JP3711925B2 - Separation and collection method of slag - Google Patents

Separation and collection method of slag Download PDF

Info

Publication number
JP3711925B2
JP3711925B2 JP2001369670A JP2001369670A JP3711925B2 JP 3711925 B2 JP3711925 B2 JP 3711925B2 JP 2001369670 A JP2001369670 A JP 2001369670A JP 2001369670 A JP2001369670 A JP 2001369670A JP 3711925 B2 JP3711925 B2 JP 3711925B2
Authority
JP
Japan
Prior art keywords
slag
refining
value
mass
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001369670A
Other languages
Japanese (ja)
Other versions
JP2003171711A (en
Inventor
智之 上野
祐樹 鍋島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001369670A priority Critical patent/JP3711925B2/en
Publication of JP2003171711A publication Critical patent/JP2003171711A/en
Application granted granted Critical
Publication of JP3711925B2 publication Critical patent/JP3711925B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、溶銑予備処理,脱炭精錬,取鍋精錬等の鉄鋼精錬の各工程で発生するスラグを分別して回収する技術に関し、 特に回収したスラグをリサイクルするために、その用途に応じて含有量が制限される成分(以下、 制限成分という)について許容される上限値を超える含有量を有するスラグ(以下、高濃度スラグという)と、許容される上限値以下の含有量を有するスラグ(以下、低濃度スラグという)とに分別して回収し、スラグ処理の負荷を軽減する技術に関するものである。
【0002】
【従来の技術】
鉄鋼精錬には溶銑予備処理,脱炭精錬,取鍋精錬等の種々の工程があり、これら各工程でスラグが発生する。 鉄鋼精錬の各工程で発生するスラグは、CaO,SiO2 , Al23 ,MgO等を主成分としているが、これらの酸化物の他に、溶銑,溶鋼あるいは耐火物,精錬フラックス等から混入する種々の成分が含有されている。
【0003】
このようにして鉄鋼精錬の各工程でスラグに混入する種々の成分の中には、スラグをリサイクルする際に、 その用途に適さないものがある。たとえば、スラグを土木建築等の用途に使用する場合は、F,Cr(特に6価のCr),Na,ClあるいはBが環境に流出して汚染の原因になることが懸念される。また、スラグを鉄鋼精錬の造滓剤として使用する場合は、不純物成分であるPが溶鋼中に再度混入(いわゆる復燐)して、成分外れを引き起こす原因となる。
【0004】
したがってスラグに含有される種々の成分のうち、F,P,Cr,Na,Cl,B等のリサイクルの用途に適さない成分(すなわち制限成分)について、その用途に応じて含有量の許容される上限値(以下、 許容上限値という)が設定されている。そして制限成分の含有量がその上限値以下であるスラグをリサイクルして、それぞれの用途に再利用している。
【0005】
ところで、このような制限成分の含有量が許容上限値を超えないようにするために、従来から
(a) スラグ生成の段階でその成分をコントロールする方法
(b) 生成した製鋼スラグを排出した後、 水熱処理を行なうことによって製鋼スラグ中の制限成分の溶出を抑制する方法(特開2000-180073 号公報)
(c) カルシウムアルミネートを添加することによって製鋼スラグ中の制限成分の溶出を抑制する方法(特開2000-225383 号公報)
等が開発されている。
【0006】
【発明が解決しようとする課題】
しかしながら上記の (a)の方法では、精錬プロセスにおいて制限成分の混入が不可避である場合は、精錬中のスラグ生成の段階で制限成分の含有量を調整することは困難である。
また (b)や (c)の方法では、生成した製鋼スラグ全量に対して改質処理を行なう必要がある。 しかし製鋼スラグの発生量は、数十〜数百kg/ton-steel にも及ぶので、スラグの改質処理量および改質処理コストは膨大なものとなる。
【0007】
本発明は、製鋼スラグ等の鉄鋼精錬スラグのうち、特にリサイクルの用途に適さない成分(すなわち制限成分)ついて、許容上限値を超える含有量を有する高濃度スラグと、許容上限値以下の含有量を有する低濃度スラグとに分別して回収し、スラグの改質処理の負荷を軽減することによって、上記の従来技術の問題点を有利に解決しようとするものである。
【0008】
【課題を解決するための手段】
本発明は、制限成分の含有量が許容上限値を超えるスラグが生成した精錬ヒートについて、該精錬ヒートの後、前記制限成分を含有しない副原料を用いる精錬を繰り返し行なう鉄鋼精錬の各工程で発生するスラグをリサイクルの用途に応じて分別して回収する分別回収方法において、スラグに含有される成分のうちの用途に応じて含有量が制限される制限成分について各工程で発生するスラグ中の含有量が制限される制限成分の含有量を当該工程に到るまでの精錬履歴および/または排滓履歴に基づいて判定し、得られた判定値と用途に応じて設定される含有量の許容上限値とを比較して、判定値が許容上限値を超える高濃度スラグと、判定値が許容上限値以下である低濃度スラグとに分別して回収するスラグの分別回収方法である。
【0009】
前記した発明においては、第1の好適態様として、精錬履歴として制限成分を含有しない副原料を使用して精錬を行なった回数a(回)を用い、排滓履歴としてスラグを精錬容器から70質量%以上排出した回数b1 (回)とスラグを精錬容器から40質量%以上〜70質量%未満排出した回数b2 (回)とを用いて、下記の (1)式からM値を算出し、あらかじめ設定されたしきい値とM値とを比較して、M値がしきい値以上のスラグを低濃度スラグとし、M値がしきい値未満のスラグを高濃度スラグとして、分別して回収することが好ましい。
【0010】
M=a+b1 +(b2 /2) ・・・ (1)
ここに
a :制限成分を含有しない副原料を使用して精錬を行なった回数(回)
1 :スラグを精錬容器から70質量%以上排出した回数(回)
2 :スラグを精錬容器から40質量%以上〜70質量%未満排出した回数(回 )
また第の好適態様として、制限成分が、F,P,Cr,Na,ClまたはBであることが好ましい。
【0011】
【発明の実施の形態】
以下に本発明の好ましい実施の形態について説明する。
まず本発明において鉄鋼精錬とは、溶銑の予備脱珪処理や予備脱燐処理、転炉あるいはそれに類する精錬炉(たとえばAOD炉)における1次脱炭精錬、取鍋内の溶鋼へのガスバブリングやフラックスインジェクション、LF等の常圧下での2次精錬、RH,DH,VAD,VOD等の減圧下での2次精錬、電気炉精錬等の製鋼の予備的処理である溶銑予備処理等の種々の工程を指す。
【0012】
これらの鉄鋼精錬の各工程における処理は、トーピードカー,溶銑鍋,転炉,AOD炉,溶鋼取鍋,電気炉等の精錬容器を用いて行なわれる。 そして、それらの精錬容器では、前工程から持ち込んだスラグに加えて、当該工程で添加される副原料(たとえばフラックス等)の反応によってスラグが発生する。 これらのスラグは、精錬処理中に精錬容器内から吹き出したり、あるいは精錬処理後にスラグを排出する(以下、排滓という)ことによって一部ないし全量が精錬容器外に排出される。
【0013】
制限成分は、 前工程からのスラグによる持ち込みおよび/または当該工程で添加される副原料の反応によって、当該工程で発生するスラグに取り込まれる。その結果、 前工程から持ち込まれたスラグ中の制限成分が高濃度であると、当該工程におけるスラグ中の制限成分の含有量も大きくなる。
したがって、スラグをリサイクルして再利用するために、その用途に応じて、制限成分の含有量の許容される上限値(すなわち許容上限値)が設定される。
【0014】
スラグ中の制限成分の含有量が許容上限値の範囲内であるか否かを判定し、高濃度スラグと低濃度スラグを分別するためには、精錬容器内のスラグまたはスラグ貯蔵場のスラグからサンプルを採取して、制限成分の含有量を分析する必要がある。しかし、分析に要する所要時間は、精錬処理の間隔あるいは排滓処理の間隔に比べて非常に長時間を要するので、鉄鋼精錬の各工程において、分析結果に基づいてリサイクルに適したスラグと適さないスラグとに分別することは困難である。
【0015】
そこで本発明では、精錬容器から排出したスラグに含有される制限成分の含有量またはスラグから溶出する制限成分の溶出量に基づいて、スラグを高濃度スラグと低濃度スラグとに分別するためのしきい値を設定する。
次に、しきい値の設定方法について説明する。
まず、制限成分の含有量が許容上限値を超えるスラグが生成した精錬ヒートについて、そのスラグ中の制限成分の含有量を測定し、その測定値を初期濃度S0 とする。
【0016】
この精錬ヒートの後、排滓や制限成分を含有しない副原料を用いる精錬を繰り返し行ない、その都度、スラグ中の制限成分の含有量を測定し、その測定値をSabとする。
このとき、制限成分を含有しない副原料を使用して精錬を行なった回数をa回とし、スラグを精錬容器から排出(すなわち排滓)した回数をb回とする。ただし精錬容器内のスラグを70質量%以上排出した回数をb1 回とし、スラグを40質量%以上〜70質量%未満排出した回数をb2 回として、b値は下記の (2)式で表わされるものとする。
【0017】
b=b1 +(b2 /2) ・・・ (2)
ここに
b :スラグを精錬容器から排出した回数(回)
1 :スラグを精錬容器から70質量%以上排出した回数(回)
2 :スラグを精錬容器から40質量%以上〜70質量%未満排出した回数(回)
そして制限成分の含有量Sabが初期濃度S0 から減少していき、許容上限値以下となるときの精錬の回数a(このときのa値をak 値とする)と排滓の回数b(このときのb値をbk 値とする)を求める。 次いで、このak 値,bk 値から下記の (3)式で算出されるk値を求め、このk値をしきい値とする。
【0018】
k=ak +bk ・・・ (3)
ただしbk 値は、 (2)式と同様に、精錬容器から排出するスラグの量に応じて下記の (4)式で表わされるから、しきい値kは下記の (5)で表わされる。
k =bk1+(bk2/2) ・・・ (4)
k=ak +bk1+(bk2/2) ・・・ (5)
すなわち、このk値をしきい値として使用することによって、高濃度スラグと低濃度スラグを分別する。なお、しきい値kの設定は、操業条件の著しい変更や、精錬容器の耐火物の変更等がない限り、制限成分毎に、それぞれ1回ずつ行なっておけば十分に対応できる。
【0019】
そして鉄鋼精錬の各工程の操業においては、制限成分の含有量が許容上限値を超えるスラグが生成した精錬ヒートの後、 スラグを精錬容器から排出した回数bおよび同じ精錬容器を用いて、制限成分を含有しない副原料を使用して精錬を行なった回数aを用いて下記の (1)式から算出されるM値と、 (5)式で算出されるしきい値kとを比較する。M値がk値未満の場合は、制限成分の含有量が許容上限値を超える高濃度スラグとして回収し、M値がk値以上の場合は、制限成分の含有量が許容上限値以下である低濃度スラグとして回収する。
【0020】
M=a+b
M=a+b1 +(b2 /2) ・・・ (1)
ここに
a :制限成分を含有しない副原料を使用して精錬を行なった回数(回)
1 :スラグを精錬容器から70質量%以上排出した回数(回)
2 :スラグを精錬容器から40質量%以上〜70質量%未満排出した回数(回)
制限成分としては、スラグをリサイクルして再利用する際に、その用途に適さないF,P,Cr,Na,Cl等の物質がある。たとえば、スラグを土木建築等の用途に使用する場合は、F,Cr(特に6価のCr),Na,ClあるいはBが環境に流出して汚染の原因になることが懸念される。また、スラグを鉄鋼精錬の造滓剤として使用する場合は、不純物成分であるPが溶鋼中に再度混入(いわゆる復燐)して、成分外れを引き起こす原因となる。
【0021】
したがって本発明を適用して分別して回収したスラグのうち、制限成分の含有量が許容上限値以下である低濃度スラグは、そのリサイクルの用途に使用できる。一方、 制限成分の含有量が許容上限値を超える高濃度スラグは、他のスラグと混合しないように管理し、含有される制限成分に応じた改質処理を施す。
なお、ここではスラグ中の制限成分の含有量を用いて判定する例について説明したが、制限成分の含有量の代わりに、スラグからの制限成分の溶出量を用いても同様の判定を行なうことができる。
【0022】
【実施例】
本発明の好適な実施例として、トーピードカーを用いた溶銑の脱珪脱燐処理で発生するスラグを回収するにあたって、制限成分としてFに着目して分別する例について説明する。
使用したトーピードカーは溶銑の収容量が350tonのものであり、トーピードカーに収容された溶銑中に蛍石を5質量%配合した酸化鉄系フラックスを吹き込んで、脱珪脱燐処理を行なった。
【0023】
まず、脱珪脱燐処理に先立って、以下の方法で予備実験を行ない、しきい値kを求めた。すなわち、蛍石を5質量%配合した酸化鉄系フラックスを用いて脱珪脱燐処理を行ない、次いでスラグを70%以上排出した後、排出したスラグからサンプルを採取して、F含有量を判定した。ただし制限成分としてのFは、 スラグ中の含有量よりも、環境への溶出量を制限する方が重要であるので、スラグ中の含有量を示す指標として、環境庁告示によるF溶出量を用いてF含有量を判定した。このようにして求めたF溶出量を初期溶出量とする。
【0024】
さらに、Fを含有しないフラックスを用いて脱珪脱燐処理を行ない、その都度、スラグを70質量%以上排出して、トーピードカー内に残留するスラグからサンプルを採取してF溶出量を測定し、その推移を調査した。その結果を図1に示す。図1から明らかなように、 F溶出量は初期溶出量から減少していき、スラグを70質量%以上排出した回数b1 =3(すなわちb2 =0であるからb=3)であり、かつFを含有しないフラックスを用いて脱珪脱燐処理を行なった回数a=3になると、トーピードカー内のスラグから溶出するFの溶出量が、土壌環境基準値である 0.8mg/liter 以下に減少することが分かった。 したがって (3)式に示したak =3,bk =3であるから、しきい値k=6となる。
【0025】
このようにして求めたしきい値(すなわちk=6)を用いて、脱珪脱燐処理で発生するスラグを分別して回収した。 すなわち、Fを含有しないフラックスを用いて脱珪脱燐処理を行なった回数aおよびスラグを排出した回数bの累計a+bが6未満の場合は、許容される上限値を超える量のFが溶出するスラグ(以下、高F溶出性スラグという)とし、a+bが6以上の場合は、Fの溶出量が許容される上限値以下であるスラグ(以下、低F溶出性スラグという)として、分別して回収した。
【0026】
すなわちスラグ貯蔵場で、高F溶出性スラグと低F溶出性スラグを別山にして貯蔵した。そしてスラグ貯蔵場において、高F溶出性スラグおよび低F溶出性スラグからのF溶出量を測定した。
また、分別回収を行なわないスラグについて、スラグ貯蔵場におけるF溶出量を測定した。その結果を図2に示す。
【0027】
図2から明らかなように、本発明を適用して分別した低F溶出性スラグは、F溶出量が土壌環境基準値の 0.8mg/liter 以下を満足しているので、路盤材や仮設材等の用途に使用するにあたって、F溶出量の低減処理を施す必要はなく、そのまま使用できる。一方、 高F溶出性スラグは、F溶出量が土壌環境基準値を超えるので、 F溶出量の低減処理を施した後、路盤材や仮設材等の用途に使用する。つまり、本発明を適用してスラグを分別して回収することによって、低F溶出性スラグはF溶出量の低減処理を施す必要はなく、 高F溶出性スラグのみにF溶出量の低減処理を施せば良い。
【0028】
一方、 分別回収を行なわないスラグは、F溶出量が大きくばらついており、F溶出量が土壌環境基準値を超えるので、 スラグ全量にF溶出量の低減処理を施さなければならない。
本発明を適用して分別した高F溶出性スラグと低F溶出性スラグの発生率は
高F溶出性スラグ発生量:低F溶出性スラグ発生量=3:7
であった。したがって、分別した高F溶出性スラグのみにF溶出量の低減処理を施すことによって、スラグ改質処理費(すなわちF溶出量の低減処理に要する費用)を70%削減できる。
【0029】
以上に述べたように、本発明によれば、溶銑の予備脱珪脱燐処理において発生するスラグのうち、一部についてのみスラグ改質処理(すなわちF溶出量の低減処理)を施せば良いのであるから、スラグ改質処理費を大幅に削減できる。
なお、ここではトーピードカーを精錬容器として用いた溶銑の予備脱珪脱燐処理について説明したが、その他の精錬容器を用いた精錬処理についても本発明を好適に適用できることは言うまでもない。
【0030】
また、スラグ中に含有される制限成分の含有量について、しきい値を設定し、高濃度スラグと低濃度スラグに分別することも可能である。
【0031】
【発明の効果】
本発明によれば、製鋼スラグ等の鉄鋼精錬スラグのうち、特にリサイクルの用途に適さない制限成分の含有量が許容上限値を超えるスラグと、制限成分の含有量が許容上限値以下のスラグを分別できるので、スラグ改質処理の負荷を著しく軽減できる。
【図面の簡単な説明】
【図1】トーピードカー内のスラグからのF溶出量の推移を示すグラフである。
【図2】スラグ貯蔵場におけるF溶出量を示すグラフである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technology for separating and recovering slag generated in each steel refining process such as hot metal pretreatment, decarburization refining, ladle refining, etc. Slag having a content exceeding the upper limit allowed for a component whose amount is limited (hereinafter referred to as a limiting component) (hereinafter referred to as high-concentration slag), and a slag having a content not exceeding the allowable upper limit (hereinafter referred to as “high concentration slag”) This is a technique for reducing and reducing the load of slag treatment.
[0002]
[Prior art]
Steel refining has various processes such as hot metal pretreatment, decarburization refining, ladle refining, and slag is generated in each of these processes. Slag generated in each process of steel refining is mainly composed of CaO, SiO 2 , Al 2 O 3 , MgO, etc. In addition to these oxides, it is mixed from hot metal, molten steel or refractories, refining flux, etc. Various components are contained.
[0003]
Among the various components mixed in the slag in each process of steel refining in this way, there are those that are not suitable for its use when recycling slag. For example, when slag is used for civil engineering and other purposes, there is a concern that F, Cr (especially hexavalent Cr), Na, Cl, or B may flow into the environment and cause pollution. Further, when slag is used as a steelmaking agent for steel refining, P which is an impurity component is mixed again into the molten steel (so-called recovery), which causes a component detachment.
[0004]
Therefore, among the various components contained in the slag, components that are not suitable for recycling such as F, P, Cr, Na, Cl, B (ie, limiting components) are allowed to be contained depending on the usage. An upper limit (hereinafter referred to as the allowable upper limit) is set. And the slag whose content of a restriction | limiting component is below the upper limit is recycled, and it reuses for each use.
[0005]
By the way, in order to prevent the content of such limiting components from exceeding the allowable upper limit,
(a) How to control its components at the stage of slag generation
(b) Method for suppressing elution of limiting components in steelmaking slag by discharging the produced steelmaking slag and then performing a hydrothermal treatment (JP 2000-180073 A)
(c) Method for suppressing elution of limiting components in steelmaking slag by adding calcium aluminate (Japanese Patent Laid-Open No. 2000-225383)
Etc. have been developed.
[0006]
[Problems to be solved by the invention]
However, in the above method (a), when the inclusion of the limiting component is inevitable in the refining process, it is difficult to adjust the content of the limiting component at the stage of slag generation during refining.
In the methods (b) and (c), it is necessary to perform a reforming process on the total amount of steel slag produced. However, since the amount of steelmaking slag is as high as several tens to several hundred kg / ton-steel, the amount of slag reforming and the cost of reforming are enormous.
[0007]
The present invention relates to a steel refining slag such as steelmaking slag, which is not particularly suitable for recycling (ie, a limiting component), a high-concentration slag having a content exceeding the allowable upper limit, and a content not exceeding the allowable upper limit. The low-concentration slag having a low concentration is recovered separately to reduce the load of the slag reforming process, thereby advantageously solving the above-described problems of the prior art.
[0008]
[Means for Solving the Problems]
The present invention is generated in each step of steel refining for refining heat in which slag having a limit component content exceeding the allowable upper limit is generated, and after refining heat, refining using the auxiliary material not containing the limit component is repeated. Content in the slag generated in each step for the restricted component whose content is restricted according to the use among the components contained in the slag in the separate collection method for separating and collecting the slag to be recycled according to the use of recycling Is determined based on the refining history and / or rejection history until reaching the process, and the allowable upper limit of the content set according to the obtained determination value and application Is a slag separation and recovery method that separates and collects high-concentration slag whose determination value exceeds the allowable upper limit value and low-concentration slag whose determination value is less than or equal to the allowable upper limit value.
[0009]
In the invention described above, a first preferred embodiment, by using the auxiliary material that does not contain restriction component as fine refining history using the number a (times) was subjected to refining, the slag from refining vessel as Haikasu history 70 M value is calculated from the following equation (1) using the number of times b 1 (times) discharged more than mass% and the number of times b 2 (times) discharged slag from 40% to less than 70% by mass from the smelting vessel. Then, the preset threshold value is compared with the M value, and the slag whose M value is equal to or greater than the threshold value is classified as a low concentration slag, and the slag whose M value is less than the threshold value is classified as a high concentration slag. It is preferable to collect.
[0010]
M = a + b 1 + ( b 2/2) ··· (1)
Where: a: number of times refining was performed using auxiliary materials not containing limiting components (times)
b 1 : Number of times slag was discharged 70% by mass or more from the smelting vessel
b 2: the number of times that the slag were discharged less than 40% by mass or more to 70 mass% from the refining vessel (times)
As a second preferred embodiment, the limiting component is preferably F, P, Cr, Na, Cl or B.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
A preferred embodiment of the present invention will be described below.
First, in the present invention, steel refining refers to preliminary desiliconization treatment or preliminary dephosphorization treatment of hot metal, primary decarburization refining in a converter or similar refining furnace (for example, AOD furnace), gas bubbling to molten steel in a ladle, Various types such as flux injection, secondary refining under normal pressure such as LF, secondary refining under reduced pressure such as RH, DH, VAD, VOD, hot metal pretreatment which is a pretreatment of steel making such as electric furnace refining Refers to a process.
[0012]
Processing in each of these steel refining processes is performed using a refining vessel such as a torpedo car, a hot metal ladle, a converter, an AOD furnace, a molten steel ladle, an electric furnace, and the like. In these smelting vessels, slag is generated by the reaction of the auxiliary raw material (for example, flux) added in the process in addition to the slag brought in from the previous process. A part or all of these slags are discharged out of the refining vessel by blowing out from the inside of the refining vessel during the refining treatment or discharging the slag after the refining treatment (hereinafter referred to as waste).
[0013]
The limiting component is taken into the slag generated in the step by bringing in the slag from the previous step and / or reacting the auxiliary material added in the step. As a result, if the limiting component in the slag brought in from the previous step is high in concentration, the content of the limiting component in the slag in that step also increases.
Therefore, in order to recycle and reuse the slag, an allowable upper limit value (that is, an allowable upper limit value) of the content of the limiting component is set according to the application.
[0014]
In order to determine whether the content of restricted components in the slag is within the allowable upper limit, and to separate high-concentration slag from low-concentration slag, the slag in the refining vessel or the slag in the slag storage It is necessary to take a sample and analyze the content of limiting components. However, since the time required for analysis is much longer than the interval between refining treatments or the interval between waste treatments, slag suitable for recycling is not suitable for each steel refining process based on the analysis results. It is difficult to separate into slag.
[0015]
Therefore, in the present invention, slag is separated into high-concentration slag and low-concentration slag based on the content of the limiting component contained in the slag discharged from the refining vessel or the amount of the limiting component eluted from the slag. Set the threshold.
Next, a threshold value setting method will be described.
First, with respect to the refining heat in which slag in which the content of the limiting component exceeds the allowable upper limit value, the content of the limiting component in the slag is measured, and the measured value is set as the initial concentration S 0 .
[0016]
After this refining heat, refining using waste materials and auxiliary materials that do not contain limiting components is repeated, and each time the content of limiting components in the slag is measured, and the measured value is taken as S ab .
At this time, the number of times the refining is performed using the auxiliary raw material not containing the limiting component is a times, and the number of times the slag is discharged (that is, discharged) from the refining vessel is b times. However, the number of times that the slag in the smelting vessel is discharged 70 mass% or more is b 1 times, the number of times that the slag is discharged 40 mass% or more to less than 70 mass% is b 2 times, Shall be represented.
[0017]
b = b 1 + (b 2 /2) ··· (2)
Where b: Number of times slag was discharged from the refining vessel (times)
b 1 : Number of times slag was discharged 70% by mass or more from the smelting vessel
b 2: the number of times that the slag were discharged less than 40% by mass or more to 70 mass% from the refining vessel (times)
Then, the content S ab of the limiting component decreases from the initial concentration S 0 , and the number of refining times a (the a value at this time is set to a k value) and the number of times of rejection b (The b value at this time is defined as b k value). Next, a k value calculated by the following equation (3) is obtained from the a k value and b k value, and this k value is set as a threshold value.
[0018]
k = a k + b k (3)
However, since the b k value is expressed by the following equation (4) according to the amount of slag discharged from the refining vessel, as in the equation (2), the threshold value k is expressed by the following (5).
b k = b k1 + (b k2 / 2) (4)
k = a k + b k1 + (b k2 / 2) (5)
That is, by using this k value as a threshold value, high-concentration slag and low-concentration slag are separated. The threshold value k can be sufficiently set if it is set once for each limiting component unless there is a significant change in operating conditions, a change in the refractory of the refining vessel, or the like.
[0019]
And in the operation of each process of steel refining, after the smelting heat in which the content of the limiting component exceeds the allowable upper limit, the slag was discharged from the refining vessel and the same refining vessel was used. The M value calculated from the following formula (1) is compared with the threshold value k calculated by the formula (5) by using the number of times of refining using the auxiliary material not containing. When the M value is less than the k value, the content of the limiting component is recovered as a high-concentration slag exceeding the allowable upper limit value, and when the M value is the k value or more, the content of the limiting component is equal to or less than the allowable upper limit value. Collect as low-concentration slag.
[0020]
M = a + b
M = a + b 1 + ( b 2/2) ··· (1)
Here, a: number of times of refining using auxiliary materials not containing limiting components (times)
b 1 : Number of times slag was discharged 70% by mass or more from the smelting vessel
b 2: the number of times that the slag were discharged less than 40% by mass or more to 70 mass% from the refining vessel (times)
As the limiting component, there are substances such as F, P, Cr, Na, and Cl that are not suitable for the purpose of use when the slag is recycled and reused. For example, when slag is used for civil engineering and other purposes, there is a concern that F, Cr (especially hexavalent Cr), Na, Cl, or B may flow into the environment and cause pollution. Further, when slag is used as a steelmaking agent for steel refining, P which is an impurity component is mixed again into the molten steel (so-called recovery), which causes a component detachment.
[0021]
Therefore, the low concentration slag in which the content of the limiting component is equal to or lower than the allowable upper limit value among the slag collected and collected by applying the present invention can be used for recycling. On the other hand, the high-concentration slag in which the content of the limiting component exceeds the allowable upper limit value is managed so as not to be mixed with other slag, and a reforming process is performed according to the limiting component contained.
In addition, although the example determined using the content of the limiting component in the slag has been described here, the same determination can be performed using the elution amount of the limiting component from the slag instead of the content of the limiting component. Can do.
[0022]
【Example】
As a preferred embodiment of the present invention, an example will be described in which slag generated by desiliconization and dephosphorization of hot metal using a torpedo car is collected by focusing on F as a limiting component.
The torpedo car used had a hot metal capacity of 350 tons, and an iron oxide-based flux containing 5% by mass of fluorite was blown into the hot metal contained in the torpedo car for desiliconization and dephosphorization.
[0023]
First, prior to desiliconization and dephosphorization, a preliminary experiment was performed by the following method to determine the threshold value k. In other words, desiliconization and dephosphorization treatment was performed using an iron oxide-based flux containing 5% by mass of fluorite, and after discharging 70% or more of slag, a sample was taken from the discharged slag and the F content was determined. did. However, since F as a limiting component is more important to limit the amount of elution into the environment than the content in slag, the amount of F eluted by notification from the Environment Agency is used as an indicator of the content in slag. The F content was determined. The F elution amount thus determined is taken as the initial elution amount.
[0024]
Furthermore, desiliconization and phosphorus removal treatment is performed using a flux not containing F, and each time 70 mass% or more of slag is discharged, and a sample is taken from the slag remaining in the torpedo car, and the F elution amount is measured. The transition was investigated. The result is shown in FIG. As is clear from FIG. 1, the F elution amount decreases from the initial elution amount, and the number of times slag is discharged by 70% by mass or more is b 1 = 3 (ie, b = 3 because b 2 = 0), In addition, when the number of times of desiliconization and phosphorus removal using a flux not containing F is a = 3, the amount of F eluted from the slag in the torpedo car decreases to the soil environmental standard value of 0.8 mg / liter or less. I found out that Therefore, since a k = 3 and b k = 3 shown in the equation (3), the threshold value k = 6.
[0025]
Using the threshold value thus obtained (ie, k = 6), slag generated in the desiliconization and dephosphorization treatment was fractionated and recovered. That is, when the cumulative number a + b of the number of times of desiliconization / phosphorus removal using a flux not containing F and the number of times b of discharged slag b is less than 6, an amount of F exceeding the allowable upper limit is eluted. When slag (hereinafter referred to as “high F-eluting slag”) and a + b is 6 or more, it is separated and recovered as slag (hereinafter referred to as “low-F-eluting slag”) whose F elution amount is not more than the upper limit value allowed. did.
[0026]
That is, the high F-eluting slag and the low F-eluting slag were stored separately in a slag storage. And the amount of F elution from high F elution slag and low F elution slag was measured in the slag storage.
Moreover, about the slag which does not carry out fraction collection | recovery, the F elution amount in a slag storage place was measured. The result is shown in FIG.
[0027]
As is clear from FIG. 2, the low F-eluting slag separated by applying the present invention satisfies the soil environmental standard value of 0.8 mg / liter or less, so roadbed materials, temporary materials, etc. When using for the above-mentioned application, it is not necessary to perform a process for reducing the F elution amount, and it can be used as it is. On the other hand, high F-eluting slag is used for roadbed materials, temporary materials, etc. after the F elution amount is reduced because the F elution amount exceeds the soil environment standard value. In other words, by applying the present invention to separate and collect slag, low F-eluting slag does not need to be subjected to F-eluting amount reduction processing, but only high-F eluting slag can be subjected to F-eluting amount reduction processing. It ’s fine.
[0028]
On the other hand, slag that is not separated and collected has a large variation in the amount of F elution, and the amount of F elution exceeds the soil environment standard value. Therefore, the amount of F elution must be reduced to the total amount of slag.
The generation rate of high F-eluting slag and low F-eluting slag separated by applying the present invention is high F-eluting slag generation amount: low F-eluting slag generation amount = 3: 7
Met. Therefore, the slag modification processing cost (that is, the cost required for the F elution amount reduction process) can be reduced by 70% by subjecting only the sorted high F elution slag to the F elution amount reduction process.
[0029]
As described above, according to the present invention, only a part of the slag generated in the hot metal preliminary desiliconization and dephosphorization process may be subjected to the slag reforming process (that is, the F elution amount reducing process). As a result, slag reforming costs can be significantly reduced.
Here, the hot metal preliminary desiliconization and dephosphorization treatment using a torpedo car as a refining vessel has been described here, but it goes without saying that the present invention can also be suitably applied to refining treatments using other refining vessels.
[0030]
Moreover, it is also possible to set a threshold value for the content of the limiting component contained in the slag and to classify it into a high concentration slag and a low concentration slag.
[0031]
【The invention's effect】
According to the present invention, among steel refining slag such as steelmaking slag, slag in which the content of the limiting component that is not particularly suitable for recycling applications exceeds the allowable upper limit value, and the slag in which the content of the limiting component is less than the allowable upper limit value. Since separation is possible, the load of slag reforming treatment can be significantly reduced.
[Brief description of the drawings]
FIG. 1 is a graph showing the transition of F elution amount from slag in a torpedo car.
FIG. 2 is a graph showing F elution amount in a slag storage site.

Claims (3)

制限成分の含有量が許容上限値を超えるスラグが生成した精錬ヒートについて、該精錬ヒートの後、前記制限成分を含有しない副原料を用いる精錬を繰り返し行なう鉄鋼精錬の各工程で発生するスラグをリサイクルの用途に応じて分別して回収する分別回収方法において、前記スラグに含有される成分のうちの前記用途に応じて含有量が制限される制限成分について前記各工程で発生する前記スラグ中の含有量が制限される前記制限成分の含有量を当該工程に到るまでの精錬履歴および/または排滓履歴に基づいて判定し、得られた判定値と前記用途に応じて設定される含有量の許容上限値とを比較して、前記判定値が前記許容上限値を超える高濃度スラグと、前記判定値が前記許容上限値以下である低濃度スラグとに分別して回収することを特徴とするスラグの分別回収方法。 Refining slag generated in each step of steel refining , where refining heat is generated after the refining heat for the refining heat in which the content of the limiting component exceeds the allowable upper limit, after the refining heat. In the fractionated collection method for separating and collecting according to the use of the slag, the content in the slag generated in the respective steps with respect to the limiting component whose content is restricted according to the use among the components contained in the slag Is determined based on the refining history and / or rejection history until reaching the process, and the allowable content set according to the obtained determination value and the application Compared with an upper limit value, the high-concentration slag in which the determination value exceeds the allowable upper limit value and the low-concentration slag in which the determination value is equal to or less than the allowable upper limit value are collected separately. Fractional recovery method of slag which is characterized. 前記精錬履歴として前記制限成分を含有しない副原料を使用して精錬を行なった回数a(回)を用い、前記排滓履歴として前記スラグを精錬容器から70質量%以上排出した回数b1 (回)と前記スラグを精錬容器から40質量%以上〜70質量%未満排出した回数b2 (回)とを用いて、下記の (1)式からM値を算出し、あらかじめ設定されたしきい値と前記M値とを比較して、前記M値が前記しきい値以上のスラグを前記低濃度スラグとし、前記M値が前記しきい値未満のスラグを前記高濃度スラグとして、分別して回収することを特徴とする請求項に記載のスラグの分別回収方法。
M=a+b1 +(b2 /2) ・・・ (1)
ここに
a :制限成分を含有しない副原料を使用して精錬を行なった回数(回)
1 :スラグを精錬容器から70質量%以上排出した回数(回)
2 :スラグを精錬容器から40質量%以上〜70質量%未満排出した回数(回 )
The number of times a (times) of refining using the auxiliary material not containing the limiting component is used as the refining history, and the number of times b 1 (times) of discharging the slag from the refining vessel by 70% by mass or more as the waste history. ) And the number of times b 2 (times) at which the slag is discharged from 40% by mass to less than 70% by mass from the smelting vessel, the M value is calculated from the following equation (1), and a preset threshold value is calculated. Is compared with the M value, and the slag having the M value equal to or higher than the threshold is classified as the low concentration slag, and the slag having the M value less than the threshold is classified as the high concentration slag and collected. The method for separating and collecting slag according to claim 1 .
M = a + b 1 + ( b 2/2) ··· (1)
Where: a: number of times refining was performed using auxiliary materials not containing limiting components (times)
b 1 : Number of times slag was discharged from the smelting vessel by 70 mass% or more (times)
b 2: the number of times that the slag were discharged less than 40% by mass or more to 70 mass% from the refining vessel (times)
前記制限成分が、F,P,Cr,Na,ClまたはBであることを特徴とする請求項1またはに記載のスラグの分別回収方法。Wherein the restriction component, F, P, Cr, Na , fractional recovery method of the slag according to claim 1 or 2 characterized in that it is a Cl or B.
JP2001369670A 2001-12-04 2001-12-04 Separation and collection method of slag Expired - Fee Related JP3711925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001369670A JP3711925B2 (en) 2001-12-04 2001-12-04 Separation and collection method of slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001369670A JP3711925B2 (en) 2001-12-04 2001-12-04 Separation and collection method of slag

Publications (2)

Publication Number Publication Date
JP2003171711A JP2003171711A (en) 2003-06-20
JP3711925B2 true JP3711925B2 (en) 2005-11-02

Family

ID=19179024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001369670A Expired - Fee Related JP3711925B2 (en) 2001-12-04 2001-12-04 Separation and collection method of slag

Country Status (1)

Country Link
JP (1) JP3711925B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5089341B2 (en) * 2007-11-05 2012-12-05 株式会社神戸製鋼所 Slag separation method

Also Published As

Publication number Publication date
JP2003171711A (en) 2003-06-20

Similar Documents

Publication Publication Date Title
KR101361991B1 (en) Method for reclaiming iron and phosphorus from steelmaking slag
CN109022644B (en) Method for recovering slag desulfurization and dephosphorization in cooperation with ferrite in full-three-removal process
AU717488B2 (en) Method of recovering metals from slags
JP4999483B2 (en) Manufacturing method of stainless steel
JP3711925B2 (en) Separation and collection method of slag
JP2019194350A (en) Recycling method of converter slag
JP4932309B2 (en) Chromium recovery method from chromium-containing slag
KR102234126B1 (en) Manufacturing method of molten steel
EP3074540B1 (en) Method for treating desulfurization slag
JP4609010B2 (en) Steel manufacturing method
CN112853022A (en) High-efficiency desulfurizing agent for steelmaking and preparation method thereof
JP2012062225A (en) Method for producing recycled slag
JP3511808B2 (en) Stainless steel smelting method
JP3505198B2 (en) Treatment of zinc-containing steelmaking dust
JP6648542B2 (en) Method for producing low phosphorus low sulfur steel
JP3829696B2 (en) How to use the converter
JP3340598B2 (en) Method of manufacturing roadbed material using slag containing Na
JPH06108137A (en) Method for melting low sulfur steel
CN113151640B (en) Process method for producing high-sulfur steel by recycling slag
JP3756904B2 (en) Treatment method of chromium-containing waste
KR950013281B1 (en) Deposphorization of ingot steel
NGUYEN Role of Basic Oxygen Furnace Slag in Dephosphorization and Desulphurization of Hot Metal
JP2002130645A (en) Method for melting treatment of burned ash
JP2002069520A (en) Method for recovering chromium in slag
JPH09316523A (en) Hardly hydrating expandable or hardly powdering slag and treatment of slag removal thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050808

R150 Certificate of patent or registration of utility model

Ref document number: 3711925

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080826

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110826

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130826

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees