JP3690552B2 - Metal paste firing method - Google Patents

Metal paste firing method Download PDF

Info

Publication number
JP3690552B2
JP3690552B2 JP13036697A JP13036697A JP3690552B2 JP 3690552 B2 JP3690552 B2 JP 3690552B2 JP 13036697 A JP13036697 A JP 13036697A JP 13036697 A JP13036697 A JP 13036697A JP 3690552 B2 JP3690552 B2 JP 3690552B2
Authority
JP
Japan
Prior art keywords
metal
metal paste
fine particles
paste
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13036697A
Other languages
Japanese (ja)
Other versions
JPH10308120A (en
Inventor
村上  裕彦
早紀 今田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP13036697A priority Critical patent/JP3690552B2/en
Publication of JPH10308120A publication Critical patent/JPH10308120A/en
Application granted granted Critical
Publication of JP3690552B2 publication Critical patent/JP3690552B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns

Description

【0001】
【発明の属する技術分野】
本発明は、金属でなる微粒子を有機溶媒中に分散させた金属ペーストの焼成方法に関するものであり、更に詳しくは、基板などの上に塗布した金属ペーストを焼成して、低抵抗で高密度の金属膜を形成する焼成方法に関するものである。
【0002】
【従来の技術】
従来、金属膜を形成するには、スパッタやCVD(化学気相成長)など種々の方法があるが、図4に示すようなアスペクト比(深さa/幅b)が高い孔、又は溝などの凹部4に金属膜を形成する有効な方法として、金属ペーストを用いる方法がある。 金属ペーストは、その金属膜となる金属の微粒子又は金属合金膜を構成する合金の微粒子を有機溶媒中に分散させ、通常、適度な粘度に調整されたものである。なお、この金属ペースト及びその形成方法の一例は、特開平3−34211号公報に開示されている。そして、金属ペーストを用いた金属膜の形成方法としては、特開平3−281783号公報に開示されているものもあるが、一般に、以下のようにして行なわれる。
【0003】
まず、金属ペーストを、スピンコートやスクリーン印刷などで基板に塗布する。この塗布した金属ペーストを、例えば空気中などの酸化性雰囲気中で、約500℃〜約700℃に加熱して仮焼する。(なお、日本規格協会編;JIS工業用語大辞典によれば、仮焼とは、「原料粉末の組成均一化や、成形体の脱バインダ、強度増加を目的に、最終焼成温度以下の温度で行なう予備焼成」と記載されている。)この仮焼で、金属ペースト中の有機溶媒を熱分解し、かつまた、この熱分解で生成された残留物である炭素などの不純物を除去する。この不純物の除去は、例えば酸化などの化学反応によって行なわれているので、なるべく高温で行うと、この化学反応が早くなり、短時間でも不純物の除去は充分に行われる。その後、目的に応じて設定された温度で加熱し、かつ還元性雰囲気中で金属ペーストを本焼成する。例えば、高密度、低抵抗の金属膜を形成する場合には、結晶の粒界を減少させるために、なるべく高い温度で本焼成して金属微粒子を焼結させることが望ましい。以上のことにより本焼成の温度は高いほど良いとされている
【0004】
【発明が解決しようとする課題】
しかしながら、例えば、熱処理温度が高温であると物質に変化が起きる場合や、熱処理温度に制限がある場合には、基板の温度を高温に上げることができない。言い換えれば、半導体装置の製造工程のように、熱処理温度が例えば500℃以下と制限されるプロセスを有する場合に、この金属ペーストを用いて金属膜を形成すると、高い抵抗値をもつ金属膜となり、またその密度も低くなってしまう。一般に、高い抵抗を有する金属膜を用いると、信号の伝搬速度が遅くなり、半導体装置の高速化を達成することが困難となる。また、低密度のバンプの上に、ICチップやワイヤーなどを接続すると、その接着力が小さく、ICチップの脱落やワイヤーの切断の原因にもなる。従って、従来、熱処理温度が500℃以下で、高密度、低抵抗の金属膜の形成が要求される半導体装置には、金属ペーストを用いて金属膜を形成することはできなかった。
【0005】
本発明は、上述の問題に鑑みてなされ、焼成温度が低温度で、かつ高密度で低抵抗の金属膜を形成することのできる金属ペーストの焼成方法を提供することを課題とする。
【0006】
【課題を解決するための手段】
以上の課題は、金属微粒子が有機溶媒中に分散されている金属ペーストを基板面に塗布する工程A(後述の図1のA、以下においても同様)、前記金属ペーストの塗布膜を、減圧下、酸素の活性励起種が存在する状態で500℃以下の温度で仮焼する工程B、その後に還元性雰囲気中で500℃以下の温度で本焼成する工程Cとからなるプロセスによって、前記金属でなる膜を形成することを特徴とする金属ペーストの焼成方法、によって解決される。
【0007】
または、金属微粒子が有機溶媒中に分散されている金属ペーストを基板面に塗布する工程A、前記金属ペーストの塗布膜を、減圧下、水素の活性励起種が存在する状態で500℃以下の温度で仮焼する工程B、その後に還元性雰囲気中で500℃以下の温度で本焼成する工程Cとからなるプロセスによって、前記金属でなる膜を形成することを特徴とする金属ペーストの焼成方法、によって解決される
【0008】
上記のような構成の焼成方法を採用することによって、金属ペーストを用いて金属膜を、例えば500℃以下の低温で成するとしても、金属ペースト中には減圧としても蒸発しない高分子物質からなるバインダは含まず含まれる有機溶媒の蒸発、蒸発残渣の熱分解が充分に行なわれ、その熱分解によって生じ塗布膜内に残る熱分解残渣の炭素などの不純物も酸素の活性励起種または水素の活性励起種と反応し気化されることにより充分に除去することができる。そして、酸素の活性励起種によって金属微粒子の面に酸化膜が形成される場合にも、還元性の雰囲気中で本焼成することによって酸化膜は還元される。 従って、金属ペーストを用いて、高密度、低抵抗の金属膜を形成するのに、例えば700℃といった高温の熱処理を不要にする。すなわち、500℃以下の低温で焼成を行っても、高密度、低抵抗の金属膜の形成が可能となる。
【0009】
【発明の実施の形態】
本発明の金属ペーストの焼成方法は、図1に示されるように、3つの工程を有する。第1の工程Aでは、形成する金属膜と同一元素の微粒子、又は形成する合金膜を構成する金属元素の微粒子が有機溶媒に分散された金属ペーストを、スピンコートやスクリーン印刷などの方法によって、例えば配線、バンプ、凹所の埋め込みとして基板に塗布する。第2の工程Bでは、金属ペーストの塗布膜が形成された基板を例えば真空槽に装填する。そして、真空槽を減圧し、酸素の活性励起種又は水素の活性励起種が存在する状態として、塗布膜を加熱して仮焼する。そのため、有機溶媒は蒸発し、(減圧としたことによる平衡移動の法則のためと、存在する活性励起種の高エネルギーのためと考えられるが)塗布膜中の蒸発残渣の熱分解温度が低下する。また、低温であっても、酸素の活性励起種又は水素の活性励起種は熱分解残渣である炭素などの不純物と化学反応し、その反応生成物は気体となって塗布膜から除去される。次に、最終工程である第3の工程Cでは、塗布膜を酸素の活性励起種の存在下に仮焼した場合には、塗布膜を還元性雰囲気下に加熱して本焼成し塗布膜を水素の活性励起種の存在下に仮焼した場合にも、塗布膜を還元性雰囲気中で加熱して本焼成し金属微粒子を焼結させることにより、高密度で低抵抗の金属膜が形成される。
【0010】
このとき、金などの貴金属以外の金属、例えば銅やニッケルなどの金属膜を形成する場合では、減圧下に酸素の活性励起種を存在させた状態で仮焼すると、これらの塗布膜中の金属微粒子は酸化され、高抵抗の部分酸化膜が形成されてしまう。そのため、第3の工程Cの本焼成は、還元性雰囲気中で行う。すなわち、この還元性雰囲気中で本焼成することにより、部分酸化膜が還元された金属微粒子に戻って焼結されることから、低抵抗の金属膜が得られる。なお、後述するように、金のような貴金属であっても、超微粒子では表面酸化していることが判明しているので、還元性雰囲気中で本焼成することが好ましい
【0011】
ところで、一般に、金属ペースト内に分散されている金属微粒子は、粒子径が小さい程、その焼結温度は低くなるので、粒子径の小さい金属微粒子が分散されたペーストを用いることが好ましい。しかし、粒子径が小さいと、粒界面積が増大するので、焼結後の抵抗がやや高くなる恐れがある。また、焼結後に高い充填密度が得られるように、有機溶媒中に分散される金属微粒子は、できるだけ、粒子径の大きさがほぼ等しい、球状の独立粒子であることが望ましい。更には、平均粒子径が異なる複数の粒子群の微粒子を混合して、より高い充填密度が得られるようにしてもよい。
【0012】
なお、本発明の仮焼、本焼成の温度は、金属ペーストを塗布する下地(例えば基板)と金属ペーストの種類によるが、500℃程度の低温としても、高密度、低抵抗の金属膜が得られる。しかしながら、金属ペースト中の有機溶媒を効果的に蒸発させ、蒸発残渣を熱分解させると共に、熱分解残渣を除去して、金属微粒子を密度高く焼結させるためには、仮焼及び本焼成の温度は100℃以上とすることが好ましい。
【0013】
【実施例】
以下、本発明の各実施例について、図2乃至図4を参照して説明する。
【0014】
本発明の第1実施例について以下、説明する。まず、市販の銅ペースト(例えば、平均粒子径が0.1μm の銅微粒子を有機溶媒のテルピネオール中に分散させた銅ペーストや平均粒子径が数μmの銅微粒子を有機溶媒中に分散させた銅ペーストなど)を、従来と同様に、スクリーン印刷により、シリコン基板1上に形成する。すなわち、図2に示すように、必要な配線となるべき銅ペーストの塗布膜2をシリコン基板1上に形成する。 次に、この基板1を真空電気炉に装填する。そして、酸素O2 を含む酸化性ガスを炉内に供給し、炉内を数百Pa〜数Pa程度の低真空にする。次に、基板1の全面に電子シャワー照射し、供給された酸化性ガスから酸素の活性励起種を生成させ、布膜2が形成されている基板1の表面に存在するようにした。同時に、基板1を100℃〜500℃に加熱して、数分から1時間程度の仮焼を行う。これにより、塗布膜2に含まれる有機溶媒は蒸発し、蒸発残渣は酸素の活性励起種によって熱分解される。更に、その熱分解によって生成し塗布膜2内に残る熱分解残渣の炭素は酸素の活性励起種と反応して除去される。すなわち、C(炭素)+xO* (酸素ラジカル) → COX(COX は、x=1のとき一酸化炭素であり、x=2のとき二酸化炭素となる)の反応が行われる。従って、熱分解残渣の炭素は気体(一酸化炭素又は二酸化炭素)となって、塗布膜2から除去される。なお、このときの仮焼の温度および時間は、銅ペースト中の有機溶媒の種類や量に依るが、100℃〜500℃、数分〜1時間程度で、充分に有機溶媒、有機溶媒の蒸発残渣、及び熱分解残渣の炭素を除去することができる。
【0015】
次に、供給していた酸化性ガスの代わりに、還元性ガス(例えば、水素ガスや、水素ガスと不活性ガスとの混合ガス)を真空電気炉に供給し、500℃以下の温度で本焼成する。これによって、仮焼時に塗布膜中の銅の微粒子に形成された部分酸化膜は還元性ガスによって還元されて銅微粒子に戻る。同時に塗布膜中の銅の微粒子は焼結され、高密度の銅膜となる。従って、高密度、かつ低抵抗の銅膜でなる配線が得られる。なお、この方法によって得られた銅膜は、バルク状の銅金属(抵抗率1.67×10-6 Ωcm)と同程度の低抵抗を有するものであった。
【0016】
次に、本発明の第2実施例について説明する。市販の金ペースト(例えば、有機溶媒中に平均粒子径が0.01μm 以下の金でなる微粒子を分散させた金ペースト)を、シリコン基板1上に、スクリーン印刷によって塗布する。上記第1実施例と同様な条件で、仮焼及び本焼成を行う。すなわち、仮焼によって、金ペーストを塗布した塗布膜2の有機溶媒を蒸発させ、 蒸発残渣を熱分解させ、かつ熱分解で生じて塗布膜2に残る炭素を酸化物として気化、除去した後、本焼成することにより、低温度で焼成して、高密度、低抵抗の金バンプを形成した。なお、本実施例では、貴金属である金ペーストを用いているので、上記第1実施例のように、本焼成時に、還元性雰囲気中で行なうことは必ずしも、必要でない。しかしながら、最近、金のような貴金属でも、超微粒子では表面が酸化していることが判明している。その表面酸化によって、形成された金バンプが、高抵抗であったり、接着力の低下を招く恐れがあるので、本実施例では、上記第1実施例と同様に、還元性雰囲気中で本焼成を行なっている。
【0017】
次に、本発明の第3実施例について説明する。上記第1実施例と同様に、市販の銅ペーストを、スクリーン印刷により、必要な配線が得られるように、基板1に布膜2を形成する(図2)。この塗布膜2の形成された基板1を真空電気炉に装填してH2 ガスを炉内に供給し、数百Pa〜数千Pa程度の真空度に調節した後、炉内にマイクロ波を導入して、水素プラズマを発生させ、水素の活性励起種が塗布膜2の周囲に存在する状態とする。そして、この状態で、100℃〜500℃に加熱して、数分から1時間程度の仮焼を行う。これにより、銅ペーストに使用されている有機溶媒の蒸発、水素の活性励起種による蒸発残渣の熱分解が行われる。更には、熱分解によって生成し塗布膜2に残る熱分解残渣の炭素は水素の活性励起種と反応して除去される。すなわち、C(炭素)+yH*(水素ラジカル)→ CHy (CHyはy=4のときメタンガス)の反応が行われる。なお、炭素と水素は、通常、高温(例えば千度以上)でないと反応しないが、本発明では、水素が活性励起種であるため、500℃の低温であっても、炭素と反応する。すなわち、塗布膜2内に残る熱分解残渣の炭素は気体(例えばメタンガス)となって、塗布膜2から除去される。なお、このときの仮焼の温度及び時間は、上記第1実施例と同様に、金属ペースト中の有機溶媒の種類や量に依る。
【0018】
次に、マイクロ波の導入を停止し、水素ガスによる還元性雰囲気中で、かつ500℃以下の温度で本焼成を行う。これによって、塗布膜2の中の銅でなる微粒子は焼結され、高密度の銅膜となる。従って、高密度、かつ低抵抗の銅膜でなる配線が得られる。なお、この方法で得られた銅膜は、バルク状の銅金属(抵抗率1.67×10-6 Ωcm)と同程度の低抵抗を有するものであった。
【0019】
次に、本発明の第4実施例について説明する。上記第2実施例と同様に、市販の金ペーストをスクリーン印刷により、金バンプとなるように、基板1上に塗布する。そして、これを上記第3実施例と同様な条件で、仮焼及び本焼成を行なう。これによって、金ペーストを塗布した塗布膜2に含まれる有機溶媒を蒸発させ、蒸発残渣を熱分解させ、かつ熱分解で生じ塗布膜2内に残る熱分解残渣の炭素は気体の炭素酸化物として除去することにより、低温度の焼成で、高密度、低抵抗の金バンプを形成することができた。
【0020】
次に、本発明の第5実施例について説明する。本実施例は、ICベアチップのフリップチップ方式による基板への実装に、市販の銅ペースト(他の金属ペーストでも勿論、同様に行なえる)を適用した例である。まず、上記第1、第3実施例と同様に、銅ペーストを図2に示すように、スクリーン印刷により基板1に塗布し、塗布膜2を形成する。そして、図3に示すように、塗布膜2の上にICベアチップ3を載置する。この塗布膜2を介してICベアチップ3を載置した基板1を真空電気炉内へ装填し、数Pa程度の減圧下、塗布膜2の周囲に、酸素の活性励起種が存在する状態として、数分から1時間程度の仮焼を行なった。このときの仮焼温度は、基板1に載置したICベアチップ3の耐熱性を考慮して、150℃とした。その後、上記第1実施例と同様に、酸素ガスの供給を停止し、代わりに水素ガスを供給し、仮焼と同じ150℃で本焼成を行なった。このようにして、基板1の表面にICベアチップ3が実装された。なお、この方法では、銅ペーストによって形成された銅膜は、上記第1実施例の銅膜の抵抗値よりは高くなったが、通常、使用されている‘はんだ’バンプに相当する程度の抵抗率は確保することができた。
【0021】
次に、本発明の第6実施例について説明する。図4に示すように、アスペクト比が1以上の微細な孔又は溝などの凹部4を有する(例えばシリコン基板などの)下地1’に、市販の銅ペースト2’をスピンコート法により塗布し、凹部4に銅ペーストを埋め込み、かつ下地1’の表面に塗布した。次に、この下地1’を上記第1実施例と全く同一の条件で仮焼及び本焼成を行なった。これにより、凹部4及び下地1’の表面に低抵抗の銅膜が形成された。
【0022】
以上、本発明の実施例について説明したが、本発明はこれらに限定されることなく、本発明の技術的思想に基づいて種々の変形が可能である。
【0023】
例えば、上記実施例では、酸素の活性励起種又は水素の活性励起種の発生に、電子シャワーの照射やマイクロ波の導入を行なった。しかしながら、酸素の活性励起種又は水素の活性励起種の発生は、これらに限定される必要は全くない。例えば、市販されているラジカルガンのように、直流放電やECRで酸素分子や水素分子をプラズマ化し、必要な活性励起種だけを選択的に選んで供給するようにしてもよい。
【0024】
また、第1実施例において、 銅微粒子に形成された高抵抗の部分酸化膜を還元するべく、還元性雰囲気とするために、真空電気炉内に水素ガス、又は水素ガスと不活性ガスとの混合ガスを供給した。 しかし、部分酸化膜が還元されて銅微粒子に戻るのであれば、これらのガスに限定される必要はない。例えば、還元性ガスとして一酸化炭素ガスや水性ガス利用して還元性雰囲気としてもよい。更に、真空度を高めて還元性雰囲気としてもよい。
【0025】
更に、上記実施例では、金属ペーストとして、市販の銅ペースト又は金ペーストを用いて説明したが、これ以外にも、銀、白金、パラジウム、鉛、すず、ニッケル、アルミニウム、インジウム、チタンなどの金属でなる微粒子を分散させた金属ペーストを用いてもよい。また、これらの金属の少なくとも2種類以上の金属でなる微粒子を混合して、これらの合金膜を、本発明によって形成してもよい。また、上記実施例では、平均粒子径0.01μm、0.1μm、または数μm程度の金属でなる微粒子を分散させた金属ペーストを使用したが、勿論、微粒子の粒子径はこれら以外であってもよい。一般に粒子径が小さい程、金属微粒子の焼結温度は低くなるので、粒子径の小さい微粒子のペーストを使用することが好ましい。しかし、粒子径が小さいと必然的に粒界面積も増大するので、本焼成後にバルク金属並の低抵抗を得難くなる。従って金属微粒子の粒子径は負荷し得る温度によって決めてもよい。また、高い充填密度が得られるように、金属微粒子は可及的に球状の独立微粒子であることが望ましい。更には、粒子径の異なる微粒子を混合して充填密度を高めることは好ましい選択である。
【0026】
【発明の効果】
以上、述べたように、本発明の金属ペーストの焼成方法によれば、500℃以下の低温であっても、減圧下、酸素の活性励起種または水素の活性励起種が存在する状態において、金属ペーストによる塗布膜中の有機溶媒を蒸発させ、蒸発残渣は熱分解させ、熱分解によって生ずる熱分解残渣の炭素は炭素酸化物または水素化炭素として気化させ除去することができるので、金属ペーストを用いて、高密度で、低抵抗の金属膜を形成することができる。これにより、高温度での焼成が不能であった部品や部材にも本発明の金属ペーストの焼成方法によって低抵抗の導電体を形成することができる。
【図面の簡単な説明】
【図1】 本発明の金属ペーストの焼成方法の流れ図である。
【図2】 本発明の各実施例における第1工程Aの終了後の基板の断面図である。
【図3】 本発明の第5実施例によってICベアチップを載置した基板の縦断面図である。
【図4】 本発明の第6実施例において、アスペクト比が1以上の微細な孔又は溝などの凹部を有する下地に金属ペーストを塗布した状態を示す断面図である。
【符号の説明】
1 シリコン基板
1’ 下地
2 塗布膜
2’ 銅ペースト
3 ICベアチップ
4 凹部
A 第1工程
B 第2工程
C 第3工程
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for firing a metal paste in which fine particles made of metal are dispersed in an organic solvent. More specifically, the present invention relates to a method of firing a metal paste applied on a substrate or the like to achieve low resistance and high density. The present invention relates to a firing method for forming a metal film.
[0002]
[Prior art]
Conventionally, there are various methods such as sputtering and CVD (Chemical Vapor Deposition) to form a metal film, but holes or grooves having a high aspect ratio (depth a / width b) as shown in FIG. As an effective method of forming a metal film in the recess 4 of the above, there is a method using a metal paste. The metal paste is usually adjusted to have an appropriate viscosity by dispersing metal fine particles to be the metal film or alloy fine particles constituting the metal alloy film in an organic solvent. An example of this metal paste and its forming method is disclosed in JP-A-3-34211. In addition, as a method for forming a metal film using a metal paste, there is a method disclosed in Japanese Patent Application Laid-Open No. Hei 3-281784, but it is generally performed as follows.
[0003]
First, a metal paste is applied to a substrate by spin coating or screen printing. The applied metal paste is calcined by heating to about 500 ° C. to about 700 ° C. in an oxidizing atmosphere such as air. (In addition, according to the Japanese Standards Association; according to the JIS Industrial Terminology Dictionary, calcination means “at a temperature equal to or lower than the final firing temperature for the purpose of homogenizing the composition of the raw material powder, removing the binder from the molded body, and increasing the strength.” In this calcination, the organic solvent in the metal paste is thermally decomposed, and impurities such as carbon which are residues generated by the thermal decomposition are removed. Since the removal of the impurities is performed by a chemical reaction such as oxidation, for example, the chemical reaction is accelerated when performed at as high a temperature as possible, and the impurities are sufficiently removed even in a short time. Thereafter, the metal paste is heated at a temperature set according to the purpose, and the metal paste is finally fired in a reducing atmosphere. For example, when forming a high-density, low-resistance metal film, it is desirable to sinter the metal fine particles by firing at a temperature as high as possible in order to reduce crystal grain boundaries. And the temperature of the main firing is higher the better by the above.
[0004]
[Problems to be solved by the invention]
However, for example, if the material changes when the heat treatment temperature is high, or if the heat treatment temperature is limited, the temperature of the substrate cannot be increased. In other words, when the metal film is formed using this metal paste when the heat treatment temperature is limited to, for example, 500 ° C. or less as in the semiconductor device manufacturing process, the metal film has a high resistance value. Moreover, the density will also become low. In general, when a metal film having a high resistance is used, the signal propagation speed is slowed down, and it is difficult to increase the speed of the semiconductor device. Further, when an IC chip, a wire, or the like is connected on a low-density bump, the adhesive force is small, which may cause the IC chip to drop off or the wire to be cut. Therefore, conventionally, it has not been possible to form a metal film using a metal paste in a semiconductor device that requires a heat treatment temperature of 500 ° C. or less and a high-density, low-resistance metal film.
[0005]
This invention is made in view of the above-mentioned problem, and makes it a subject to provide the baking method of the metal paste which can form a low-temperature, high-density, low-resistance metal film.
[0006]
[Means for Solving the Problems]
The above-described problems are that the metal paste in which metal fine particles are dispersed in an organic solvent is applied to the substrate surface A (A in FIG. 1 to be described later, the same applies hereinafter), and the coating film of the metal paste is subjected to reduced pressure. , step B calcining at a temperature below 500 ℃ in a state of active oxygen excited species is present, the subsequent and a step C of the sintering at a temperature below 500 ℃ in a reducing atmosphere process, with the metal This is solved by a method for firing a metal paste characterized in that a film is formed.
[0007]
Alternatively, Step A in which a metal paste in which metal fine particles are dispersed in an organic solvent is applied to the substrate surface, and the coating film of the metal paste is subjected to a temperature of 500 ° C. or less under reduced pressure in the presence of hydrogen active excited species. A method of firing a metal paste, characterized by forming a film made of the metal by a process consisting of a step B of calcination in Step B, followed by a step C of main firing in a reducing atmosphere at a temperature of 500 ° C. or lower, Solved by .
[0008]
By adopting a configuration method of firing as described above, the metal film using a metal paste, for example, even be baked formed at a low temperature below 500 ℃, a polymeric material that does not evaporate as reduced pressure in the metal paste The organic solvent contained and the evaporation residue are sufficiently decomposed and impurities such as carbon remaining in the coating film caused by the decomposition are also active excited species of oxygen or hydrogen. It can be sufficiently removed by reacting with the active excited species and being vaporized . Even when an oxide film is formed on the surface of the metal fine particles by the active excited species of oxygen, the oxide film is reduced by performing main firing in a reducing atmosphere . Therefore, a high-temperature heat treatment such as 700 ° C. is not required to form a high-density, low-resistance metal film using the metal paste. That is, even if baking is performed at a low temperature of 500 ° C. or lower, a high-density, low-resistance metal film can be formed.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The metal paste firing method of the present invention has three steps as shown in FIG. In the first step A, a metal paste in which fine particles of the same element as the metal film to be formed or metal elements constituting the alloy film to be formed are dispersed in an organic solvent is obtained by a method such as spin coating or screen printing. For example, it is applied to the substrate as wiring, bumps, or recesses. In the second step B, the substrate on which the coating film of the metal paste is formed is loaded into, for example, a vacuum chamber. Then, the vacuum chamber is depressurized, and the coating film is heated and calcined in a state where active excited species of oxygen or active excited species of hydrogen exist. Therefore, the organic solvent evaporates, and the thermal decomposition temperature of the evaporation residue in the coating film is lowered (although it is thought to be due to the law of equilibrium transfer due to the reduced pressure and the high energy of the active excited species present). . Even at a low temperature, the oxygen active excitation species or the hydrogen activation excitation species chemically react with impurities such as carbon, which is a thermal decomposition residue, and the reaction product is removed as a gas from the coating film. Next, the third step C is the final step, when the coating film was calcined in the presence of an active excited species of oxygen, and heated to the sintering of the coated film under a reducing atmosphere, the coating film Even when calcined in the presence of hydrogen active excited species, the coating film is heated in a reducing atmosphere and fired to sinter the fine metal particles, thereby forming a high-density, low-resistance metal film. Is done.
[0010]
At this time, when a metal film other than a noble metal such as gold, for example, a metal film such as copper or nickel, is formed by calcining in the presence of active excited species of oxygen under reduced pressure, the metal in these coating films The fine particles are oxidized, and a high-resistance partial oxide film is formed. Therefore, the main firing in the third step C is performed in a reducing atmosphere. That is, by firing in this reducing atmosphere, the partial oxide film is returned to the reduced metal fine particles and sintered, so that a low-resistance metal film can be obtained. As will be described later, even a noble metal such as gold has been found to be surface oxidized in ultrafine particles, and therefore, it is preferable to perform main firing in a reducing atmosphere .
[0011]
By the way, in general, the metal fine particles dispersed in the metal paste have a lower sintering temperature as the particle size is smaller. Therefore, it is preferable to use a paste in which metal fine particles having a smaller particle size are dispersed. However, if the particle diameter is small, the grain boundary area increases, and thus the resistance after sintering may be slightly increased. In addition, it is desirable that the metal fine particles dispersed in the organic solvent are spherical independent particles having a particle diameter approximately equal to that of the particles so that a high packing density can be obtained after sintering. Furthermore, a higher packing density may be obtained by mixing fine particles of a plurality of particle groups having different average particle diameters.
[0012]
In addition, although the temperature of the calcination of this invention and this baking is based on the foundation | substrate (for example, board | substrate) and metal paste which apply | coat a metal paste, even if it is about 500 degreeC low temperature, a high-density, low-resistance metal film is obtained. It is done. However, in order to effectively evaporate the organic solvent in the metal paste, thermally decompose the evaporation residue, remove the pyrolysis residue, and sinter the metal fine particles with high density, the temperature of calcination and main baking Is preferably 100 ° C. or higher.
[0013]
【Example】
Embodiments of the present invention will be described below with reference to FIGS.
[0014]
The first embodiment of the present invention will be described below. First, a commercially available copper paste (e.g., an average particle size or copper paste prepared by dispersing 0.1μm of copper fine particles in terpineol organic solvent, the copper fine particles having an average particle diameter of several μm were dispersed in the same organic solvent A copper paste or the like is formed on the silicon substrate 1 by screen printing as in the conventional case. That is, as shown in FIG. 2, a coating film 2 of copper paste to be necessary wiring is formed on the silicon substrate 1. Next, the substrate 1 is loaded into a vacuum electric furnace. Then, an oxidizing gas containing oxygen O 2 is supplied into the furnace, and the inside of the furnace is brought to a low vacuum of about several hundred Pa to several Pa. Then, electron shower irradiated on the entire surface of the substrate 1, to generate oxygen activity excited species from the supplied oxidizing gas, and the like present on the surface of the substrate 1 coated fabric layer 2 is formed. At the same time, the substrate 1 is heated to 100 ° C. to 500 ° C. and calcined for several minutes to about 1 hour. As a result, the organic solvent contained in the coating film 2 is evaporated, and the evaporation residue is thermally decomposed by the active excited species of oxygen. Further, the carbon of the pyrolysis residue generated by the thermal decomposition and remaining in the coating film 2 reacts with the active excited species of oxygen and is removed. That is, a reaction of C (carbon) + xO * (oxygen radical) → CO X (CO x is carbon monoxide when x = 1 and carbon dioxide when x = 2) is performed. Accordingly, the pyrolysis residue carbon becomes a gas (carbon monoxide or carbon dioxide) and is removed from the coating film 2. In addition, although the temperature and time of calcination at this time depend on the kind and amount of the organic solvent in the copper paste, the evaporation of the organic solvent and the organic solvent is sufficiently performed at 100 ° C. to 500 ° C. for several minutes to 1 hour. Residues and pyrolysis residue carbon can be removed.
[0015]
Next, instead of the supplied oxidizing gas, a reducing gas (for example, hydrogen gas or a mixed gas of hydrogen gas and inert gas) is supplied to a vacuum electric furnace, and the main gas is supplied at a temperature of 500 ° C. or lower. Bake. As a result, the partial oxide film formed on the copper fine particles in the coating film during calcination is reduced by the reducing gas and returned to the copper fine particles. At the same time, the copper fine particles in the coating film are sintered to form a high-density copper film. Accordingly, a wiring made of a copper film having a high density and a low resistance can be obtained. The copper film obtained by this method had a low resistance comparable to that of bulk copper metal (resistivity 1.67 × 10 −6 Ωcm).
[0016]
Next, a second embodiment of the present invention will be described. A commercially available gold paste (for example, a gold paste in which fine particles of gold having an average particle size of 0.01 μm or less are dispersed in an organic solvent) is applied on the silicon substrate 1 by screen printing. The calcination and the main calcination are performed under the same conditions as in the first embodiment. That is, after calcination, the organic solvent of the coating film 2 coated with the gold paste is evaporated, the evaporation residue is pyrolyzed, and carbon generated in the pyrolysis and remaining in the coating film 2 is vaporized and removed as an oxide, By performing the main baking, the gold bumps were formed at a low temperature to form a high density, low resistance gold bump. In this embodiment, since a gold paste which is a noble metal is used, it is not always necessary to perform in a reducing atmosphere during the main firing as in the first embodiment. However, recently, it has been found that even a noble metal such as gold has an oxidized surface. Since the gold bumps formed by the surface oxidation may have a high resistance or a decrease in adhesive strength, in this embodiment, as in the first embodiment, the main firing is performed in a reducing atmosphere. Is doing.
[0017]
Next, a third embodiment of the present invention will be described. As with the first embodiment, a commercially available copper paste, by screen printing, as necessary wiring is obtained, to form a coating fabric layer 2 on the substrate 1 (FIG. 2). The substrate 1 on which the coating film 2 is formed is loaded into a vacuum electric furnace, H 2 gas is supplied into the furnace, the degree of vacuum is adjusted to about several hundred Pa to several thousand Pa, and then microwaves are introduced into the furnace. The hydrogen plasma is introduced to generate a hydrogen plasma, and the active excited species of hydrogen is present around the coating film 2. And in this state, it heats to 100 to 500 degreeC, and calcination for about several minutes to about 1 hour is performed. As a result, the organic solvent used in the copper paste is evaporated and the evaporation residue is thermally decomposed by the active excited species of hydrogen. Furthermore, carbon of pyrolysis residue generated by thermal decomposition and remaining in the coating film 2 is removed by reacting with active excited species of hydrogen. That is, a reaction of C (carbon) + yH * (hydrogen radical) → CH y (CH y is methane gas when y = 4) is performed. Carbon and hydrogen usually do not react unless the temperature is high (for example, 1000 degrees or more). However, in the present invention, hydrogen reacts with carbon even at a low temperature of 500 ° C. because hydrogen is an active excited species. That is, the pyrolysis residue carbon remaining in the coating film 2 becomes a gas (for example, methane gas) and is removed from the coating film 2. In addition, the temperature and time of calcination at this time depend on the kind and amount of the organic solvent in the metal paste as in the first embodiment.
[0018]
Next, the introduction of microwaves is stopped, and main firing is performed in a reducing atmosphere with hydrogen gas and at a temperature of 500 ° C. or lower. Thereby, the fine particles made of copper in the coating film 2 are sintered to form a high-density copper film. Accordingly, a wiring made of a copper film having a high density and a low resistance can be obtained. The copper film obtained by this method had a low resistance comparable to that of bulk copper metal (resistivity 1.67 × 10 −6 Ωcm).
[0019]
Next, a fourth embodiment of the present invention will be described. Similar to the second embodiment, a commercially available gold paste is applied on the substrate 1 by screen printing so as to form gold bumps. Then, calcination and main calcination are performed under the same conditions as in the third embodiment. As a result, the organic solvent contained in the coating film 2 coated with the gold paste is evaporated, the evaporation residue is pyrolyzed, and the carbon of the pyrolysis residue generated in the pyrolysis and remaining in the coating film 2 is a gaseous carbon oxide. By removing, gold bumps having high density and low resistance could be formed by firing at a low temperature.
[0020]
Next, a fifth embodiment of the present invention will be described. In this embodiment, a commercially available copper paste (of course, other metal pastes can be used in the same manner) is applied to mounting of an IC bare chip on a substrate by a flip chip method. First, as in the first and third embodiments, a copper paste is applied to the substrate 1 by screen printing to form a coating film 2 as shown in FIG. Then, as shown in FIG. 3, the IC bare chip 3 is placed on the coating film 2. The substrate 1 on which the IC bare chip 3 is placed through the coating film 2 is loaded into a vacuum electric furnace, and under a reduced pressure of about several Pa, a state in which active excited species of oxygen are present around the coating film 2 Calcination was performed for several minutes to about 1 hour. The calcining temperature at this time was set to 150 ° C. in consideration of the heat resistance of the IC bare chip 3 placed on the substrate 1. Thereafter, in the same manner as in the first example, the supply of oxygen gas was stopped, and hydrogen gas was supplied instead, and the main calcination was performed at 150 ° C., which is the same as calcination. In this way, the IC bare chip 3 was mounted on the surface of the substrate 1. In this method, the copper film formed by the copper paste is higher than the resistance value of the copper film of the first embodiment, but usually has a resistance corresponding to the 'solder' bump used. The rate could be secured.
[0021]
Next, a sixth embodiment of the present invention will be described. As shown in FIG. 4, a commercially available copper paste 2 ′ is applied to a base 1 ′ having a recess 4 such as a fine hole or groove having an aspect ratio of 1 or more (for example, a silicon substrate) by spin coating, A copper paste was embedded in the recess 4 and applied to the surface of the base 1 ′. Next, the base 1 'was calcined and fired under exactly the same conditions as in the first embodiment. As a result, a low resistance copper film was formed on the surface of the recess 4 and the base 1 ′.
[0022]
As mentioned above, although the Example of this invention was described, this invention is not limited to these, A various deformation | transformation is possible based on the technical idea of this invention.
[0023]
For example, in the above embodiment, irradiation with an electron shower or introduction of microwaves was performed for generation of active excited species of oxygen or active excited species of hydrogen. However, the generation of the active excited species of oxygen or the active excited species of hydrogen is not necessarily limited to these. For example, like a commercially available radical gun, oxygen molecules and hydrogen molecules may be converted into plasma by direct current discharge or ECR, and only necessary active excited species may be selectively selected and supplied.
[0024]
Moreover, in the first embodiment, in order to reduce the high resistance partial oxide film formed on the copper fine particles, a reducing atmosphere is formed in the vacuum electric furnace with hydrogen gas or hydrogen gas and inert gas. A mixed gas was supplied. However, as long as the partial oxide film is reduced to return to the copper fine particles, it is not necessary to be limited to these gases. For example, a reducing atmosphere may be formed by using carbon monoxide gas or water gas as the reducing gas. Furthermore, it is good also as a reducing atmosphere by raising a vacuum degree.
[0025]
Furthermore, although the said Example demonstrated using commercially available copper paste or gold paste as a metal paste, metal other than this, such as silver, platinum, palladium, lead, tin, nickel, aluminum, indium, titanium You may use the metal paste which disperse | distributed the microparticles | fine-particles which become. Further, these alloy films may be formed according to the present invention by mixing fine particles made of at least two kinds of these metals. Further, in the above examples, a metal paste in which fine particles made of metal having an average particle size of 0.01 μm, 0.1 μm, or several μm are used is used. Of course, the particle size of the fine particles is other than these. Also good. In general, the smaller the particle size, the lower the sintering temperature of the metal fine particles. Therefore, it is preferable to use a fine particle paste having a small particle size. However, if the particle size is small, the grain interface area inevitably increases, so that it is difficult to obtain a low resistance comparable to that of a bulk metal after the main firing. Therefore, the particle diameter of the metal fine particles may be determined by the temperature at which the metal fine particles can be loaded. In order to obtain a high packing density, it is desirable that the metal fine particles are as independent spherical fine particles as possible. Furthermore, it is a preferable choice to increase the packing density by mixing fine particles having different particle diameters.
[0026]
【The invention's effect】
As described above, according to the method for firing a metal paste of the present invention, even in a low temperature of 500 ° C. or lower, in a state where active excited species of oxygen or active excited species of hydrogen are present under reduced pressure, The organic solvent in the coating film by the paste is evaporated, the evaporation residue is thermally decomposed, and the carbon of the thermal decomposition residue generated by the thermal decomposition can be vaporized and removed as a carbon oxide or hydrogenated carbon. Thus, a high-density, low-resistance metal film can be formed. Thereby, a low-resistance conductor can be formed on a component or member that cannot be fired at a high temperature by the metal paste firing method of the present invention.
[Brief description of the drawings]
FIG. 1 is a flowchart of a method for firing a metal paste of the present invention.
2 is a longitudinal sectional view of the substrate after completion of the first step A in the embodiments of the present invention.
FIG. 3 is a longitudinal sectional view of a substrate on which an IC bare chip is placed according to a fifth embodiment of the present invention.
In the sixth embodiment of the present invention; FIG is a longitudinal sectional view showing a state in which the aspect ratio was applied an undercoat on a metal paste having a recess such as one or more fine holes or grooves.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Silicon substrate 1 'Ground 2 Coating film 2' Copper paste 3 IC bare chip 4 Concave part A 1st process B 2nd process C 3rd process

Claims (6)

金属微粒子が有機溶媒中に分散されている金属ペーストを基板に塗布し、前記金属ペーストの塗布膜を、減圧下で、かつ酸素活性励起種が存在する状態で500℃以下の温度で仮焼した後、還元性雰囲気500℃以下の温度で本焼成して前記金属微粒子を焼結することにより、前記金属でなる膜を形成することを特徴とする金属ペーストの焼成方法。A metal paste in which metal fine particles are dispersed in an organic solvent is applied to the substrate surface, and the coating film of the metal paste is calcined at a temperature of 500 ° C. or lower under reduced pressure and in the presence of oxygen active excited species. after, by sintering the metal fine particles and the calcined at 500 ° C. temperature below in a reducing atmosphere, a firing method of the metal paste and forming a film made of the metal. 金属微粒子が有機溶媒中に分散されている金属ペーストを基板に塗布し、前記金属ペーストの塗布膜を、減圧下で、かつ水素活性励起種が存在する状態で500℃以下の温度で仮焼した後、還元性雰囲気中で500℃以下の温度で本焼成して前記金属微粒子を焼結することにより、前記金属でなる膜を形成することを特徴とする金属ペーストの焼成方法。A metal paste in which metal fine particles are dispersed in an organic solvent is applied to the substrate surface, and the coating film of the metal paste is calcined at a temperature of 500 ° C. or less under reduced pressure and in the presence of hydrogen activated excited species. after, by sintering the metal fine particles and the calcined at 500 ° C. temperature below in a reducing atmosphere, a firing method of the metal paste and forming a film made of the metal. 前記金属微粒子が平均粒子径1μm単位のもの、平均粒子径0.1μm単位のもの、 および平均粒子径0.01μm単位のものの中の何れか単独、はそれらの中の2種類以上の混合であることを特徴とする請求項1または請求項2に記載の金属ペーストの焼成方法。Those wherein the metal particles having an average particle size of 1μm units, having an average particle diameter of 0.1μm units, and the average particle size 0.01μm either alone among those units, or a mixture of two or more of them The metal paste firing method according to claim 1, wherein the metal paste is fired. 前記金属微粒子が金、銀、白金、パラジウム、銅、鉛、すず、ニッケル、アルミニウム、インジウム、チタンの中の何れか1種類、又はそれらの中の2種以上の混合、或いは合金の微粒子であることを特徴とする請求項1から請求項までの何れかに記載の金属ペーストの焼成方法。The metal fine particles are fine particles of any one of gold, silver, platinum, palladium, copper, lead, tin, nickel, aluminum, indium, and titanium, or a mixture of two or more thereof, or an alloy. The metal paste firing method according to any one of claims 1 to 3, wherein the metal paste is fired. 孔または溝からなる凹状部を有する前記基板に前記金属ペーストの塗膜を形成して、前記凹状部に埋め込むことを特徴とする請求項1から請求項までの何れかに記載の金属ペーストの焼成方法。To form a coating film of the metal paste on the substrate having a concave portion composed of a hole or a groove, a metal paste according to any one of claims 1 to 4, characterized in that embedded in the concave portion Firing method. 前記金属ペーストが銅の微粒子からなるものを使用して、前記基板へバルク状の銅と同程度に低抵抗である銅膜を形成することを特徴とする請求項1から請求項までの何れかに記載の金属ペーストの焼成方法。Using what the metal paste is made of copper fine particles, from claim 1 and forming a copper film is a low-resistance copper comparable bulk to the substrate surface to claim 5 The baking method of the metal paste in any one.
JP13036697A 1997-05-02 1997-05-02 Metal paste firing method Expired - Lifetime JP3690552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13036697A JP3690552B2 (en) 1997-05-02 1997-05-02 Metal paste firing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13036697A JP3690552B2 (en) 1997-05-02 1997-05-02 Metal paste firing method

Publications (2)

Publication Number Publication Date
JPH10308120A JPH10308120A (en) 1998-11-17
JP3690552B2 true JP3690552B2 (en) 2005-08-31

Family

ID=15032666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13036697A Expired - Lifetime JP3690552B2 (en) 1997-05-02 1997-05-02 Metal paste firing method

Country Status (1)

Country Link
JP (1) JP3690552B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013125604A1 (en) 2012-02-20 2013-08-29 株式会社応用ナノ粒子研究所 Oxygen source-containing composite nanometal paste and joining method
EP2851907A4 (en) * 2012-05-18 2016-05-25 Material Concept Inc Conductive paste, method for forming wiring, electronic component, and silicon solar cell

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4932150B2 (en) * 2003-10-21 2012-05-16 株式会社半導体エネルギー研究所 Manufacturing method of semiconductor element
WO2005122230A1 (en) * 2004-06-07 2005-12-22 Kyushu Institute Of Technology Method for processing copper surface, method for forming copper pattern wiring and semiconductor device manufactured using such method
JP4347381B2 (en) * 2005-05-25 2009-10-21 ニホンハンダ株式会社 Paste silver composition for adhesion of metal-based adherend, method for producing the same, and method for bonding metal-based adherend
JP4770379B2 (en) * 2005-10-13 2011-09-14 富士電機株式会社 Metal member joining method and assembly jig thereof
JP4732118B2 (en) * 2005-10-18 2011-07-27 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP5459896B2 (en) * 2007-03-05 2014-04-02 株式会社半導体エネルギー研究所 Wiring and memory element manufacturing method
JP5044307B2 (en) * 2007-07-05 2012-10-10 株式会社アルバック Thin film formation method
US8555491B2 (en) * 2007-07-19 2013-10-15 Alpha Metals, Inc. Methods of attaching a die to a substrate
CN101911219B (en) 2008-01-17 2015-12-16 日亚化学工业株式会社 Conductive material and manufacture method, electronic equipment, light-emitting device and manufacture method thereof
US8836130B2 (en) 2009-01-23 2014-09-16 Nichia Corporation Light emitting semiconductor element bonded to a base by a silver coating
WO2010084746A1 (en) 2009-01-23 2010-07-29 日亜化学工業株式会社 Semiconductor device and method for manufacturing same
EP3163602A3 (en) 2009-01-23 2017-08-09 Nichia Corporation Method of producing a semiconductor device by bonding silver on a surface of a semiconductor element with silver on a surface of a base in air or in an oxygen environment
JP2010199285A (en) * 2009-02-25 2010-09-09 Ricoh Co Ltd Manufacturing method of wiring board, electronic element, and display
WO2011010659A1 (en) 2009-07-21 2011-01-27 日亜化学工業株式会社 Method for producing conductive material, conductive material obtained by the same method, electronic device containing the conductive material, and light-emitting device
KR20130079315A (en) * 2010-05-19 2013-07-10 미쓰이 긴조꾸 고교 가부시키가이샤 Copper powder for conductive paste, and conductive paste
JP2012142551A (en) * 2010-12-16 2012-07-26 Nisshin:Kk Heat treatment method and apparatus
JP5489358B2 (en) * 2011-03-24 2014-05-14 富士フイルム株式会社 Copper wiring formation method, wiring board manufacturing method, and wiring board
JP5544324B2 (en) 2011-03-24 2014-07-09 富士フイルム株式会社 Copper wiring forming method and wiring board manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013125604A1 (en) 2012-02-20 2013-08-29 株式会社応用ナノ粒子研究所 Oxygen source-containing composite nanometal paste and joining method
US9956610B2 (en) 2012-02-20 2018-05-01 Applied Nanoparticle Laboratory Corporation Oxygen source-containing composite nanometal paste and joining method
EP2851907A4 (en) * 2012-05-18 2016-05-25 Material Concept Inc Conductive paste, method for forming wiring, electronic component, and silicon solar cell
US9941420B2 (en) 2012-05-18 2018-04-10 Material Concept, Inc. Conductive paste, method for forming wiring, electronic component, and silicon solar cell

Also Published As

Publication number Publication date
JPH10308120A (en) 1998-11-17

Similar Documents

Publication Publication Date Title
JP3690552B2 (en) Metal paste firing method
JP3599950B2 (en) Method of firing metal paste
JP4205393B2 (en) Method for forming fine wiring pattern
TWI566259B (en) Method for firing copper paste
JP5972317B2 (en) Electronic component and manufacturing method thereof
CN104810247A (en) Method for Producing a Copper Layer on a Semiconductor Body Using a Printing Process
JP3870273B2 (en) Copper pattern wiring formation method, semiconductor device created using the method, and nano copper metal particles
JP5787902B2 (en) Ceramic structure with insulating layer, ceramic structure with metal body, charged particle beam emitting device, and method of manufacturing ceramic structure with insulating layer
JP3630920B2 (en) Metal paste firing method
JP2008108716A (en) Conductive paste composition for low-temperature firing
WO2015098834A1 (en) Airtight-sealing package member, production method therefor, and airtight-sealed package production method using this airtight-sealing package member
JP6408696B2 (en) Copper-containing conductive paste and electrode made from copper-containing conductive paste
JP3522295B2 (en) Metal plate bonded ceramic substrate and method of manufacturing the same
JPH05238857A (en) Method for metallizing substrate of aluminum nitride
JP2020184576A (en) Conductive heat dissipation film, manufacturing method of conductive heat dissipation film, and manufacturing method of electronic device
JP7208619B2 (en) Electronic component manufacturing method
JPH1065294A (en) Ceramic wiring board and manufacture thereof
JP4742638B2 (en) Laminate with diffusion barrier
JP6393243B2 (en) Electronic component and manufacturing method thereof
WO2014109154A1 (en) Method and oven for manufacturing joined body
JP2014150101A (en) Electronic element substrate and method for manufacturing the same
JPH0640552B2 (en) Substrate with semiconductor chip and method of manufacturing the same
CN113196471A (en) Electronic component and method for manufacturing the same
CN112018030A (en) Filling method of substrate through hole
JPH0391240A (en) Method of forming metallized electrode wiring

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050210

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050608

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term