JP3707644B2 - 内燃機関の燃焼状態検出装置 - Google Patents

内燃機関の燃焼状態検出装置 Download PDF

Info

Publication number
JP3707644B2
JP3707644B2 JP18082497A JP18082497A JP3707644B2 JP 3707644 B2 JP3707644 B2 JP 3707644B2 JP 18082497 A JP18082497 A JP 18082497A JP 18082497 A JP18082497 A JP 18082497A JP 3707644 B2 JP3707644 B2 JP 3707644B2
Authority
JP
Japan
Prior art keywords
output ratio
output
internal combustion
combustion engine
determination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18082497A
Other languages
English (en)
Other versions
JPH1122616A (ja
Inventor
賢治 生田
敏昭 山浦
栄司 高桑
和久 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Motor Corp filed Critical Denso Corp
Priority to JP18082497A priority Critical patent/JP3707644B2/ja
Publication of JPH1122616A publication Critical patent/JPH1122616A/ja
Application granted granted Critical
Publication of JP3707644B2 publication Critical patent/JP3707644B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Spark Plugs (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、点火プラグの電極に流れるイオン電流を検出して内燃機関の燃焼状態を検出する内燃機関の燃焼状態検出装置に関するものである。
【0002】
【従来の技術】
近年、内燃機関(エンジン)の気筒内で混合気が燃焼する際にイオンが発生する点に着目し、このイオン電流を点火プラグの電極を介して検出することで、内燃機関の燃焼状態を検出する技術が提案されている。例えば、特開平6−249048号公報、特開平6−193514号公報に示すように、混合気の燃焼状態を示すパラメータとして燃焼ラフネス度をイオン電流の検出値から算出するようにしたものがある。前者(特開平6−249048号公報)は、次式によりNサイクルのイオン電流の標準偏差を燃焼ラフネス度として算出する。
【0003】
【数1】
Figure 0003707644
【0004】
また、後者(特開平6−193514号公報)は、点火プラグの電極に流れるイオン電流を検出するイオン電流検出回路の検出電圧を、比較器で所定のしきい電圧と比較し、該検出電圧がしきい電圧を越えている時間、つまり比較器の出力がハイレベルになっている時間(パルス幅TP)を計測することで、燃焼ラフネス度を求める。
【0005】
【発明が解決しようとする課題】
ところで、イオン電流は、エンジン運転条件によって非常に大きく変動するため、エンジン運転条件によるイオン電流の変動の影響を排除しないと、イオン電流から燃焼ラフネス度を精度良く求めることができない。この点について、上記従来のものは、いずれも考慮されていないため、燃焼ラフネス度の算出値にエンジン運転条件によるイオン電流の変動の影響がそのまま含まれてしまい、燃焼ラフネス度の算出精度が悪く、混合気の燃焼状態を精度良く判定できないという欠点がある。
【0006】
本発明はこのような事情を考慮してなされたものであり、従ってその目的は、燃焼ラフネス度を精度良く求めることができる内燃機関の燃焼状態検出装置を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明の請求項1の内燃機関の燃焼状態検出装置は、点火プラグの電極に流れるイオン電流をイオン電流検出手段により検出し、このイオン電流検出手段の出力を判定値と比較して該出力が判定値以下又は以上となる割合(以下「出力割合」という)を出力割合演算手段により演算し、この出力割合演算手段で演算した出力割合に基づいて燃焼ラフネス度を判定手段により判定する。出力割合は、内燃機関運転条件によるイオン電流の変動の影響が少ないため、燃焼ラフネス度を従来よりも精度良く求めることができる。
【0008】
更に、請求項2のように、前記判定手段で判定した燃焼ラフネス度に基づいて内燃機関制御パラメータを設定する制御パラメータ設定手段を設けた構成としても良い。ここで、内燃機関制御パラメータとしては、例えば排気ガス還流装置の排気ガス還流量(EGR量)、燃料蒸発ガス(エバポガス)パージ装置のパージ量等があり、少なくとも1つの内燃機関制御パラメータを燃焼ラフネス度に基づいて設定することで、燃焼状態を安定させることができる。
【0009】
ところで、点火プラグの使用期間が長くなるに従って、点火プラグの中心電極の外周面に絶縁物デポジットが徐々に付着し、中心電極の露出面積が少なくなることがある。このようになると、中心電極に流れるイオン電流が減少して、イオン電流検出手段の出力が低下し、出力割合の演算結果にも影響が出る。
【0010】
この対策として、請求項3のように、点火プラグとして多極プラグ又は沿面放電プラグを用いるようにしても良い。多極プラグや沿面放電プラグは、点火プラグの中心電極の外周面に向かって側方から火花放電が発生するため、その放電エネルギによって中心電極の外周面が清浄化されて、絶縁物デポジットの付着が少ない。従って、多極プラグ又は沿面放電プラグを用いれば、絶縁物デポジットの付着によるイオン電流検出手段の出力の低下を防ぐことができ、長期間に亘って出力割合の演算精度を良好に維持できる。
【0011】
また、請求項4のように、判定値として複数の異なる判定値を有し、各々の判定値についてそれぞれ出力割合を演算し、これら複数の出力割合に基づいて燃焼ラフネス度を判定するようにしても良い。このようにすれば、燃焼ラフネス度の判定精度を更に向上することができる。
【0012】
また、請求項5のように、出力割合の対数正規分布の平均値及び標準偏差に基づいて燃焼ラフネス度を判定しても良い。このように、対数正規分布を用いれば、図11に示すように、出力割合の分布が直線になり、平均値と標準偏差を極めて簡単な計算式で算出することができ、演算処理が極めて容易である。
【0013】
また、内燃機関運転条件によってイオン電流が変化することを考慮し、請求項6のように、内燃機関運転条件に基づいて判定値を設定することが好ましい。このようにすれば、内燃機関運転条件によるイオン電流の変化に応じて、判定値を変化させることができ、内燃機関運転条件によるイオン電流の変動の影響を一層確実に排除することができる。
【0014】
また、請求項7のように、出力割合に応じて判定値を補正するようにしても良い。これにより、点火プラグのイオン電流検出特性の経時的な変化等にも対処することができる。
【0015】
【発明の実施の形態】
以下、本発明の一実施形態を図面に基づいて説明する。まず、図1に基づいて点火制御系の回路構成を説明する。点火コイル21の一次コイル22の一端はバッテリ23に接続され、該一次コイル22の他端は、イグナイタ24に内蔵されたパワートランジスタ25のコレクタに接続されている。二次コイル26の一端は点火プラグ27に接続され、該二次コイル26の他端は、2つのツェナーダイオード28,29を介してグランドに接続されている。
【0016】
2つのツェナーダイオード28,29は互いに逆向きに直列接続され、一方のツェナーダイオード28にコンデンサ30が並列に接続され、他方のツェナーダイオード29にイオン電流検出抵抗31が並列に接続されている。コンデンサ30とイオン電流検出抵抗31との間の電位Vinが抵抗32を介して反転増幅回路33の反転入力端子(−)に入力されて反転増幅され、この反転増幅回路33の出力電圧Vがイオン電流検出信号としてエンジン制御回路34に入力される。イオン電流検出回路35(イオン電流検出手段)は、ツェナーダイオード28,29、コンデンサ30、イオン電流検出抵抗31、反転増幅回路33等から構成されている。
【0017】
エンジン運転中は、エンジン制御回路34からイグナイタ24に送信される点火指令信号の立ち上がり/立ち下がりでパワートランジスタ25がオン/オフする。パワートランジスタ25がオンすると、バッテリ23から一次コイル22に一次電流が流れ、その後、パワートランジスタ25がオフすると、一次コイル22の一次電流が遮断されて、二次コイル26に高電圧が電磁誘導され、この高電圧によって点火プラグ27の電極36,37間に火花放電が発生する。これにより、図2に示すように発生した火花放電電流は、点火プラグ27の接地電極37から中心電極36へ流れ、二次コイル26を経てコンデンサ30に充電されると共に、ツェナーダイオード28,29を経てグランド側に流れる。
【0018】
これに対し、イオン電流は、火花放電電流とは反対方向に流れる。つまり、イオン電流は、中心電極27から接地電極28へ流れ、更に、グランド側からイオン電流検出抵抗31を通ってコンデンサ30に流れる。この際、イオン電流検出抵抗31に流れるイオン電流の変化に応じて反転増幅回路33の入力電位Vinが変化し、反転増幅回路33の出力端子からイオン電流に応じた電圧(イオン電流検出信号)がエンジン制御回路34に出力される。
【0019】
エンジン制御回路34内には、ノイズマスク38、ピークホールド回路39、A/D変換器40及びマイクロコンピュータ41が内蔵されている。イオン電流検出回路35の出力電圧は、ノイズマスク38にてノイズ成分が除去された後、ピークホールド回路39に入力される。このピークホールド回路39は、ノイズマスク38の出力電圧のピーク値を検出して、それを保持する(図2参照)。このピークホールド回路39の出力は、A/D変換器40を介してマイクロコンピュータ41に読み込まれる。
【0020】
マイクロコンピュータ41のROM(記憶媒体)には、燃料噴射制御や点火時期制御を行うための各種のエンジン制御プログラムが記憶されていると共に、図3乃至図6に示す燃焼状態制御用の各プログラムが記憶されている。以下、このマイクロコンピュータ41が実行する燃焼状態制御用の各プログラムの処理内容を説明する。
【0021】
図3の燃焼状態制御プログラムでは、まずステップ101で、吸気管圧力センサ(図示せず)で検出された吸気管圧力Pmとエンジン回転センサ(図示せず)で検出されたエンジン回転数Neとを読み込む。この後、ステップ102で、吸気管圧力Pmとエンジン回転数Neとから、図7のマップに示すA/Fフィードバック領域又はEGRフィードバック領域であるか否かを判定する。ここで、A/Fフィードバック領域は、エンジン始動時に空燃比(A/F)をフィードバック補正する運転領域であり、EGRフィードバック領域は、排気ガス還流装置の排気ガス還流量(EGR量)をフィードバック補正するEGR制御領域である。
【0022】
上記ステップ102で、いずれのフィードバック領域にも該当しないと判定された場合には、以降の処理を行うことなく、本プログラムを終了する。これに対し、いずれかのフィードバック領域に該当すると判定された場合には、ステップ103に進み、後述する図4及び図5のプログラムを実行し、イオン電流検出信号(ピークホールド回路39の出力電圧)Ip をA/D変換器40を介して読み込んで出力割合を判定する。
【0023】
この後、ステップ104に進み、A/Fフィードバック条件が成立しているか否かを判定し、A/Fフィードバック条件成立と判定された場合には、ステップ105に進み、図12のA/F補正係数k3 マップを用いて第2の判定電圧k2 より小さい出力割合W2 に対応するA/F補正係数k3 を補間計算する。この後、ステップ106に進み、燃料噴射量算出プログラム(図示せず)で算出された燃料噴射量にA/F補正係数k3 を乗算して燃料噴射量(A/F)を補正し、本プログラムを終了する。
【0024】
上記ステップ104で、A/Fフィードバック条件不成立と判定された場合には、ステップ107に進み、EGRフィードバック条件がしているか否かを判定し、EGRフィードバック条件不成立と判定された場合には、以降の処理を行うことなく、本プログラムを終了する。
【0025】
これに対し、EGRフィードバック条件成立と判定された場合には、ステップ108に進み、出力割合の目標平均値xo と目標標準偏差σo を読み込む。この後、ステップ109で、出力割合の平均値xと目標平均値xo との比Δxを算出すると共に、標準偏差σと目標標準偏差σo との比Δσを算出する。これらの比ΔxとΔσは、燃焼ラフネス度を表す指標となり、その値が1に近いほど目標値とのずれが少なく、燃焼状態が安定していることを意味する。このステップ109の処理が特許請求の範囲でいう判定手段として機能する。
【0026】
この後、ステップ110に進み、図13と図14に示すEGR補正係数マップを用いて、上記ステップ109で算出したΔxとΔσに対応するEGR補正係数k4 ,k5 を補間計算する。そして、次のステップ111で、基本EGR量算出プログラム(図示せず)で算出された基本EGR量にEGR補正係数k4 ,k5 を乗算し、エンジン制御パラメータの1つであるEGR量を算出する(EGR量=基本EGR量×k4 ×k5 )。これにより、ΔxとΔσ(燃焼ラフネス度)に応じてEGR量を設定でき、燃焼状態を安定させることができる。上記ステップ110,111の処理が特許請求の範囲でいう制御パラメータ設定手段として機能する。
【0027】
この後、ステップ112で、後述する図6の判定電圧補正プログラムを実行して、第1の判定電圧k1 と第2の判定電圧k2 を補正し、燃焼状態制御プログラムを終了する。この場合、第1の判定電圧k1 と第2の判定電圧k2 は、いずれも特許請求の範囲でいう判定値に相当する。
【0028】
尚、EGRフィードバック領域(EGRフィードバック条件成立時)でも、A/Fフィードバック領域(A/Fフィードバック条件成立時)と同じく、出力割合に応じてEGR量を補正しても良い。
【0029】
次に、前記ステップ103で実行する図4のイオン電流検出信号読み込みプログラムの処理の流れを説明する。本プログラムでは、まずステップ121で、イオン電流検出信号(ピークホールド回路39の出力電圧)Ip をA/D変換器40を介して読み込む。この後、ステップ122,123で、エンジン運転状態が急激に変化する過渡運転状態であるか否かを吸気管圧力変化量ΔPmとエンジン回転数変化量ΔNeに基づいて判定する。つまり、吸気管圧力変化量ΔPmが所定量C1 以上の場合、又はエンジン回転数変化量ΔNeが所定量C2 以上の場合には、いずれも、過渡運転状態と判定し、ステップ129に移行して、カウンタiを初期値である1にリセットした後、ステップ130に進み、図9に示すテーブルT1 に格納されたイオン電流検出信号のデータIp1〜Ip31 を全てリセットして、本プログラムを終了する。
【0030】
上記ステップ122,123で、ΔPm<C1 、且つ、ΔNe<C2 の場合には、定常運転状態と判定されて、ステップ124に進み、今回読み込んだイオン電流検出信号(電圧値)のデータIp をIpi(但し、i は1〜31で順次インクリメントされる)とし、このIpiを図9に示すテーブルT1 に格納する(ステップ125)。この後、ステップ126で、カウンタiが例えば31(テーブルT1 のデータ数に相当)に達したか否かを判定し、31に達していなければ、ステップ127に進み、カウンタiを1だけインクリメントして本プログラムを終了する。
【0031】
以上のような処理を繰り返すことで、図9に示すテーブルT1 に例えば31個のイオン電流検出信号のデータIp1〜Ip31 を全て格納し終えると、上記ステップ126の判定結果が「Yes」となり、ステップ128に進み、図5に示す出力割合判定プログラムを実行する。尚、図9に示すテーブルT1 に格納するイオン電流検出信号のデータ数は31個に限定されず、30個以下又は32個以上であっても良い。
【0032】
出力割合の判定後は、ステップ129に進み、カウンタiを初期値である1にリセットした後、ステップ130に進み、図9のテーブルT1 に格納されたイオン電流検出信号のデータIp1〜Ip31 を全てリセットして、本プログラムを終了する。
【0033】
次に、上記ステップ128で実行する図5の出力割合判定プログラムの処理内容を説明する。本プログラムでは、まずステップ131で、3つのカウンタj1 ,j2 ,iを初期化して、j1 =0,j2 =0,i=1にする。この後、ステップ132で、図9のテーブルT1 に格納されたイオン電流検出信号のデータIpi(但しi は1〜31で順次インクリメントされる)を読み込むと共に、図8に示す判定電圧k1 ,k2 マップより、吸気管圧力Pmとエンジン回転数Neに対応する第1の判定電圧k1 と第2の判定電圧k2 を読み込む。
【0034】
尚、エンジン始動時のA/Fフィードバック領域では、判定電圧k1 ,k2 は固定値であり、EGRフィードバック領域では、吸気管圧力Pmとエンジン回転数Neに応じてΔk1 ,Δk2 が補正される。これにより、エンジン運転条件(吸気管圧力Pmとエンジン回転数Ne)によるイオン電流の変動を考慮した適切な判定電圧k1 ,k2 が設定される。
【0035】
一方、ステップ133では、カウンタiが31(テーブルT1 のデータ数に相当)を越えたか否かを判定し、31を越えていなければ、ステップ134に進み、イオン電流検出信号のデータIpiを第1の判定電圧k1 と比較し、Ipiがk1 より小さければ、ステップ135に進み、カウンタj1 を1インクリメントする。この後、ステップ135で、イオン電流検出信号のデータIpiを第2の判定電圧k2 と比較し(但しk2 <k1 )、Ipiがk2 より小さければ、ステップ137に進み、カウンタj2 を1インクリメントした後、ステップ138に進み、カウンタiを1インクリメントして、ステップ132に戻り、上述した処理を繰り返す。
【0036】
また、ステップ134で、Ipiが第1の判定電圧k1 以上である場合には、ステップ138に進み、カウンタiを1インクリメントして、ステップ132に戻る。また、ステップ136で、Ipiが第2の判定電圧k2 以上である場合にも、ステップ138に進み、カウンタiを1インクリメントして、ステップ132に戻る。
【0037】
以上の処理を繰り返すことで、図9のテーブルT1 に格納されたイオン電流検出信号の31個のデータIp1〜Ip31 のうち、第1の判定電圧k1 より小さいデータ数がカウンタj1 によりカウントされ、第2の判定電圧k2 より小さいデータ数がカウンタj2 によりカウントされる。そして、カウンタiが31(テーブルT1 のデータ数に相当)を越えた時点で、ステップ133からステップ139に進み、第1の判定電圧k1 より小さい出力割合W1 (=j1 /31)と第2の判定電圧k2 より小さい出力割合W2 (=j2 /31)を算出する。これらステップ131〜139の処理が出力割合演算手段として機能する。
【0038】
尚、本実施形態では、各判定電圧k1 ,k2 より小さい出力割合W1 ,W2 を算出したが、各判定電圧k1 ,k2 以上となる出力割合を算出するようにしても良い。また、本実施形態では、2つの判定電圧k1 ,k2 を設定して、2つの出力割合W1 ,W2 を算出するようにしたが、判定電圧を1つのみ、又は3つ以上設定して、出力割合を1つのみ、又は3つ以上算出するようにしても良い。
【0039】
出力割合W1 ,W2 の算出後、ステップ140に進み、図10に示す対数正規分布テーブルを用いて出力割合W1 ,W2 を補間変換して標準偏差σ1 ,σ2 を算出する。この後、ステップ141に進み、出力割合の対数正規分布の平均値xと標準偏差σを図11に示す数式により算出する。図11に示すように、対数正規分布では、出力割合の分布は直線で表され、縦軸のσ=0に対応する対数目盛の横軸の値(対数値)が平均値xとなり、また、出力割合の分布の直線の傾きの逆数が標準偏差σとなる。このように、対数正規分布を用いることで、対数正規分布の平均値xと標準偏差σの算出が極めて容易になる。
【0040】
次に、前述した図3のステップ112で実行する図6の判定電圧補正プログラムの処理の流れを説明する。本プログラムでは、まずステップ151で、標準偏差σ1 の絶対値が0.4よりも大きいか否かを判定し、標準偏差σ1 の絶対値が例えば0.4よりも大きい場合には、ステップ152に進んで、第1の判定電圧k1 を次のようにして補正する。
【0041】
▲1▼σ1 >0.4の時は次式により第1の判定電圧k1 を補正する。
k1 =k1 −Δk1 ……(1)
▲2▼σ1 <−0.4の時は次式により第1の判定電圧k1 を補正する。
k1 =k1 +Δk1 ……(2)
【0042】
上記(1),(2)式の右辺のk1 は、図8に示す判定電圧マップにより、吸気管圧力Pmとエンジン回転数Neに基づいて算出した第1の判定電圧であり、Δk1 は補正量である。このような第1の判定電圧k1 の補正は、σ1 =0(50%点)を狙う方向に働く。
【0043】
第1の判定電圧k1 の補正後、ステップ153に進む。また、上記ステップ151で、標準偏差σ1 の絶対値が0.4以下の場合、つまり第1の判定電圧k1 の補正が不要な場合にも、ステップ153に進む。
【0044】
このステップ153では、−2.2<σ2 <−0.9であるか否かを判定し、「No」の場合には、ステップ154に進み、第2の判定電圧k2 を次のようにして補正する。
▲1▼σ2 ≧−0.9の時は次式により第2の判定電圧k2 を補正する。
k2 =k2 −Δk2 ……(3)
▲2▼σ1 ≦−2.2の時は次式により第1の判定電圧k1 を補正する。
k2 =k2 +Δk2 ……(4)
【0045】
上記(3),(4)式の右辺のk2 は、図8に示す判定電圧マップにより、吸気管圧力Pmとエンジン回転数Neに基づいて算出した第2の判定電圧であり、Δk2 は補正量である。このような第2の判定電圧k2 の補正は、σ2 を−2から−1.5の範囲内に収めるために行う。
【0046】
第2の判定電圧k2 の補正後、ステップ155に進む。また、上記ステップ153で、−2.2<σ2 <−0.9と判定された場合、つまり、第2の判定電圧k2 の補正が不要な場合にも、ステップ155に進む。
このステップ155では、ステップ152又は154で補正した判定電圧k1 ,k2 を、図8に示す判定電圧k1 ,k2 マップに書き込んで、本プログラムを終了する。
【0047】
本実施形態では、点火プラグとして、図15(a)に示すような一般的な構造の点火プラグ27、つまり、接地電極37の先端部が中心電極36の軸方向先端面に対向した点火プラグ27を用いているが、これに代えて、同図(b)に示すように、2本以上の接地電極51の先端部が中心電極52の外周面に対向した多極プラグ53を用いても良く、或は、同図(c)に示すように、接地電極54が中心電極55の周囲を取り囲む円筒壁状に形成された沿面放電プラグ56を用いても良い。勿論、これ以外の種々の形状の点火プラグを用いても良いことは言うまでもない。
【0048】
ところで、図15(a)に示すように、中心電極36の軸方向先端面と接地電極37の先端部との間で軸方向に火花放電が発生する一般的な点火プラグ27では、点火プラグ27の使用期間が長くなるに従って、点火プラグ27の中心電極36の外周面に絶縁物デポジットが徐々に付着し、最終的には、図16(a)に示すように、中心電極36の軸方向先端面(放電面)を除く外周面全体が絶縁物デポジットで覆われて、中心電極36の露出面積が極端に少なくなることがある。このようになると、中心電極36に流れるイオン電流が減少して、イオン電流検出回路35の出力(以下「イオン電流出力」という)が低下し、出力割合の演算結果にも影響が出る。
【0049】
ちなみに、図17は、点火プラグの中心電極への絶縁物デポジットの付着によるイオン電流出力劣化特性の例を示している。図15(a)の一般的構造のNi点火プラグ、Pt点火プラグでは、使用期間が長くなるに従って、中心電極の外周面への絶縁物デポジットの付着割合が増加して、中心電極の露出面積が少なくなり、イオン電流出力が低下する。
【0050】
これに対し、図15(b)の多極プラグ53では、中心電極52への絶縁物デポジットの付着によるイオン電流出力の低下はほとんど見られない(図17参照)。つまり、多極プラグ53では、2本以上の接地電極51の先端部が中心電極52の外周面に対向し、中心電極52の外周面に向かって側方から火花放電が発生するため、図16(b)に示すように、放電エネルギによって中心電極52の外周面が清浄化されて、絶縁物デポジットの付着が少ない。従って、多極プラグ53を用いれば、絶縁物デポジットの付着によるイオン電流出力の低下を防ぐことができ、長期間に亘って出力割合の演算精度を良好に維持できる。
【0051】
同様に、図15(c)の沿面放電プラグ56を用いても、中心電極55の外周面に向かって側方から火花放電が発生するため、その放電エネルギによって中心電極52の外周面を清浄化できて、絶縁物デポジットの付着によるイオン電流出力の低下を防ぐことができる。
【0052】
尚、本実施形態では、イオン電流検出信号としてピークホールド回路39の出力電圧Ip を読み込むようにしたが、イオン電流検出回路35の出力電圧(ノイズマスク38の出力電圧)が所定のしきい値以上になっている時間を計測して、この時間が判定値以下又は以上となる割合(出力割合)を算出するようにしても良い。この場合には、イオン電流検出回路35の出力電圧(ノイズマスク38の出力電圧)がしきい値以上になっている時間の計測値が特許請求の範囲でいうイオン電流検出手段の出力となる。
【図面の簡単な説明】
【図1】本発明の一実施形態における点火制御系とイオン電流検出回路の構成を示す回路図
【図2】各部の信号波形を示すタイムチャート
【図3】燃焼状態制御プログラムの処理の流れを示すフローチャート
【図4】イオン電流検出信号読み込みプログラムの処理の流れを示すフローチャート
【図5】出力割合判定プログラムの処理の流れを示すフローチャート
【図6】判定電圧補正プログラムの処理の流れを示すフローチャート
【図7】フィードバック領域マップを概念的に示す図
【図8】判定電圧k1 ,k2 マップを概念的に示す図
【図9】イオン電流検出信号(ピークホールド回路39の出力電圧)Ip を格納するテーブルT1 を概念的に示す図
【図10】対数正規分布テーブルを概念的に示す図
【図11】出力割合の対数正規分布の平均値xと標準偏差σの算出方法を説明する図
【図12】A/F補正係数k3 マップを概念的に示す図
【図13】EGR補正係数k4 マップを概念的に示す図
【図14】EGR補正係数k5 マップを概念的に示す図
【図15】(a)は一般の点火プラグの発火部形状を示す拡大正面図、(b)は多極プラグの発火部形状を示す拡大正面図、(c)は沿面放電プラグの発火部形状を示す拡大斜視図
【図16】(a)は一般の点火プラグの中心電極への絶縁物デポジットの付着状態を示す拡大斜視図、(b)は多極プラグの中心電極への絶縁物デポジットの付着状態を示す拡大斜視図
【図17】多極プラグ、Niプラグ、Ptプラグについて中心電極への絶縁物デポジットの付着によるイオン電流出力劣化特性を示す図
【符号の説明】
21…点火コイル、22…一次コイル、23…バッテリ、24…イグナイタ、25…パワートランジスタ、26…二次コイル、27…点火プラグ、31…イオン電流検出抵抗、33…反転増幅回路、34…エンジン制御回路、35…イオン電流検出回路(イオン電流検出手段)、36…中心電極、37…接地電極、38…ノイズマスク、39…ピークホールド回路、41…マイクロコンピュータ(出力割合演算手段,判定手段,制御パラメータ設定手段)、51…接地電極、52…中心電極、53…多極プラグ、54…接地電極、55…中心電極、56…沿面放電プラグ。

Claims (7)

  1. 点火プラグの電極に流れるイオン電流を検出するイオン電流検出手段と、
    前記イオン電流検出手段の出力を判定値と比較して該出力が判定値以下又は以上となる割合(以下「出力割合」という)を演算する出力割合演算手段と、
    前記出力割合演算手段で演算した出力割合に基づいて燃焼ラフネス度を判定する判定手段と
    を備えていることを特徴とする内燃機関の燃焼状態検出装置。
  2. 前記判定手段で判定した燃焼ラフネス度に基づいて内燃機関制御パラメータを設定する制御パラメータ設定手段を備えていることを特徴とする請求項1に記載の内燃機関の燃焼状態検出装置。
  3. 前記点火プラグとして多極プラグ又は沿面放電プラグを用いることを特徴とする請求項1又は2に記載の内燃機関の燃焼状態検出装置。
  4. 前記出力割合演算手段は、前記判定値として複数の異なる判定値を有し、各々の判定値についてそれぞれ出力割合を演算し、
    前記判定手段は、前記出力割合演算手段で演算した複数の出力割合に基づいて燃焼ラフネス度を判定することを特徴とする請求項1乃至3のいずれかに記載の内燃機関の燃焼状態検出装置。
  5. 前記判定手段は、前記出力割合演算手段で演算した出力割合の対数正規分布の平均値及び標準偏差に基づいて燃焼ラフネス度を判定することを特徴とする請求項1乃至4のいずれかに記載の内燃機関の燃焼状態検出装置。
  6. 前記出力割合演算手段は、内燃機関運転条件に基づいて前記判定値を設定する手段を有することを特徴とする請求項1乃至5のいずれかに記載の内燃機関の燃焼状態検出装置。
  7. 前記出力割合演算手段は、前記出力割合に応じて前記判定値を補正する手段を有することを特徴とする請求項1乃至6のいずれかに記載の内燃機関の燃焼状態検出装置。
JP18082497A 1997-07-07 1997-07-07 内燃機関の燃焼状態検出装置 Expired - Fee Related JP3707644B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18082497A JP3707644B2 (ja) 1997-07-07 1997-07-07 内燃機関の燃焼状態検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18082497A JP3707644B2 (ja) 1997-07-07 1997-07-07 内燃機関の燃焼状態検出装置

Publications (2)

Publication Number Publication Date
JPH1122616A JPH1122616A (ja) 1999-01-26
JP3707644B2 true JP3707644B2 (ja) 2005-10-19

Family

ID=16090005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18082497A Expired - Fee Related JP3707644B2 (ja) 1997-07-07 1997-07-07 内燃機関の燃焼状態検出装置

Country Status (1)

Country Link
JP (1) JP3707644B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4619299B2 (ja) * 2006-02-06 2011-01-26 ダイハツ工業株式会社 内燃機関の燃焼状態判定方法

Also Published As

Publication number Publication date
JPH1122616A (ja) 1999-01-26

Similar Documents

Publication Publication Date Title
JP3065127B2 (ja) 酸素濃度検出装置
US6512375B1 (en) Method of detecting spark plug fouling and ignition system having means for carrying out the same
US7311093B2 (en) Element crack detecting apparatus and method for oxygen sensor
JP2005307753A (ja) 内燃機関のノック判定装置
US6722343B2 (en) Knock control device for an internal combustion engine
JP3707644B2 (ja) 内燃機関の燃焼状態検出装置
JP4100492B2 (ja) 内燃機関の失火検出装置
US6912459B2 (en) Control device for an internal combustion engine
JP4014013B2 (ja) 内燃機関のイオン電流検出装置
JP4925251B2 (ja) 内燃機関のノック判定装置
JP3304763B2 (ja) 内燃機関の空燃比検出装置
JP2754507B2 (ja) 内燃機関の失火検出装置
JP2007332895A (ja) 内燃機関の失火検出装置
JP3182357B2 (ja) 内燃機関の希薄燃焼制御限界検出方法
JP3906880B2 (ja) 内燃機関制御装置
JP2008261304A (ja) 内燃機関のイオン電流検出装置
JPH09317618A (ja) 内燃機関の運転状態検出装置
JP3354190B2 (ja) 内燃機関の制御方法
JP4381253B2 (ja) 内燃機関の燃焼状態検知方法
JP4014914B2 (ja) 内燃機関の失火検出装置
JP2007309274A (ja) 内燃機関の燃焼状態判定装置
JP3182356B2 (ja) 内燃機関の燃焼変動検出方法
JP3784588B2 (ja) 内燃機関用燃焼状態検知装置
JPH05263746A (ja) 内燃機関の失火検出装置
JPH05302536A (ja) 内燃機関の燃料供給装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050728

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130812

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees