JPH06108137A - Method for melting low sulfur steel - Google Patents

Method for melting low sulfur steel

Info

Publication number
JPH06108137A
JPH06108137A JP28365492A JP28365492A JPH06108137A JP H06108137 A JPH06108137 A JP H06108137A JP 28365492 A JP28365492 A JP 28365492A JP 28365492 A JP28365492 A JP 28365492A JP H06108137 A JPH06108137 A JP H06108137A
Authority
JP
Japan
Prior art keywords
slag
steel
ladle
desulfurization
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28365492A
Other languages
Japanese (ja)
Inventor
Mamoru Suda
守 須田
Hirohide Uehara
博英 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP28365492A priority Critical patent/JPH06108137A/en
Publication of JPH06108137A publication Critical patent/JPH06108137A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a new melting method for a low sulfur steel, in which desulfurization of a steel roughly refined in a refining furnace of a converter, etc., is executed after tapping the steel into a ladle without executing slag-off and electrode-heating except the special case. CONSTITUTION:In this desulfurizing treatment method for molten steel, molten pig iron having <=0.08% P is used, and after roughly refining in the refining furnace of the converter, etc., the steel is tapped into the ladle, and Al and Al2O3 source are added and acidic oxide in the slag is reduced to make (T. Fe)+(MnO)<=1%, and the desulfurizing slag having (CaO)/[(Al2O3).(SiO2)]=0.25 to 0.35 is produced. This method has the peculiarity which the slag-off and the electrode-heating are not executed except the case of producing an ultra low sulfur steel having [S]<=0.001%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は低硫鋼の溶製方法に係
り、特に取鍋炉による脱硫処理において、特別の場合を
除き電極加熱を行わず、かつ除滓を行わずして復りん、
復硫の発生しない低硫鋼の溶製方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for melting low-sulfur steel, and particularly, in the desulfurization treatment with a ladle furnace, except for special cases, electrode heating is not carried out, and dephosphorization is carried out without removing slag.
The present invention relates to a method for melting low-sulfur steel in which re-sulfurization does not occur.

【0002】[0002]

【従来の技術】従来〔S〕≦0.005%の低硫鋼の溶
製は一般に次の方法で行われていた。すなわち、転炉等
の精錬炉で脱炭、脱りんを完了した溶鋼を取鍋に出鋼
し、電極等をセツトして加熱可能の取鍋炉(Ladle
Furnace)とし、更に生石灰等のフラツクスの
吹込み装置を備えた2次精錬工程にて脱硫を行つてい
た。この場合2次精錬工程での復りん、復硫を防止する
ため、通常2次精錬前に除滓を行つた後、生石灰、ばん
土頁岩、螢石等の脱硫フラツクスを添加し加熱滓化して
脱硫処理する方法をとつていた。しかしながら上記従来
技術の取鍋スラグの除滓は、溶鋼温度の降下をもたらす
のみならず、除滓中に溶鋼の流出等による地金ロスがあ
り、コスト的にはきわめて不利な方法である。また除滓
後、新たに添加する脱硫フラツクスの滓化のために電極
加熱が不可欠であり、かつ滓化促進のための螢石の添加
によつて取鍋耐火物の溶損を助長する等の問題があつ
た。また一方、取鍋スラグの除滓を行わない場合には取
鍋スラグがカーボン電極によつて還元され、復りん、復
硫が発生するという新たな問題があつた。
2. Description of the Related Art Conventionally, the melting of low-sulfur steel having a [S] ≦ 0.005% is generally carried out by the following method. That is, a ladle furnace (Ladle that can be heated by tapping molten steel that has been decarburized and dephosphorized in a refining furnace such as a converter into a ladle and setting electrodes and the like
Furnace) and desulfurization was carried out in the secondary refining process equipped with a device for blowing a flux such as quicklime. In this case, in order to prevent re-phosphorization and re-sulfurization in the secondary refining process, usually after removing the slag before the secondary refining, desulfurization flux such as quick lime, shale and fluorite is added to heat slag The method of desulfurization was adopted. However, the above-mentioned prior art ladle slag slag not only causes a drop in molten steel temperature, but also causes metal loss due to the outflow of molten steel during the slag, which is a very disadvantageous method in terms of cost. In addition, after slag removal, electrode heating is indispensable for the slag formation of newly added desulfurization flux, and the addition of fluorite to accelerate slag formation promotes the dissolution of ladle refractory materials. There was a problem. On the other hand, when the ladle slag is not removed, there is a new problem that the ladle slag is reduced by the carbon electrode and re-phosphorus and vulcanization occur.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、上記
低りん、低硫鋼製造における取鍋精錬の従来技術の問題
点に鑑み (イ)電極加熱の使用は最少限とする。 (ロ)除滓は行わない。 (ハ)復りん、復硫は発生させない。 を原則として、効果的な低硫鋼の溶製方法を提供するに
ある。
SUMMARY OF THE INVENTION In view of the problems of the prior art of ladle refining in the production of low phosphorus and low sulfur steel, the object of the present invention is to (a) minimize the use of electrode heating. (B) No slag is removed. (C) Re-phosphorus and re-sulfur are not generated. In principle, it is to provide an effective method for melting low-sulfur steel.

【0004】[0004]

【課題を解決するための手段】本発明の要旨とするとこ
ろは次の如くである。 (1)重量比にてP:0.08%以下の溶銑を使用し精
錬炉で粗精錬する段階と、前記粗精錬した溶鋼を取鍋に
出鋼する段階と、前記取鍋内に出鋼した溶鋼とともに流
入したスラグ量を実測もしくは推定にて定量する段階
と、前記取鍋内のスラグ中にAl滓もしくは金属Alと
Al23の混合物を添加し、(T.Fe)+(MnO)の
合計量を1%以下となるまで還元する段階と、前記還元
後生石灰を添加し(CaO)/(Al23)・(SiO2
=0.25〜0.35なる脱硫スラグを形成し溶鋼の脱
硫処理を行う段階と、を有して成ることを特徴とする低
硫鋼の溶製方法。 (2)〔S〕≦0.001%の極低硫鋼溶製の場合を除
き、精錬炉による粗精錬スラグは前記取鍋による脱硫処
理中に除滓しないことを特徴とする上記(1)に記載の
低硫鋼の溶製方法。 (3)〔S〕≦0.001%の極低硫鋼溶製の場合を除
き、取鍋による脱硫処理中に電極等による加熱は行わな
いことを特徴とする上記(1)もしくは(2)に記載の
低硫鋼の溶製方法、である。
The gist of the present invention is as follows. (1) A step of roughly refining in a refining furnace using molten iron having a weight ratio of P: 0.08% or less, a step of tapping the roughly refined molten steel in a ladle, and a tapping in the ladle. The amount of slag flowing in together with the molten steel was measured or estimated, and Al slag or a mixture of metal Al and Al 2 O 3 was added to the slag in the ladle, and (T.Fe) + (MnO ) Is reduced to a total amount of 1% or less, and after the reduction, quick lime is added (CaO) / (Al 2 O 3 ). (SiO 2 ).
= 0.25-0.35, and the step of performing desulfurization treatment of molten steel, the method for producing low-sulfur steel. (2) Except in the case of melting of [S] ≦ 0.001% ultra-low-sulfur steel, the crude smelting slag in the smelting furnace is not removed during the desulfurization treatment by the ladle. The method for producing low-sulfur steel according to 1. (3) The above (1) or (2) is characterized in that heating by an electrode or the like is not performed during desulfurization treatment with a ladle, except in the case of melting of [S] ≦ 0.001% ultra-low sulfur steel. The method for producing low-sulfur steel according to 1.

【0005】本発明の詳細を本発明者らの実験に基いて
説明する。本発明者らは、P含有量が0.1%と高いN
o.1溶銑と、0.04%と比較的に低いNo.2溶銑
を使用し、転炉にて精錬し、これを取鍋に出鋼した後、
約4分間の電極加熱を行って本発明による脱硫処理を行
ったが、取鍋における脱硫処理中に図1に示す如く、P
含有量の高いNo.1鋼の復りんが認められたが、P含
有量の低いNo.2鋼の復りんは認められなかった。し
かして復りん現象の認められない溶銑のP含有量の上限
がP:0.08%であることが判明したので、本発明で
は使用溶銑のP濃度を0.08%以下と限定した。しか
して、溶銑のP濃度0.08%と平衡する転炉スラグの
25濃度が1%であるので、転炉スラグのP25濃度
を1%以下に低下して取鍋精錬中における復りんを防止
した。次に取鍋内に出鋼した溶鋼とともに流入したスラ
グ量を実測もしくは推定にて定量する。これは、スラグ
中のT.Fe、MnO、SiO2等の酸性酸化物を還元する
に要するAl滓量の決定のために不可欠である。「アル
ミドロス」とも称されているAl滓はスラグの改質目的
のためにコスト的にも有効な還元剤であって、ほぼ次の
ような組成を有している。 金属Al : 30〜55% Al23 18〜40% SiO2 4〜10% T.C 0.4〜0.8% スラグ中のT.Fe、MnO、SiO2等の酸性酸化物はA
l滓に還元され次の反応により、それぞれFe、Mn、
Siの金属となりAl23を生成する。 yMO+Al→Al23+M………………(1) ただしM:Fe、Mn、Si Al滓の代りに金属Alとばん土頁岩等のAl23源を
使用することも可能である。
The details of the present invention will be described based on experiments by the present inventors. The present inventors have found that the P content is as high as 0.1% and the N content is high.
o. No. 1 hot metal and 0.04%, which is relatively low. 2 Use hot metal, smelt in a converter, tap this in a ladle,
The electrode was heated for about 4 minutes to carry out the desulfurization treatment according to the present invention. During the desulfurization treatment in the ladle, as shown in FIG.
No. with a high content Although reconstitution of steel No. 1 was observed, No. 1 with a low P content was used. No reconstitution of steel 2 was observed. However, since it was found that the upper limit of the P content of the hot metal in which the re-phosphorus phenomenon was not observed was P: 0.08%, the P concentration of the hot metal used was limited to 0.08% or less in the present invention. Since the P 2 O 5 concentration of the converter slag that is in equilibrium with the P concentration of 0.08% of the hot metal is 1%, the P 2 O 5 concentration of the converter slag is reduced to 1% or less and ladle refining is performed. Prevents re-phosphorus inside. Next, the amount of slag that flows into the ladle together with the molten steel discharged is measured or estimated to determine the amount. This is indispensable for determining the amount of Al slag required to reduce acidic oxides such as T.Fe, MnO, and SiO 2 in slag. Al slag, which is also called "alumin dross", is a cost effective reducing agent for the purpose of modifying slag, and has the following composition. Metal Al: 30 to 55% Al 2 O 3 18 to 40% SiO 2 4 to 10% T.I. C 0.4-0.8% Acid oxides such as T.Fe, MnO, and SiO 2 in the slag are A
Fe, Mn, and
It becomes a metal of Si and produces Al 2 O 3 . yMO + Al → Al 2 O 3 + M (1) However, it is possible to use Al 2 O 3 sources such as metal Al and shale shale instead of M: Fe, Mn, Si Al slag. .

【0006】Al滓によるスラグの還元は (T.Fe)+(MnO)≦1%..........(2) となるまで還元する。その理由は本発明者らによるT=
1580〜1620℃における図2に示す脱硫スラグに
おいて、 (CaO)/{(Al23)・(SiO2)}=0.25〜
0.35 なる条件下における(S)/[S]すなわち、鋼中のS
濃度[S]とスラグ中のS濃度(S)との分配比が高く
なる本発明による脱硫反応が有効に進行するための条件
であって、酸性酸化物の残存量が多く、(T.Fe)+
(MnO)>1%の場合には脱硫が十分に進行しないか
らである。 本発明は、取鍋内のスラグをAl滓を添加
することにより還元し、(T.Fe)+(MnO)≦1%
になったならば、還元後の(SiO2)量ならびに生成し
た(Al23)量を考慮し、これに見合う生石灰CaO
を取鍋スラグ上に添加し、(CaO)/{(Al23)・
(SiO2)}の値を種々変化さして、これに対応する
(S)/[S]値を測定しプロットした結果は図2に示
すとおりである。この場合(CaO)/{(Al23)・
(SiO2)}の値が0.25未満の場合は塩基度(Ca
O)/(SiO2)が低下して脱硫反応が阻害され、また
この値が0.35を越える場合はスラグの融点が上昇し
て滓化が不安定となり、脱硫も不安定となる。従って
(S)/[S]が最大となる場合の (CaO)/{(Al23)・(SiO2)}=0.25〜0.35…………(3) と限定するスラグ成分を最終脱硫スラグとする。
The reduction of slag with Al slag is performed until (T.Fe) + (MnO) ≦ 1% ........ (2). The reason is that T =
In the desulfurization slag shown in FIG. 2 at 1580 to 1620 ° C., (CaO) / {(Al 2 O 3 ). (SiO 2 )} = 0.25 to
(S) / [S] under the condition of 0.35, that is, S in steel
This is a condition for effectively promoting the desulfurization reaction according to the present invention in which the distribution ratio between the concentration [S] and the S concentration (S) in the slag is high, and a large amount of the acidic oxide remains (T.Fe ) +
This is because desulfurization does not proceed sufficiently when (MnO)> 1%. The present invention reduces the slag in the ladle by adding Al slag, (T.Fe) + (MnO) ≦ 1%
If it becomes, the amount of (SiO 2 ) after reduction and the amount of (Al 2 O 3 ) formed are taken into consideration, and quick lime CaO that corresponds to this
Add ladle slag to (CaO) / {(Al 2 O 3 ) ・
The values of (SiO 2 )} are variously changed, the corresponding (S) / [S] values are measured and plotted, and the results are shown in FIG. In this case (CaO) / {(Al 2 O 3 ) ・
If the value of (SiO 2 )} is less than 0.25, the basicity (Ca
O) / (SiO 2 ) decreases and the desulfurization reaction is hindered, and when this value exceeds 0.35, the melting point of the slag rises and slag formation becomes unstable, and desulfurization also becomes unstable. Therefore, when (S) / [S] is maximum, (CaO) / {(Al 2 O 3 ) · (SiO 2 )} = 0.25 to 0.35 ............ (3) The component is the final desulfurization slag.

【0007】上記本発明による脱硫反応は取鍋中におけ
る電極加熱は必要最少限とし、(1)式による反応熱を利
用し、最終工程で添加するCaOの滓化促進も電極によ
る加熱を必要とせず、また滓化促進のために螢石の添加
も必要としない。なお、本発明において酸性酸化物スラ
グの還元に用いるAl滓もしくは金属Al滓とAl23
Al23源としては、ばん土頁岩を有効に利用すること
ができる。また本発明における転炉等の精錬炉からのス
ラグの除滓は、〔S〕≦0.001%の極低硫鋼溶製の場合
を除き必要としないので、これによる溶鋼温度の低下は
避けることができる。ただし、〔S〕≦0.001%の
極低硫鋼溶製の場合は、転炉等の精錬炉からの出鋼時の
流出スラグの除滓を行つた後、Al滓による酸性酸化物
の還元後、生石灰の添加を行い、(CaO)/{(Al2
3)・(SiO2)}=0.25〜0.35の脱硫スラグを
造ってもよい。この場合のAlの酸化源としては大気に
より溶鋼が再酸化して生成したFeOのほか、残留スラ
グ中のFeO、溶鋼中の〔Al〕と平衡する鋼中の遊離
酸素があり、Al滓は十分滓化される。従つてAl酸化に
よる反応熱を利用して添加生石灰は十分に滓化される。
In the desulfurization reaction according to the present invention, the electrode heating in the ladle is set to the minimum necessary, and the heat of reaction according to the equation (1) is used to promote the slag formation of CaO added in the final step, which requires the heating by the electrode. In addition, addition of fluorite to accelerate slag formation is not required. As the Al 2 O 3 source of Al slag or metal Al dross and Al 2 O 3 for use in the reduction of the acidic oxide slag in the present invention, bands shale can be effectively utilized. Further, since the removal of slag from a refining furnace such as a converter in the present invention is not required except for the production of [S] ≤ 0.001% ultra-low sulfur steel, a decrease in molten steel temperature due to this can be avoided. it can. However, in the case of melting [S] ≤ 0.001% ultra-low-sulfur steel, after removing the slag that has flowed out of the refining furnace such as a converter, the acid slag produced by Al slag is removed. After reduction, quick lime was added, and (CaO) / {(Al 2
O 3) · (or building a desulfurization slag of SiO 2)} = 0.25~0.35. In this case, the sources of Al oxidation include FeO generated by reoxidation of molten steel by the atmosphere, FeO in the residual slag, and free oxygen in the steel in equilibrium with [Al] in the molten steel. Be slagged. Therefore, the added quicklime is sufficiently slagged by utilizing the heat of reaction due to Al oxidation.

【0008】[0008]

【実施例】P≦0.08%以下の溶銑を使用し、転炉で
粗精錬を行つた後、転炉流出スラグの除滓を行う場合、
行わない場合、および酸性酸化物をAl滓にて還元した
後、生石灰を添加時に同時にばん土頁岩を使用する等N
o.1、No.2、No.3の本発明による脱硫処理を
行い、結果を比較する比較試験を行つた。 供試鋼No.1:転炉から取鍋に出鋼後電極加熱を行わ
ず直ちにAl滓による酸性酸化物の還元を行い、(T.F
e)+(MnO)≦1%とした後、CaOを添加して (CaO)/{(Al23)・(SiO2)}=0.25〜
0.35 なる脱硫スラグを形成して脱硫した結果、図3のNo.
1に示す如く取鍋内処理時間の経過と共に脱硫して、最
終的にS:0.012%の低硫鋼を得た。この場合の生
石灰の滓化はすべてAl滓による還元反応熱を利用した
もので、取鍋に付属の電極による加熱は全く行わなかつ
た。
[Example] When the molten iron with P ≦ 0.08% or less is used and the slag of the converter outflow slag is removed after the coarse refining is performed in the converter,
If not, and after reducing the acidic oxides with Al slag, use quick clay shale at the same time when adding quick lime.
o. 1, No. 2, No. 3 desulfurization treatments according to the present invention were performed, and comparative tests were conducted to compare the results. Test steel No. 1: Immediately after tapping the ladle from the converter to the ladle, the electrode oxide was not heated and the acid oxide was immediately reduced by the Al slag.
e) + (MnO) ≦ 1%, and then CaO is added to add (CaO) / {(Al 2 O 3 ). (SiO 2 )} = 0.25
As a result of desulfurization by forming desulfurization slag of 0.35, No. 3 in FIG.
As shown in FIG. 1, desulfurization was performed with the lapse of the processing time in the ladle, and finally low-sulfur steel with S: 0.012% was obtained. In this case, quick lime slag was all converted by utilizing the heat of reduction reaction by Al slag, and heating by the electrode attached to the ladle was not performed at all.

【0009】供試鋼No.2 転炉による出鋼を取鍋に収容した後、除滓を行つた。除
滓後ばん土頁岩を添加すると共に電極を降下して約6分
間加熱し、滓化を図った。次にAl滓を計算量添加して
(T・Fe)+(MnO)≦1%とした後、生石灰を添
加し (CaO)/{(Al23)・(SiO2)}=0.25〜
0.35 の脱硫スラグを形成して脱硫した結果、図1に示される
如く約19分の取鍋精錬時間の経過と共に脱硫され、最
終的にS:0.001%の極低硫鋼を得た。
Specimen steel No. 2 After putting the tapped steel from the converter into a ladle, the slag was removed. After removing the slag, the soil shale was added and the electrode was lowered and heated for about 6 minutes to slag. Next, after adding a calculated amount of Al slag to (T · Fe) + (MnO) ≦ 1%, quicklime was added (CaO) / {(Al 2 O 3 ) · (SiO 2 )} = 0. 25-
As a result of desulfurization by forming desulfurization slag of 0.35, as shown in Fig. 1, it was desulfurized with the elapse of the ladle refining time of about 19 minutes, and finally S: 0.001% of ultra low sulfur steel was obtained. It was

【0010】供試鋼No.3 No.2と同様に転炉出鋼を取鍋に収容した後、除滓せ
ずに直ちに電極を降下して約6分間の加熱を行い、同時
にばん土頁岩を添加して、これを滓化した。その後Al
滓を添加して (T・Fe)+(MnO)≦1% となるまで還元し、その後生石灰を添加して (CaO)/{(Al23)・(SiO2)}=0.25〜
0.35 なる脱硫スラグを形成した。この19分間の取鍋精錬時
間の経過と共に脱硫され、最終脱硫スラグによる低硫鋼
のS濃度は、図1におけるNo.3曲線の示す如く0.
003%の低硫鋼を得た。
Test Steel No. 3 No. After the converter tapped steel was placed in a ladle in the same manner as in 2, the electrode was immediately lowered and heated for about 6 minutes without slag removal, and at the same time, shale shale was added and slagged. Then Al
Add slag to reduce until (T · Fe) + (MnO) ≦ 1%, then add quick lime (CaO) / {(Al 2 O 3 ) · (SiO 2 )} = 0.25 ~
A desulfurization slag of 0.35 was formed. The S concentration of the low-sulfur steel that has been desulfurized with the lapse of this ladle refining time of 19 minutes, and the final desulfurized slag has a S concentration of No. 1 in FIG. As shown by the three curves, 0.
003% low-sulfur steel was obtained.

【0011】[0011]

【発明の効果】本発明による低硫鋼の溶製方法は、従来
採られて来た取鍋炉による電極加熱、フラツクス吹込み
の脱硫方法の欠点を克服し、極低硫鋼の溶製時以外は通
常転炉等の一次精錬炉のスラグを除滓せず、また電極加
熱も全く行わないか、もしくは数分間のきわめて短時間
に抑制し、取鍋内にAl滓もしくは金属アルミニウムと
ばん土頁岩のAl23源を添加することにより、スラグ
中の酸性酸化物を還元した後、生石灰を吹込み (CaO)/{(Al23)・(SiO2)}=0.25〜
0.35 の脱硫スラグを形成し、溶鋼を脱硫する方法をとつたの
で、次の効果を挙げることができた。 (イ)本発明では使用溶銑のP含有量を0.08%以下
に限定したので、取鍋による脱硫の2次精錬途中におい
ても復りんすることがない。 (ロ)1次精錬炉のスラグをほとんど除滓しない方法を
とつたので溶鋼温度の低減を防止し得た。 (ハ)スラグ中の酸性酸化物の還元にAl滓を使用する
ので、効果的であるほか、コスト面でも有利である。 (ニ)強力な脱硫スラグを形成するのでS=0.001
%までの脱硫が可能である。 (ホ)最終脱硫スラグ形成の生石灰の滓化も、電極加熱
によらずAl滓による反応熱を利用し得るので、螢石等
の滓化促進剤の添加を要しない。この結果脱硫処理中の
復りん、復硫が全くなく、かつ取鍋耐火物の原単位の低
減、ひいてはコストの低減が可能となつた。
EFFECT OF THE INVENTION The method for producing low-sulfur steel according to the present invention overcomes the disadvantages of the conventional desulfurization methods of heating an electrode by a ladle furnace and blowing a flux, except for the production of ultra-low-sulfur steel. Does not usually remove slag from primary refining furnaces such as converters, does not perform electrode heating at all, or suppresses it for a very short time of a few minutes, so that Al slag or metallic aluminum and shale in the ladle Al 2 O 3 source is added to reduce the acidic oxide in the slag, and then lime is blown into it (CaO) / {(Al 2 O 3 ). (SiO 2 )} = 0.25
Since the desulfurization slag of 0.35 was formed and the molten steel was desulfurized, the following effects could be obtained. (A) In the present invention, since the P content of the hot metal used is limited to 0.08% or less, re-phosphorization does not occur even during the secondary refining of desulfurization with a ladle. (B) Since the slag of the primary refining furnace was hardly removed, the molten steel temperature could be prevented from lowering. (C) Since Al slag is used for the reduction of the acidic oxides in the slag, it is effective and cost effective. (D) S = 0.001 because a strong desulfurization slag is formed.
% Desulfurization is possible. (E) The slag formation of quick lime for the final desulfurization slag formation can utilize the reaction heat of the Al slag without depending on the electrode heating, and thus does not require addition of a slag formation accelerator such as fluorite. As a result, there was no re-phosphorization or re-sulfurization during desulfurization treatment, and it was possible to reduce the basic unit of ladle refractory, and consequently the cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】取鍋による2次精錬中における復りんに及ぼす
使用溶銑中のP含有量の影響を調査する実験におけるP
含有量0.1%の溶銑を使用した供試鋼No.1と、P
含有量0.04%の溶銑を使用した供試鋼No.2の取
鍋による脱硫処理中におけるP含有量の変化を示す線図
である。
FIG. 1 P in an experiment investigating the effect of P content in hot metal used on re-phosphorus during secondary refining with a ladle
Test steel No. using hot metal with a content of 0.1% 1 and P
Test steel No. using hot metal with a content of 0.04% It is a diagram which shows the change of P content in the desulfurization process by the ladle of FIG.

【図2】取鍋による脱硫処理の2次精錬中におけるスラ
グの(T.Fe)+(MnO)≦1、T=1580〜1
620℃のもとで、(CaO)/{(Al23)・(SiO2)}
を0.1から0.5まで変化させた時のSの分配比
(S)/〔S〕に及ぼす影響を示す線図である。
FIG. 2 (T.Fe) + (MnO) ≦ 1, T = 1580-1 of slag during secondary refining in desulfurization treatment with ladle
At 620 ° C, (CaO) / {(Al 2 O 3 ) ・ (SiO 2 )}
It is a diagram which shows the influence which it has on distribution ratio (S) / [S] of S when changing from 0.1 to 0.5.

【図3】本発明の実施例における供試鋼No.1、N
o.2、No.3の取鍋による脱硫処理時間の経過に伴
う鋼中S含有量〔S〕/1003%の変化を示す線図で
あつて、 No.1 除滓なし Al滓使用の場合 No.2 除滓実施 ばん土頁岩使用の場合 No.3 除滓なし ばん土頁岩使用の場合
FIG. 3 is a test steel No. in the example of the present invention. 1, N
o. 2, No. 3 is a diagram showing changes in the S content [S] / 100 3 % in steel with the lapse of desulfurization treatment time by the ladle of No. 3; No slag 1 When using Al slag No. 2 Debris implementation When using shale shale No. 3 When using shale without slag

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量比にてP:0.08%以下の溶銑を
使用し精錬炉で粗精錬する段階と、前記粗精錬した溶鋼
を取鍋に出鋼する段階と、前記取鍋内に出鋼した溶鋼と
ともに流入したスラグ量を実測もしくは推定にて定量す
る段階と、前記取鍋内のスラグ中にAl滓もしくは金属
AlとAl23の混合物を添加し、(T、Fe)+(M
nO)の合計量を1%以下となるまで還元する段階と、
前記還元後生石灰を添加し (CaO)/{(Al23)・(SiO2)}=0.25〜
0.35 なる脱硫スラグを形成し溶鋼の脱硫処理を行う段階と、
を有することを特徴とする低硫鋼の溶製方法。
1. A step of roughly refining in a refining furnace using molten pig iron with a weight ratio of P: 0.08% or less, a step of tapping the roughly refined molten steel in a ladle, and a step of A step of quantitatively measuring or estimating the amount of slag that has flowed in together with the molten steel that has been tapped, adding Al slag or a mixture of metallic Al and Al 2 O 3 to the slag in the ladle, and adding (T, Fe) + (M
reducing the total amount of nO) to 1% or less,
After the reduction, quick lime was added, and (CaO) / {(Al 2 O 3 ). (SiO 2 )} = 0.25-
Forming a desulfurization slag of 0.35 and performing desulfurization treatment of molten steel;
And a method for melting low-sulfur steel.
【請求項2】〔S〕≦0.001%の極低硫鋼溶製の場
合を除き、精錬炉による粗精錬スラグは前記取鍋による
脱硫処理中に除滓しないことを特徴とする請求項1に記
載の低硫鋼の溶製方法。
2. Except in the case of melting of [S] ≦ 0.001% ultra-low sulfur steel, the crude smelting slag in the smelting furnace is not removed during the desulfurization treatment by the ladle. 1. The method for melting low-sulfur steel according to 1.
【請求項3】〔S〕≦0.001%の極低硫鋼溶製の場
合を除き、取鍋による脱硫処理中に電極等による加熱は
行わないことを特徴とする請求項(1)もしくは(2)
に記載の低硫鋼の溶製方法。
3. The method according to claim 1, wherein heating by an electrode or the like is not carried out during the desulfurization treatment with a ladle, except in the case of melting [S] ≦ 0.001% of extremely low-sulfur steel. (2)
The method for producing low-sulfur steel according to 1.
JP28365492A 1992-09-29 1992-09-29 Method for melting low sulfur steel Pending JPH06108137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28365492A JPH06108137A (en) 1992-09-29 1992-09-29 Method for melting low sulfur steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28365492A JPH06108137A (en) 1992-09-29 1992-09-29 Method for melting low sulfur steel

Publications (1)

Publication Number Publication Date
JPH06108137A true JPH06108137A (en) 1994-04-19

Family

ID=17668330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28365492A Pending JPH06108137A (en) 1992-09-29 1992-09-29 Method for melting low sulfur steel

Country Status (1)

Country Link
JP (1) JPH06108137A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000212633A (en) * 1999-01-28 2000-08-02 Kawasaki Steel Corp Desulfurization of molten steel in ladle refining
KR100398395B1 (en) * 1999-10-13 2003-09-19 주식회사 포스코 A method for desulfurizing the molten steel in the mini-mill process
CN104818364A (en) * 2015-04-29 2015-08-05 江苏大学 Slag accretion agent for ladle furnace slagging and refining, and preparation method and application method thereof
CN115505667A (en) * 2022-09-19 2022-12-23 首钢集团有限公司 KR powder injection molten iron pretreatment method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000212633A (en) * 1999-01-28 2000-08-02 Kawasaki Steel Corp Desulfurization of molten steel in ladle refining
KR100398395B1 (en) * 1999-10-13 2003-09-19 주식회사 포스코 A method for desulfurizing the molten steel in the mini-mill process
CN104818364A (en) * 2015-04-29 2015-08-05 江苏大学 Slag accretion agent for ladle furnace slagging and refining, and preparation method and application method thereof
CN115505667A (en) * 2022-09-19 2022-12-23 首钢集团有限公司 KR powder injection molten iron pretreatment method
CN115505667B (en) * 2022-09-19 2023-09-15 首钢集团有限公司 KR powder spraying molten iron pretreatment method

Similar Documents

Publication Publication Date Title
JP4999483B2 (en) Manufacturing method of stainless steel
JP3428628B2 (en) Stainless steel desulfurization refining method
JP2003155516A (en) Method for desulfurizing molten steel with ladle- refining
JPH06108137A (en) Method for melting low sulfur steel
JP3575304B2 (en) Converter steelmaking method
JP2653301B2 (en) Reusing method of low P converter slag
JP2001115205A (en) Method for dephosphorizing molten iron
KR100368225B1 (en) A method for manufacturing extra-low phosphorous steel using hot metal untreated melt
JPH07310110A (en) Production of stainless steel
JPH08104911A (en) Method for melting phosphorus-containing steel
JP2000109924A (en) Method for melting extra-low sulfur steel
KR100349160B1 (en) Converter refining method for manufacturing low carbon steel
JPH08176644A (en) Manufacture of low sulfur steel with reduced killing time
JP4411934B2 (en) Method for producing low phosphorus hot metal
JP2000212633A (en) Desulfurization of molten steel in ladle refining
JP3194212B2 (en) Converter steelmaking method
JPS60121211A (en) Method for reducing and desulfurizing molten cr steel
US2767078A (en) Process for desiliconizing and desulphurizing pig iron
JPH1161221A (en) Method for melting low manganese steel
JP2020105544A (en) Molten iron desulfurization method
KR950013281B1 (en) Deposphorization of ingot steel
KR20060035274A (en) Method for manufacturing molten steel for galvanized steel plate
JPH111714A (en) Steelmaking method
JP2795513B2 (en) Decarburization refining method of chromium-containing molten steel
JP2002069518A (en) Method for dephosphorizing molten iron developing little slag quantity