JP3703367B2 - Purification method for contaminated soil, slurry, etc. - Google Patents

Purification method for contaminated soil, slurry, etc. Download PDF

Info

Publication number
JP3703367B2
JP3703367B2 JP2000159280A JP2000159280A JP3703367B2 JP 3703367 B2 JP3703367 B2 JP 3703367B2 JP 2000159280 A JP2000159280 A JP 2000159280A JP 2000159280 A JP2000159280 A JP 2000159280A JP 3703367 B2 JP3703367 B2 JP 3703367B2
Authority
JP
Japan
Prior art keywords
hydrophobic organic
solid phase
tank
phase
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000159280A
Other languages
Japanese (ja)
Other versions
JP2001334291A (en
Inventor
智彦 佐々木
安雄 堀井
浩一 中河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2000159280A priority Critical patent/JP3703367B2/en
Publication of JP2001334291A publication Critical patent/JP2001334291A/en
Application granted granted Critical
Publication of JP3703367B2 publication Critical patent/JP3703367B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、汚染土壌、スラリー等の浄化方法に関し、一般廃棄物や産業廃棄物等の最終処分場における浸出水、汚染土壌、スラリー等に含まれた有害疎水性有機物を脱着する技術に係るものである。
【0002】
【従来の技術】
従来、土壌やスラリー中に含まれる疎水性有害有機物、例えばダイオキシン類、PCB類、芳香族炭化水素類などは、固相粒子に非常に強く吸着されており、一般的に処理が非常に困難である。bioremediation等の微生物によって有機物を消化する生物学的処理方式では、水相に含まれる有機物しか処理できない場合が多い。また、揮発性の高い物質に関しては、熱脱着により固相からの分離も可能であるが、沸点の高い物質には対応できず、焼却等非常に処理コストの高い方式で対応せざるを得なかった。
【0003】
例えば、固形物中のダイオキシン類を、1200度以上の高温度条件下において溶融する溶融処理法や、370度以上、22MPa以上の高温度、高圧力条件下において処理する超臨界処理法がある。あるいは、処理対象物に水素供与体、アルカリ、溶媒を添加した後に、窒素雰囲気下で、350度程度に加熱処理するアルカリ触媒分解法がある。
【0004】
【発明が解決しようとする課題】
しかし、疎水性有機物に汚染された土壌は、汚染物質が固相に強く吸着しているために浄化が困難であり、bioremediationなどの処理を行なっても土壌中の汚染物濃度が変化しなくなるなど限界があった。さらに、浄化を行なうためには上述した土壌の焼却等の処理コストが高い方式しかなく、現実的でなかった。
【0005】
本発明は上記した課題を解決するものであり、疎水性有機物を、常温、常圧の下で少ないエネルギーによって固相から脱着することができる汚染土壌、スラリー等の浄化方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記課題を解決するために、本発明の汚染土壌、スラリー等の浄化方法は、固液混相の処理対象物をオゾン処理槽に導いてオゾン曝気により処理対象物の固相および液相中の有機物を分解し、オゾン処理槽の処理対象物を反応槽に導くとともに、反応槽に貯留した処理対象物に界面活性剤を添加し、反応槽内に配置した超音波発信体から処理対象物へ固相に振動抽出作用を及ぼす超音波を照射し、振動抽出作用によって疎水性有機物を固相から液相に移行させて脱着し、界面活性剤と疎水性有機物との結合によって固相に対する疎水性有機物の再吸着を防止する状態で、槽内に浸漬したろ過装置により処理対象物を固液分離して、疎水性有機物をろ液とともに槽外へ取り出し、疎水性有機物を脱着した固相を含むスラリーを処理スラリーとして槽外へ取り出すものである。
【0007】
上記した構成により、処理対象物に含まれたダイオキシン類等の疎水性有機物は、固相の土壌粒子表層に吸着し、あるいは途上粒子微細間隙内孔に付着し、あるいは土壌粒子中に含まれる有機物と複雑に絡みあって存在する。
【0008】
ところで、土壌粒子表層に吸着した疎水性有機物は、液相と接していれば平衡状態を保つように土壌から脱着する。
このため、オゾン処理槽で処理対象物の液相中の有機物をオゾン曝気により分解し、液相の疎水性有機物濃度を減じ、固相中の有機物を減じ、疎水性有機物の固相への吸着力を減じることにより、平衡を保つように土壌から疎水性有機物が脱着し、土壌中の汚染物濃度が低下して処理対象物の浄化が進行する。
【0009】
しかし、途上粒子微細間隙内孔に付着し、あるいは土壌粒子中に含まれる有機物と複雑に絡みあって存在する疎水性有機物は、非常に強く土壌粒子に吸着されており、液相中へ殆ど移行しない形態となって存在している。
【0010】
このため、反応槽において処理対象物の固相に超音波を作用させ、その振動エネルギーによって疎水性有機物を液相へ移行しやすい形態に変化させて固相から液相に移行させる。この振動抽出作用により抽出した疎水性有機物は再び固相に再吸着し易いが、界面活性剤が疎水性有機物と結合することによって、固相に対する疎水性有機物の再吸着を防止し、疎水性有機物を液相に留める。この界面活性剤はCMC濃度(臨界ミセル濃度)以上に保たれるように添加することが好ましい。
【0011】
ろ過装置はろ過作用により、処理対象物中のSS分等の固相を捕捉して処理スラリーとして槽内に残留させ、疎水性有機物をろ液とともに透過させる。ろ液とともに槽外へ取り出した疎水性有機物は、オゾンの存在下で紫外線照射等を行なって分解する。
【0012】
振動抽出作用を及ぼす超音波は、処理対象物の物性、例えば疎水性有機物の種類や組成、汚泥や土壌の性状によって異なり、あるいは反応槽の形状によって異なるので、経験則として予め求める。
【0013】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。図1において、オゾン処理槽1に供給する処理対象物2は、産業廃棄物等の最終処分場における埋立地浸出水、汚染土壌、スラリー等であり、ダイオキシン類、PCB類、芳香族炭化水素等の疎水性有機物を含んでいる。
【0014】
オゾン処理槽1には固液混相の処理対象物2を供給する供給系3と、槽内の処理対象物2を反応槽4へ供給する送泥系5とを接続しており、オゾン処理槽1の内部にはオゾン散気装置6を配置し、オゾン散気装置6に接続してオゾン発生装置7を接続している。オゾン発生装置7は高濃度のオゾンをオゾン散気装置6へ供給する。
【0015】
反応槽4には、界面活性剤を投入する薬剤供給系8と、処理スラリーを取り出す排出系9とを接続している。反応槽4の内部には、処理対象物2を攪拌する攪拌機10と、処理対象物2をろ過する浸漬型膜分離装置11と、浸漬型膜分離装置11の下方に配置する散気装置12とを配置しており、浸漬型膜分離装置11に接続してろ液抽出系13を設け、散気装置12に接続してブロア14を設けている。ろ液抽出系13は抽出した疎水性有機物を分解するための光化学分解処理工程へ接続している。
【0016】
反応槽4の槽底部に設置した超音波発信体15(ホーン)は、導波管16を通して超音波発振器17に接続しており、超音波発振器17は処理対象物2の固相に振動抽出作用を及ぼす超音波振動を発振するものである。超音波発信体15は電圧を受けて発振するセラミック等の振動子を使用することもできる。
【0017】
超音波発信体15から発信する超音波、つまり振動抽出作用を及ぼす超音波の周波数は、処理対象物2の物性、例えば疎水性有機物の種類や組成、汚泥や土壌の性状によって異なり、あるいは反応槽4の形状によって異なるので、経験則として予め求める。
【0018】
以下、上記した構成における作用を説明する。供給系3からオゾン処理槽1へ処理対象物2を供給する。この処理対象物2に含まれたダイオキシン類等の疎水性有機物は、固相の土壌粒子表層に吸着し、あるいは途上粒子微細間隙内孔に付着し、あるいは土壌粒子中に含まれる有機物と複雑に絡みあって存在する。
【0019】
土壌粒子表層に吸着した疎水性有機物は、液相と接していれば平衡状態を保つように土壌から脱着する。このため、オゾン発生装置7で発生する高濃度のオゾンをオゾン散気装置6から散気し、処理対象物2をオゾン曝気して処理対象物2の液相中の有機物を分解する。このオゾン曝気により液相の疎水性有機物濃度を減じることによって、平衡を保つように土壌から疎水性有機物が脱着し、土壌中の汚染物濃度が低下して処理対象物の浄化が進行する。
【0020】
しかし、途上粒子微細間隙内孔に付着し、あるいは土壌粒子中に含まれる有機物と複雑に絡みあって存在する疎水性有機物は、非常に強く土壌粒子に吸着されており、液相中へ殆ど移行しない形態となって存在している。
【0021】
このため、オゾン処理槽1の処理対象物2を反応槽4に導いて所定量の処理対象物2を反応槽4に貯留する。薬剤供給系8から所定量の界面活性剤、例えばLAS(アルキルベンゼンスルフォン酸ナトリウム)を、CMC濃度(臨界ミセル濃度)以上に保たれるように添加する。
【0022】
処理対象物2および界面活性剤を攪拌機10で攪拌しながら、超音波発振器17で発振する超音波を導波管16を通して超音波発信体15から処理対象物2へ照射する。
【0023】
超音波発信体15から照射した超音波は処理対象物2の固相に作用し、その振動エネルギーによって疎水性有機物を固相から液相に移行させる振動抽出作用を及ぼし、途上粒子微細間隙内孔に付着し、あるいは土壌粒子中に含まれる有機物と複雑に絡みあって存在する疎水性有機物を脱着する。
【0024】
このとき、通常においては抽出した疎水性有機物が再び固相に再吸着されるが、抽出した疎水性有機物が界面活性剤と結合することによって、固相に対する疎水性有機物の再吸着を防止して疎水性有機物を液相に留める。
【0025】
この状態で、浸漬型膜分離装置11によって処理対象物2をろ過する。浸漬型膜分離装置11の駆動はろ液抽出系13から吸引圧を負荷して吸引ろ過しても良く、槽内の水頭を利用して重力ろ過しても良い。このとき、ブロア14により供給する空気を散気装置12から散気し、散気した空気のエアリフト作用により生起する上向流を浸漬型膜分離装置11の膜面に掃流として作用させ、膜面にケーキ層が付着することを防止する。
【0026】
浸漬型膜分離装置11によるろ過によって、処理対象物2のSS分等の固相は処理スラリーとして槽内に残留し、疎水性有機物がろ液とともにろ液抽出系13を通して槽外へ流れ出る。疎水性有機物を脱着して浄化した土壌等の固相を含む処理スラリーは排出系9を通して槽外へ取り出す。ろ液とともに槽外へ取り出した疎水性有機物は、ろ液抽出系13を通して光化学分解処理工程へ導き、オゾンの存在下で紫外線照射を行なって分解する。
【0027】
以下に、上述した構成の実証試験について説明する。図2は水相と土壌の2相モデルの概念図である。土壌に吸着している汚染物には比較的に弱い力で土壌に吸着して早く水相へ移行するものと、強力に吸着して殆ど水中へ移行しないものとがある。弱い吸着物の割合をFで示し、強い吸着物の割合を1−Fで示しており、Fが大きい程に土壌浄化は容易となる。
【0028】
【数1】

Figure 0003703367
この2相モデル方程式は、土壌中の初期汚染物量S0がx時間後にどの程度(Sx)になるかを示したモデル式である。図3は上記のモデル方程式のグラフ図であり、弱い吸着物の割合Fが大きい程に汚染物がたくさん落ちるので最終的な(Sx)は小さくなり、早い脱着の定数k1が大きい程に汚染物が早く落ちるのでカーブの傾きは急になる。
【0029】
図4は、ある汚染土壌を水中で反転攪拌して汚染物を洗い流した2相モデルの結果を示すものであり、ナフタリンは68%、フェナントレンは46%、ピレンは42%が早く水中へ移行している。
【0030】
図5は、同じ汚染土壌を界面活性剤の存在下で超音波処理した後に反転攪拌した2相モデルの結果を示すものであり、ナフタリンは93%、フェナントレンは94%、ピレンは90%が早く水中へ移行しており、浄化効率が確実に上がっていることを示している。
【0031】
図6は、図5に示した処理を行なった後の弱い吸着物の割合Fを示しており、他の物質に関しても、界面活性剤の存在下で超音波処理することが有効であることが伺える。
【0032】
【発明の効果】
以上述べたように本発明によれば、処理対象物をオゾン曝気して液相の有機物を分解し、その後に界面活性剤を添加して超音波を照射することにより処理対象物から疎水性有機物を脱着し、界面活性剤と疎水性有機物との結合により固相に対する疎水性有機物の再吸着を防止した状態で、ろ過装置によりろ過することで、処理対象物から疎水性有機物を効率良く分離して浄化することができる。したがって、ダイオキシン類、PCB類、芳香族炭化水素類等の疎水性有機物を、常温、常圧の下で少ないエネルギーによって固相から脱着し、汚染土壌、スラリー等の浄化を行なえる。
【図面の簡単な説明】
【図1】本発明の実施形態における浄化装置の模式図である。
【図2】水相と土壌の2相モデルの概念図である。
【図3】モデル方程式のグラフ図である。
【図4】ある汚染土壌を水中で反転攪拌した2相モデルの結果を示すグラフ図である。
【図5】同汚染土壌を界面活性剤の存在下で反転攪拌するとともに超音波処理した2相モデルの結果を示すグラフ図である。
【図6】図5に示した処理を行なった後の弱い吸着物の割合Fを示すグラフ図である。
【符号の説明】
1 オゾン処理槽
2 処理対象物
3 供給系
4 反応槽
5 送泥系
6 オゾン散気装置
7 オゾン発生装置
8 薬剤供給系
9 排出系
10 攪拌機
11 浸漬型膜分離装置
12 散気装置
13 ろ液抽出系
14 ブロア
15 超音波発信体
16 導波管
17 超音波発振器[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a purification method for contaminated soil, slurry, etc., and relates to a technique for desorbing harmful hydrophobic organic substances contained in leachate, contaminated soil, slurry, etc. at final disposal sites such as general waste and industrial waste. It is.
[0002]
[Prior art]
Conventionally, hydrophobic harmful organic substances contained in soil and slurry, such as dioxins, PCBs, and aromatic hydrocarbons, are adsorbed very strongly to solid phase particles and are generally very difficult to treat. is there. In biological treatment methods such as bioremediation that digest organic matter with microorganisms, only organic matter contained in the aqueous phase can often be treated. In addition, highly volatile substances can be separated from the solid phase by thermal desorption, but they cannot handle substances with a high boiling point, and must be handled by a method with very high processing costs such as incineration. It was.
[0003]
For example, there are a melt processing method in which dioxins in a solid are melted under a high temperature condition of 1200 ° C. or higher, and a supercritical processing method in which a dioxin is processed under a high temperature of 370 ° C. or higher and 22 MPa or higher under high pressure conditions. Alternatively, there is an alkali catalyst decomposition method in which a hydrogen donor, an alkali, and a solvent are added to the object to be treated, and then heat treatment is performed at about 350 ° C. in a nitrogen atmosphere.
[0004]
[Problems to be solved by the invention]
However, soil contaminated with hydrophobic organic matter is difficult to purify because the contaminants are strongly adsorbed on the solid phase, and the concentration of contaminants in the soil does not change even after treatment such as bioremediation. There was a limit. Furthermore, in order to purify, there is only a method with a high processing cost such as incineration of the soil described above, which is not realistic.
[0005]
The present invention solves the above-described problems, and an object of the present invention is to provide a purification method for contaminated soil, slurry, etc. that can desorb a hydrophobic organic substance from a solid phase with a small amount of energy at normal temperature and normal pressure. And
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the method for purifying contaminated soil, slurry, etc. of the present invention introduces a solid-liquid mixed phase treatment object into an ozone treatment tank, and aeration of the solid phase of the treatment object and organic matter in the liquid phase by ozone aeration. The surfactant is introduced into the treatment object stored in the reaction tank, and the ultrasonic wave transmitter disposed in the reaction tank is fixed to the treatment object. Irradiate ultrasonic waves that have a vibration extraction effect on the phase, move the hydrophobic organic substance from the solid phase to the liquid phase by the vibration extraction action, desorb, and bind the surfactant and the hydrophobic organic substance to the hydrophobic organic substance to the solid phase A slurry containing a solid phase in which the object to be treated is solid-liquid separated by a filtration device immersed in the tank in a state of preventing re-adsorption of the liquid, and the hydrophobic organic substance is taken out of the tank together with the filtrate, and the hydrophobic organic substance is desorbed. To process slurry It is intended to take out to the outside of the tank.
[0007]
With the above-described configuration, hydrophobic organic substances such as dioxins contained in the object to be treated are adsorbed on the surface layer of the solid phase soil particles, attached to the pores in the middle of the fine particles, or contained in the soil particles. It is intricately intertwined.
[0008]
By the way, the hydrophobic organic substance adsorbed on the surface layer of the soil particles is desorbed from the soil so as to maintain an equilibrium state when in contact with the liquid phase.
For this reason, the organic substance in the liquid phase of the processing object is decomposed by ozone aeration in the ozone treatment tank, the hydrophobic organic substance concentration in the liquid phase is reduced, the organic substance in the solid phase is reduced, and the hydrophobic organic substance is adsorbed on the solid phase. By reducing the force, hydrophobic organic substances are desorbed from the soil so as to maintain equilibrium, and the concentration of contaminants in the soil is lowered, so that the treatment object is purified.
[0009]
However, hydrophobic organic substances that are attached to the inner pores of the fine particles in the middle of the process or are intricately entangled with the organic substances contained in the soil particles are adsorbed very strongly by the soil particles and almost migrate into the liquid phase. It exists in a form that does not.
[0010]
For this reason, an ultrasonic wave is made to act on the solid phase of the processing object in the reaction tank, and the hydrophobic organic substance is changed to a form in which it is easy to transfer to the liquid phase by the vibration energy, and is transferred from the solid phase to the liquid phase. Hydrophobic organic substances extracted by this vibration extraction action are likely to be re-adsorbed to the solid phase again, but the surfactant binds to the hydrophobic organic substance, thereby preventing the re-adsorption of the hydrophobic organic substance to the solid phase. In the liquid phase. This surfactant is preferably added so as to be maintained at a CMC concentration (critical micelle concentration) or more.
[0011]
The filtration device captures the solid phase such as the SS component in the object to be treated and leaves it in the tank as a treatment slurry, and allows the hydrophobic organic matter to permeate with the filtrate. Hydrophobic organic matter taken out of the tank together with the filtrate is decomposed by irradiation with ultraviolet rays in the presence of ozone.
[0012]
The ultrasonic wave that exerts the vibration extraction action varies depending on the physical properties of the object to be treated, for example, the type and composition of the hydrophobic organic substance, the sludge and soil properties, or varies depending on the shape of the reaction tank.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In FIG. 1, the treatment object 2 supplied to the ozone treatment tank 1 is landfill leachate, contaminated soil, slurry, etc. at the final disposal site for industrial waste, etc., such as dioxins, PCBs, aromatic hydrocarbons, etc. Contains hydrophobic organic substances.
[0014]
Connected to the ozone treatment tank 1 is a supply system 3 for supplying the solid-liquid mixed phase treatment object 2 and a mud feed system 5 for supplying the treatment object 2 in the tank to the reaction tank 4. 1 is provided with an ozone diffuser 6, connected to the ozone diffuser 6, and connected with an ozone generator 7. The ozone generator 7 supplies high-concentration ozone to the ozone diffuser 6.
[0015]
The reaction tank 4 is connected to a chemical supply system 8 for introducing a surfactant and a discharge system 9 for taking out the processing slurry. Inside the reaction tank 4, a stirrer 10 for stirring the processing object 2, a submerged membrane separator 11 for filtering the processing target 2, and an air diffuser 12 disposed below the submerged membrane separator 11, Is connected to the submerged membrane separator 11 to provide a filtrate extraction system 13, and connected to the air diffuser 12 to provide a blower 14. The filtrate extraction system 13 is connected to a photochemical decomposition treatment step for decomposing the extracted hydrophobic organic matter.
[0016]
An ultrasonic transmitter 15 (horn) installed at the bottom of the reaction tank 4 is connected to an ultrasonic oscillator 17 through a waveguide 16, and the ultrasonic oscillator 17 performs a vibration extraction action on the solid phase of the processing object 2. It oscillates the ultrasonic vibration which exerts. As the ultrasonic transmitter 15, a vibrator such as ceramic that oscillates upon receiving a voltage can be used.
[0017]
The frequency of the ultrasonic wave transmitted from the ultrasonic transmitter 15, that is, the frequency of the ultrasonic wave that exerts the vibration extraction action differs depending on the physical properties of the treatment object 2, for example, the type and composition of the hydrophobic organic substance, the sludge and soil properties, or the reaction tank Since it differs depending on the shape of 4, the rule of thumb is obtained in advance.
[0018]
Hereinafter, the operation of the above-described configuration will be described. The processing object 2 is supplied from the supply system 3 to the ozone treatment tank 1. Hydrophobic organic substances such as dioxins contained in the treatment object 2 are adsorbed on the surface layer of the soil particles in the solid phase, attached to the pores in the fine particles, or complicated with organic substances contained in the soil particles. It is entangled and exists.
[0019]
The hydrophobic organic matter adsorbed on the surface layer of the soil particles is desorbed from the soil so as to maintain an equilibrium state when in contact with the liquid phase. For this reason, high-concentration ozone generated in the ozone generator 7 is diffused from the ozone diffuser 6 and the processing object 2 is aerated with ozone to decompose organic substances in the liquid phase of the processing object 2. By reducing the concentration of the hydrophobic organic substance in the liquid phase by this ozone aeration, the hydrophobic organic substance is desorbed from the soil so as to maintain the equilibrium, the concentration of the contaminant in the soil is lowered, and purification of the object to be treated proceeds.
[0020]
However, hydrophobic organic substances that are attached to the inner pores of the fine particles in the middle of the process or are intricately entangled with the organic substances contained in the soil particles are adsorbed very strongly by the soil particles and almost migrate into the liquid phase. It exists in a form that does not.
[0021]
For this reason, the treatment object 2 of the ozone treatment tank 1 is guided to the reaction tank 4 and a predetermined amount of the treatment object 2 is stored in the reaction tank 4. A predetermined amount of surfactant, for example, LAS (sodium alkylbenzene sulfonate) is added from the drug supply system 8 so as to be maintained at a CMC concentration (critical micelle concentration) or more.
[0022]
While stirring the processing object 2 and the surfactant with the stirrer 10, ultrasonic waves oscillated by the ultrasonic oscillator 17 are irradiated from the ultrasonic transmitter 15 to the processing object 2 through the waveguide 16.
[0023]
The ultrasonic wave irradiated from the ultrasonic transmitter 15 acts on the solid phase of the object 2 to be processed, and the vibration energy causes a vibration extraction action to transfer the hydrophobic organic substance from the solid phase to the liquid phase. Hydrophobic organic matter that adheres to organic matter contained in soil particles or intricately entangles with organic matter contained in soil particles is desorbed.
[0024]
At this time, the extracted hydrophobic organic substance is normally re-adsorbed to the solid phase, but the extracted hydrophobic organic substance binds to the surfactant to prevent re-adsorption of the hydrophobic organic substance to the solid phase. Hydrophobic organics remain in the liquid phase.
[0025]
In this state, the processing object 2 is filtered by the submerged membrane separator 11. The submerged membrane separation device 11 may be driven by applying a suction pressure from the filtrate extraction system 13 to perform suction filtration, or by gravity filtration using a water head in the tank. At this time, the air supplied by the blower 14 is diffused from the diffuser 12, and the upward flow generated by the air lift action of the diffused air is caused to act as a sweep on the membrane surface of the submerged membrane separator 11. Prevent the cake layer from sticking to the surface.
[0026]
As a result of the filtration by the submerged membrane separation device 11, the solid phase such as the SS content of the processing object 2 remains in the tank as a processing slurry, and the hydrophobic organic matter flows out of the tank through the filtrate extraction system 13 together with the filtrate. The treated slurry containing a solid phase such as soil that has been desorbed and purified by hydrophobic organic matter is taken out of the tank through the discharge system 9. The hydrophobic organic matter taken out of the tank together with the filtrate is guided to the photochemical decomposition treatment step through the filtrate extraction system 13 and decomposed by irradiating with ultraviolet rays in the presence of ozone.
[0027]
Below, the verification test of the structure mentioned above is demonstrated. FIG. 2 is a conceptual diagram of a two-phase model of an aqueous phase and soil. Contaminants adsorbed on the soil include those that adsorb to the soil with a relatively weak force and quickly migrate to the water phase, and those that adsorb strongly and hardly migrate to the water. The ratio of weak adsorbate is indicated by F, and the ratio of strong adsorbate is indicated by 1-F, and soil purification becomes easier as F becomes larger.
[0028]
[Expression 1]
Figure 0003703367
This two-phase model equation is a model formula showing how much (Sx) the amount of initial contaminant S 0 in the soil becomes after x hours. FIG. 3 is a graph of the above model equation. The larger the ratio F of weakly adsorbed material, the more contaminants fall, so the final (Sx) becomes smaller, and the faster desorption constant k1 becomes larger, the more contaminants. Falls quickly, so the slope of the curve becomes steep.
[0029]
Fig. 4 shows the results of a two-phase model in which a contaminated soil was inverted and stirred in water to wash away contaminants. Naphthalene 68%, phenanthrene 46%, and pyrene 42% quickly moved into water. ing.
[0030]
FIG. 5 shows the results of a two-phase model in which the same contaminated soil was sonicated in the presence of a surfactant and then inverted and stirred, with 93% naphthalene, 94% phenanthrene, and 90% faster for pyrene. It has moved to the water, indicating that the purification efficiency has definitely increased.
[0031]
FIG. 6 shows the ratio F of weakly adsorbed material after the treatment shown in FIG. 5 is performed, and it is effective to ultrasonically treat other substances in the presence of a surfactant. I can ask.
[0032]
【The invention's effect】
As described above, according to the present invention, the organic substance in the liquid phase is decomposed by ozone aeration of the object to be treated, and then the hydrophobic organic substance is removed from the object to be treated by adding a surfactant and irradiating ultrasonic waves. The hydrophobic organic substance is efficiently separated from the object to be treated by filtering with a filtration device while preventing re-adsorption of the hydrophobic organic substance to the solid phase by binding the surfactant and the hydrophobic organic substance. Can be purified. Therefore, hydrophobic organic substances such as dioxins, PCBs, and aromatic hydrocarbons can be desorbed from the solid phase with a small amount of energy at normal temperature and normal pressure to purify contaminated soil, slurry, and the like.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a purification device according to an embodiment of the present invention.
FIG. 2 is a conceptual diagram of a two-phase model of an aqueous phase and soil.
FIG. 3 is a graph of a model equation.
FIG. 4 is a graph showing the results of a two-phase model in which a certain contaminated soil is inverted and stirred in water.
FIG. 5 is a graph showing the results of a two-phase model in which the contaminated soil was inverted and stirred in the presence of a surfactant and sonicated.
6 is a graph showing the ratio F of weakly adsorbed material after the processing shown in FIG. 5 is performed.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ozone processing tank 2 Processing target object 3 Supply system 4 Reaction tank 5 Mud feed system 6 Ozone diffuser 7 Ozone generator 8 Chemical supply system 9 Discharge system 10 Stirrer 11 Submerged membrane separator 12 Diffuser 13 Filtrate extraction System 14 Blower 15 Ultrasonic transmitter 16 Waveguide 17 Ultrasonic oscillator

Claims (2)

固液混相の処理対象物をオゾン処理槽に導いてオゾン曝気により処理対象物の固相及び形液相中の有機物を分解し、オゾン処理槽の処理対象物を反応槽に導くとともに、反応槽に貯留した処理対象物に界面活性剤を添加し、反応槽内に配置した超音波発信体から処理対象物へ固相に振動抽出作用を及ぼす超音波を照射し、振動抽出作用によって疎水性有機物を固相から液相に移行させて脱着し、界面活性剤と疎水性有機物との結合によって固相に対する疎水性有機物の再吸着を防止する状態で、槽内に浸漬したろ過装置により処理対象物を固液分離して、疎水性有機物をろ液とともに槽外へ取り出し、疎水性有機物を脱着した固相を含むスラリーを処理スラリーとして槽外へ取り出すことを特徴とする汚染土壌、スラリー等の浄化方法。Introduce the solid-liquid mixed phase treatment object to the ozone treatment tank, decompose the organic matter in the solid phase and liquid phase of the treatment object by ozone aeration, guide the treatment object of the ozone treatment tank to the reaction tank, and the reaction tank Surfactant is added to the processing object stored in the reactor, and ultrasonic waves that exert a vibration extraction action on the solid phase are irradiated from the ultrasonic transmitter placed in the reaction tank to the treatment object, and the hydrophobic organic substance is removed by the vibration extraction action. Is removed from the solid phase to the liquid phase, and the object to be treated is filtered by a filtration device immersed in the tank in a state that prevents re-adsorption of the hydrophobic organic material to the solid phase by binding of the surfactant and the hydrophobic organic material. To remove contaminated soil, slurries, etc., characterized by taking out the hydrophobic organic matter together with the filtrate to the outside of the tank, and taking out the slurry containing the solid phase from which the hydrophobic organic substance has been desorbed as the treated slurry. Method. 界面活性剤はCMC濃度(臨界ミセル濃度)以上に保たれるように添加することを特徴とする請求項1に記載の汚染土壌、スラリー等の浄化方法。The method for purifying contaminated soil and slurry according to claim 1, wherein the surfactant is added so as to be maintained at a CMC concentration (critical micelle concentration) or more.
JP2000159280A 2000-05-30 2000-05-30 Purification method for contaminated soil, slurry, etc. Expired - Fee Related JP3703367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000159280A JP3703367B2 (en) 2000-05-30 2000-05-30 Purification method for contaminated soil, slurry, etc.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000159280A JP3703367B2 (en) 2000-05-30 2000-05-30 Purification method for contaminated soil, slurry, etc.

Publications (2)

Publication Number Publication Date
JP2001334291A JP2001334291A (en) 2001-12-04
JP3703367B2 true JP3703367B2 (en) 2005-10-05

Family

ID=18663621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000159280A Expired - Fee Related JP3703367B2 (en) 2000-05-30 2000-05-30 Purification method for contaminated soil, slurry, etc.

Country Status (1)

Country Link
JP (1) JP3703367B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102442749A (en) * 2011-10-28 2012-05-09 上海理工大学 Baffled device for treating photobiological sewage

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100974911B1 (en) 2008-03-17 2010-08-09 (주)대우건설 Movable water cleaning system
CN104492804B (en) * 2014-12-24 2016-08-17 北京市环境保护科学研究院 The system and method for ozone pretreatment enhancement microbiological degraded repairing polluted soil
CN108580543A (en) * 2018-06-28 2018-09-28 四川省天晟源环保股份有限公司 A kind of new-type mortar reactor and its operating method for soil remediation
CN115594384A (en) * 2022-11-01 2023-01-13 西南石油大学(Cn) Method for preparing homogeneous catalysis ozone modified microbubble cleaning solution and strengthening oil sludge cleaning

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102442749A (en) * 2011-10-28 2012-05-09 上海理工大学 Baffled device for treating photobiological sewage

Also Published As

Publication number Publication date
JP2001334291A (en) 2001-12-04

Similar Documents

Publication Publication Date Title
JP2008055291A (en) Water treating device
CN210065407U (en) Integrated device suitable for oily wastewater treatment
JP3703367B2 (en) Purification method for contaminated soil, slurry, etc.
JP3703368B2 (en) Purification method for contaminated soil, slurry, etc.
JP3918657B2 (en) Method and apparatus for purifying contaminated soil
JP3703366B2 (en) Purification method for contaminated soil, slurry, etc.
JPH11300334A (en) Decomposing and removing method of organic chlorine compound such as dioxins in soil
EP0952116B1 (en) Process for decomposition and removal of dioxins contained in sludge
JP3236219B2 (en) Soil purification method and equipment
JP3221558B2 (en) Soil purification method and equipment
JP3692328B2 (en) Detoxification method and system for fluorescent lamp ballast capacitor
JP2007209915A (en) Cleaning system for volatile organic compound-contaminated soil
JP3941535B2 (en) Method and apparatus for decomposing organic matter
JP2001232356A (en) Process and equipment for treating liquid containing dioxins
JP2004261638A (en) Method of decomposing hardly decomposable organic compound, and device therefor
JP3714849B2 (en) Method for decomposing persistent organic substances
JP3529318B2 (en) Organic wastewater treatment method
Duong et al. Ultrasound‐assisted treatment of kaolin artificially contaminated with phenanhtrene, fluoranthene and hexachlorobenzene
JP2002113454A (en) Soil decontamination method and device
JP2004195344A (en) Cleaning method of soil contaminated with oil
JP2002059155A (en) Decomposition method of noxious substance
JP2004329988A (en) Liquid purifying treatment method
JP2005296717A (en) Method for treating contaminated water
JP2007083095A (en) Method and apparatus for treating organic chlorine compound-containing water
JP2004174334A (en) Method for treating polluted solid material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050719

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees