JP3712121B2 - Manufacturing method of composite fiber - Google Patents

Manufacturing method of composite fiber Download PDF

Info

Publication number
JP3712121B2
JP3712121B2 JP2002112928A JP2002112928A JP3712121B2 JP 3712121 B2 JP3712121 B2 JP 3712121B2 JP 2002112928 A JP2002112928 A JP 2002112928A JP 2002112928 A JP2002112928 A JP 2002112928A JP 3712121 B2 JP3712121 B2 JP 3712121B2
Authority
JP
Japan
Prior art keywords
fiber
fine particles
specific gravity
core component
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002112928A
Other languages
Japanese (ja)
Other versions
JP2002371435A (en
Inventor
正一 西山
和彦 田中
英治 秋庭
正夫 河本
栄一 笹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2002112928A priority Critical patent/JP3712121B2/en
Publication of JP2002371435A publication Critical patent/JP2002371435A/en
Application granted granted Critical
Publication of JP3712121B2 publication Critical patent/JP3712121B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は高比重と高強度を兼ね備えた産業資材用途に好適な複合繊維に関し、とくに海洋環境汚染の問題もなく、耐久性に優れた漁網用に好適な複合繊維に関する。
【0002】
【従来の技術】
従来、漁網、漁業用ロ−プ等に代表される水産用資材として耐水性、耐腐食性、強力、耐摩耗性、耐久性等の点で天然繊維製品に比して優れた性質を示す合成樹脂繊維製品が利用されてきた。しかしながら、天然繊維製品に比して含水率が低く、とくに比重が比較的小さいために海水中での沈降性および潮流に対する保形性が不満足であり、その利用に多くの制約を受ける難点があった。
【0003】
このような難点を克服する種々の提案がなされてきたが、繊維やロ−プ類それ自体の比重を増大させて水中への沈降性を増す技術が最も注目されてきた。繊維やロ−プ類自体の比重を増大させるための一手段として、金属鉛やその化合物を繊維に練り込む技術があるが、鉛化合物等が繊維製造工程や加工工程においてガイドとの摩擦で繊維から脱落したり、漁網として使用中に海水に溶出して鉛公害の問題が発生する可能性があった。さらに使用済の漁網を廃棄する場合においても、廃棄焼却後に鉛を含む有害成分が残るなど同様の公害問題が発生する可能性があり、安易には廃棄処分できないという問題があった。一方鉛化合物を使用しない手段として、たとえば比較的比重の大きい塩化ビニリデン系繊維が使用されてきたが、製網技術の発達に伴って高速製網に安定して供し得るような高強度の繊維が要求されるようになり、塩化ビニリデン系繊維では強度不足という問題が生じてきた。また、塩化ビニリデン系繊維からなる漁網も焼却時には塩化水素ガスが発生するために焼却処理が困難であるという問題を抱えている。このように、高比重のみならず、高強度、無公害性なども要求されるようになってきている。
【0004】
このような要求に対しても種々の提案がなされており、その1つの手段として、延伸処理により高強度を発現する樹脂と高比重粉末との組み合わせによる繊維が考えられている。具体的には(1)合成フィラメント中に亜鉛、鉛等の高比重粉末を均一分散させてなる繊維(たとえば、特公昭51−37378号公報、特開昭56−61936号公報、特開昭61−613号公報)、(2)低軟化点樹脂中に高比重粉末を混合分散し、この混合物をさらに強度付与のための樹脂と混合してなる繊維(たとえば、特公昭57−20407号公報)、(3)低軟化点樹脂と高比重粉末の混合物を芯層とし、強度付与の樹脂を鞘層とする有芯型繊維(たとえば、特開昭58−4819号公報)等が提案されている。
【0005】
しかしながら、(1)の提案では、繊維の比重を十分に上げようとすると粉末の添加量が多くなり、繊維自体の強度が比重の向上に反比例して低下する欠点を有している。また(2)の提案では、粉末が混合された低軟化点樹脂が繊維の延伸方向に伸びて部分的にかつ不規則に埋没偏在する繊維となり、このため該繊維の製造が繁雑であることのほかに、同一繊維径で上述の(1)の提案と比較して含有せしめる高比重粉末の量が当然少なくなる制約があり、比重増大の程度に著しい制限を受けることになる。さらに(3)の提案では、異種樹脂界面における非親和性に起因する界面歪みの増大に伴い、糸質の低下、耐久性の低下等の欠点を有しているばかりか、低軟化点樹脂中の高比重粉末が均一に分散されていないので繊維繊度の高いものしか得ることができない欠点を有している。
【0006】
【発明が解決しようとする課題】
本発明の目的は、高沈降性と製網加工上問題のない十分な繊維強度を兼ね備え、かつ長期間漁網として使用しても強度低下のない優れた耐久性、耐候性を有する繊維を提供することにある。
【0007】
【課題を解決するための手段】
すなわち、本発明は、酸化鉄微粒子と二酸化チタン微粒子を合計で50〜85重量%含有する、比重が1以上である熱可塑性ポリマーを芯成分とし、ポリエステルを鞘成分とし、かつ300℃における剪断速度が1.0×101 〜5×102 sec-1の全領域において、芯成分の溶融粘度aと鞘成分の溶融粘度bとの比(a/b)が5.0〜0.05を満足する芯成分と鞘成分を複合紡糸し、加熱延伸した後に、芯成分の熱可塑性ポリマーの(融点または軟化点−80)℃以上、鞘成分のポリエステルの(融点または軟化点−5)℃以下の温度で熱処理を施すことを特徴とする複合繊維の製造方法である。
【0008】
【発明の実施形態】
本発明により得られる複合繊維は、比重1.5以上、タフネスが60以上、かつ強度が3.5g/デニ−ル以上を兼ね備えているものである。該複合繊維の比重が1.5未満の場合、海水中での高沈降性と漁網の保形性を達成することが困難であり、強度が3.5g/デニ−ル未満の場合には高速製網時に繊維が損傷するので実用的でない。またタフネスは強度と伸度の積で示されるが、該値が60未満の場合、すなわち伸度が低い場合には潮流・波浪に対する疲労性、耐久性が低く、漁網としての用をなさない。このような観点から、1.55以上の比重と4.0g/デニ−ル以上の強度、80以上のタフネスを有する繊維であることが望まれる。
【0009】
そして、本発明においては、繊維を高比重化するために比重が3以上の非鉛系無機微粒子を含有させることが必須である。比重が3未満の無機微粒子を使用する場合は、目的の繊維比重を達成するために繊維中の該無機微粒子の含有量を高め、しかも複合繊維における芯成分の複合比率を大きくしなければならず、たとえ目的とする繊維比重の繊維が得られたとしても曳糸性、延伸性等の工程性が不良で、繊維強力も低いものしか得られないので漁網としての用途には不適となる。
【0010】
該無機微粒子の種類としては非鉛系金属の微粒子またはその化合物の微粒子を挙げることができる。「非鉛系金属」とは、鉛や錫等環境問題を極めて起こしやすい金属以外の金属を意味しており、具体的にはチタン、鉄、銅、亜鉛、銀、バリウム、ジルコニウム、マンガン、アンチモン、タングステン等の金属やその酸化物、塩などを挙げることができる。本発明においては、無機微粒子としてかかる金属やその酸化物、塩などから所望に応じて適宜選択することができるが、微粒子の比重、ポリマ−中での微粒子の分散性、ポリマ−の熱分解を促進させることのない非触媒性等の点で二酸化チタン、酸化鉄、硫酸バリウム等を使用することが好ましい。さらに該無機微粒子は1種類のみならず、2種類以上を混合して使用することもできる。
【0011】
また該無機微粒子の芯成分中の含有量は50〜85重量%であることが必要である。該含有量が50重量%未満の場合は目的とする繊維比重を得るためには複合繊維における芯成分比率を大きくしなければならず、繊維強力の低いものしか得られなくなる。一方、該含有量が85重量%を越える場合は紡糸時のポリマ−溶融流動性が悪くなり、糸切れが頻発する。
【0012】
該無機微粒子の粒子径は、一次粒子の平均粒子径が5μm以下であることが望ましい。粒子径が5μmを越えると紡糸・延伸時に断糸や毛羽が多発しやすくなる。該粒子径があまり小さくなると、ポリマ−中に微粒子を添加させる時に、成形加工時の熱により熱凝集が発生して逆に粗大粒子化したり、紡糸時にポリマ−溶融ラインの配管中で微粒子の熱凝集が発生しやすくなりラインが詰まるというトラブルが多発しやすくなる。したがって、該無機微粒子の一次粒子の平均粒子径は0.05μm以上であることが好ましい。
【0013】
該無機微粒子としてまず酸化鉄を使用する場合について説明する。酸化鉄には色調が黒色のマグネタイトすなわち磁鉄鉱(Fe3 O4 )、茶色のγ型ヘマタイト、赤褐色のα型ヘマタイト等があるが、定置網等の漁網用繊維においては色相を黒色系とすると魚に警戒感を与えないため、漁獲高に好結果を与えることができ、黒色を呈する磁鉄鉱を使用することが好ましい。磁鉄鉱を他の無機微粒子と併用する場合には、使用する無機微粒子全体の20重量%以上を磁鉄鉱にすると染色処理等を簡素化または省略することができるが、この場合においても鞘成分として原着ポリエステルを使用することは何等差支えない。
【0014】
また酸化鉄の粒子形状としては球状、八面体状、六面体状、多面体状等があり、いずれの形状をも使用することができるが、球状の酸化鉄微粒子を使用すると芯成分中での分散性が最も良好となり望ましい。とくに、無機微粒子を多量にポリマ−中に添加する場合には、球状微粒子の使用が顕著な効果を奏し、凝集による紡糸時のフィルタ−詰まりの発生も少なく、しかも紡糸・延伸時の糸切れ発生も少ない。
【0015】
さらに該酸化鉄は、シリカやフェライト等の有機系または無機系化合物により表面コ−ティング処理が施されていてもよく、表面コ−ティング処理がなされた微粒子を使用するとポリマ−の熱分解が抑制され、微粒子分散性をさらに向上させることができるので好ましい。
【0016】
酸化鉄は芯成分中に含有される無機微粒子として単独で使用されてもよいが、芯成分中でその含有率が50重量%を越えると粒子形状、粒子径の適切な酸化鉄を用いても溶融押出時のライン中での熱凝集によるコンタミの発生や、激しい場合には配管の詰まり等のトラブルが生じる場合がある。芯成分中に含有される無機微粒子として酸化鉄を使用し、50重量%を越える含有率にするためには酸化鉄と他の微粒子とを併用することが好ましい。とくに細デニ−ルの糸を製造する場合等では、溶融ポリマ−のライン中での滞留時間が長くなり、ライン詰まりのトラブル発生の原因ともなる。
【0017】
酸化鉄と併用する他の微粒子は、比重が3以上で、かつ一次粒子の平均粒子径が5μm以下、しかも熱凝集性が余りなく、コスト的にも高価でないものを選択することが好ましい。好適な例としては二酸化チタン、酸化亜鉛、硫酸バリウム、アルミナ、フェライト、リトポン、酸化銅、酸化マグネシウム等挙げられ、中でも芯成分中の無機微粒子の分散性等の点で二酸化チタンがとくに好ましい。酸化鉄と二酸化チタンとを併用する場合の混合率は、芯成分に対する合計含有量が50〜85重量%の範囲内であれば任意に変更しても紡糸性、延伸性等良好で大きなトラブルの発生もなく、目的とする繊維を得ることができる。好適な混合率の例を挙げると酸化鉄/二酸化チタン=20/80〜70/30(重量比)である。たとえば、芯成分中の微粒子の合計量が70重量%の場合、酸化鉄を30重量%、二酸化チタンを40重量%にしたり、合計量が60重量%の場合、酸化鉄を30重量%、二酸化チタンを30重量%にすると、得られた繊維の色相が好ましいものとなる。
【0018】
このように、芯成分中の微粒子の含有量が50重量%以上の高含有量で、しかもその中に酸化鉄を高添加するする場合には二酸化チタンを併用して添加することにより、溶融押出時のライン詰まり等のトラブルがなく、しかも芯成分中の分散性が良好で、工程中の糸切れも少なく、A格率が高い状態で目的とする繊維が得られることは、本発明者等が種々検討した中で初めて見出されたことである。
【0019】
次に、無機微粒子として二酸化チタンを使用する場合について説明する。本発明は優れた機械的物性と高比重を兼ね備えた漁網用繊維を提供すると同時に、種々の色相に対応できる漁網用繊維を提供することを目的としている。しかしながら、上述のように、無機微粒子として酸化鉄のような着色微粒子を高含有率で使用した場合、色相を自由に変更することができにくくなるが、無機微粒子として二酸化チタンを使用すると、二酸化チタンが白色であり、このような白色系微粒子を芯成分中に添加し、鞘成分であるポリエステルに所望の色の顔料等を配合することで芯成分の色に邪魔されることなく目的とする色相を発現させることができるのである。
【0020】
二酸化チタンは、結晶形によりアナタ−ゼ型(Anatase)、ルチル型(Rutile)、ブルカイト型(Brookite)の3つの形態があり、一般に顔料として使用されているのはアナタ−ゼ型とルチル型である。とくに、合成繊維には工程上の摩耗性に及ぼす硬度の関係と溶剤または分散媒に対する分散性の問題からアナタ−ゼ型が主として使用されているが、比重が高い点、耐光性に優れている点において本発明においてはルチル型を使用することが好ましい。この場合、モ−ス硬度がルチル型のほうがアナタ−ゼ型のものより大きく、工程上の摩耗等のトラブルが発生する懸念があるが、本発明の複合繊維においては、無機微粒子を含有する芯成分を鞘成分で実質的に覆っているので、紡糸時のノズル口金の摩耗や加工工程中のガイド類やロ−ラ類の摩耗損傷等の問題はない。
【0021】
また、二酸化チタンは他の無機微粒子に比し、ポリマ−中に高含有率で添加しても、ポリマ−の溶融押出時に熱凝集が起こり難く、溶融ポリマ−ライン中でのコンタミによる詰まりが発生しにくく、紡糸時のフィルタ−詰まりも少なく、かつ紡糸・延伸時の糸切れの発生も少ない。かかる二酸化チタンの表面はチタン、アルミナ、シリカ等の無機系または有機系化合物によりコ−ティング処理が施されていてもよく、表面コ−ティング処理がなされた微粒子を使用すると耐熱性や微粒子分散性をさらに向上させることができるので好ましい。
【0022】
二酸化チタンは単独で使用してもよいし、比重が3以上でかつ平均粒子径が5μm以下の他の微粒子と併用してもよい。また併用する微粒子が、上述したような熱凝集の問題を生じ易いものであっても、二酸化チタンを15重量%以上、とくに40重量%以上使用することにより分散性の向上が期待できる。他の微粒子としては、たとえば酸化錫(スズ石)等に比して毒性の少ない酸化亜鉛、アルミナ、硫酸バリウム、リトポン、酸化マグネシウム等を使用することができる。なお、二酸化チタンは紫外線によるチタン原子の励起により芯成分を構成する熱可塑性ポリマ−の劣化を促進しやすいので酸化防止剤を併用することが好ましい。
【0023】
本発明において芯成分を構成する熱可塑性ポリマ−は比重が1以上であることが必要である。該熱可塑性ポリマ−の比重が1未満の場合、繊維の比重を高めるためには微粒子の含有量を多くせざるを得ず、より工程調子を乱すことになる。
【0024】
また、一般に無機微粒子を高含有率で含有するポリマ−を溶融紡糸する際、特異な粘性挙動のために極めて紡糸調子が悪化することが問題となる。かかる粘性挙動とは低剪断下では溶融粘度が高く、一方高剪断下では溶融粘度は低くなるという、いわゆるチクソトロピ−性を示す。紡糸パックに、無機微粒子を高含有率で含有するポリマ−が供給される導入部においては剪断速度が100 sec-1オ−ダ−であるが、ノズル孔に分配される分流板では102 sec-1オ−ダ−、さらには鞘成分であるポリマ−と合流して押し出されるノズルでは103 sec-1オ−ダ−にも達するのである。チクソトロピ−性の顕著なポリマ−流は、この大きな剪断速度の変化の下で溶融粘度に大きな斑が生じ、ノズル単孔辺りの吐出量が変動し、芯鞘のバランスが崩れるために極めて紡糸が困難となる。本発明ではかかる点をも検討した結果、無機微粒子を多量に含有する芯成分と鞘成分であるポリエステルの溶融粘度が重要であることを見い出した。すなわち、300℃における剪断速度が1.0×101 〜5×102 sec-1の全領域において、芯成分の溶融粘度aと鞘成分であるポリエステルの溶融粘度bとの比(a/b)が5.0〜0.05の範囲にあることが望ましいのである。かかる範囲に芯成分と鞘成分の溶融粘度比がある場合にのみ、無機微粒子を多量に含有する芯成分と鞘成分の合流が円滑に行われ、複合紡糸・延伸性等の操業性も向上する。しかも無機微粒子が芯成分を構成する熱可塑性ポリマ−中に均一に分散され、目的とする複合繊維を操業性よく製造することが可能となったのである。好ましい溶融粘度比(a/b)は1.5〜0.8である。
【0025】
かかる溶融粘度比(a/b)を調整するには、まず芯成分のチクソトロピ−性を極力抑制した上で、鞘成分のポリマ−の極限粘度を設定することが望ましい。芯成分のチクソトロピ−性の抑制手段としては、無機微粒子の表面積を小さくすべく球形のものを選択して粒子径を大きくするか、極力比重の高いものを選択し無機微粒子の添加率を下げること;芯成分のポリマ−の分子量、融点の適性化;芯成分のポリマ−と無機微粒子との親和性を向上させるべくカップリング剤を添加することなどを挙げることができる。
【0026】
上述のような条件、すなわち比重、融点、溶融粘度を満足する熱可塑性ポリマ−としてはナイロン6、ナイロン66、ナイロン610、ナイロン11、ナイロン12等のポリアミド;ポリエチレンテレフタレ−ト、ポリブチレンテレフタレ−ト、ポリヘキサメチレンテレフタレ−ト等のポリエステルを挙げることができる。
【0027】
本発明のように、無機微粒子を高添加する場合には、該無機微粒子とポリマ−とのヌレ性およびポリマ−中での分散性が良好で、紡糸性、延伸性が最も良好な熱可塑性ポリマ−を使用することが好ましく、かかる観点から本発明においてはポリアミド、とくにナイロン6を主成分とするポリアミドを使用することが好ましい。好適な例として用いるナイロン6の重合度は、数平均分子量で約22000以下、とくに20000以下6000以上であることが好ましい。重合度が高すぎると、無機微粒子を高添加した芯成分の溶融粘度が高くなりすぎ、トラブルが発生したり、無機微粒子の分散不良が生じやすい。また、実際に無機微粒子を高添加したポリマ−を溶融押出して繊維化する際、溶融粘度が高すぎると設備上のトラブルが多発しやすくなると同時に断糸が多発してくるため好ましくない。一方、重合度が低すぎると溶融粘度が鞘成分に対して低くなりすぎるため芯鞘界面の形成が困難となる。
【0028】
加えて、芯成分を構成する熱可塑性ポリマ−としてポリアミドを使用する場合、芯成分として水分を500ppm以下、とくに300ppm以下とすることが好ましい。ポリアミドのような吸水性ポリマ−に多量に無機微粒子を含有せしめると、水分率が高い場合、溶融時に極端に流動性が低下し、工程調子を著しく害してしまう問題がある。一般に、ポリアミドは、その水分量が500〜1000ppm程度で使用されているのに対し、無機微粒子を多量に含有させる本発明においてはとくに配慮しなければならない点である。また、ポリアミドは少量の第3成分を共重合していたり、また少量の添加剤、安定剤等を含んでいてもよい。
【0029】
本発明の複合繊維の主な使用目的は漁業用途であるが、漁網は屋外で使用されるため経時的な耐候性が重要な課題であり、長期間使用している間に強力の低下が発生し、実用上問題となるものは使用することができない。上述のような無機微粒子が多量に添加されたポリアミドを芯成分として使用した場合、漁網として長期間使用した時に繊維強度低下が生じてくる可能性があるが、本発明においては該ポリアミドに対して0.01重量%以上、とくに0.1重量%以上、2重量%以下の範囲でヨウ化銅等の銅塩を熱安定剤として添加することにより、経時的な繊維強度低下は実用上問題とならないレベルまで改良される。
【0030】
本発明において鞘成分であるポリエステルとしては、ポリエチレンテレフタレ−ト、ポリブチレンテレフタレ−トを主成分とするポリエステルが好ましい。また、かかるポリエステルには少量の第3成分が共重合されていてもよく、たとえば、イソフタル酸、フタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸、4,4’ージフェニルエーテルジカルボン酸、4,4’ージフェニルメタンジカルボン酸、4,4’ージフェニルスルホンジカルボン酸、4,4’ージフェニルイソプロピリデンジカルボン酸、1,2ージフェノキシエタンー4’,4”ージカルボン酸、アントラセンジカルボン酸、2,5ーピリジンジカルボン酸、ジフェノキシケトンジカルボン酸、5ーナトリウムスルホイソルタル酸、ジメチル5ーナトリウムスルホイソフタレート、5ーテトラブチルホスホニウムスルホイソフタル酸等の芳香族ジカルボン酸;マロン酸、コハク酸、アジピン酸、アゼライン酸、セバチン酸等の脂肪族ジカルボン酸;デカリンジカルボン酸、シクロヘキサンジカルボン酸等の脂環族ジカルボン酸;βーヒドロキシエトキシ安息香酸、p−オキシ安息香酸、ヒドロキシプロピオン酸、ヒドロキシアクリル酸等のヒドロキシカルボン酸;またこれらのエステル形成性誘導体から誘導されたカルボン酸、εーカプロラクトン等の脂肪族ラクトン、トリメチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、ジエチレングリコール、ポリエチレングリコール等の脂肪族ジオール;ヒドロキノンカテコール、ナフタレンジオール、レゾルシン、ビスフェノールA、ビスフェノールAのエチレンオキサイド付加物、ビスフェノールS、ビスフェノールSのエチレンオキサイド付加物等の芳香族ジオール;シクロヘキサンジメタノール等の脂肪族ジオールなどを挙げることができる。これらの第3成分は1種のみまたは2種以上共重合されていてもよい。
【0031】
さらに本発明のポリエステルには、ポリエステルが実質的に線状である範囲内でトリメリット酸、トリメシン酸、ピロメリット酸、トリカルバリル酸等の多価カルボン酸;グリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール等の多価アルコールが含まれていてもよい。該ポリエステルには蛍光増白剤、安定剤等の添加剤が含有されていてもよい。とくに、複合繊維全体の耐候性、すなわち経時間的な強度保持率をさらに良好なレベルに維持するにはカ−ボンブラックを鞘成分であるポリエステルに含有させてもよい。
【0032】
かかるポリエステルの極限粘度〔η〕は0.7以上であることが好ましい。なお、極限粘度はフェノ−ル/テトラクロロエタンの等重量混合溶媒中、30℃で測定した値である。通常の衣料用繊維において、ポリエチレンテレフタレ−トの極限粘度は0.60〜0.65程度のものが使用されるのに対し、本発明では目的とする繊維強度を発現させるために、通常の重合度よりさらに重合度の大きいポリエステルを使用したものである。極限粘度が0.7未満では、繊維比重1.5以上、繊維強度3.5g/デニ−ル以上およびタフネス60以上をいずれをも満足することは難しく、鞘成分と芯成分との複合比率を変更し、鞘成分リッチにすれば繊維比重が目標とするレベルまで至ることができず、逆に芯成分リッチにすれば繊維強度、タフネスが目標とするレベルまで至らないという結果になった。すなわち、鞘成分として極限粘度が0.7以上のポリエステルを用いることにより、初めて繊維強度、タフネス、比重のいずれをも満足するものが得られたわけである。
【0033】
本発明における極限粘度は、紡糸後の繊維中の鞘成分であるポリエステルの極限粘度である。すなわち、紡糸時に熱分解または加水分解等で重合度低下が生じる場合は、その分を見込んだやや高めの重合度のポリエステルを用いて繊維化しなければならないことはいうまでもないことである。
【0034】
ところで、本発明においては鞘成分であるポリエステルに着色剤を添加して、前述したような漁網用途に適した色相にすることができ、該ポリエステルの溶融紡糸温度に耐え得る耐熱性を有する有機顔料や無機顔料を適宜使用することができる。具体的には、カ−ボンブラック、アントラキノン系褐色着色剤、アントラキノン系紫色着色剤、ベンゾキノン系赤色着色剤、通常の原着用着色剤を使用することができ、これらの着色剤は単独または2種類以上併用して添加率0.1〜5重量%の範囲内でポエリエステルに配合され得る。該着色剤の添加量が0.1重量%未満の場合には十分な「色相」や「ツヤ」を呈する漁網用原着糸を得ることが困難であり、また添加量が5重量%を越えると強力の低下が大きくなるので好ましくない。
【0035】
とくに、現在必要とされる漁網用原着糸の色相の大部分が黒色であるが、このような場合、カ−ボンブラックを鞘成分であるポリエステルに1〜3重量%添加することが好ましい。カ−ボンブラックは紫外線を吸収しポリエステルの劣化を防ぐ効果があり、繊維の耐候性、すなわち経時的な繊維強度の低下を防止でき、相乗的な効果を発現することができる。また、繊維形成後に所望の色に染色することも可能である。
【0036】
本発明の複合繊維は、上述したような無機微粒子を含有した芯成分を鞘成分であるポリエステルで実質的に覆った断面形状をしている。ここで「実質的に覆った断面形状」とは繊維表面周長の60%以上、好ましくは80%以上が鞘成分で占められていることを示す。紡糸・延伸工程におけるガイドやロ−ラの摩擦および糸切れをより一層防ぎ、芯成分と鞘成分との界面剥離の問題を解決するために、本発明においては芯成分が鞘成分で完全に覆われていることが好ましく、かかる断面形状としては同芯芯鞘型、偏芯芯鞘型などがあり、芯の数としては1〜4を挙げることができる。
【0037】
芯成分と鞘成分との複合重量比率は前者/後者=20/80〜70/30、好ましくは前者/後者=20/80〜50/50である。鞘成分の複合重量比率が少なすぎると繊維強度の低下が生じ、一方、鞘成分の複合重量比率が多すぎると繊維比重を高くする効果が十分発揮できなくなる。
【0038】
本発明の複合繊維を得るための方法はとくに限定されるものではないが、鞘成分であるポリエステルと芯成分とを別々の溶融系で加熱溶融しておき、それぞれ通常の押出紡糸装置により紡糸口金まで送り、紡糸口金直前で両成分を所望の芯鞘型の複合形状に合わせて合流させ、押し出して得られる糸条を巻取り、さらに延伸、熱処理することにより得られる。また紡糸口金から押し出した後、巻き取ることなく直ちに延伸する方法や、紡糸口金から押し出した後、高速で巻取り、そのまま製品とする方法も用いることができる。
【0039】
具体的にはおおよそ4000m/分以下の速度で引取り、一旦これを巻き取った後に延伸するいわゆるPOYやFOY延伸法、または巻き取ることなく延伸するスピンドロ−法、さらには4000m/分以上の高速で引き取るDSY法、あるいはDSY法においてノズルと引取りロ−ラの間にヒ−タ−を設け、延伸しながら引き取る方法などが採用される。中でも好ましいのは、300〜4000m/分、さら好ましくは600〜2000m/分で引き取り延伸し(FOYでもスピンドロ−でも良い)、ついで熱処理する方法である。該速度が300m/分未満では、未延伸糸の配向度が低く、所望の繊維強度を得るためには延伸倍率を上げる必要が生じ、その結果、繊維中に多数のボイドが発生し、繊維の高比重化が十分達成できない場合がある。一方該速度が4000m/分を越える、いわゆるDSYといわれる領域で引き取る場合は、延伸熱処理操作を実施しなくても目標物性が得られることもあるが、前述した引取り速度で引取り延伸熱処理する方法に比較し繊維強度が低下することは避けられない。
【0040】
延伸は一段延伸でも二段延伸でもよい。また延伸倍率は紡糸速度により様々に変化するので一義的に特定できないが、破断に至る倍率の75〜85%程度の倍率を採用することが好ましい。とくに、本発明の繊維の製造において特徴的な点は延伸後の熱処理である。すなわち、芯成分を構成する熱可塑性ポリマ−の(融点−80)℃以上、鞘成分であるポリエステルの(融点−5)℃以下の温度で熱処理を施すことに特徴があり、かかる熱処理温度としては毛羽が発生しない範囲で高めに設定する方が繊維比重が高く、かつ強度、タフネスの大きい繊維が得られる。芯成分を構成する熱可塑性ポリマ−の融点に近いか、もしくはそれ以上の温度で加熱されることにより、繊維が収縮しつつ延伸時に発生した繊維中での無機微粒子周辺のボイドがある程度修復されるためと推定され、また熱処理温度を高めることにより繊維の機械的性質を発現させる鞘成分の結晶化が促進されるためと推定される。
【0041】
かかる熱処理温度が鞘成分であるポリエステルの(融点−5)℃を越えると断糸が多発し、芯成分を構成する熱可塑性ポリマ−の(融点−80)℃未満の場合は上述の無機微粒子周辺のボイドを充分に修復することが困難である。好ましい熱処理温度は芯成分を構成する熱可塑性ポリマ−の(融点−60)℃以上、鞘成分であるポリエステルの(融点−10)℃以下である。具体例を示すと、芯成分を構成する熱可塑性ポリマ−がナイロン6の場合、熱処理温度を160℃以上、255℃以下にすることが望ましい。
【0042】
また、延伸を安定化させ、かつ無機微粒子周辺のボイドの発生を抑制するには延伸時の加熱を熱ロ−ル等の接触加熱方式に加えてスチ−ムジェットや空気加熱等の非接触加熱方式を併用することが好ましい。これは、芯成分を構成する熱可塑性ポリマ−の融点よりも十分高い温度で芯成分の流動性を高めた状態で延伸しようというものであり、たとえば芯成分を構成する熱可塑性ポリマ−がナイロン6であるときには350℃以上、好ましくは400℃以上、さらに好ましくは430℃以上の温度スチ−ムジェットを用いて加熱延伸することが好ましい。なお、かかるスチ−ムジェットの温度は、本発明における熱処理温度そのものを示すものではなく、本発明における熱処理温度とは接触加熱温度を意味するものである。これらの知見から、芯成分を構成する熱可塑性ポリマ−の融点は鞘成分であるポリエステルの融点より20℃以上、とくに30℃以上高いことが必要となり、必然的に該熱可塑性ポリマ−の融点は200℃以上が必要となる。
【0043】
本発明の複合繊維は単独または他の繊維と混用して広汎な用途に使用され得る。他の繊維と混用する場合には、混繊、合糸、合撚、交織、交編、その他あらゆる手段を用いることができ、さらに得られた布帛は必要に応じて種々後加工処理を施して各種の用途に供することができる。本発明の複合繊維の好適な用途としては、従来にない高比重、実用に耐え得る繊維強力、タフネスを有するポリエステル系繊維である特徴を最大限に生かせる刺網類、曳網類、旋網類、建網類、敷網類等各種魚網用途に好適である。とくに、サケ、ブリ、マグロ、アジ、サバ、イワシ、スズキ、イカ等の定置網用として最適である。
【0044】
上述の魚網用途以外の用途として土木工事等で使用されるシルトプロテクタ−用を始め、従来にない高比重性能を保持したポリエステル系繊維として各種産業資材用途への応用が可能である。また産業資材用途以外にもカ−テン、暗幕等非衣料分野への応用も好適である。
【0045】
【実施例】
以下、実施例により本発明を詳述するが、本発明はこれら実施例により何等限定されるものではない。なお、実施例中における各物性値は以下の方法により測定したものである。
(1)ポリエステルの極限粘度〔η〕:フェノ−ルとテトラクロロエタンの等重量混合溶媒を用い、30℃で測定した。
(2)ナイロンの数平均分子量:ウオ−タ−ズ社製HLC−510によるGPCクロマトグラムにより測定した。
(3)無機微粒子の平均粒径:堀場製作所社製の遠心式自動粒度分布測定装置CAPA−500により測定した。
(4)繊維比重:四塩化炭素とノルマルヘキサンを用い、密度勾配法により20℃で測定した。
(5)繊維強度、伸度およびタフネス:島津製作所社製の引張試験機(オ−トグラフIM−100)を用い、20℃、65RH%で測定した。なお、タフネスは破断点の強度と伸度との積で示す。
(6)ポリマ−の溶融粘度(ポイズ)(株)東洋精機製キャピログラフ1C型を用い、300℃で測定した。
【0046】
実施例1
数平均分子量11000のナイロン6粉末〔宇部興産(株)社製、P1011F〕を芯成分を構成する熱可塑性ポリマ−として用い、芯成分の無機微粒子として平均粒子径0.2μmの球状の磁鉄鉱粉末〔戸田工業(株)社製、表面フェライトコ−ト品、比重5.0〕30重量%と、平均粒子径0.35μmの二酸化チタン〔チタン工業(株)社製、ルチル型、比重4.2〕40重量%との混合物を用い、芯成分として二軸混練機で溶融混練してストランド状に押出し、ストランドを切断してペレット化し、90℃で真空乾燥して水分を180ppmにした。一方、鞘成分として二酸化チタン0.08重量%含有する極限粘度〔η〕=0.80のポリエチレンテレフタレ−トを使用し、該ポリエステルは常法により溶融重合しペレット化したものを使用した。
【0047】
芯成分および鞘成分を別々の溶融押出機で溶融押出しし、紡糸温度295℃、複合重量比率(芯成分/鞘成分)1/2の同芯芯鞘型となるようにノズル部で合流し、ノズル口径0.4mmφ、8ホ−ルのノズルを用いて吐出させ、1000m/分の速度で巻き取った。このとき得られた複合繊維を形成している鞘成分のポリエチレンテレフタレ−トの極限粘度〔η〕は0.75であった。
【0048】
得られた紡糸原糸をホットロ−ラ温度80℃、ホットプレ−ト温度140℃で延伸倍率4.0倍で延伸し、つづいて3%のオ−バ−フィ−ドを入れながらホットロ−ラ温度180℃で熱処理した後、75デニ−ル/8フィラメントのマルチフィラメントを巻き取った。このマルチフィラメント糸の断面形状を顕微鏡観察したところ、芯鞘複合比率がいずれの繊維においてもまた長さ方向においてもほぼ一定であり、毛羽もなかった。また紡糸・延伸工程におけるトラブルの発生も認められなかった。延伸糸の繊維比重は1.58、強度は4.5g/デニ−ル、タフネスは67.5であった。
【0049】
この延伸糸を合糸して網を作成し、海中に投入して観察したところ、沈降性良好であり、海中での網揺れも少なく、かつ耐久性に優れ、魚網として好適な繊維であることが確認された。
【0050】
また、延伸時の熱処理温度を変化させることにより得られた延伸糸の繊維比重が異なることがわかった。上述した紡糸条件で得られた紡糸原糸を以下の条件で延伸した結果、以下の物性を有する延伸糸が得られた。
【0051】
【表1】

Figure 0003712121
【0052】
収縮処理時の処理温度が高い程、繊維物性が良好な繊維が得られるが、該処理温度が極端に高くなると延伸毛羽が多発してくるため好ましくない。
【0053】
また、磁鉄鉱粉末を上記のものに代えて表面コ−ティングされていない磁鉄鉱粉末〔戸田工業(株)社製、比重5.0〕を用いて同様にして繊維化を行った。その結果、延伸糸の繊維比重は1.53であり、表面コ−ティング品使用の場合よりも若干比重が低いものであった。
【0054】
実施例2
芯成分中にヨウ化銅を0.2重量%添加したこと以外は実施例1と同様にして複合繊維(延伸糸)を製造し、得られた延伸糸の強度保持性について測定した。評価手段として83℃下でカ−ボンフェ−ド照射400時間照射後の強度保持率と、83℃下でキセノンウエザ−照射400時間照射後の強度保持率について調べた。その結果、カ−ボンフェ−ド照射400時間後のn=5の平均強度保持率は約86%、キセノンウエザ−照射400時間後のn=5の平均強度保持率は約84%であった。これに対して、実施例1で得られた複合繊維(延伸糸)はカ−ボンフェ−ド照射400時間後のn=5の平均強度保持率は約42%、キセノンウエザ−照射400時間後のn=5の平均強度保持率は約36%であった。
【0055】
実施例3〜6
芯成分中に含有される無機微粒子として、磁鉄鉱粉末50重量%、二酸化チタン20重量%の計70重量%の混合物を(実施例3)、磁鉄鉱粉末20重量%、二酸化チタン50重量%の計70重量%の混合物を(実施例4)、磁鉄鉱粉末10重量%、二酸化チタン60重量%の計70重量%の混合物を(実施例5)、磁鉄鉱粉末30重量%、二酸化チタン20重量%の計50重量%の混合物を(実施例6)使用した以外は実施例2と同様にして複合繊維を得た。いずれも工程性のトラブルもなく、しかも良好な繊維物性を有する繊維が得られた。実施例4で得られた複合繊維の色相は灰色を呈し、黒色とやや異なるレベルであった。また実施例5で得られた複合繊維の色相は白っぽい灰色であった。
【0056】
実施例7〜8
実施例2において、鞘成分であるポリエチレンテレフタレ−トの極限粘度〔η〕を0.85にした以外(実施例7)、芯成分と鞘成分の複合重量比率を(芯成分/鞘成分)=1/1にした以外(実施例8)は同様にして複合繊維を得た。いずれも工程性のトラブルもなく、しかも良好な繊維物性を有する繊維が得られた。各実施例における複合繊維の諸物性を表1および表2に示す。
【0057】
【表2】
Figure 0003712121
【0058】
【表3】
Figure 0003712121
【0059】
実施例9〜10
実施例2において、二酸化チタンの代わりに、平均粒径1.0μmの酸化亜鉛(比重5.5)を用い(実施例9)、平均粒径2.0μmのアルミナ(比重3.98)を用いた(実施例10)以外は同様にして複合繊維を得た。いずれも紡糸時にやや毛羽が発生したこと以外は工程性が良好で、しかも繊維物性も良好なものであった(表1および表2参照)。
【0060】
実施例11〜12
実施例2において、芯の数を3(実施例11)、芯の数を4(実施例12)にした以外は同様にして複合繊維を得た。いずれも工程性が良好で、しかも繊維物性も良好なものであった。
【0061】
実施例13
実施例2において、数平均分子量11000のナイロン6に代えて、数平均分子量22000であるナイロン6〔宇部興産(株)社製、P1022〕を用いた以外は同様にして複合繊維を得た。得られた複合繊維の諸物性を表1および表2に示す。
【0062】
実施例14
極限粘度〔η〕=0.70のポリエチレンテレフタレ−トを芯成分を構成する熱可塑性ポリマ−として用い、芯成分の無機微粒子として平均粒子径0.5μmの硫酸バリウム(比重4.35)70重量%を用い、芯成分として二軸混練機で溶融混練してストランド状に押出し、ストランドを切断してペレット化した。一方、鞘成分として二酸化チタン0.08重量%含有する極限粘度〔η〕=0.80のポリエチレンテレフタレ−トを使用し、該ポリエステルは常法により溶融重合しペレット化したものを使用した。
【0063】
芯成分および鞘成分を別々の溶融押出機で溶融押出しし、紡糸温度295℃、複合重量比率(芯成分/鞘成分)1/2の同芯芯鞘型となるようにノズル部で合流し、ノズル口径0.4mmφ、8ホ−ルのノズルを用いて吐出させ、1000m/分の速度で巻き取った。このとき得られた複合繊維を形成している鞘成分のポリエチレンテレフタレ−トの極限粘度〔η〕は0.75であった。
【0064】
得られた紡糸原糸をホットロ−ラ温度80℃、ホットプレ−ト温度140℃で延伸倍率4.0倍で延伸し、つづいて3%のオ−バ−フィ−ドを入れながらホットロ−ラ温度180℃で熱処理した後、75デニ−ル/8フィラメントのマルチフィラメントを巻き取った。このマルチフィラメント糸の断面形状を顕微鏡観察したところ、芯鞘複合比率がいずれの繊維においてもまた長さ方向においてもほぼ一定であり、毛羽もなかった。また紡糸・延伸工程におけるトラブルの発生も認められなかった。延伸糸の繊維比重は1.52、強度は4.1g/デニ−ル、タフネスは61.5であった。
【0065】
この延伸糸を合糸して網を作成し、海中に投入して観察したところ、沈降性良好であり、海中での網揺れも少なく、かつ耐久性に優れ、魚網として好適な繊維であることが確認された。
【0066】
比較例1
鞘成分として紡糸前に極限粘度〔η〕が0.65であるポリエチレンテレフタレ−トチップを用い、紡糸後の極限粘度〔η〕が0.60となるように紡糸してこと以外は実施例2と同様の方法で複合繊維を得た。その結果、紡糸時、延伸時に毛羽がやや発生し、鞘成分の粘度が低いため繊維強度が2.5g/デニ−ルと低く、実施例2で得られた繊維よりも劣るものであった。
【0067】
比較例2
無機微粒子として磁鉄鉱物15重量%と二酸化チタン15重量%の混合物を使用した以外は実施例2と同様の方法で複合繊維を得た。紡糸・延伸工程は良好で繊維化可能であったが、繊維比重が1.45であり、実施例2で得られた繊維よりも劣るものであった。
【0068】
比較例3〜4
実施例2において、二酸化チタンの代わりに平均粒子径0.1μm、比重2.2の二酸化ケイ素粒子を用い(比較例3)、平均粒子径1.0μm、比重2.5のカオリン粒子を用い(比較例4)た以外は実施例2と同様にして複合繊維を得た。いずれも毛羽が多発いし、紡糸せい、延伸性はあまり良くなかった。得られた各々の複合繊維の比重も、実施例2で得られた繊維よりも劣るレベルのものであった。
【0069】
比較例5〜6
実施例2において、複合重量比率(芯成分/鞘成分)を15/85(比較例5)、15/85(比較例6)にした以外は実施例2と同様にして複合紡糸を行った。比較例5においては繊維化が良好であったが、繊維比重性能としてはレベルの劣るものであった。比較例6においては紡糸性、延伸性が不良で毛羽、断糸が多発し、性能評価できるレベルの繊維を得ることはできなかった。これら各比較例の結果を表1および表2に示す。
【0070】
実施例15
数平均分子量11000のナイロン6粉末〔宇部興産(株)社製、P1011F〕を芯成分を構成する熱可塑性ポリマ−として用い、芯成分の無機微粒子として平均粒子径0.35μmの二酸化チタン〔チタン工業(株)社製、比重4.2〕70重量%とを用い、芯成分として二軸混練機で溶融混練してストランド状に押出し、ストランドを切断してペレット化し、100℃の窒素循環により水分率を460ppmにした。一方、鞘成分として平均粒子径0.03μmのカ−ボンブラック(テグサ社製)を1.5重量%含有する極限粘度〔η〕=0.80のポリエチレンテレフタレ−トを使用し、該ポリエステルは常法により溶融重合しペレット化したものを使用した。
【0071】
これらの芯成分および鞘成分を実施例2と同様にして紡糸、延伸し複合繊維を得た。該複合繊維の鞘成分であるポリエチレンテレフタレ−トの極限粘度〔η〕は0.75であった。また繊維比重は1.57、強度は4.6g/デニ−ル、伸度は18%であり、魚網用途として優れた性能を有していた。
【0072】
実施例16
二酸化チタンの含有量を55重量%にした以外は実施例15と同様にして複合繊維を得た。得られた複合繊維の比重は1.53、強度は5.2g/デニ−ル、伸度は20%であり、紡糸性、延伸性ともに優れていた。
【0073】
実施例17
実施例15において、無機微粒子として二酸化チタン50重量%と平均粒子径1.0μm、比重5.5の酸化亜鉛20重量%の混合物を使用した以外は同様にして複合繊維を得た。得られた複合繊維の比重は1.58、強度は4.5g/デニ−ル、伸度は15%であり、紡糸時に若干の毛羽が発生したものの、延伸性に優れ、漁網用途として優れた性能を有していた。
【0074】
実施例18
実施例15において、無機微粒子として二酸化チタン50重量%と平均粒子径2.0μm、比重3.9のアルミナ20重量%の混合物を使用した以外は同様にして複合繊維を得た。得られた複合繊維の比重は1.56、強度は4.5g/デニ−ル、伸度は15%であり、紡糸時に若干の毛羽が発生したものの、延伸性に優れ、漁網用途として優れた性能を有していた。
【0075】
実施例19
実施例15において、無機微粒子として二酸化チタン50重量%と平均粒子径0.6μm、比重4.3の硫酸バリウム20重量%の混合物を使用した以外は同様にして複合繊維を得た。得られた複合繊維の比重は1.57、強度は4.5g/デニ−ル、伸度は14%であり、紡糸時に若干の毛羽が発生したものの、延伸性に優れ、漁網用途として優れた性能を有していた。実施例15〜19で得られた複合繊維につき、各成分構成、繊維物性等を表3および表4に示す。
【0076】
【表4】
Figure 0003712121
【0077】
【表5】
Figure 0003712121
【0078】
実施例20
数平均分子量11000のナイロン6粉末を芯成分を構成する熱可塑性ポリマ−として用い、芯成分の無機微粒子として平均粒子径0.35μmの二酸化チタン60重量%を用いて芯成分とし(水分率100ppm)、二酸化チタン0.08重量%含有する極限粘度〔η〕=0.95のポリエチレンテレフタレ−トを鞘成分として、別々の押出機で溶融押出しし、紡糸温度300℃、複合重量比率(芯成分/鞘成分)1/1の同芯芯鞘型となるようにノズル部で合流し、ノズル口径0.5mmφ、200ホ−ルのノズルを用いて吐出させた。吐出糸条は、ノズル直下に設けた20cm長、380℃の加熱帯域を通過させた後、25℃、毎分7Nm3 の冷却風で冷却し、オイリングロ−ラで紡糸油剤を付与し、紡糸速度600m/分で引き取った。
【0079】
引き続き、該糸条を巻き取ることなく、延伸、熱処理を以下の要領で実施し巻き取った。
延 伸:110℃の熱ロ−ルで加熱後、400℃の加熱蒸気を噴射しつつ4.3倍に一段延伸。
熱処理:220℃の熱ロ−ルと弛緩ロ−ルとの間で3%の熱収縮処理。
その結果、工程安定性は良好で、1004デニ−ル、強度4.0g/デニ−ル、伸度18%、比重1.62の漁網用繊維として実用性の高い繊維が得られた。
【0080】
実施例21
数平均分子量12000のナイロン6粉末を芯成分を構成する熱可塑性ポリマ−として用い、芯成分の無機微粒子として平均粒子径0.35μmの二酸化チタン25重量%と平均粒子径0.2μmのα型ヘマタイト粉末〔戸田工業(株)社製、比重5.2〕50重量%との混合物を用いて芯成分とし(水分率200ppm)、カ−ボンブラック(テグサ社製)1.0重量%含有する極限粘度〔η〕=1.0のポリエチレンテレフタレ−トを鞘成分として、別々の押出機で溶融押出しし、紡糸温度300℃、複合重量比率(芯成分/鞘成分)1/2の同芯芯鞘型となるようにノズル部で合流し、ノズル口径0.6mmφ、100ホ−ルのノズルを用いて吐出させた。吐出糸条は、ノズル直下に設けた20cm長、380℃の加熱帯域を通過させた後、25℃、毎分7Nm3 の冷却風で冷却し、オイリングロ−ラで紡糸油剤を付与し、紡糸速度600m/分で引き取った。
【0081】
引き続き、該糸条を巻き取ることなく、延伸、熱処理を以下の要領で実施し巻き取った。
延 伸:110℃の熱ロ−ルで加熱後、450℃の加熱蒸気を噴射しつつ4.8倍に一段延伸。
熱処理:210℃の熱ロ−ルと弛緩ロ−ルとの間で4%の熱収縮処理。
その結果、工程安定性は良好で、1002デニ−ル、強度5.5g/デニ−ル、伸度19%、比重1.62の漁網用繊維として実用性の高い繊維が得られた。
【0082】
比較例7
加熱蒸気の温度を300℃とした以外は実施例20と同様にして複合繊維を製造したが、その結果、強度3.3g/デニ−ル、伸度20%、比重1.54とわずかではあるが、繊維強度が本発明に達しない繊維が得られた。延伸時に芯成分を構成する熱可塑性ポリマ−の流動性が不十分であることに起因するものと思われ、延伸時に断糸が多発した。
【0083】
実施例22〜23および比較例8
延伸後の熱処理温度を245℃(実施例22)、160℃(実施例23)、256℃(比較例8)とした以外は実施例20と同様にして複合繊維を製造した。その結果、実施例22においては強度4.2g/デニ−ル、伸度21%、比重1.63と高強度、高比重の複合繊維を得ることができた。また実施例23においては強度3.7g/デニ−ル、伸度15%、比重1.53の複合繊維が得られた。比較例8においては繊維が一部融着し、断糸した。
【0084】
比較例9
実施例1において、芯成分の水分率を650ppmにしたところ、ノズル孔からビス落ちが生じ、全く紡糸不可能であった。
【0085】
比較例10
実施例5において、二酸化チタンの粒子径を0.02μとした以外は実施例5と同様にしてチップを作成し、複合紡糸を試みた。剪断速度が1×101 sec-1の時、芯成分の溶融粘度は30×103 ポイズ、鞘成分の溶融粘度は7.0×103 ポイズであり、剪断速度が5×102 sec-1の時、芯成分の溶融粘度は0.08×103 ポイズ、鞘成分の溶融粘度は7.0×103 ポイズであった。すなわちa/bは剪断速度が1×101 sec-1の時には4.3であり、剪断速度が5×102 sec-1の時には0.02であった。この時、ノズル面で単糸切れが多発し、紡糸が不可能であった。
【0086】
【発明の効果】
本発明によれば、特定の無機微粒子が高添加された芯成分とポリエステルからなる鞘成分による複合繊維を得ることにより、従来にない高強力と高比重を兼ね備え、しかも定置網用繊維として公害問題がなく、かつ好適な色相を有した複合繊維を提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a composite fiber suitable for industrial material applications having both high specific gravity and high strength, and more particularly to a composite fiber suitable for fishing nets having excellent durability and no problem of marine environmental pollution.
[0002]
[Prior art]
Conventionally, synthetic materials that are superior to natural fiber products in terms of water resistance, corrosion resistance, strength, wear resistance, durability, etc. as marine materials represented by fishing nets, fishing ropes, etc. Resin fiber products have been used. However, its moisture content is lower than that of natural fiber products, and its specific gravity is relatively small, so it is unsatisfactory in terms of sedimentation in seawater and shape retention against tidal currents. It was.
[0003]
Various proposals have been made to overcome such difficulties, but the technology that increases the specific gravity of fibers and ropes themselves to increase the sedimentation property in water has received the most attention. As a means for increasing the specific gravity of fibers and ropes themselves, there is a technique of kneading metallic lead or a compound thereof into fibers, but lead compounds and the like are produced by friction with guides in the fiber manufacturing process and processing process. May have fallen out of the water, or may be eluted into seawater during use as a fishing net, leading to lead pollution problems. Furthermore, even when used fishing nets are discarded, there is a possibility that similar pollution problems may occur, such as lead-containing harmful components remaining after disposal and incineration, which makes it difficult to dispose of them. On the other hand, as a means not using lead compounds, for example, vinylidene chloride fibers having a relatively large specific gravity have been used. However, high-strength fibers that can be stably used for high-speed netting with the development of netting technology have been developed. As a result, there has been a problem of insufficient strength with vinylidene chloride fibers. Further, fishing nets made of vinylidene chloride fibers also have a problem that incineration is difficult because hydrogen chloride gas is generated during incineration. As described above, not only high specific gravity but also high strength, pollution-free property and the like have been demanded.
[0004]
Various proposals have been made to meet such demands, and as one means there is considered a fiber made of a combination of a resin exhibiting high strength by a stretching process and a high specific gravity powder. Specifically, (1) fibers obtained by uniformly dispersing high specific gravity powders such as zinc and lead in a synthetic filament (for example, Japanese Patent Publication Nos. 51-37378, 56-61936, 61) -613), (2) a fiber obtained by mixing and dispersing a high specific gravity powder in a low softening point resin, and further mixing this mixture with a resin for imparting strength (for example, Japanese Patent Publication No. 57-20407) (3) A cored fiber (for example, Japanese Patent Application Laid-Open No. 58-4819) or the like in which a mixture of a low softening point resin and a high specific gravity powder is used as a core layer and a strength-imparting resin is used as a sheath layer has been proposed. .
[0005]
However, the proposal (1) has a drawback that if the specific gravity of the fiber is sufficiently increased, the amount of powder added increases, and the strength of the fiber itself decreases in inverse proportion to the increase in specific gravity. Further, in the proposal (2), the low softening point resin mixed with the powder becomes a fiber that is partially and irregularly buried unevenly extending in the fiber stretching direction, and therefore the production of the fiber is complicated. In addition, there is a restriction that the amount of high specific gravity powder contained in the same fiber diameter as compared with the above proposal (1) is naturally reduced, and the degree of increase in specific gravity is significantly limited. Further, in the proposal (3), not only has the interface strain caused by non-affinity at the interface between different types of resins have the disadvantages of lowering the yarn quality and lowering the durability, but also in the low softening point resin. The high specific gravity powder is not uniformly dispersed, so that only high fiber fineness can be obtained.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a fiber having excellent durability and weather resistance that has both high sedimentation properties and sufficient fiber strength that does not cause problems in net making, and that does not decrease in strength even when used as a fishing net for a long period of time. There is.
[0007]
[Means for Solving the Problems]
That is, the present invention comprises a thermoplastic polymer containing 50 to 85% by weight of iron oxide fine particles and titanium dioxide fine particles, having a specific gravity of 1 or more as a core component, polyester as a sheath component, and a shear rate at 300 ° C. Is 1.0 × 10 1 ~ 5x10 2 sec -1 In the whole region, the core component and the sheath component satisfying the ratio (a / b) of the melt viscosity a of the core component to the melt viscosity b of the sheath component of 5.0 to 0.05 were composite-spun and stretched by heating. Thereafter, heat treatment is performed at a temperature of (melting point or softening point −80) ° C. or more of the thermoplastic polymer of the core component and (melting point or softening point −5) ° C. or less of the polyester of the sheath component. Is the method.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The composite fiber obtained by the present invention has a specific gravity of 1.5 or more, a toughness of 60 or more, and a strength of 3.5 g / denier or more. When the specific gravity of the composite fiber is less than 1.5, it is difficult to achieve high sedimentation in seawater and shape retention of a fishing net, and when the strength is less than 3.5 g / denier, it is high speed. This is not practical because the fiber is damaged during the net making. The toughness is indicated by the product of strength and elongation. When the value is less than 60, that is, when the elongation is low, fatigue and durability against tidal currents and waves are low, and it is not used as a fishing net. From such a viewpoint, it is desirable that the fiber has a specific gravity of 1.55 or more, a strength of 4.0 g / denier or more, and a toughness of 80 or more.
[0009]
In the present invention, it is essential to contain lead-free inorganic fine particles having a specific gravity of 3 or more in order to increase the specific gravity of the fiber. When inorganic fine particles having a specific gravity of less than 3 are used, the content of the inorganic fine particles in the fiber must be increased and the composite ratio of the core component in the composite fiber must be increased in order to achieve the target fiber specific gravity. Even if a fiber having the desired specific gravity is obtained, the processability such as spinnability and stretchability is poor, and only those having low fiber strength can be obtained, making it unsuitable for use as a fishing net.
[0010]
Examples of the inorganic fine particles include non-lead metal fine particles or fine particles of a compound thereof. “Non-lead metal” refers to metals other than metals that are extremely susceptible to environmental problems such as lead and tin. Specifically, titanium, iron, copper, zinc, silver, barium, zirconium, manganese, antimony And metals such as tungsten and oxides and salts thereof. In the present invention, the inorganic fine particles can be appropriately selected from such metals, oxides and salts thereof as desired, but the specific gravity of the fine particles, the dispersibility of the fine particles in the polymer, and the thermal decomposition of the polymer. It is preferable to use titanium dioxide, iron oxide, barium sulfate, etc. in terms of non-catalytic properties that are not promoted. Further, the inorganic fine particles can be used not only in one kind but also in a mixture of two or more kinds.
[0011]
The content of the inorganic fine particles in the core component needs to be 50 to 85% by weight. When the content is less than 50% by weight, the core component ratio in the composite fiber must be increased in order to obtain the target fiber specific gravity, and only those having low fiber strength can be obtained. On the other hand, when the content exceeds 85% by weight, the polymer melt fluidity at the time of spinning deteriorates and yarn breakage frequently occurs.
[0012]
As for the particle diameter of the inorganic fine particles, the average particle diameter of primary particles is desirably 5 μm or less. When the particle diameter exceeds 5 μm, yarn breakage and fluff are likely to occur frequently during spinning and drawing. If the particle size is too small, when the fine particles are added to the polymer, heat aggregation occurs due to the heat during the molding process, resulting in coarse particles or the heat of the fine particles in the polymer melt line piping during spinning. Aggregation is likely to occur and troubles such as clogging of lines are likely to occur. Therefore, the average particle size of the primary particles of the inorganic fine particles is preferably 0.05 μm or more.
[0013]
First, the case where iron oxide is used as the inorganic fine particles will be described. Iron oxide includes black magnetite, that is, magnetite (Fe3 O4), brown γ-type hematite, red-brown α-type hematite, etc. However, in fishnets such as stationary nets, if the hue is black, the fish will be wary Therefore, it is preferable to use magnetite that exhibits a black color and can give good results to catch. When magnetite is used in combination with other inorganic fine particles, if 20% or more of the total inorganic fine particles to be used is magnetite, the dyeing process etc. can be simplified or omitted. It is safe to use polyester.
[0014]
The particle shape of iron oxide includes spherical, octahedral, hexahedral, and polyhedral shapes, and any shape can be used, but if spherical iron oxide fine particles are used, dispersibility in the core component Is the best and desirable. In particular, when a large amount of inorganic fine particles are added to the polymer, the use of spherical fine particles has a remarkable effect, there is little occurrence of filter clogging during spinning due to agglomeration, and yarn breakage during spinning and drawing. There are few.
[0015]
Further, the iron oxide may be subjected to a surface coating treatment with an organic or inorganic compound such as silica or ferrite, and the use of fine particles subjected to the surface coating treatment suppresses thermal decomposition of the polymer. It is preferable because the fine particle dispersibility can be further improved.
[0016]
Iron oxide may be used alone as inorganic fine particles contained in the core component, but if the content exceeds 50% by weight in the core component, iron oxide having an appropriate particle shape and particle diameter may be used. Contamination may occur due to thermal aggregation in the line during melt extrusion, and in severe cases, troubles such as clogging of piping may occur. It is preferable to use iron oxide in combination with other fine particles in order to use iron oxide as the inorganic fine particles contained in the core component and to achieve a content exceeding 50% by weight. In particular, when a fine denier yarn is manufactured, the residence time of the molten polymer in the line becomes long, which may cause trouble of line clogging.
[0017]
As the other fine particles used in combination with iron oxide, it is preferable to select those having a specific gravity of 3 or more, an average primary particle diameter of 5 μm or less, less thermal aggregation and less expensive. Preferable examples include titanium dioxide, zinc oxide, barium sulfate, alumina, ferrite, lithopone, copper oxide, magnesium oxide and the like. Among these, titanium dioxide is particularly preferable in view of dispersibility of inorganic fine particles in the core component. The mixing ratio when iron oxide and titanium dioxide are used in combination is good if the total content with respect to the core component is in the range of 50 to 85% by weight. The target fiber can be obtained without occurrence. An example of a suitable mixing ratio is iron oxide / titanium dioxide = 20/80 to 70/30 (weight ratio). For example, when the total amount of fine particles in the core component is 70% by weight, iron oxide is 30% by weight and titanium dioxide is 40% by weight. When the total amount is 60% by weight, iron oxide is 30% by weight, When the titanium content is 30% by weight, the hue of the obtained fiber becomes preferable.
[0018]
Thus, in the case where the content of fine particles in the core component is a high content of 50% by weight or more, and when iron oxide is added at a high level, it is added by using titanium dioxide in combination. The present inventors have no troubles such as line clogging at the time, good dispersibility in the core component, little yarn breakage during the process, and a desired fiber with a high A rating. Was first discovered in various studies.
[0019]
Next, the case where titanium dioxide is used as the inorganic fine particles will be described. An object of the present invention is to provide a fishing net fiber having both excellent mechanical properties and high specific gravity, and at the same time, to provide a fishing net fiber that can cope with various hues. However, as described above, when colored fine particles such as iron oxide are used as the inorganic fine particles at a high content, it is difficult to freely change the hue. However, when titanium dioxide is used as the inorganic fine particles, titanium dioxide is used. Is white, and such white fine particles are added to the core component, and the desired hue is obtained without being disturbed by the color of the core component by blending a desired color pigment into the sheath component polyester. Can be expressed.
[0020]
Titanium dioxide has three forms of anatase type (anatase), rutile type (rutile) and brookite type (brookite) depending on the crystal form, and generally used as pigments are anatase type and rutile type. is there. In particular, anatase type is mainly used for synthetic fibers because of the relationship between hardness on process wear and the problem of dispersibility in solvents or dispersion media, but it has high specific gravity and excellent light resistance. In this respect, it is preferable to use a rutile type in the present invention. In this case, the Mohs hardness is larger in the rutile type than in the anatase type, and there is a concern that troubles such as wear in the process may occur. However, in the composite fiber of the present invention, the core containing inorganic fine particles Since the component is substantially covered with the sheath component, there are no problems such as wear of the nozzle cap during spinning and wear damage of the guides and rollers during the processing.
[0021]
Titanium dioxide is less likely to cause thermal aggregation during melt extrusion of the polymer even when added at a high content in the polymer compared to other inorganic fine particles, and clogging occurs due to contamination in the molten polymer line. The filter is not clogged during spinning, and the occurrence of yarn breakage during spinning / drawing is small. The surface of the titanium dioxide may be coated with an inorganic or organic compound such as titanium, alumina, or silica, and if fine particles that have been surface-coated are used, heat resistance and fine particle dispersibility Can be further improved.
[0022]
Titanium dioxide may be used alone or in combination with other fine particles having a specific gravity of 3 or more and an average particle size of 5 μm or less. Further, even if the fine particles used in combination tend to cause the problem of thermal aggregation as described above, improvement of dispersibility can be expected by using titanium dioxide at 15% by weight or more, particularly 40% by weight or more. As other fine particles, for example, zinc oxide, alumina, barium sulfate, lithopone, magnesium oxide and the like which are less toxic than tin oxide (tin stone) can be used. Titanium dioxide is preferably used in combination with an antioxidant because it easily promotes deterioration of the thermoplastic polymer constituting the core component by excitation of titanium atoms by ultraviolet rays.
[0023]
In the present invention, the thermoplastic polymer constituting the core component needs to have a specific gravity of 1 or more. When the specific gravity of the thermoplastic polymer is less than 1, in order to increase the specific gravity of the fiber, the content of fine particles must be increased, and the process condition is further disturbed.
[0024]
Further, generally, when a polymer containing a high content of inorganic fine particles is melt-spun, there is a problem that the spinning condition is extremely deteriorated due to a unique viscous behavior. Such a viscous behavior indicates a so-called thixotropic property in which the melt viscosity is high under low shear while the melt viscosity is low under high shear. In the introduction portion where the polymer containing the inorganic fine particles in a high content is supplied to the spinning pack, the shear rate is on the order of 100 sec-1 but on the flow dividing plate distributed to the nozzle holes, 102 sec- In the order of 1 order, and a nozzle that is extruded by joining with a polymer that is a sheath component, it reaches 10 3 sec-1 order. Polymer flow with remarkable thixotropy is very spun due to large spots in the melt viscosity due to this large change in shear rate, fluctuations in the discharge rate around the nozzle single hole, and the balance of the core sheath is lost. It becomes difficult. As a result of studying this point, the present invention has found that the melt viscosity of the polyester, which is a core component and a sheath component, containing a large amount of inorganic fine particles is important. That is, the ratio (a / b) between the melt viscosity a of the core component and the melt viscosity b of polyester as the sheath component in the entire region where the shear rate at 300 ° C. is 1.0 × 10 1 to 5 × 10 2 sec −1. It is desirable to be in the range of 5.0 to 0.05. Only when there is a melt viscosity ratio between the core component and the sheath component in such a range, the core component and sheath component containing a large amount of inorganic fine particles are smoothly merged, and the operability such as composite spinning and stretchability is improved. . In addition, the inorganic fine particles are uniformly dispersed in the thermoplastic polymer constituting the core component, and the intended composite fiber can be produced with good operability. A preferable melt viscosity ratio (a / b) is 1.5 to 0.8.
[0025]
In order to adjust the melt viscosity ratio (a / b), it is desirable to set the intrinsic viscosity of the sheath component polymer after first suppressing the thixotropy of the core component as much as possible. To reduce thixotropic properties of the core component, select a spherical one to reduce the surface area of the inorganic fine particles and increase the particle diameter, or select one with a high specific gravity as much as possible to lower the addition rate of the inorganic fine particles. The molecular weight and melting point of the core component polymer can be optimized; a coupling agent can be added to improve the affinity between the core component polymer and the inorganic fine particles.
[0026]
As thermoplastic polymers satisfying the above-mentioned conditions, that is, specific gravity, melting point and melt viscosity, polyamides such as nylon 6, nylon 66, nylon 610, nylon 11 and nylon 12; polyethylene terephthalate, polybutylene terephthalate And polyester such as polyhexamethylene terephthalate.
[0027]
When the inorganic fine particles are added in a high amount as in the present invention, the thermoplastic polymer having the best spinnability and stretchability with good wettability and dispersibility in the polymer. From this viewpoint, it is preferable to use a polyamide, particularly a polyamide mainly composed of nylon 6. The degree of polymerization of nylon 6 used as a suitable example is preferably about 22000 or less, particularly 20000 or less and 6000 or more in terms of number average molecular weight. When the degree of polymerization is too high, the melt viscosity of the core component to which the inorganic fine particles are added becomes too high, and troubles are likely to occur, or poor dispersion of the inorganic fine particles is likely to occur. In addition, when melt-extruding a polymer with a high amount of inorganic fine particles actually made into a fiber, if the melt viscosity is too high, troubles on equipment are likely to occur frequently, and at the same time, many yarn breaks occur, which is not preferable. On the other hand, if the degree of polymerization is too low, the melt viscosity becomes too low with respect to the sheath component, making it difficult to form the core-sheath interface.
[0028]
In addition, when polyamide is used as the thermoplastic polymer constituting the core component, the moisture content is preferably 500 ppm or less, particularly 300 ppm or less, as the core component. When a large amount of inorganic fine particles are contained in a water-absorbing polymer such as polyamide, when the moisture content is high, there is a problem that the fluidity is extremely lowered at the time of melting and the process condition is seriously impaired. In general, polyamide is used at a water content of about 500 to 1000 ppm, whereas in the present invention in which a large amount of inorganic fine particles are contained, special consideration must be given. The polyamide may be copolymerized with a small amount of the third component, or may contain a small amount of additives, stabilizers, and the like.
[0029]
The main purpose of use of the conjugate fiber of the present invention is for fishery applications, but since fishing nets are used outdoors, the weather resistance over time is an important issue, and there is a decrease in strength during long-term use. However, those which are problematic in practice cannot be used. When a polyamide containing a large amount of inorganic fine particles as described above is used as a core component, fiber strength may be lowered when used as a fishing net for a long period of time. When a copper salt such as copper iodide is added as a heat stabilizer in a range of 0.01% by weight or more, particularly 0.1% by weight or more and 2% by weight or less, a decrease in fiber strength with time is a practical problem. It will be improved to a level that will not be.
[0030]
In the present invention, the polyester as the sheath component is preferably a polyester mainly composed of polyethylene terephthalate or polybutylene terephthalate. Such polyester may be copolymerized with a small amount of a third component, such as isophthalic acid, phthalic acid, naphthalene dicarboxylic acid, biphenyl dicarboxylic acid, 4,4′-diphenyl ether dicarboxylic acid, 4,4′- Diphenylmethane dicarboxylic acid, 4,4'-diphenylsulfone dicarboxylic acid, 4,4'-diphenylisopropylidenedicarboxylic acid, 1,2-diphenoxyethane-4 ', 4 "-dicarboxylic acid, anthracene dicarboxylic acid, 2,5-pyridine Aromatic dicarboxylic acids such as dicarboxylic acid, diphenoxyketone dicarboxylic acid, 5-sodium sulfoisolutaric acid, dimethyl 5-sodium sulfoisophthalate, 5-tetrabutylphosphonium sulfoisophthalic acid; malonic acid, succinic acid, adipic acid, azelain Acid, sebacic acid, etc. Aliphatic dicarboxylic acids; alicyclic dicarboxylic acids such as decalin dicarboxylic acid and cyclohexanedicarboxylic acid; hydroxycarboxylic acids such as β-hydroxyethoxybenzoic acid, p-oxybenzoic acid, hydroxypropionic acid, hydroxyacrylic acid; and esters thereof Carboxylic acids derived from formable derivatives, aliphatic lactones such as ε-caprolactone, aliphatic diols such as trimethylene glycol, hexamethylene glycol, neopentyl glycol, diethylene glycol, polyethylene glycol; hydroquinone catechol, naphthalenediol, resorcin, bisphenol A, aromatic diols such as ethylene oxide adducts of bisphenol A, bisphenol S, ethylene oxide adducts of bisphenol S; cyclohexane dimeta And the like aliphatic diols such Lumpur. The third component of these may be copolymerized or only one or two.
[0031]
Further, the polyester of the present invention includes a polyvalent carboxylic acid such as trimellitic acid, trimesic acid, pyromellitic acid, tricarballylic acid within the range in which the polyester is substantially linear; glycerin, trimethylolethane, trimethylolpropane. Polyhydric alcohols such as pentaerythritol may be contained. The polyester may contain additives such as optical brighteners and stabilizers. In particular, in order to maintain the weather resistance of the entire composite fiber, that is, the strength retention over time, at a better level, carbon black may be included in the polyester as the sheath component.
[0032]
The intrinsic viscosity [η] of such polyester is preferably 0.7 or more. The intrinsic viscosity is a value measured at 30 ° C. in an equal weight mixed solvent of phenol / tetrachloroethane. In ordinary clothing fibers, the intrinsic viscosity of polyethylene terephthalate is about 0.60 to 0.65, whereas in the present invention, in order to express the desired fiber strength, Polyester having a degree of polymerization greater than the degree of polymerization is used. If the intrinsic viscosity is less than 0.7, it is difficult to satisfy any of fiber specific gravity of 1.5 or more, fiber strength of 3.5 g / denier or more, and toughness of 60 or more, and the composite ratio of the sheath component and the core component is If the sheath component was changed to be rich and the fiber specific gravity could not reach the target level, conversely, if the core component was made rich, the fiber strength and toughness did not reach the target levels. That is, by using a polyester having an intrinsic viscosity of 0.7 or more as a sheath component, a fiber satisfying all of fiber strength, toughness, and specific gravity was obtained for the first time.
[0033]
The intrinsic viscosity in the present invention is the intrinsic viscosity of polyester which is a sheath component in the fiber after spinning. That is, when the degree of polymerization is reduced by thermal decomposition or hydrolysis during spinning, it goes without saying that it is necessary to fiberize the polyester with a slightly higher degree of polymerization.
[0034]
By the way, in the present invention, a colorant is added to the polyester which is a sheath component to obtain a hue suitable for fishing net use as described above, and an organic pigment having heat resistance capable of withstanding the melt spinning temperature of the polyester. And inorganic pigments can be used as appropriate. Specifically, carbon black, anthraquinone-based brown colorant, anthraquinone-based purple colorant, benzoquinone-based red colorant, and normal original colorant can be used. These colorants can be used alone or in two kinds. In combination with the above, it can be blended with the Poeliester within a range of 0.1 to 5% by weight. When the addition amount of the coloring agent is less than 0.1% by weight, it is difficult to obtain a fishing net original yarn exhibiting sufficient “hue” or “shininess”, and the addition amount exceeds 5% by weight. This is not preferable because the decrease in strength becomes large.
[0035]
In particular, most of the hue of the original yarn for fishing nets currently required is black. In such a case, it is preferable to add 1 to 3% by weight of carbon black to polyester as a sheath component. Carbon black absorbs ultraviolet rays and has an effect of preventing deterioration of the polyester, can prevent the weather resistance of the fiber, that is, a decrease in fiber strength with time, and can exhibit a synergistic effect. It is also possible to dye in a desired color after fiber formation.
[0036]
The composite fiber of the present invention has a cross-sectional shape in which the core component containing the inorganic fine particles as described above is substantially covered with polyester as a sheath component. Here, the “substantially covered cross-sectional shape” indicates that 60% or more, preferably 80% or more of the fiber surface circumference is occupied by the sheath component. In the present invention, the core component is completely covered with the sheath component in order to further prevent friction between the guide and roller and yarn breakage in the spinning / drawing process, and to solve the problem of interfacial peeling between the core component and the sheath component. Such cross-sectional shapes include a concentric core-sheath type and an eccentric core-sheath type, and the number of cores can be 1 to 4.
[0037]
The composite weight ratio of the core component and the sheath component is the former / the latter = 20/80 to 70/30, preferably the former / the latter = 20/80 to 50/50. If the composite weight ratio of the sheath component is too small, the fiber strength is lowered. On the other hand, if the composite weight ratio of the sheath component is too large, the effect of increasing the fiber specific gravity cannot be sufficiently exhibited.
[0038]
The method for obtaining the conjugate fiber of the present invention is not particularly limited, but the polyester as the sheath component and the core component are heated and melted in separate melting systems, and each is subjected to a spinneret by an ordinary extrusion spinning apparatus. The two components are combined together in a desired core-sheath type composite shape just before the spinneret, and the yarn obtained by extrusion is wound, further stretched and heat-treated. Also, a method of drawing immediately after spinning out from the spinneret, and a method of drawing immediately without winding up, or a method of rolling out at high speed after pushing out from the spinneret and producing the product as it is can be used.
[0039]
Specifically, it is taken up at a speed of approximately 4000 m / min or less, and after being wound up, the so-called POY or FOY stretching method that stretches, or the spin-draw method that stretches without winding, or even a high speed of 4000 m / min or more. In the DSY method, the heater is provided between the nozzle and the take-up roller in the DSY method, and the take-up method is used while drawing. Among these, a method of drawing and stretching at 300 to 4000 m / min, more preferably 600 to 2000 m / min (which may be FOY or spin draw) and then heat-treating is preferable. If the speed is less than 300 m / min, the degree of orientation of the undrawn yarn is low, and it is necessary to increase the draw ratio in order to obtain a desired fiber strength. As a result, a large number of voids are generated in the fiber, High specific gravity may not be achieved sufficiently. On the other hand, when the drawing is performed in a so-called DSY region where the speed exceeds 4000 m / min, the target physical properties may be obtained without performing the drawing heat treatment operation. It is inevitable that the fiber strength is reduced as compared with the method.
[0040]
Stretching may be one-stage stretching or two-stage stretching. In addition, the draw ratio varies depending on the spinning speed, and thus cannot be uniquely specified. However, it is preferable to employ a ratio of about 75 to 85% of the ratio leading to breakage. In particular, a characteristic point in the production of the fiber of the present invention is the heat treatment after stretching. That is, the heat treatment is characterized by heat treatment at a temperature of (melting point−80) ° C. or more of the thermoplastic polymer constituting the core component and (melting point−5) ° C. or less of the polyester as the sheath component. A fiber having higher fiber specific gravity and higher strength and toughness can be obtained by setting it higher within a range where fuzz does not occur. By heating at a temperature close to or higher than the melting point of the thermoplastic polymer constituting the core component, the void around the inorganic fine particles in the fiber generated during stretching is repaired to some extent while the fiber shrinks. It is also presumed that the crystallization of the sheath component that expresses the mechanical properties of the fiber is promoted by increasing the heat treatment temperature.
[0041]
When the heat treatment temperature exceeds (melting point−5) ° C. of the polyester which is the sheath component, yarn breakage frequently occurs. When the thermoplastic polymer constituting the core component is less than (melting point−80) ° C., the surroundings of the above-mentioned inorganic fine particles It is difficult to sufficiently repair the voids. A preferable heat treatment temperature is (melting point−60) ° C. or more of the thermoplastic polymer constituting the core component and (melting point−10) ° C. or less of the polyester as the sheath component. As a specific example, when the thermoplastic polymer constituting the core component is nylon 6, it is desirable that the heat treatment temperature be 160 ° C. or higher and 255 ° C. or lower.
[0042]
Also, in order to stabilize stretching and suppress the generation of voids around the inorganic fine particles, non-contact heating methods such as steam jet and air heating are used in addition to contact heating methods such as heat rolls during stretching. It is preferable to use together. This is intended to stretch in a state where the fluidity of the core component is increased at a temperature sufficiently higher than the melting point of the thermoplastic polymer constituting the core component. For example, the thermoplastic polymer constituting the core component is nylon 6 In this case, it is preferable to heat and stretch using a temperature steam jet at 350 ° C. or higher, preferably 400 ° C. or higher, more preferably 430 ° C. or higher. The temperature of the steam jet does not indicate the heat treatment temperature itself in the present invention, and the heat treatment temperature in the present invention means a contact heating temperature. From these findings, it is necessary that the melting point of the thermoplastic polymer constituting the core component should be 20 ° C. or higher, particularly 30 ° C. or higher, than the melting point of the polyester as the sheath component, and inevitably the melting point of the thermoplastic polymer is 200 degreeC or more is required.
[0043]
The composite fiber of the present invention can be used in a wide variety of applications, alone or mixed with other fibers. When mixed with other fibers, any means such as mixed fiber, mixed yarn, twisted yarn, union knitting, union knitting, etc. can be used, and the obtained fabric is subjected to various post-processing treatments as necessary. It can be used for various purposes. Preferred uses of the composite fiber of the present invention include unprecedented high specific gravity, fiber strength that can withstand practical use, and polyester-based fibers that have toughness to the maximum extent. It is suitable for various fish nets such as nets and bed nets. In particular, it is most suitable for stationary nets such as salmon, yellowtail, tuna, horse mackerel, mackerel, sardine, perch and squid.
[0044]
It can be applied to various industrial material applications as a polyester-based fiber having a high specific gravity performance that has not been used in the past, such as for silt protectors used in civil engineering work as applications other than the fishnet applications described above. In addition to industrial materials, applications in non-clothing fields such as curtains and blackouts are also suitable.
[0045]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited at all by these Examples. In addition, each physical property value in an Example is measured with the following method.
(1) Intrinsic viscosity [η] of polyester: Measured at 30 ° C. using a mixed solvent of equal weight of phenol and tetrachloroethane.
(2) Number average molecular weight of nylon: Measured by GPC chromatogram by HLC-510 manufactured by Waters.
(3) Average particle size of inorganic fine particles: Measured with a centrifugal automatic particle size distribution analyzer CAPA-500 manufactured by Horiba, Ltd.
(4) Fiber specific gravity: Measured at 20 ° C. by density gradient method using carbon tetrachloride and normal hexane.
(5) Fiber strength, elongation and toughness: Measured at 20 ° C. and 65 RH% using a tensile tester (Autograph IM-100) manufactured by Shimadzu Corporation. The toughness is indicated by the product of the strength at break and the elongation.
(6) Polymer melt viscosity (poise) Measured at 300 ° C using a Capillograph Type 1C manufactured by Toyo Seiki Co., Ltd.
[0046]
Example 1
Nylon 6 powder having a number average molecular weight of 11,000 (P1011F, manufactured by Ube Industries, Ltd.) is used as a thermoplastic polymer constituting the core component, and spherical magnetite powder having an average particle size of 0.2 μm as inorganic fine particles of the core component [ Toda Kogyo Co., Ltd., surface ferrite coated product, specific gravity 5.0] 30% by weight and average particle size 0.35 μm titanium dioxide [Titanium Kogyo Co., Ltd., rutile type, specific gravity 4.2 A 40% by weight mixture was melt-kneaded with a twin-screw kneader as a core component and extruded into strands, the strands were cut and pelletized, and vacuum dried at 90 ° C. to a water content of 180 ppm. On the other hand, polyethylene terephthalate having an intrinsic viscosity [η] = 0.80 containing 0.08% by weight of titanium dioxide was used as a sheath component, and the polyester was melt-polymerized and pelletized by a conventional method.
[0047]
The core component and the sheath component are melt-extruded by separate melt extruders, and merged at the nozzle portion so as to be a concentric core-sheath type with a spinning temperature of 295 ° C. and a composite weight ratio (core component / sheath component) of 1/2. The nozzle was discharged using a nozzle with a nozzle diameter of 0.4 mmφ and 8 holes, and wound up at a speed of 1000 m / min. The intrinsic viscosity [η] of the sheath component polyethylene terephthalate forming the composite fiber obtained at this time was 0.75.
[0048]
The obtained spinning yarn was stretched at a hot roller temperature of 80 ° C. and a hot plate temperature of 140 ° C. at a draw ratio of 4.0 times, and then a hot roller temperature was added while 3% overfeed was added. After heat treatment at 180 ° C., multifilaments of 75 denier / 8 filaments were wound up. When the cross-sectional shape of the multifilament yarn was observed with a microscope, the core-sheath composite ratio was almost constant in all the fibers and in the length direction, and there was no fluff. In addition, no trouble occurred in the spinning / drawing process. The drawn yarn had a fiber specific gravity of 1.58, a strength of 4.5 g / denier, and a toughness of 67.5.
[0049]
This stretched yarn is combined to create a net, put into the sea and observed, and it has good sedimentation, little net shaking in the sea, excellent durability, and is a suitable fiber as a fish net Was confirmed.
[0050]
It was also found that the fiber specific gravity of the drawn yarns obtained by changing the heat treatment temperature during drawing was different. As a result of stretching the spinning yarn obtained under the spinning conditions described above under the following conditions, a drawn yarn having the following physical properties was obtained.
[0051]
[Table 1]
Figure 0003712121
[0052]
The higher the treatment temperature during shrinkage treatment, the better the fiber physical properties can be obtained. However, if the treatment temperature is extremely high, stretched fluff frequently occurs, which is not preferable.
[0053]
Further, fiberization was performed in the same manner using magnetite powder [made by Toda Kogyo Co., Ltd., specific gravity 5.0] which was not surface-coated instead of the magnetite powder described above. As a result, the fiber specific gravity of the drawn yarn was 1.53, and the specific gravity was slightly lower than that in the case of using the surface coating product.
[0054]
Example 2
A composite fiber (drawn yarn) was produced in the same manner as in Example 1 except that 0.2% by weight of copper iodide was added to the core component, and the strength retention of the obtained drawn yarn was measured. As an evaluation means, the strength retention after irradiation with carbon fade at 83 ° C for 400 hours and the strength retention after irradiation with xenon weathering at 83 ° C for 400 hours were examined. As a result, the average intensity retention of n = 5 after 400 hours of carbon fade irradiation was about 86%, and the average intensity retention of n = 5 after 400 hours of xenon weather irradiation was about 84%. In contrast, the composite fiber (drawn yarn) obtained in Example 1 had an average strength retention of n = 5 after carbon fade irradiation of 400 hours was about 42% and n after 400 hours of xenon weather irradiation. = 5 average strength retention was about 36%.
[0055]
Examples 3-6
As inorganic fine particles contained in the core component, a mixture of 70% by weight of magnetite powder 50% by weight and titanium dioxide 20% by weight (Example 3), a total of 70% by weight of magnetite powder 20% by weight and titanium dioxide 50%. A mixture of 70% by weight (Example 4), a mixture of 10% by weight of magnetite powder and 60% by weight of titanium dioxide (Example 5), and a total of 50% by weight of 30% by weight of magnetite powder and 20% by weight of titanium dioxide. A composite fiber was obtained in the same manner as in Example 2 except that the mixture in% by weight (Example 6) was used. In either case, there was no trouble in processability, and a fiber having good fiber properties was obtained. The hue of the composite fiber obtained in Example 4 was gray and was slightly different from black. The hue of the composite fiber obtained in Example 5 was whitish gray.
[0056]
Examples 7-8
In Example 2, except that the intrinsic viscosity [η] of polyethylene terephthalate as a sheath component was set to 0.85 (Example 7), the combined weight ratio of the core component and the sheath component (core component / sheath component) A composite fiber was obtained in the same manner except that the ratio was 1/1 (Example 8). In either case, there was no trouble in processability, and a fiber having good fiber properties was obtained. Tables 1 and 2 show various physical properties of the composite fiber in each example.
[0057]
[Table 2]
Figure 0003712121
[0058]
[Table 3]
Figure 0003712121
[0059]
Examples 9-10
In Example 2, instead of titanium dioxide, zinc oxide having a mean particle size of 1.0 μm (specific gravity 5.5) was used (Example 9), and alumina having a mean particle size of 2.0 μm (specific gravity 3.98) was used. A composite fiber was obtained in the same manner except for (Example 10). In all cases, the processability was good and the fiber physical properties were also good (see Tables 1 and 2) except that some fluff was generated during spinning.
[0060]
Examples 11-12
A composite fiber was obtained in the same manner as in Example 2, except that the number of cores was 3 (Example 11) and the number of cores was 4 (Example 12). In any case, the processability was good, and the fiber properties were also good.
[0061]
Example 13
In Example 2, instead of nylon 6 having a number average molecular weight of 11,000, a composite fiber was obtained in the same manner except that nylon 6 having a number average molecular weight of 22000 [P1022 manufactured by Ube Industries, Ltd.] was used. Tables 1 and 2 show various physical properties of the obtained composite fiber.
[0062]
Example 14
Polyethylene terephthalate having an intrinsic viscosity [η] = 0.70 is used as the thermoplastic polymer constituting the core component, and barium sulfate (specific gravity 4.35) 70 having an average particle size of 0.5 μm is used as the inorganic fine particles of the core component. Using wt%, the core component was melt-kneaded with a twin-screw kneader and extruded into a strand, and the strand was cut into pellets. On the other hand, polyethylene terephthalate having an intrinsic viscosity [η] = 0.80 containing 0.08% by weight of titanium dioxide was used as a sheath component, and the polyester was melt-polymerized and pelletized by a conventional method.
[0063]
The core component and the sheath component are melt-extruded by separate melt extruders, and merged at the nozzle portion so as to be a concentric core-sheath type with a spinning temperature of 295 ° C. and a composite weight ratio (core component / sheath component) of 1/2. The nozzle was discharged using a nozzle with a nozzle diameter of 0.4 mmφ and 8 holes, and wound up at a speed of 1000 m / min. The intrinsic viscosity [η] of the sheath component polyethylene terephthalate forming the composite fiber obtained at this time was 0.75.
[0064]
The obtained spinning yarn was stretched at a hot roller temperature of 80 ° C. and a hot plate temperature of 140 ° C. at a draw ratio of 4.0 times, and then a hot roller temperature was added while 3% overfeed was added. After heat treatment at 180 ° C., multifilaments of 75 denier / 8 filaments were wound up. When the cross-sectional shape of the multifilament yarn was observed with a microscope, the core-sheath composite ratio was almost constant in all the fibers and in the length direction, and there was no fluff. In addition, no trouble occurred in the spinning / drawing process. The drawn yarn had a fiber specific gravity of 1.52, a strength of 4.1 g / denier, and a toughness of 61.5.
[0065]
This stretched yarn is combined to create a net, put into the sea and observed, and it has good sedimentation, little net shaking in the sea, excellent durability, and is a suitable fiber as a fish net Was confirmed.
[0066]
Comparative Example 1
Example 2 except that a polyethylene terephthalate chip having an intrinsic viscosity [η] of 0.65 before spinning is used as the sheath component, and spinning is performed so that the intrinsic viscosity [η] after spinning is 0.60. A composite fiber was obtained in the same manner as above. As a result, some fluff was generated during spinning and stretching, and the fiber strength was as low as 2.5 g / denier due to the low viscosity of the sheath component, which was inferior to the fiber obtained in Example 2.
[0067]
Comparative Example 2
A composite fiber was obtained in the same manner as in Example 2 except that a mixture of 15% by weight of magnetite mineral and 15% by weight of titanium dioxide was used as the inorganic fine particles. The spinning / drawing process was good and could be made into fibers, but the fiber specific gravity was 1.45, which was inferior to the fibers obtained in Example 2.
[0068]
Comparative Examples 3-4
In Example 2, instead of titanium dioxide, silicon dioxide particles having an average particle size of 0.1 μm and specific gravity of 2.2 were used (Comparative Example 3), and kaolin particles having an average particle size of 1.0 μm and specific gravity of 2.5 were used ( A composite fiber was obtained in the same manner as in Example 2 except for Comparative Example 4). In all cases, fluff occurred frequently, spinning, and the stretchability was not very good. The specific gravity of each composite fiber obtained was also inferior to that of the fiber obtained in Example 2.
[0069]
Comparative Examples 5-6
In Example 2, composite spinning was performed in the same manner as in Example 2 except that the composite weight ratio (core component / sheath component) was 15/85 (Comparative Example 5) and 15/85 (Comparative Example 6). In Comparative Example 5, fiberization was good, but the fiber specific gravity performance was inferior in level. In Comparative Example 6, spinnability and stretchability were poor and fluff and yarn breakage occurred frequently, and it was not possible to obtain a fiber at a level that allows performance evaluation. Tables 1 and 2 show the results of these comparative examples.
[0070]
Example 15
Nylon 6 powder having a number average molecular weight of 11,000 (P1011F, manufactured by Ube Industries Co., Ltd.) is used as the thermoplastic polymer constituting the core component, and titanium dioxide having an average particle size of 0.35 μm as the inorganic fine particles of the core component [Titanium Industry Co., Ltd., specific gravity 4.2] 70% by weight, melt-kneaded as a core component with a twin-screw kneader and extruded into strands, the strands are cut and pelletized, and water is circulated at 100 ° C. through nitrogen circulation. The rate was 460 ppm. On the other hand, a polyethylene terephthalate having an intrinsic viscosity [η] = 0.80 containing 1.5% by weight of carbon black (manufactured by Tegusa) having an average particle size of 0.03 μm is used as the sheath component. Was melt-polymerized and pelletized by a conventional method.
[0071]
These core component and sheath component were spun and drawn in the same manner as in Example 2 to obtain a composite fiber. The intrinsic viscosity [η] of polyethylene terephthalate, which is the sheath component of the composite fiber, was 0.75. The fiber specific gravity was 1.57, the strength was 4.6 g / denier, the elongation was 18%, and it had excellent performance as a fishnet application.
[0072]
Example 16
A composite fiber was obtained in the same manner as in Example 15 except that the content of titanium dioxide was 55% by weight. The obtained composite fiber had a specific gravity of 1.53, a strength of 5.2 g / denier, an elongation of 20%, and was excellent in both spinnability and stretchability.
[0073]
Example 17
A composite fiber was obtained in the same manner as in Example 15 except that a mixture of 50% by weight of titanium dioxide and 20% by weight of zinc oxide having an average particle size of 1.0 μm and a specific gravity of 5.5 was used as the inorganic fine particles. The obtained composite fiber had a specific gravity of 1.58, a strength of 4.5 g / denier, and an elongation of 15%. Although some fluff was generated during spinning, it was excellent in stretchability and excellent in fishing net use. Had performance.
[0074]
Example 18
A composite fiber was obtained in the same manner as in Example 15 except that a mixture of 50% by weight of titanium dioxide and 20% by weight of alumina having an average particle size of 2.0 μm and a specific gravity of 3.9 was used as the inorganic fine particles. The obtained composite fiber had a specific gravity of 1.56, a strength of 4.5 g / denier, and an elongation of 15%. Although some fluff was generated during spinning, it was excellent in stretchability and excellent in fishing net use. Had performance.
[0075]
Example 19
A composite fiber was obtained in the same manner as in Example 15 except that a mixture of 50% by weight of titanium dioxide, 20% by weight of barium sulfate having an average particle size of 0.6 μm and a specific gravity of 4.3 was used as the inorganic fine particles. The obtained composite fiber had a specific gravity of 1.57, a strength of 4.5 g / denier, and an elongation of 14%. Although some fluff was generated during spinning, it was excellent in stretchability and excellent in fishing net use. Had performance. For the composite fibers obtained in Examples 15 to 19, Table 3 and Table 4 show each component configuration, fiber properties, and the like.
[0076]
[Table 4]
Figure 0003712121
[0077]
[Table 5]
Figure 0003712121
[0078]
Example 20
Nylon 6 powder having a number average molecular weight of 11,000 is used as a thermoplastic polymer constituting the core component, and 60% by weight of titanium dioxide having an average particle size of 0.35 μm is used as the core component as the core component (water content 100 ppm). , Polyethylene terephthalate having an intrinsic viscosity [η] = 0.95 containing 0.08% by weight of titanium dioxide as a sheath component, melt-extruded with a separate extruder, spinning temperature of 300 ° C., composite weight ratio (core component) / Sheath component) The nozzle part was joined so as to be a concentric core-sheath type of 1/1, and was discharged using a nozzle having a nozzle diameter of 0.5 mmφ and 200 holes. The discharged yarn is passed through a heating zone of 20 cm length and 380 ° C. provided immediately below the nozzle, and then cooled with a cooling air of 25 ° C. and 7 Nm 3 / min. A spinning oil is applied by an oiling roller, and a spinning speed of 600 m. It took over at / min.
[0079]
Subsequently, without winding the yarn, stretching and heat treatment were performed as follows and wound.
Elongation: After heating with a 110 ° C. heat roll, it is stretched by 4.3 times while spraying 400 ° C. heated steam.
Heat treatment: 3% heat shrinkage treatment between 220 ° C. heat roll and relaxation roll.
As a result, the process stability was good, and a highly practical fiber was obtained as a fishing net fiber having a density of 1004 denier, a strength of 4.0 g / denier, an elongation of 18%, and a specific gravity of 1.62.
[0080]
Example 21
Nylon 6 powder having a number average molecular weight of 12,000 is used as a thermoplastic polymer constituting the core component, and 25 wt% of titanium dioxide having an average particle size of 0.35 μm and α-type hematite having an average particle size of 0.2 μm as inorganic fine particles of the core component Using the mixture of powder [made by Toda Kogyo Co., Ltd., specific gravity 5.2] 50% by weight as a core component (water content 200 ppm), carbon black (made by Tegusa) 1.0% by weight Polyethylene terephthalate having a viscosity [η] = 1.0 as a sheath component, melt-extruded by a separate extruder, and a concentric core having a spinning temperature of 300 ° C. and a composite weight ratio (core component / sheath component) of 1/2 The nozzles were joined so as to form a sheath type, and were discharged using a nozzle having a nozzle diameter of 0.6 mmφ and 100 holes. The discharged yarn is passed through a heating zone of 20 cm length and 380 ° C. provided immediately below the nozzle, and then cooled with cooling air of 25 ° C. and 7 Nm 3 / min, and a spinning oil is applied with an oiling roller, and the spinning speed is 600 m. It took over at / min.
[0081]
Subsequently, without winding the yarn, stretching and heat treatment were performed as follows and wound.
Elongation: After heating with a 110 ° C. heat roll, it is stretched to 4.8 times while injecting heated steam at 450 ° C.
Heat treatment: 4% heat shrink treatment between 210 ° C. heat roll and relaxation roll.
As a result, process stability was good, and a highly practical fiber was obtained as a fishing net fiber having a density of 1002 denier, a strength of 5.5 g / denier, an elongation of 19%, and a specific gravity of 1.62.
[0082]
Comparative Example 7
A composite fiber was produced in the same manner as in Example 20 except that the temperature of the heating steam was set to 300 ° C. As a result, the strength was 3.3 g / denier, the elongation was 20%, and the specific gravity was 1.54. However, the fiber whose fiber strength did not reach the present invention was obtained. This is considered to be caused by insufficient fluidity of the thermoplastic polymer constituting the core component at the time of drawing, and many yarn breaks occurred at the time of drawing.
[0083]
Examples 22 to 23 and Comparative Example 8
A composite fiber was produced in the same manner as in Example 20 except that the heat treatment temperature after stretching was 245 ° C (Example 22), 160 ° C (Example 23), and 256 ° C (Comparative Example 8). As a result, in Example 22, a composite fiber having a strength of 4.2 g / denier, an elongation of 21%, a specific gravity of 1.63, and a high strength and high specific gravity could be obtained. In Example 23, a composite fiber having a strength of 3.7 g / denier, an elongation of 15%, and a specific gravity of 1.53 was obtained. In Comparative Example 8, the fibers were partly fused and cut.
[0084]
Comparative Example 9
In Example 1, when the moisture content of the core component was 650 ppm, screw dropping occurred from the nozzle holes, and spinning was impossible at all.
[0085]
Comparative Example 10
In Example 5, a chip was prepared in the same manner as in Example 5 except that the particle diameter of titanium dioxide was changed to 0.02 μm, and composite spinning was attempted. When the shear rate is 1 × 10 1 sec-1, the melt viscosity of the core component is 30 × 10 3 poise, the melt viscosity of the sheath component is 7.0 × 10 3 poise, and when the shear rate is 5 × 10 2 sec-1 The melt viscosity of the core component was 0.08 × 10 3 poise, and the melt viscosity of the sheath component was 7.0 × 10 3 poise. That is, a / b was 4.3 when the shear rate was 1 × 10 1 sec −1 and 0.02 when the shear rate was 5 × 10 2 sec −1. At this time, single yarn breakage occurred frequently on the nozzle surface, and spinning was impossible.
[0086]
【The invention's effect】
According to the present invention, by obtaining a composite fiber composed of a core component to which specific inorganic fine particles are highly added and a sheath component made of polyester, it has unprecedented high strength and high specific gravity, and has a pollution problem as a fiber for stationary nets. And a composite fiber having a suitable hue can be provided.

Claims (1)

酸化鉄微粒子と二酸化チタン微粒子を合計で50〜85重量%含有する、比重が1以上である熱可塑性ポリマーを芯成分とし、ポリエステルを鞘成分とし、かつ300℃における剪断速度が1.0×10 1 〜5×10 2 sec -1 の全領域において、芯成分の溶融粘度aと鞘成分の溶融粘度bとの比(a/b)が5.0〜0.05を満足する芯成分と鞘成分を複合紡糸し、加熱延伸した後に、芯成分の熱可塑性ポリマーの(融点または軟化点−80)℃以上、鞘成分のポリエステルの(融点または軟化点−5)℃以下の温度で熱処理を施すことを特徴とする複合繊維の製造方法。 A total of 50 to 85% by weight of iron oxide fine particles and titanium dioxide fine particles , a thermoplastic polymer having a specific gravity of 1 or more as a core component, polyester as a sheath component , and a shear rate at 300 ° C. of 1.0 × 10 1 ~ 5 × 10 2 In the entire region of sec −1 , the core component and the sheath component, in which the ratio (a / b) of the melt viscosity a of the core component to the melt viscosity b of the sheath component satisfies 5.0 to 0.05, are composite-spun. A composite which is subjected to heat treatment at a temperature not lower than (melting point or softening point −80) ° C. of the thermoplastic polymer of the core component and not higher than (melting point or softening point −5) ° C. of the polyester of the sheath component after being heated and stretched. A method for producing fibers.
JP2002112928A 2002-04-16 2002-04-16 Manufacturing method of composite fiber Expired - Fee Related JP3712121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002112928A JP3712121B2 (en) 2002-04-16 2002-04-16 Manufacturing method of composite fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002112928A JP3712121B2 (en) 2002-04-16 2002-04-16 Manufacturing method of composite fiber

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP03109196A Division JP3335063B2 (en) 1996-02-20 1996-02-20 High specific gravity / high strength composite fiber and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002371435A JP2002371435A (en) 2002-12-26
JP3712121B2 true JP3712121B2 (en) 2005-11-02

Family

ID=19193965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002112928A Expired - Fee Related JP3712121B2 (en) 2002-04-16 2002-04-16 Manufacturing method of composite fiber

Country Status (1)

Country Link
JP (1) JP3712121B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004169267A (en) * 1994-08-31 2004-06-17 Kuraray Co Ltd Hyperbaric, high strength conjugate fiber and method for producing the same
CN104862822A (en) * 2015-05-20 2015-08-26 中国水产科学研究院东海水产研究所 Method for preparing monofilaments for main outline rope processing of net bag of offshore net cage

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104562274A (en) * 2014-06-30 2015-04-29 巢湖市翔宇渔具有限公司 Processing method of fishing net thread
CN104775176A (en) * 2015-03-20 2015-07-15 巢湖市瑞强渔具有限责任公司 High-performance fishing net line

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004169267A (en) * 1994-08-31 2004-06-17 Kuraray Co Ltd Hyperbaric, high strength conjugate fiber and method for producing the same
CN104862822A (en) * 2015-05-20 2015-08-26 中国水产科学研究院东海水产研究所 Method for preparing monofilaments for main outline rope processing of net bag of offshore net cage

Also Published As

Publication number Publication date
JP2002371435A (en) 2002-12-26

Similar Documents

Publication Publication Date Title
JP6731760B2 (en) Core-sheath composite fiber
JP3335063B2 (en) High specific gravity / high strength composite fiber and method for producing the same
JP3712121B2 (en) Manufacturing method of composite fiber
JP3752250B2 (en) High specific gravity / high strength composite fiber
JP3563160B2 (en) Longline
JP3686126B2 (en) Fishing net
JP3574513B2 (en) High specific gravity / high strength conjugate fiber and method for producing the same
JP3537546B2 (en) Original high-density conjugate fiber and method for producing the same
JP3474318B2 (en) High specific gravity / high strength composite fiber
JP2006328583A (en) Sea-island type conjugate fiber having excellent anti-transparent property
JP2004003116A (en) Conjugated fiber of high specific gravity and high strength
JP3647493B2 (en) Fishing net
JP2004162205A (en) Sheath/core-type monofilament and fishnet using the same
JP2002069742A (en) High-specific gravity yarn
JPH08158161A (en) High specific gravity yarn
JP2001303467A (en) False monofilament
JP7048060B2 (en) Manufacturing method of multifilament yarn made of high density fiber
JPH10273828A (en) Abrasion resistant sheath core type high specific gravity conjugate fiber and fishing net composed of the same
JP2004131862A (en) Recycled polyester conjugated fiber
JP2007056382A (en) Method for producing high specific gravity composite fiber
JP2005211030A (en) Fishing net
JPH11200154A (en) Conjugated fiber and its production
JPH1143823A (en) Conjugate fiber and its production
JPH10325018A (en) Conjugate filament having high specific gravity and its production
JPH08144126A (en) Polyester fiber for fishery material and its production and fishnet

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050810

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080826

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110826

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110826

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130826

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees