態に応じて正極母線と負極母線との間の電位差、即ち二つのインバータ回路の入力電圧を制御することができ、電動機をより効率的に駆動することができる。
【0023】
本発明の第2の動力出力装置の制御方法は、
星形結線コイルを有する第1の電動機と、星形結線コイルを有する第2の電動機と、前記第1の電動機に多相交流電力を供給可能な第1のインバータ回路と、該第1のインバータ回路の正負の母線を正負の母線として前記第2の電動機に多相交流電力を供給可能な第2のインバータ回路と、前記第1のインバータ回路の正負の母線に接続された蓄電手段と、前記第1の電動機の中性点と前記第2の電動機の中性点とに接続された電源とを備える動力出力装置の制御方法であって、前記第1の電動機の中性点と前記第2の電動機の中性点との間の電位差を調節可能に前記第1のインバータ回路および前記第2のインバータ回路の各々の複数のスイッチング素子をスイッチング制御することにより、前記第1の電動機から所望のトルクを出力すると共に前記第2の電動機から所望のトルクを出力し、かつ、前記正極母線と前記負極母線との間の電位差を所望の電位差にする
ことを要旨とする。
【0024】
この本発明の第2の動力出力装置の制御方法によれば、正極母線と負極母線とを共用する第1のインバータ回路と第2のインバータ回路とを制御することにより正極母線と負極母線とに接続された蓄電手段と第1の電動機の中性点と第2の電動機の中性点とに接続された電源との電力授受を行なうと共に第1の電動機と第2の電動機とに多相交流電力を供給することにより、正極母線と負極母線との間の電圧を広い範囲で制御することができると共に第1の電動機と第2の電動機とを独立に駆動制御することができる。したがって、第1の電動機や第2の電動機の状態に応じて正極母線と負極母線との間の電位差、即ち二つのインバータ回路の入力電圧を制御することができ、第1の電動機や第2の電動機をより効率的に駆動することができる。
【0025】
【発明の実施の形態】
次に、本発明の実施の形態を実施例を用いて説明する。図1は、本発明の一実施例である動力出力装置20の構成の概略を示す構成図である。実施例の動力出力装置20は、Y結線された二つの三相コイル24,26を有する二重巻線モータ(以下、2Yモータという)22と、二つの三相コイル24,26に各々接続され正極母線34と負極母線36を共用する二つのインバータ回路30,32と、正極母線34と負極母線36とに接続されたコンデンサ38と、2Yモータ22の二つの三相コイル24,26の中性点間に設けられた直流電源40と、装置全体をコントロールする電子制御ユニット50とを備える。
【0026】
図2は、2Yモータ22の二つの三相コイル24,26の関係を例示する説明図である。2Yモータ22は、例えば外表面に永久磁石が貼り付けられたロータと、図2に例示するように二つの三相コイル24,26を回転方向に角度αだけずらして巻回されたステータとから構成されており、二つの三相コイル24,26が巻回されている点を除いて通常の発電可能な同期発電電動機と同様の構成をしている。三相コイル24,26は回転方向に角度αだけずれているから、2Yモータ22は六相のモータと考えることもできる。こうした2Yモータ22を駆動するには、インバータ回路30により三相コイル24に印加される三相交流に対して巻線ずれ角αだけ位相差をもった三相交流が三相コイル26に印加されるようインバータ回路32を制御すればよい。なお、2Yモータ22の回転軸は実施例の動力出力装置20の出力軸となっており、この回転軸から動力が出力される。実施例の2Yモータ22は前述したように発電電動機として構成されているから、2Yモータ22の回転軸に動力を入力すれば、2Yモータ22により発電できるようになっている。
【0027】
インバータ回路30,32は、共に6個のトランジスタT11〜T16,T21〜T26と6個のダイオードD11〜D16,D21〜D26とにより構成されている。6個のトランジスタT11〜T16,T21〜T26は、それぞれ正極母線34と負極母線36とに対してソース側とシンク側となるよう2個ずつペアで配置され、その接続点に2Yモータ22の三相コイル24,26(UVW)の各々が接続されている。したがって、正極母線34と負極母線36とに電圧が作用している状態で対をなすトランジスタT11〜T16,T21〜T26のオン時間の割合を巻線ずれ角αの位相差をもって制御すれば、2Yモータ22の三相コイル24,26により回転磁界を形成し、2Yモータ22を回転駆動することができる。
【0028】
電子制御ユニット50は、CPU52を中心とするマイクロプロセッサとして構成されており、処理プログラムを記憶したROM54と、一時的にデータを記憶するRAM56と、入出力ポート(図示せず)とを備える。この電子制御ユニット50には、2Yモータ22の三相コイル24,26のuvwの各相に取り付けられた電流センサ61〜66からの各相電流Iu1,Iv1,Iw1,Iu2,Iv2,Iw2や2Yモータ22の中性点に取り付けられた電流センサ67からの中性点電流Io,2Yモータ22の回転軸に取り付けられた回転角センサ68からの2Yモータ22の回転子の回転角θ,コンデンサ38に取り付けられた電圧センサ70からのコンデンサ38の端子間電圧Vc,2Yモータ22の駆動に関する指令値などが入力ポートを介して入力されている。ここで、電流センサ61〜63および電流センサ64〜66のうちの各々いずれか一つは省略可能であり、いずれか一つを異常検出専用のセンサとして用いるものとしてもよい。また、電子制御ユニット50からは、インバータ回路30,32のトランジスタT11〜T16,T21〜T26のスイッチング制御を行なうための制御信号などが出力ポートを介して出力されている。
【0029】
次に、こうして構成された実施例の動力出力装置20の動作原理について説明する。図3は、三相コイル24の中性点と三相コイル26の中性点と電位差V012が直流電源40の電圧Vbより小さい状態における電流の流れを2Yモータ22の三相コイル24,26のu相の漏れインダクタンスに着目して説明する説明図である。いま、三相コイル24の中性点と三相コイル26の中性点との電位差V012が直流電源40の電圧Vbより小さい状態でインバータ回路30のトランジスタT12がオンの状態かインバータ回路32のトランジスタT21がオンの状態を考える。この場合、図3(a)か図3(b)中に実線矢印で示す短絡回路が形成され、2Yモータ22の三相コイル24,26のu相はリアクトルとして機能する。この状態からインバータ回路30のトランジスタT12をオフすると共にインバータ回路32のトランジスタT21をオフすると、リアクトルとして機能している三相コイルのu相に蓄えられたエネルギは、図3(c)中実線矢印で示す充電回路によりコンデンサ38に蓄えられる。したがって、この回路は、直流電源40のエネルギをコンデンサ38に蓄えるコンデンサ充電回路とみなすことができる。このコンデンサ充電回路は、昇圧チョッパ回路と同様の構成となっているから、コンデンサ38の端子間電圧Vcを直流電源40の電圧Vbより高く自由に操作することができる。2Yモータ22の三相コイル24,26のvw相も、u相と同様にコンデンサ充電回路とみなすことができるから、三相コイル24の中性点と三相コイル26の中性点との電位差V012が直流電源40の電圧Vbより小さい状態とすると共にインバータ回路30のトランジスタT12,T14,T16やインバータ回路32のトランジスタT21,T23,T25をオンオフすることにより、直流電源40によりコンデンサ38を充電することができる。
【0030】
図4は、三相コイル24の中性点と三相コイル26の中性点との電位差V012が直流電源40の電圧Vbより大きい状態における電流の流れを2Yモータ22の三相コイル24,26のu相の漏れインダクタンスに着目して説明する説明図である。今度は、三相コイル24の中性点と三相コイル26の中性点との電位差V012が直流電源40の電圧Vbより大きい状態でインバータ回路30のトランジスタT11がオンでトランジスタT12がオフおよびインバータ回路32のトランジスタT21がオフでトランジスタT22がオンの状態を考える。この場合、図4(a)中に実線矢印で示す充電回路が形成され、コンデンサ38の端子間電圧Vcを用いて直流電源40を充電する。このとき、2Yモータ22の三相コイル24,26のu相は前述と同様にリアクトルとして機能する。この状態からインバータ回路30のトランジスタT11をオフするかインバータ回路32のトランジスタT22をオフすると、リアクトルとして機能している三相コイルのu相に蓄えられたエネルギは、図4(b)または図4(c)中実線矢印で示す充電回路により直流電源40を充電する。したがって、この回路はコンデンサ38のエネルギを直流電源40に蓄える直流電源充電回路とみなすことができる。2Yモータ22の三相コイル24,26のvw相も、u相と同様に直流電源充電回路とみなすことができるから、三相コイル24の中性点と三相コイル26の中性点との電位差V012が直流電源40の電圧Vbより大きい状態とすると共にインバータ回路30のトランジスタT11〜T16やインバータ回路32のトランジスタT21〜T26をオンオフすることにより、コンデンサ38により直流電源40を充電することができる。
【0031】
このように、実施例の動力出力装置20では、直流電源40によりコンデンサ38を充電したり、逆にコンデンサ38により直流電源40を充電することができるから、コンデンサ38の端子間電圧Vcを所望の値に制御することができる。コンデンサ38の端子間に電位差を生じさせると、インバータ回路30,32の正極母線34と負極母線36にはコンデンサ38による直流電源が接続された状態となり、コンデンサ38の端子間電圧Vcがインバータ入力電圧Viとして作用するから、インバータ回路30,32のトランジスタT11〜T16,T21〜T26をスイッチング制御することにより、2Yモータ22を駆動制御することができる。このとき、三相コイル24に印加する三相交流の各相の電位Vu1,Vv1,Vw1はインバータ回路30のトランジスタT11〜T16のスイッチング制御によりインバータ入力電圧Viの範囲内で自由に設定できると共に三相コイル26に印加する三相交流の各相の電位Vu2,Vv2,Vw2もインバータ回路32のトランジスタT21〜T26のスイッチング制御によりインバータ入力電圧Viの範囲内で自由に設定できるから、2Yモータ22の三相コイル24の中性点の電位V01や三相コイル26の中性点の電位V02を自由に操作することができる。図5に三相コイル24の中性点の電位V01と三相コイル26の中性点の電位V02との差が直流電源40の電圧Vbとなるよう操作したときの三相コイル24の各相の電位Vu1,Vv1,Vw1の波形(図5(a))と、三相コイル26の各相の電位Vu2,Vv2,Vw2の波形(図5(b))の一例を示す。図中、αは前述した巻線ずれ角に基づく位相差であり、Vxはインバータ入力電圧Viの中央値(Vi/2)である。したがって、2Yモータ22の三相コイル24,26の中性点間の電位差V012が直流電源40の電圧Vbより低くなるように操作してコンデンサ38を充電したり、逆に三相コイル24,26の中性点間の電位差V012が直流電源40の電圧Vbより高くなるように操作して直流電源40を充電することができる。コンデンサ38の充電電流や直流電源40の充電電流は、三相コイル24,26の中性点間の電位差V012を昇降することにより制御することができる。
【0032】
次に、実施例の動力出力装置20の駆動制御について説明する。図6は、実施例の動力出力装置20の電子制御ユニット50で実行される駆動制御を制御ブロックとして示すブロック図である。図示するように、電流センサ61〜63,64〜66により検出されたモータ線電流Iu1,Iv1,Iw1,Iu2,Iv2,Iw2を回転角センサ68により検出される2Yモータ22の回転子の回転角θを用いて三相二相変換する電流変換部M1と、2Yモータ22の駆動に関する指令値の一つとして入力される電流指令値Id*,Iq*から電流変換部M1により三相二相変換された電流Id,Iqとの偏差ΔId,ΔIqを演算する減算器M2と、偏差ΔId,ΔIqに対してPIゲインを用いてモータ電流調整用の操作量を演算するPI制御部M3と、回転角センサ68により検出される2Yモータ22の回転子の回転角θを用いて回転速度演算部M4により演算された回転速度に基づいて速度起電力の予測値を演算する速度起電力予測演算部M5と、この速度起電力予測演算部M5により演算された速度起電力の予測値とPI制御部M3で演算されたモータ電流調整用の操作量を加算して電圧操作量Vd,Vqを演算する加算器M6と、電圧操作量Vd,Vqを回転子の回転角θを用いて二相三相変換する二相三相変換部M7と、2Yモータ22の駆動に関する指令値の一つとして入力されるコンデンサ電圧指令値Vc*と電圧センサ70により検出されたコンデンサ38の端子間電圧Vcとの偏差ΔVcを演算する減算器M8と、偏差ΔVcに対してPIゲインを用いてコンデンサ電圧調整用の電池電流操作量を演算するPI制御部M9と、回転速度演算部M4により演算された回転速度と電流指令値Id*,Iq*に基づいて電池電流の予測値を演算する電池電流予測演算部M10と、この電池電流予測演算部M10により演算された電池電流の予測値とPI制御部M9により演算された電池電流操作量とを加算すると共にこの加算したものから電流センサ67により検出される電池電流Ibを減算する加減算器M11と、加減算器M11からの出力にPIゲインを用いて電池電流を調整するための三相コイル24,26の中性点間の電位差V012を設定するPI制御部M12と、この中性点間の電位差V012と二相三相変換部M7により得られる各相電位Vu1,Vv1,Vw1,Vu2,Vv2,Vw2とを加算して変調信号を得る加算器M13と、変調信号を搬送波を用いてPWM信号を演算するPWM演算部M14とを備える。なお、制御ブロックでは、三相コイル24に対するブロックと三相コイル26に対するブロックとを同一のブロックとして記載した。電流変換部M1から二相三相変換部M7および電流変換部M14は、中性点間の電位差V012を加算する点および三相コイル24と三相コイル26とに対して巻線ずれ角αに相当する位相差をもって各々処理する点を除いて通常のモータ制御と同様である。二相三相変換部M7により得られた各相電位Vu1,Vv1,Vw1,Vu2,Vv2,Vw2に減算器M8からPI制御部M12により演算される中性点間の電位差V012を加算してPWM信号を演算することにより、直流電源40に電流を流してインバータ入力電圧Viとしてのコンデンサ38の電圧Vcが指令値Vc*に保持されるよう三相コイル24,26に印加される三相交流を図5に例示するように中央値Vxからオフセットした波形とすることができる。
【0033】
ここで、PWM演算部M14で用いる搬送波の三相コイル24側に対する三相コイル26側の位相角を変化させると、モータ線電流リップルが変化する。図7に周波数を100Hz,コンデンサ38の電圧Vcを400V,直流電源40の電圧Vbを100V,巻線ずれ角αを30度,電流指令値Id*,Iq*を各々0Aとした条件で搬送波位相角を0度としたときの電流リップルのシミュレーション結果(図7(a))と搬送波位相角を180度のときの電流リップルのシミュレーション結果(図7(b))の一例を示す。図示するように、搬送波位相角を0度とした方が電流リップルは小さくなる。
【0034】
以上説明した実施例の動力出力装置20によれば、2Yモータ22の三相コイル24,26の中性点間に直流電源40を接続すると共に三相コイル24,26の中性点間の電位差V012を調節することにより、インバータ入力電圧Viとしてのコンデンサ38の端子間電圧Vcを自由に制御することができる。したがって、2Yモータ22の駆動状態に基づいて自由にインバータ入力電圧Viを調節できるから、インバータ入力電圧Viが所定の範囲内に制限されている場合や所定の電圧に固定されている場合に比して、2Yモータ22を効率よく駆動することができる。しかも、直流電源40の電圧Vbを自由に選べるから、直流電源40に対する設計の自由度を著しく大きくすることができる。
【0035】
実施例の動力出力装置20では、三相コイル24と三相コイル26とを有する2Yモータ22を駆動制御するものとしたが、図8の変形例の動力出力装置20Bに示すように、三相コイル24Bを有する第1モータ22Aと三相コイル26Bを有する第2モータ22Bとを駆動制御するものとしてもよい。この場合、第1モータ22Aと第2モータ22Bに各々の回転子の回転角θa,θbを検出する回転角センサ68A,68Bを設け、インバータ回路30により第1モータ22Aに印加される三相交流を回転角センサ68Aからの回転角θaに基づいて制御し、インバータ回路32により第2モータ22Bに印加される三相交流を回転角センサ68Bからの回転角θbに基づいて制御すればよい。こうした制御により、第1モータ22Aと第2モータ22Bとを完全に独立して駆動制御することができる。なお、この変形例の動力出力装置20Bでは、第1モータ22Aの回転軸と第2モータ22Bの回転軸の二つの出力軸を持つこととなる。
【0036】
実施例の動力出力装置20や変形例の動力出力装置20Bでは、正極母線34と負極母線36とにコンデンサ38を接続するものとしたが、コンデンサ38に代えて直流電源を接続するものとしてもよい。
【0037】
実施例の動力出力装置20では、正極母線34と負極母線36とにコンデンサ38を接続するものとしたが、図9の変形例の動力出力装置20Cに例示するように、正極母線34と三相コイル24の中性点とにコンデンサ38Caを接続すると共に三相コイル26の中性点と負極母線36とにコンデンサ38Cbを接続するものとしてもよい。こうすれば、コンデンサ38Ca,38Cbの耐圧を低くすることができる。また、図10の変形例の動力出力装置20Dに例示するように、正極母線34と三相コイル24の中性点とにコンデンサ38Daを接続すると共に三相コイル24の中性点と負極母線36とにコンデンサ38Dbを接続するものとしたり、図11の変形例の動力出力装置20Eに例示するように、正極母線34と三相コイル26の中性点とにコンデンサ38Eaを接続すると共に三相コイル26の中性点と負極母線36とにコンデンサ38Ebを接続するものとしてもよい。これらの変形例の動力出力装置20C,20D,20Eでは、正極母線34と負極母線36とに電位差センサを設けて両母線間の電位差を検出してもよいし、各コンデンサの電位差を検出するものとしてもよい。
【0038】
実施例の動力出力装置20では、二つのインバータ回路30,32により電力供給される二つの三相コイル24,26の中性点間に直流電源40を接続するものとしたが、図12の変形例の動力出力装置20Fに例示するように、三つ以上のインバータ回路30a,30b,30c・・・により電力供給される三つ以上の三相コイル24a,24b,24c・・・の各中性点間を直流電源40a,40b,40c・・・で直列に接続するものとしてもよい。
【0039】
実施例の動力出力装置20では、二つの三相コイル24,26の中性点間に直流電源40を接続するものとしたが、三相に限られず多相交流コイルの中性点間に直流電源を接続するものとしてもよい。
【0040】
実施例の動力出力装置20では、二重巻線モータを備える動力出力装置として説明したが、インバータ回路の入力電圧を可変に制御するものであれば、動力を出力しない装置にも適用することができるのは勿論である。
【0041】
「2YDCにおけるコンデンサ電圧制御」
上述のように、本実施形態では、2つの多相コイルの中性点間に直流電源を配置し、2つの多相コイルへの電力供給を制御するインバータのスイッチングを制御することで、2つのインバータの電源であるコンデンサ電圧を制御した。
【0042】
ここで、本実施形態の2YDCシステムをインバータの内部を省略して書き直すと図13のように表すことができる。
【0043】
すなわち、コンデンサCの一端は一定電圧の電源(例えば、アース)に接続されている。そして、このコンデンサCの両端がインバータINV1、インバータINV2にそれぞれ接続されている。すなわち、コンデンサCの出力が電源としてインバータINV1、INV2に入力されている。
【0044】
インバータINV1は、3相の出力U1,V1,W1を有し、ここにモータコイルM1のU,V,Wの3相のコイルがそれぞれ接続されている。また、インバータINV2は、3相の出力U2,V2,W2を有し、ここにモータコイルM2のU,V,Wの3相のコイルがそれぞれ接続されている。
【0045】
ここで、モータコイルM1、M2は、別々に示しているが、1つのモータのコイルであり、通常の場合モータに所定角度だけ異なるように配置され、その所定角度だけ異なる位相の電流が供給される。これによって、両モータコイルM1,M2に供給する電流の両方がモータ駆動電流として機能する。
【0046】
モータコイルM1、M2の各相モータコイルは中性点で共通接続されており、モータコイルM1、M2の中性点同士がバッテリBを介し接続されている。この例では、モータコイルM1の中性点にバッテリBの正極が接続され、モータコイルM2の中性点にバッテリBの負極が接続されている。
【0047】
なお、図示は省略したが、インバータINV1、INV2は、それぞれ第1電源pと第2電源m間(図示の例では第1電源pがアース)に配置された2つのスイッチングトランジスタの直列接続からなるアームを3つ有しており、これらアームの中点が各相コイル端に接続されている。
【0048】
従って、インバータINV1、INV2内のスイッチングトランジスタのオンオフを制御することによって、コンデンサCから所望の電流をモータコイルM1、M2に供給し、これらを駆動することができる。さらに、インバータINV1、INV2における上側トランジスタのオン期間と、下側トランジスタのオン期間の長さに差を付けることによって、モータコイルM1、M2における中性点から出入りするモータ駆動用の相電流以外の電流(零相電流)が制御される。
【0049】
ここで、本実施形態では、1つのコンデンサCの両端電圧(出力電圧)Vcを電源としてインバータINV1、INV2が駆動される。そして、バッテリBの両端電圧(出力電圧)Eは基本的に変動しない。そこで、零相電流を制御することで、モータコイルM1、M2の中点電位をバッテリBの電圧分だけの差を維持しつつ、任意に設定することができる。
【0050】
なお、図13に示すように、第1電源pの電圧はVp、第2電源mの電圧はVm、コンデンサCの出力電流はic、コンデンサCの両端電圧はVc(=|Vm−Vp|)、インバータINV1の第1電源pからの電流はip1、インバータINV1の第2電源mからの電流はim1、インバータINV2の第1電源pからの電流はip2、インバータINV2の第2電源mからの電流はim2である。また、モータコイルM1について、u相電流iu1,v相電流iv1、w相電流iw1、u相端電圧Vu1、v相端電圧Vv1、w相端電圧Vw1、モータコイルM2について、u相電流iu2、v相電流iv2、w相電流iw2、u相端電圧Vu2,v相端電圧Vv2、w相端電圧Vw2である。モータコイルM1の中性点電圧はVz1、モータコイルM2の中性点電圧はVz2、バッテリB電圧はE、零相電流はieである。
【0051】
特に、本システムでは、モータコイルM1、M2の中性点電位Vz1,Vz2と、インバータINV1、INV2の電源電圧、すなわちコンデンサCの出力電圧Vcの関係は、インバータINV1、INV2における上側トランジスタと、下側トランジスタのオン期間の比で定まり、2つのモータコイルM1、M2の中性点間の電位差は、バッテリB電圧E(=|Vz1−Vz2|)である。従って、インバータINV1、INV2の上側トランジスタと、下側トランジスタのオン期間の比(変調率)によって、コンデンサCの両端電圧が決定されることになる。
【0052】
また、インバータINV1、INV2は、内部のスイッチングトランジスタをPWM制御することによって、モータコイルM1、M2の中性点電位Vz1,Vz2を制御する。ここで、上側トランジスタのオン期間と下側トランジスタオン期間の比(変調率)は、図14(a)、14(b)に示すように、三角波である搬送波の一周期に対する電圧指令値の振幅の割合である。すなわち、電圧指令値を高くすると、それだけ三角波が指令値を上回る期間が少なくなる。そして、三角波が指令値を上回る期間を各相の上側トランジスタのオン期間、下側トランジスタのオフ期間とすることで、上下トランジスタのオン期間の比(すなわち変調率)が決定される。図14(a)には、インバータINV1の変調率d1が示されており、図14(b)には、インバータINV2の変調率d2が示されている。
【0053】
このように、変調率によって、中性点電位が決定され、この中性点電位とコンデンサ電圧の比は、変調率で決定される。さらに、2つの中性点電位の電位差は、バッテリBの電圧Eである。従って、変調率と、コンデンサ電圧Vcの間には、次の関係がある。
【0054】
Vc=E/(d1−d2)
そこで、両インバータINV1、INV2の変調率を制御することで、コンデンサ電圧Vcを決定することができる。
【0055】
なお、上述の例では、インバータの搬送波周期Tsに対し、デッドタイムをおかずにスイッチングトランジスタをオンオフした。すなわち、デューティー比50%の場合には、上下トランジスタとも50%の期間オンするようにした。しかし、スイッチング期間における貫通電流を完全になくすために、上下トランジスタを両方ともオフするデットタイムTdを設ける場合も多い。この場合には、上述の式は、次のように書き換えて適用される。
【0056】
Vc=E/{(d1−Td/Ts)−(d2+Td/Ts)}
このように、デットタイムを設ける場合においても、変調率d1,d2を制御することでコンデンサ電圧Vcを決定することができる。
【0057】
さらに、図15には、さらに他の変形例を示している。この例では、モータコイルとして、M1,M2,M3の3つを有している。そして、モータコイルM1,M2の中性点間がバッテリB1で接続され、モータコイルM2,M3の中性点間がバッテリB2で接続されている。また、モータコイルM1には、インバータINV1の出力が接続され、モータコイルM2には、インバータINV2の出力が接続され、モータコイルM3には、インバータINV3の出力が接続されている。そして、インバータINV1,INV2,INV3の入力には、コンデンサCの両端が接続されている。
【0058】
このようなシステムにおいて、コンデンサCの出力電圧をVc、バッテリB1の出力電圧をE1、バッテリB2の出力電圧をE2、インバータINV1の変調率をd1、インバータINV2の変調率をd2、インバータINV3の変調率をd3とすると、これらには次の関係がある。
【0059】
Vc=E1/(d1−d2)=E2/(d2−d3)
従って、この式を満足するようにして変調率d1,d2,d3を制御することで、所望のコンデンサ電圧Vcを得ることができる。また、E1/(d1−d2)と、E2/(d2−d3)の値を異ならせることで、バッテリB1,B2間における電荷を輸送することができる。
【0060】
なお、モータコイルM1,M2,M3の3つとしたが、4以上としても同様の制御を行うことができる。また、複数のモータコイルは、1つの電動機を構成しても、複数の電動機を構成してもよい。
【0061】
「振幅最大値の抑制」
次に、本システムにおける電流振幅最大値の抑制について説明する。これは、2つのモータコイルM1,M2への電流の分配を変更することで達成する。
【0062】
「実施形態の効果」
実施形態に係る制御の具体例を説明する前に、モータ出力と相電流との関係をシミュレーションで示し、本発明の電流低減効果を示す。
【0063】
このシミュレーションは以下の手順で行った。最初に、1つの相(ここでは、u相)の相電流iu1を、一回転での平均値(直流成分)idcとそれ以外の成分(交流成分)iacとに分ける。さらに、交流成分iacについては、その振幅Iacで規格化した関数g(θ)を導入する。
【0064】
すなわち、
【数1】
Figure 0003721116
とする。
【0065】
つづいて、本システムの電池電圧Eとコンデンサ電圧Vcの関係から電圧Vwを定義する。これは、相電流の振幅Iacは、コンデンサ電圧Vcから電池電圧Eを減算した電圧が最大値になるからである。また、同時に各コイルに印加される電圧vvは上述の電流iacと一定の位相差(力率cosφ)で推移すると仮定する。
【0066】
すなわち、
【数2】
Vw=Vc−E (6)
vv=Vwg(θ+φ) (7)
とする。
【0067】
また、モータ出力Woと各コイルがする仕事との関係は、コイルが6本あるので、次式のように整理できる。
【0068】
【数3】
Figure 0003721116
また、モータ出力は損失が十分に小さいとしてWo=ieEと近似できる。これの関係より次式を得る。
【0069】
【数4】
ie=Wo/E (13)
以上より、各相コイルを流れる電流は式(12)、(13)で求められるIac,ieを利用し次式で求められる。ただし、ieのリップル分は考慮していない。
【0070】
【数5】
Figure 0003721116
次に、解析に用いる条件を示す。電池電圧E=42Vまたは105V、コンデンサ電圧Vc=210V(昇圧率Vc/E=5,または2)、力率cosθ=0.8で、モータ出力Woに対する交流電流振幅の大きさの最大値の通電方法による違いを示す。
【0071】
この結果を、図16〜図18に示す。これらの図は、昇圧率の違いによる相電流最大値の違いを示しており、横軸がモータ出力、縦軸が相電流最大値(imax)、実線が相電流最大値、破線が相電流最大値のうちの直流成分(ie/3)を示している。
【0072】
図16は従来の通電時の相電流最大値、図17は零相リップル非許容条件での最大抑制通電時の相電流最大値、図18は零相リップル許容条件での最大抑制通電方法(4.2.2 節)時の、相電流最大値を示している。
【0073】
これらの図より以下のことがわかる。
【0074】
・いずれの場合にも、相電流の大きさは昇圧率により大きく変化し、昇圧率が高いほうが相電流に占める直流成分の比率が大きい。
【0075】
・また、通電法の違いによる相電流の大きさの抑制効果が確認できる。
【0076】
・Wo=40kW、昇圧比5倍で相電圧の最大値(交流成分、直流成分)を比較すると、図16の従来通電では、最大値477A(159,317A)、図17では、454A(136,317A)、図18では、402A(85,317A)である。
【0077】
「本発明の基本となる従来の通電方法の説明」
図16に示す2YDC可変型インバータの従来の通電方法について、説明する。図13に示す2YDC可変型インバータに、通常流される相電流iu1,iv1,iw1,iu2,iv2,iw2は、零相電流をie、交流電流振幅をA、ロータ回転数、回転角をそれぞれω,θ(θ=ωt)とすれば、次式で表される。
【0078】
【数6】
Figure 0003721116
ここで、A=1(A),ie=3(A)とすると、式(15)〜(20)は、図19の関係が有る。ただし、図19は上段から、iu1,iu2各々の電流が1段目、iu1とiu2との電流の和が2段目、相電流をdq軸変換した後のd軸電流id1,id2が3段目、q軸電流iq1,iq2が4段目、最終段が零相電流ieの3分の1(1相分)を示してある。
【0079】
ここで、リラクタンストルクを考えなければiq1+iq2がモータトルクに寄与する電流成分(今回のケースでは、磁石位置を解析に入れていないので、iu1+iu2がモータトルクに寄与する電流成分ともいえる)、ieが電池とコンデンサ間を流れる電流である。そして、この時の相電流の大きさの最大値は2.00(A)である。図19の関係のうち、モータ駆動トルクを発生するための電流と電池・コンデンサ間の電流の条件は、式(21)で書くことができる。
【0080】
【数7】
Figure 0003721116
さらに、式(22)、(23)を導入することにより、式(21)は以下のようにも書きかえれる。なお、式(24)において、id,iqは、dq軸で表される電流成分で、ここではコンスタントとなる。
【0081】
【数8】
Figure 0003721116
モータの巻線間に位相差がある場合(あるスター結線のコイル位置と、他のスター結線のコイル位置とが角度ξでずれている場合)には、通電される電流は式(25)〜(30)の様に書きかえられ、式(24)は式(31)となる。
【0082】
【数9】
Figure 0003721116
A=1(A)、ie=3(A)、ξ=30°とすると、式(25)〜(30)は、図20の関係が有る。このように、コイルの位相差を考慮した場合にも図19と同様の関係があることが分かる。
【0083】
「実施形態の2YDC可変型インバータの説明」
図17の実施形態では、零相電流におけるリップルの発生を許容せずに相電流の最大値を抑制する。
【0084】
すなわち、本実施形態では、図13の2YDC可変型インバータにおいて、相電流iu1,iv1,iw1に対し所定の関数を加算することで、最大振幅を抑制する。そして、加算した関数を相電流iu2,iv2,iw2から減算することで、モータの出力トルクを変動させることなく、電流の最大振幅を抑制する。また、本実施形態では、零相電流のリップルを許容しない。
【0085】
モータ出力トルクおよび零相電流の大きさを変えずに、電流振幅を減少させるためには、相電流iu1,iv1,iw1,iu2,iv2,iw2は、式(21)の関係を満足する必要がある。すなわち、次式(32)を満足する必要がある。この式は、各スター結線の対応する相の電流の和が正弦波であり、かつ各スター結線内の各相の電流の総和が零相電流の値、若しくは零相電流の値の符号を変えたものに等しいことを意味している。
【0086】
【数10】
Figure 0003721116
ここで式(32)の左辺の行列のランクが4であり、2つのフリーパラメータfu(θ),fv(θ)を導入し、式(32)を満足するように、以下のような十分条件に書きかえることができる。
【0087】
【数11】
Figure 0003721116
ここで、fu(θ),fv(θ),fw(θ)が、設計に利用できるパラメータ(自由度は2)である。
【0088】
従って、式(33)〜(42)を満たすfu(θ),fv(θ),fw(θ)(自由度は2)を与えることで、出力トルクおよび零相電流を変動させることなく、相電流iu1,iv1,iw1,iu2,iv2,iw2を変動させることができる。そして、fu(θ),fv(θ),fw(θ)を相電流iu1,iv1,iw1,iu2,iv2,iw2の最大振幅を減少するように選択することで、所期の目的を達成することができる。
【0089】
図18の実施形態では、条件を緩和し、零相電流におけるリップルの発生を許容して、相電流の最大値を抑制する。この場合には、式(39)の条件をはずすことができる。従って、fu(θ),fv(θ),fw(θ)を選択する場合の自由度が広がる。そして、相電流の最大値をより小さくすることが可能となる。
【0090】
また、上述の説明では、2つのモータコイルM1,M2間に位相差がないことを前提とした。実際には、コイル間に位相差を持たせて配置する場合も多い。この場合には、コイル電流に対応した位相差を持たせることで、位相差を持たせたことの影響を排除する。
【0091】
このような各スター結線のコイル間に位相差ξを持つ場合には、式(31)が、式(21)に変わる条件となる。すなわち、モータ発生トルクや零相電流の大きさを変えずに電流振幅を減少するためには、相電流iu1,iv1,iw1,iu2,iv2,iw2が、式(43)を満足する必要がある。この式は、各スター結線の対応するdq軸電流の和が一定であり、かつ各スター結線内の各相の電流の総和が零相電流の値、若しくは零相電流の値の符号を変えたものに等しいことを意味している。
【0092】
【数12】
Figure 0003721116
ここで、式(43)を満たす解の1つとして、前述の場合と同様に以下の結果が導かれる。
【0093】
【数13】
Figure 0003721116
ここで、fu(θ),fv(θ),fw(θ),hu(θ),hv(θ),hw(θ)が、設計に利用できるパラメータである。さらに、ξ=0°の時、式(33)、(42)の関数は、式(44)、(59)を満たす。
【0094】
そして、式(44)〜(59)を満たすfu(θ),fv(θ),fw(θ),hu(θ),hv(θ),hw(θ)を与えることで、出力トルクおよび零相電流を変動させることなく、相電流iu1,iv1,iw1,iu2,iv2,iw2を変動させることができる。さらに、fu(θ),fv(θ),fw(θ),hu(θ),hv(θ),hw(θ)を相電流iu1,iv1,iw1,iu2,iv2,iw2の最大値を抑制できる形にすることで、所期の目的を達成することができる。
【0095】
また、条件を緩和し、零相電流にリップル電流を許せば、式(50)、(51)の条件に代り、fu+fv+fw+hu+hv+hw=0が条件となる。
【0096】
「零相電流にリップルを許さない場合の具体例」
コイル間位相差ξ=0°で、上述の条件を満足する通電方法は、fu(θ),fv(θ),fw(θ)を式(60)〜(62)のように設定することにより得られる。なお、式のg1は、式(40)〜(42)の条件を満たすために入れた定数で、この場合はg1=0.867である。
【0097】
【数14】
Figure 0003721116
A=1(A),ie=3(A)の場合について、fu(θ)の波形をiu1と比較し、図21、図22に示す。図21は、fu(θ)の図とiu1の図の縦軸のスケールをあわせたもの、図22は、fu(θ)の波形を見やすくするために拡大したものである。図より、fu(θ)の波形は正弦波のピーク部分を60度幅で切り出し、それを正側負側正側の順にならべ、負側の大きさを正側の2倍に設定した波形となっている。すなわち、iu1の最大ピークのところを最も抑制する波形となっている。
【0098】
従って、このような形のfu(θ),fv(θ),fw(θ)をサインカーブに加算することによって相電流を最大電流を抑制することができ、かつこれに基づく出力トルクの変化はない。さらに、この例では、零相電流を発生しないという条件も満たしている。
【0099】
さらに、式(60)〜(62)の条件を用いた結果を図23に示す。図より、以下のことがわかる。
【0100】
・零相電流
零相電流はie=3(A)であり、リップル成分は含まれない。
【0101】
・トルク
モータトルクを発生する電流(iu1+iu2)は図19と同等で、意図どおりのトルクを発生している。
【0102】
・相電流の大きさ
相電流の大きさの最大値は、1.866(A)である。大きさの内訳は、交流による成分が0.866A、直流による成分が1Aである。
【0103】
このように、式(60)〜(62)に示すfu(θ),fv(θ),fw(θ)を利用することによって、零相電流、モータ出力トルクに影響を与えることなく、相電流の最大値を抑制することができる。
【0104】
また、ξ=0°で、零相電流にリップルを許さない場合の他の例として、3倍の高調波で交流振幅を変調する場合を示す。
【0105】
すなわち、A=1(A),ie=3(A)の場合について、fu(θ)の波形をiu1と比較し、図24に示す。この波形は、元々の交流波形の振幅を3倍の周波数を持つ正弦波で、次式のように変調した波形になっている。
【0106】
【数15】
Figure 0003721116
さらに、式(63)と(64)はつぎのように整理できる。
【0107】
【数16】
Figure 0003721116
ここで、fu(θ)=αsin(3θ)Asin(θ)とおけば、式(33)〜(42)の条件を満足する。すなわち、fu(θ)=αsin(3θ)Asin(θ)に設定することで、下記のような結果が得られる。
【0108】
図24は、このfu(θ)を示したものである。さらに、このfu(θ)を用いた結果を図25に示す。図より、以下のことがわかる。
【0109】
・零相電流
零相電流は平均値はie=3(A)である。その大きさは、加えたfu(θ)の3倍の振幅である。
【0110】
・トルク
モータトルクを発生する電流(iu1+iu2)は図19と同等であり、意図どおりのトルクを発生している。
【0111】
・相電流の大きさ
相電流の大きさの最大値は1.872(A)である。大きさの内訳は、交流による成分が0.872A、直流による成分が1Aである。
【0112】
次に、各スター結線間のコイル位置に位相差が30°ずれた場合(ξ=30°)の結果を図26に示す。この図より、以下のことがわかる。
【0113】
・零相電流
零相電流は、ie=3(A)であり、リップル成分は含まれない。
【0114】
・トルク
モータトルクを発生する電流(idとiq)は図19と同等で、意図どおりのトルクを発生している。
【0115】
・相電流の大きさ
相電流の大きさの最大値は、1.866(A)である。大きさの内訳は、交流による成分が0.866A、直流による成分が1Aである。
【0116】
・相電流の波形
ここで用いた指令値は、電流の大きさを抑制するために、急峻に変化する波形である。しかし、実際の場合には、これをフィルタリングし高周波成分を除くことにより実現する。ただし、その場合は若干電流の抑制効果は悪くなる。
【0117】
「零相電流にリップルを許す場合の具体例」
ξ=0°で、零相電流リップルを許す条件で、相電流の大きさを抑制できる通電方法の1つは、fu(θ)、fv(θ),fw(θ)を式(67)〜(69)のように流すことである。なお、式のg2は、式(40)〜(42)の条件を満たすために入れた定数で、この場合はg2=−0.637である。
【0118】
【数17】
Figure 0003721116
A=1(A)、ie=3(A)の場合について、fu(θ)の波形をiu1と比較し、図27に示す。さらに、式(67)〜(69)の条件を用いた結果を図28に示す。図より、以下のことがわかる。
【0119】
・零相電流
零相電流の平均値はie=3(A)であるが、リップル成分が含まれその大きさは0.46Aである。
【0120】
・トルク
モータトルクを発生する電流(iu1+iu2)は図19と同等で、意図どおりのトルクを発生している。
【0121】
・相電流の大きさ
相電流の大きさの最大値は、1.63(A)である。大きさの内訳は、交流による成分が0.63A、直流による成分が1Aである。
【0122】
次に、ξ=0°で、零相電流にリップルを許す場合のその他の方法の一例として、6倍の高調波を加える場合を示す。A=1(A)、ie=3(A)の場合について、fu(θ)の波形をiu1と比較し、図29に示す。なお高調波の振幅は、相電流が最小になるように最適化した値を用いている。
【0123】
さらに、このfu(θ)を用いた結果を図30に示す。図より、以下のことがわかる。
【0124】
・零相電流
零相電流は平均値はie=3(A)であるが、リップル成分が含まれる。その大きさは、加えたfu(θ)の3倍の振幅である。
【0125】
・トルク
モータトルクを発生する電流(iu1+iu2)は図19と同等で、意図どおりのトルクを発生している。
【0126】
・相電流の大きさ
相電流の大きさの最大値は1.96(A)である。大きさの内訳は、交流による成分が0.96A、直流による成分が1Aである。
【0127】
【発明の効果】
以上説明したように、本発明によれば、トルクの増減を伴うことなく、相電流の最大電流値を抑制することができ、モータとしての機能を損なうことなく、デバイスの電流容量を下げられるので,同等性能を保ちつつ、システムの低コスト化を実現できる。トルクリップルを抑制することで、モータの機能を十分なものにできる。
【0128】
また、電流抑制には、高周波成分が電流に重畳する必要がある。このため、高周波域まで電流を制御することが必要になる。しかし、回転数により制御を切り替えることにより、より効果的な制御が可能になる。
【0129】
すなわち、電流値が大きい低回転域で振幅最大値抑制を行うため、元々の制御周波数帯域が低いので,高調波を重畳しても制御が極端に難しくはならない。一方、高回転域では従来法を用いるため前述の高周波重畳時の制御問題は発生しない。さらに、中回転領域において、零相電流のリップルを抑制することで、適切な制御が行える。
【0130】
このような制御の切り替えにより、電流抑制による制御上の問題を回避しつつ,電流抑制を実現できる。
【0131】
以上、本発明の実施の形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。
【図面の簡単な説明】
【図1】 本発明の一実施例である動力出力装置20の構成の概略を示す構成図である。
【図2】 2Yモータ22の三相コイル24と三相コイル26との関係を説明する説明図である。
【図3】 三相コイル24の中性点と三相コイル26の中性点との電位差V012が直流電源40の電圧Vbより小さい状態における電流の流れを2Yモータ22の三相コイル24,26のu相の漏れインダクタンスに着目して説明する説明図である。
【図4】 三相コイル24の中性点と三相コイル26の中性点との電位差V012が直流電源40の電圧Vbより大きい状態における電流の流れを2Yモータ22の三相コイル24,26のu相の漏れインダクタンスに着目して説明する説明図である。
【図5】 三相コイル24の中性点の電位V01と三相コイル26の中性点の電位V02との差が直流電源40の電圧Vbとなるよう操作したときの三相コイル24,26の各相の電位Vu1,Vv1,Vw1,Vu2,Vv2,Vw2の波形の一例を示す説明図である。
【図6】 実施例の動力出力装置20の電子制御ユニット50で実行される駆動制御を制御ブロックとして示すブロック図である。
【図7】 搬送波位相角が0度と180度のときの電流リップルのシミュレーション結果の一例を示す説明図である。
【図8】 変形例の動力出力装置20Bの構成の概略を示す構成図である。
【図9】 変形例の動力出力装置20Cの構成の概略を示す構成図である。
【図10】 変形例の動力出力装置20Dの構成の概略を示す構成図である。
【図11】 変形例の動力出力装置20Eの構成の概略を示す構成図である。
【図12】 変形例の動力出力装置20Fの構成の概略を示す構成図である。
【図13】 2YDCの装置構成を示す図である。
【図14】 電圧指令値と、インバータ搬送波の関係を示す図である。
【図15】 モータコイルを3つとした例を示す図である。
【図16】 従来の通電方法における電流最大振幅値を示す図である。
【図17】 零相リップル非許容時における電流低減の場合の電流最大振幅値を示す図である。
【図18】 零相リップル許容時における電流低減の場合の電流最大振幅値を示す図である。
【図19】 従来の相電流と零相電流などを示す図である。
【図20】 従来の相電流と零相電流など(コイル間位相差作がある場合)を示す図である。
【図21】 リップル電流を抑制する場合における相電流と関数fを示す図である。
【図22】 図21の拡大図である。
【図23】 リップル電流を抑制する場合における相電流などを示す図である。
【図24】 3倍の高調波で交流振幅を変調する場合における相電流およびその振幅最大値を示す図である。
【図25】 3倍の高調波で交流振幅を変調する場合における相電流などを示す図である。
【図26】 リップルを抑制する場合(位相差あり)における相電流などを示す図である。
【図27】 リップル電流を許容する場合における相電流および関数fを示す図である。
【図28】 リップル電流を許容する場合における相電流などを示す図である。
【図29】 6倍の高調波で変調する場合における相電流およびその振幅最大値を示す図である。
【図30】 6倍の高調波で交流振幅を変調する場合における相電流などを示す図である。
【符号の説明】
20,20B 動力出力装置、22 2Yモータ、22A 第1モータ、22B 第2モータ、24,24B,26,26B 三相コイル、30,32 インバータ回路、34 正極母線、36 負極母線、38 コンデンサ、40 直流電源、50 電子制御ユニット、52 CPU、54 ROM、56 RAM、61〜67 電流センサ、68,68A,68B 回転角センサ、T11〜T16,T21〜T26 トランジスタ、D11〜D16,D21〜D26 ダイオード、B バッテリ、C コンデンサ、INV1,INV2 インバータ、M1,M2 モータコイル。

Claims (19)

  1. 巻線群を有する複数の多相交流負荷と、
    該複数の多相交流負荷のうちの一つの多相交流負荷に接続されたインバータ回路と、
    該インバータ回路が接続された多相交流負荷の巻線群と該多相交流負荷とは異なる少なくとも一つの多相交流負荷の巻線群の中性点間に接続された少なくとも一つの副電源と、
    該副電源が接続された多相交流負荷のうち前記インバータ回路が接続されていない多相交流負荷の有する巻線群の中性点の電位を制御する少なくとも一つの中性点電位制御手段と
    を備える駆動装置。
  2. 請求項1に記載の装置において、前記中性点電位制御手段は、該制御に係る多相交流負荷に接続されたインバータ回路を備える手段である駆動装置。
  3. 請求項1又は2に記載の装置において、前記複数の多相交流負荷は、単一の電気機器が備える負荷である駆動装置。
  4. 動力の出力が可能な動力出力装置であって、
    二つの星形結線コイルと、
    正極母線と負極母線とを共用して前記少なくとも二つの星形結線コイルの各々に多相交流電力を供給可能な二つのインバータ回路と、
    前記正極母線と前記負極母線とに接続された第1電源と、
    前記二つの星形結線コイルの中性点間に接続された第2電源と、
    を備え、
    前記二つの星形結線コイルに電流を流すことで動力を出力する動力出力装置。
  5. 前記第1電源は、充放電可能な蓄電手段である請求項4記載の動力出力装置。
  6. 請求項5に記載の装置において、
    前記二つのインバータ回路は、前記正極母線と負極母線との間に配置された上側スイッチング素子と下側スイッチング素子の直列接続をそれぞれ複数有し、上側スイッチング素子と下側スイッチング素子の接続点が対応する星形結線コイルの複数の端子にそれぞれ接続されており、
    前記二つのインバータ回路における、上側スイッチング素子と下側スイッチング素子のオン期間の比である変調率をそれぞれ個別に制御することで、前記第1電源の電圧を制御する動力出力装置。
  7. 請求項6に記載の装置において、
    前記二つのインバータの一方における変調率をd1、前記二つのインバータの他方における変調率をd2、前記第2電源の出力電圧をVb、前記第1電源の出力電圧をVcとしたときに、Vc=Vb/(d1−d2)という式に基づいて、前記二つのインバータにおける変調率をそれぞれ制御する動力出力装置。
  8. 請求項7に記載の装置において、
    前記二つのインバータにおける上側スイッチング素子および下側スイッチング素子の複数の直列接続について、すべてのスイッチング素子をオフとするデッドタイムを有する場合には、このデッドタイムを考慮して上記式を補正する動力出力装置。
  9. 請求項8に記載の装置において、
    前記二つのインバータにおけるオンオフ周期を決定する搬送波の周期をTs、その搬送波の1周期に対する前記デッドタイムをTdとしたときに、上記補正された式は、Vc=Vb/{(d1−Td/Ts)−(d2+Td/Ts)}である動力出力装置。
  10. 請求項4〜9のいずれか1つに記載の装置において、
    前記二つの星形結線コイルは、一つのロータに対応して設けられ、1つの電動機を構成する動力出力装置。
  11. 請求項10に記載の装置において、
    前記電動機の二つの星形結線コイルに供給される各々の多相交流電力の位相差を該二つの星形結線コイルの位相差と同一として該電動機から所望のトルクを出力すると共に前記第1電源の電圧を目標電圧に保持するよう前記二つのインバータ回路の複数のスイッチング素子をスイッチング制御する動力出力装置。
  12. 請求項4〜9のいずれか1つに記載の装置において、
    前記二つの星形結線コイルは、それぞれ別のロータに対応して設けられ、2つの別のモータを構成する動力出力装置。
  13. 請求項12に記載の装置において、
    二つの電動機からそれぞれ所望のトルクを出力し、かつ、前記第1電源の電圧を目標電圧に保持するよう前記二つのインバータ回路の各々の複数のスイッチング素子をスイッチング制御する動力出力装置。
  14. 請求項10に記載の装置において、
    一方の星形結線コイルに供給する電流の振幅最大値を減少させ、その減少分に対応する電流を他方の星形結線コイルへ供給する電流に加算する動力出力装置。
  15. 請求項14に記載の装置において、
    前記電動機の出力トルクに変動を生じないという条件で、前記振幅最大値を減少分および他方への加算を決定する動力出力装置。
  16. 請求項15に記載の装置において、
    前記二つの星形コイルの中性点間に流れる電流への影響を発生しないという条件で、前記振幅最大値を減少分および他方への加算を決定する動力出力装置。
  17. 二つの星形結線コイルを有する電動機と、正極母線と負極母線とを共用して前記二つの星形結線コイルの各々に多相交流電力を供給可能な二つのインバータ回路と、前記正極母線と前記負極母線とに接続された蓄電手段と、前記電動機の二つの星形結線コイルの中性点間に接続された電源とを備える動力出力装置の制御方法であって、
    前記電動機の二つの星形結線コイルに供給される各々の多相交流電力の位相差を該二つの星形結線コイルの位相差と同一とすると共に前記二つの星形結線コイルの中性点間の電位差を調節可能に前記二つのインバータ回路の複数のスイッチング素子をスイッチング制御することにより、該電動機から所望のトルクを出力すると共に前記正極母線と前記負極母線との間の電位差を所望の電位差にする動力出力装置の制御方法。
  18. 星形結線コイルを有する第1の電動機と、星形結線コイルを有する第2の電動機と、前記第1の電動機に多相交流電力を供給可能な第1のインバータ回路と、該第1のインバータ回路の正負の母線を正負の母線として前記第2の電動機に多相交流電力を供給可能な第2のインバータ回路と、前記第1のインバータ回路の正負の母線に接続された蓄電手段と、前記第1の電動機の中性点と前記第2の電動機の中性点とに接続された電源とを備える動力出力装置の制御方法であって、
    前記第1の電動機の中性点と前記第2の電動機の中性点との間の電位差を調節可能に前記第1のインバータ回路および前記第2のインバータ回路の各々の複数のスイッチング素子をスイッチング制御することにより、前記第1の電動機から所望のトルクを出力すると共に前記第2の電動機から所望のトルクを出力し、かつ、前記正極母線と前記負極母線との間の電位差を所望の電位差にする動力出力装置の制御方法。
  19. 請求項4〜16のいずれか1つに記載の装置において、
    前記二つのインバータ回路をPWM駆動することで、前記二つのインバータから前記二つの星形コイルにPWM変調した電流を供給し、
    前記二つのインバータ回路におけるPWM駆動の搬送波の位相角の差を0度に制御する動力出力装置。
JP2001331175A 2000-11-14 2001-10-29 駆動装置,動力出力装置およびその制御方法 Expired - Fee Related JP3721116B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001331175A JP3721116B2 (ja) 2000-11-14 2001-10-29 駆動装置,動力出力装置およびその制御方法
EP01127077A EP1206028B1 (en) 2000-11-14 2001-11-14 Driving apparatus, power output apparatus, and control method
US09/987,282 US6630804B2 (en) 2000-11-14 2001-11-14 Driving apparatus, power output apparatus, and control method
DE60135427T DE60135427D1 (de) 2000-11-14 2001-11-14 Antriebsgerät, Stromversorgungsgerät und Steuerungsverfahren

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-346967 2000-11-14
JP2000346967 2000-11-14
JP2001331175A JP3721116B2 (ja) 2000-11-14 2001-10-29 駆動装置,動力出力装置およびその制御方法

Publications (2)

Publication Number Publication Date
JP2002218793A JP2002218793A (ja) 2002-08-02
JP3721116B2 true JP3721116B2 (ja) 2005-11-30

Family

ID=26603958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001331175A Expired - Fee Related JP3721116B2 (ja) 2000-11-14 2001-10-29 駆動装置,動力出力装置およびその制御方法

Country Status (4)

Country Link
US (1) US6630804B2 (ja)
EP (1) EP1206028B1 (ja)
JP (1) JP3721116B2 (ja)
DE (1) DE60135427D1 (ja)

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6518736B2 (en) * 2000-06-26 2003-02-11 Toyota Jidosha Kabushiki Kaisha Mechanical power outputting apparatus and inverter apparatus
JP4023171B2 (ja) * 2002-02-05 2007-12-19 トヨタ自動車株式会社 負荷駆動装置、負荷駆動装置における電力貯蔵装置の充電制御方法および充電制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
DE10215822B4 (de) * 2002-04-10 2013-03-07 Sew-Eurodrive Gmbh & Co. Kg Umrichtersystem und Verfahren
JP2004015892A (ja) * 2002-06-05 2004-01-15 Toshiba Corp インバータの制御装置及び電気自動車
EP1522132B1 (en) * 2002-07-12 2011-05-04 Toyota Jidosha Kabushiki Kaisha Method and system for detecting the disconnection of an auxiliary power supply from a poly-phase motor
JP3896047B2 (ja) * 2002-07-26 2007-03-22 株式会社豊田中央研究所 モータ駆動制御装置
FR2843248B1 (fr) * 2002-07-30 2005-01-14 Moving Magnet Tech Mmt Procede de commande de fonctionnement synchronise d'au moins deux moteurs electriques polyphases
JP4153760B2 (ja) * 2002-09-18 2008-09-24 株式会社豊田中央研究所 モータ回路およびモータ制御方法
JP4138423B2 (ja) * 2002-09-25 2008-08-27 株式会社豊田中央研究所 動力出力装置
JP4138430B2 (ja) * 2002-09-27 2008-08-27 株式会社豊田中央研究所 インバータシステム
JP4016819B2 (ja) * 2002-12-02 2007-12-05 株式会社豊田自動織機 インバータ装置、ドライブ制御装置及びドライブ制御方法
JP2004236424A (ja) 2003-01-30 2004-08-19 Toyota Motor Corp 動力出力装置、モータ駆動方法およびモータの駆動制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体
JP2004336885A (ja) 2003-05-07 2004-11-25 Toyota Motor Corp 動力出力装置、モータ駆動方法およびモータの駆動制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体
EP1480330A3 (en) * 2003-05-22 2007-09-26 Jtekt Corporation Apparatus and method for controlling a motor
US6911810B2 (en) * 2003-07-11 2005-06-28 Wilsun Xu Reduction of energization transients in a three phase Y-connected load
JP2005045879A (ja) * 2003-07-24 2005-02-17 Toyota Motor Corp 動力出力装置およびモータの駆動制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体
JP3969385B2 (ja) * 2003-11-27 2007-09-05 日産自動車株式会社 モータ駆動4wd車両の制御装置及び制御方法
JP4446439B2 (ja) * 2004-05-25 2010-04-07 本田技研工業株式会社 可搬型発電機
JP4113527B2 (ja) 2004-11-25 2008-07-09 トヨタ自動車株式会社 動力出力装置およびそれを備えた車両
JP4679891B2 (ja) * 2004-11-30 2011-05-11 トヨタ自動車株式会社 交流電圧発生装置および動力出力装置
JP4635710B2 (ja) 2005-05-11 2011-02-23 トヨタ自動車株式会社 交流電圧出力装置
JP4591294B2 (ja) 2005-09-21 2010-12-01 トヨタ自動車株式会社 電力制御装置およびそれを備えた電動車両
JP4742781B2 (ja) * 2005-09-28 2011-08-10 トヨタ自動車株式会社 交流電圧出力装置およびそれを備えたハイブリッド自動車
JP4337797B2 (ja) 2005-09-29 2009-09-30 トヨタ自動車株式会社 電力制御装置および電動車両
JP4491434B2 (ja) * 2006-05-29 2010-06-30 トヨタ自動車株式会社 電力制御装置およびそれを備えた車両
JP4179351B2 (ja) * 2006-07-07 2008-11-12 トヨタ自動車株式会社 電源システムおよびそれを備えた車両、電源システムの制御方法、ならびに電源システムの制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
WO2008141441A1 (en) * 2007-05-23 2008-11-27 Tm4 Inc. Multiple phase electric motor and drive
US7990098B2 (en) * 2007-07-30 2011-08-02 GM Global Technology Operations LLC Series-coupled two-motor drive using double-ended inverter system
US7956563B2 (en) * 2007-07-30 2011-06-07 GM Global Technology Operations LLC System for using a multi-phase motor with a double-ended inverter system
US7786690B2 (en) * 2007-08-17 2010-08-31 Oriental Motor Co., Ltd. Motor control apparatus
JP4380755B2 (ja) 2007-10-10 2009-12-09 株式会社デンソー 回転電機装置
US8125168B2 (en) * 2007-11-19 2012-02-28 Honeywell International Inc. Motor having controllable torque
WO2009081840A1 (ja) * 2007-12-25 2009-07-02 Nabtesco Corporation モータユニット及び歯車伝動装置
CN102317800B (zh) * 2009-03-05 2014-07-30 三菱电机株式会社 绝缘老化检测装置
JP5412974B2 (ja) * 2009-03-13 2014-02-12 株式会社デンソー 三相交流同期電動機の駆動装置
CN102113204B (zh) * 2009-04-13 2013-06-19 松下电器产业株式会社 同步电动机驱动***
JP5304427B2 (ja) * 2009-05-14 2013-10-02 株式会社デンソー 回転電機の駆動システム
US8193747B2 (en) * 2009-05-28 2012-06-05 GM Global Technology Operations LLC Methods, systems and apparatus for controlling operation of two alternating current (AC) machines
JP2011015502A (ja) * 2009-06-30 2011-01-20 Panasonic Electric Works Co Ltd 配電システム
US8228014B2 (en) * 2009-07-30 2012-07-24 GM Global Technology Operations LLC Multi-phase DC/DC boost converter
KR101543039B1 (ko) * 2009-10-26 2015-08-10 현대자동차주식회사 임피던스 매칭법을 이용한 인버터 커패시터 모듈의 회로 구성방법
FR2966303B1 (fr) * 2010-10-18 2012-12-21 Renault Sa Machine electrique tournante et son procede de commande
CN101976999B (zh) * 2010-11-30 2012-05-02 中国汽车技术研究中心 用于双交流电机驱动的三桥臂九开关逆变器
JP5549567B2 (ja) * 2010-12-07 2014-07-16 株式会社デンソー 電動機装置
US8648559B2 (en) * 2011-03-16 2014-02-11 Deere & Company System for controlling rotary electric machines to reduce current ripple on a direct current bus
JP2013219869A (ja) * 2012-04-05 2013-10-24 Denso Corp 回転機の制御装置
US8908354B2 (en) * 2012-07-13 2014-12-09 Associated Research Technologies, Inc. Electrical instrument having configurable input terminal block
JP5672278B2 (ja) * 2012-08-29 2015-02-18 株式会社デンソー 3相回転機の制御装置
WO2014083980A1 (ja) * 2012-11-28 2014-06-05 富士電機株式会社 電力変換システム及びその制御方法
US9783070B2 (en) 2014-02-14 2017-10-10 Jabil Circuit, Inc. Charge transfer system
JP6285290B2 (ja) * 2014-06-17 2018-02-28 株式会社Soken 電力変換装置
CN105429536A (zh) * 2014-09-12 2016-03-23 乐金电子研发中心(上海)有限公司 一种集成起动发电***
KR20180008860A (ko) * 2015-06-11 2018-01-24 케이에스알 아이피 홀딩스 엘엘씨. 다상 머신용 변조 기법
DE102015216007A1 (de) 2015-08-21 2017-02-23 Lenze Drives Gmbh Antriebssystem
DE102015114640A1 (de) 2015-09-02 2017-03-02 Rwth Aachen Schaltungsanordnung zur Verknüpfung verschiedener elektrischer Spannungsebenen sowie Steuerungsverfahren
DE102016119892B4 (de) * 2015-10-21 2022-04-28 Denso Corporation Steuerungsgerät für eine rotierende elektrische Maschine
CN106452209A (zh) * 2016-12-07 2017-02-22 江苏理工学院 一种双永磁无刷电机同步驱动控制装置
CN106936361A (zh) * 2017-04-18 2017-07-07 沈阳永磁电机制造有限公司 一种多相永磁纯方波电机控制***
DE102017213069A1 (de) * 2017-07-28 2019-01-31 Robert Bosch Gmbh Verfahren zur Bestimmung einer Rotorlage einer elektrischen, rotierenden Maschine sowie eine elektrische, rotierende Maschine zur Durchführung eines solchen Verfahrens
DE102017126704B4 (de) * 2017-11-14 2022-04-21 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Energieübertragung im Nullsystem
JP2019103266A (ja) * 2017-12-04 2019-06-24 株式会社デンソー 多重巻線回転機の制御装置
US11387764B2 (en) * 2018-07-12 2022-07-12 Zunum Aero, Inc. Multi-inverter system for electric machine
KR20210048501A (ko) * 2018-08-07 2021-05-03 타우 모터스, 인크. 전기 모터
EP3663871A1 (en) * 2018-12-06 2020-06-10 The Swatch Group Research and Development Ltd Motor drive unit of a dc electric motor
CN112332687A (zh) * 2020-10-28 2021-02-05 哈尔滨工业大学 一种抑制共模电压和消除叠流区影响的电流源逆变器及控制策略
CN113676106B (zh) * 2021-08-09 2023-07-11 南京航空航天大学 用于六相永磁电机的双套绕组高频注入的无位置方法
DE102021131791A1 (de) * 2021-12-02 2023-06-07 Audi Aktiengesellschaft Verfahren zum Betrieb einer wenigstens eine erste Komponente und eine zweite Komponente umfassenden elektrischen Schaltungsanordnung, elektrische Schaltungsanordnung und Kraftfahrzeug

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6066655A (ja) * 1983-09-19 1985-04-16 Fukuo Shibata 回転電気機械の構造
US4641066A (en) * 1984-10-04 1987-02-03 Nippondenso Co., Ltd. Control apparatus for brushless motor
JPS6455076A (en) * 1987-08-26 1989-03-02 Fuji Electric Co Ltd Feeding system using polyphase multiple pwm inverter
US5099186A (en) 1990-12-31 1992-03-24 General Motors Inc. Integrated motor drive and recharge system
JPH0538182A (ja) 1991-07-24 1993-02-12 Hitachi Ltd エレベーター装置
JP3399134B2 (ja) * 1994-12-12 2003-04-21 株式会社明電舎 極数切替電動機の運転制御装置
JP3331881B2 (ja) * 1995-12-21 2002-10-07 三菱電機株式会社 インバータ装置、圧縮機
JP3000953B2 (ja) * 1997-03-21 2000-01-17 トヨタ自動車株式会社 動力出力装置およびその制御方法
DE19823917A1 (de) * 1997-06-03 1998-12-10 Fuji Electric Co Ltd Stromrichtervorrichtung
JP3223842B2 (ja) 1997-06-03 2001-10-29 富士電機株式会社 多相出力電力変換回路
JP3331561B2 (ja) 1997-12-12 2002-10-07 矢崎総業株式会社 電線接続部の密封方法、及び熱収縮チューブの保持治具、並びに収縮機
JP3219039B2 (ja) * 1997-12-15 2001-10-15 富士電機株式会社 電気自動車の電気システム

Also Published As

Publication number Publication date
US6630804B2 (en) 2003-10-07
EP1206028A3 (en) 2003-05-14
JP2002218793A (ja) 2002-08-02
EP1206028B1 (en) 2008-08-20
US20020105300A1 (en) 2002-08-08
DE60135427D1 (de) 2008-10-02
EP1206028A2 (en) 2002-05-15

Similar Documents

Publication Publication Date Title
JP3721116B2 (ja) 駆動装置,動力出力装置およびその制御方法
JP2003116280A (ja) 駆動装置および動力出力装置
JP4721538B2 (ja) 動力出力装置
JP2017192196A (ja) 交流電動機の制御装置
Tani et al. Dynamic stator current sharing in quadruple three-phase induction motor drives
JP4138423B2 (ja) 動力出力装置
JP4723743B2 (ja) 動力出力装置
JP2003153579A (ja) モータ駆動制御装置およびその方法
Gonçalves et al. Predictive current control of six-phase permanent magnet synchronous machines with modulated virtual vectors
Park et al. A dead time compensation algorithm of independent multi-phase PMSM with three-dimensional space vector control
JP4575555B2 (ja) 動力出力装置
CN113162481A (zh) 旋转电机装置的控制装置
JP2002027779A (ja) 動力出力装置
JP3851208B2 (ja) インバータ一体型駆動装置
JP3980324B2 (ja) モータ駆動電流制御装置およびその方法
Ammaiyappan et al. Comparative analysis of two-level and three-level multilevel inverter for electric vehicle application using BLDC motor drive
Perera et al. Robust floating capacitor voltage control of dual inverter drive for open-ended winding induction motor
Saeidabadi et al. Model predictive control of a two-motor drive using a four-leg inverter
JP4138430B2 (ja) インバータシステム
Krishna et al. A direct torque control scheme for five-phase induction motor drive with reduced current distortion
Vidya et al. Mathematical modeling of split phase machine based integrated battery charger
WO2019038814A1 (ja) 電力変換装置および電動パワーステアリング装置
JP4298896B2 (ja) 動力出力装置
US20230412097A1 (en) Systems and methods for control of multi-phase machines
JP5293697B2 (ja) 動力出力装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050909

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees