JPH05238857A - Method for metallizing substrate of aluminum nitride - Google Patents

Method for metallizing substrate of aluminum nitride

Info

Publication number
JPH05238857A
JPH05238857A JP4040814A JP4081492A JPH05238857A JP H05238857 A JPH05238857 A JP H05238857A JP 4040814 A JP4040814 A JP 4040814A JP 4081492 A JP4081492 A JP 4081492A JP H05238857 A JPH05238857 A JP H05238857A
Authority
JP
Japan
Prior art keywords
aluminum nitride
metallized layer
paste
substrate
aln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4040814A
Other languages
Japanese (ja)
Other versions
JP2578283B2 (en
Inventor
Naomi Mura
直美 村
Tadashi Nakano
正 中野
Masato Kumagai
正人 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP4040814A priority Critical patent/JP2578283B2/en
Publication of JPH05238857A publication Critical patent/JPH05238857A/en
Application granted granted Critical
Publication of JP2578283B2 publication Critical patent/JP2578283B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To metallize a substrate of aluminum nitride having high reliability, practical bond strength and high reliability in brazing and high-temperature soldering. CONSTITUTION:A paste comprising W and/or Mo as a main component, 0.1-20wt.% SiO2 and 1-50wt.% titanium hydride is applied to a sintered substrate of aluminum nitride and baked in a nitrogen atmosphere at 1,400-1,700 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、窒化アルミニウム基板
のメタライズ方法に関する。特に、信頼性が高く、実用
的な接着強度を備え、かつ、ろう付けや高温はんだ付け
に対して高い信頼性を有する窒化アルミニウム基板のメ
タライズ方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for metallizing an aluminum nitride substrate. In particular, the present invention relates to a method for metallizing an aluminum nitride substrate which is highly reliable, has practical adhesive strength, and has high reliability for brazing and high temperature soldering.

【0002】[0002]

【従来の技術】窒化アルミニウム(以下、AlNと記
す)焼結体は、熱伝導率が高く電気絶縁性に優れ、熱膨
張係数がSiに近いという特徴を有することから、パワ
ー半導体搭載用の放熱板を兼ねた絶縁板への適用が期待
されている。従来のパワー半導体では、Cu,Fe,A
l系の放熱板と半導体チップとの間にAl23 の絶縁
板がおかれ、それらの接続にはろう付けやはんだが一般
的に用いられてきた。この絶縁板をAl23 からAl
Nに置換することにより放熱特性の向上及び低熱抵抗化
を図ることができる。これを実現するためにはAlN表
面をメタライズする技術が必須となる。
2. Description of the Related Art Aluminum nitride (hereinafter referred to as "AlN") sintered bodies are characterized by high thermal conductivity, excellent electrical insulation, and a thermal expansion coefficient close to that of Si. It is expected to be applied to an insulating plate that doubles as a plate. In conventional power semiconductors, Cu, Fe, A
An Al 2 O 3 insulating plate is placed between the 1-system heat sink and the semiconductor chip, and brazing or soldering has been generally used for connecting them. This insulating plate is changed from Al 2 O 3 to Al
By substituting N, it is possible to improve the heat dissipation characteristics and reduce the thermal resistance. In order to realize this, a technique of metallizing the AlN surface is essential.

【0003】AlN焼結体のメタライズ方法としては、
W,Mo等の高融点金属をペースト状にしたものをAl
Nの表面に塗布し、1100〜1600℃程度の湿潤窒
素−水素混合雰囲気中で焼結させる方法が試みられてい
る。この方法は一般にテレフンケン法として知られ、従
来、Al23 中の粒界相成分であるSiO2 によって
促進される酸化物の液相反応を利用することにより、メ
タライズ層を形成する技術として利用されてきた。しか
し、AlNはガラスとの濡れが悪く、SiO2等の不純
物が含まれていないため液相反応も起こりにくく、十分
な接着強度が得られない。
As a method of metallizing an AlN sintered body,
A high-melting-point metal such as W or Mo in the form of paste is Al
A method of applying it to the surface of N and sintering it in a wet nitrogen-hydrogen mixed atmosphere at about 1100 to 1600 ° C. has been attempted. This method is generally known as the Telefunken method, and is conventionally used as a technique for forming a metallized layer by utilizing a liquid phase reaction of an oxide promoted by SiO 2 which is a grain boundary phase component in Al 2 O 3. It has been. However, AlN has poor wettability with glass and does not contain impurities such as SiO 2 so that liquid-phase reaction hardly occurs and sufficient adhesive strength cannot be obtained.

【0004】特開昭63−115393号公報には、W
及び/又はMoと接着強度増強剤としてSiO2 、Al
23 、CaOの酸化物混合体とを主成分とする導体ペ
ーストをAlN焼結基板上に印刷した後、1600℃以
上で焼成する方法が開示されている。しかし、この方法
は焼成温度が高くコスト面で問題がある上、基板に反り
が発生するという問題点があった。また、特開平3−1
93686号公報には、WとSiO2 、Al23 、C
aOの酸化物混合体とを主成分とする導体ペーストにお
いて、酸化物成分比の最適範囲を規定することにより、
AlN焼結体及びWの両者の間にともに十分な濡れ性と
接着強度とを付与する方法が開示されている。しかし、
AlNはガラスとの濡れが悪く、この方法では十分な濡
れ性と接着強度とを付与することはできない。また、酸
化物成分がメタライズ層上にガラス成分として浮き出る
ため、電気抵抗の増大やメッキ不良及びはんだ濡れ不良
が発生するという問題点があった。
In Japanese Patent Laid-Open No. 63-115393, W
And / or Mo and SiO 2 , Al as an adhesive strength enhancer
A method is disclosed in which a conductor paste containing an oxide mixture of 2 O 3 and CaO as a main component is printed on an AlN sintered substrate and then fired at 1600 ° C. or higher. However, this method has a problem that the firing temperature is high and there is a problem in cost, and that the substrate is warped. In addition, Japanese Patent Laid-Open No. 3-1
No. 93686 discloses W, SiO 2 , Al 2 O 3 and C.
In a conductor paste containing an oxide mixture of aO as the main component, by defining the optimum range of the oxide component ratio,
A method for providing sufficient wettability and adhesive strength between both the AlN sintered body and W is disclosed. But,
AlN has poor wettability with glass, and it is impossible to impart sufficient wettability and adhesive strength by this method. Further, since the oxide component floats as a glass component on the metallized layer, there is a problem that an increase in electric resistance, defective plating, and defective solder wetting occur.

【0005】[0005]

【発明が解決しようとする課題】本発明は前記問題点を
解決し、信頼性が高く、実用的な接着強度を備え、か
つ、ろう付けや高温はんだ付けに対して高い信頼性を有
するAlN基板のメタライズ技術を提供することを目的
とする。
The present invention solves the above problems, has high reliability, has practical adhesive strength, and has high reliability for brazing and high-temperature soldering. It aims to provide the metallization technology of.

【0006】[0006]

【課題を解決するための手段】本発明は、W及び又はM
oを主成分としSiO2 及び水素化チタンを含むペース
トをAlN焼結基板上に塗布して焼成し、メタライズ層
を形成することを特徴とする。ペーストの塗布にはスク
リーン印刷を用い、厚さ10〜50μmの導電性の膜を
形成するのが適当である。
SUMMARY OF THE INVENTION The present invention provides W and / or M
It is characterized in that a paste containing SiO 2 and titanium hydride as a main component of o is applied on an AlN sintered substrate and fired to form a metallized layer. Screen printing is used for applying the paste, and it is suitable to form a conductive film having a thickness of 10 to 50 μm.

【0007】上記のペースト中には、SiO2 を0.1
重量%以上20重量%以下、水素化チタンを0.1重量
%以上50重量%以下含有すると好適である。また、焼
成は、非酸化雰囲気中、経済的には窒素雰囲気中140
0℃以上1700℃以下に加熱することによりペースト
をAlN焼結基板へ焼付ける。焼成に先立って、ペース
ト中に含まれる有機物を除去するために脱脂処理を行っ
てもよい。
In the above paste, 0.1% SiO 2 is added.
It is preferable that the content of the titanium hydride is not less than 20% by weight and the amount of titanium hydride is not less than 0.1% and not more than 50% by weight. In addition, firing is performed in a non-oxidizing atmosphere, economically in a nitrogen atmosphere at 140
The paste is baked on the AlN sintered substrate by heating at 0 ° C. or higher and 1700 ° C. or lower. Prior to firing, a degreasing treatment may be performed to remove organic substances contained in the paste.

【0008】さらに必要であれば、無電界メッキなどに
よりNi、Cu、Au、Ptなどの金属皮膜を上記の方
法で形成されたメタライズ層上に形成する。
If necessary, a metal film of Ni, Cu, Au, Pt or the like is formed on the metallized layer formed by the above method by electroless plating or the like.

【0009】[0009]

【作用】本発明では、ペースト中にSiO2 及び水素化
チタンを含有することにより、実用的な接着強度と良好
なはんだ濡れ性を有するメタライズ層を得ている。その
メカニズムは定かではないが、以下のような可能性が考
えられる。本発明によれば、W及び/又はMoを酸化物
による液相反応と活性金属の拡散・反応とによってメタ
ライズ層を形成する。
In the present invention, by containing SiO 2 and titanium hydride in the paste, a metallized layer having practical adhesive strength and good solder wettability is obtained. The mechanism is not clear, but the following possibilities are considered. According to the present invention, the metallized layer is formed by the liquid phase reaction of W and / or Mo with the oxide and the diffusion / reaction of the active metal.

【0010】メタライズ用ペースト中に含有される水素
化チタンがメタライズ層−AlN基板界面へ拡散する際
に、SiO2 及びAlN粒子表面を覆う酸化物層のAl
2 3 の一部と共に移動するため、メタライズ層表面へ
のガラス成分の移動の割合が低減される。そのため、従
来のように酸化物による液相反応のみを利用したメタラ
イズ方法と比較して、信頼性が高く実用的な密着強度を
備えたメタライズ層を有するAlN焼結体を得ることが
できるようになる。また、メッキ不良及びはんだ濡れ不
良を解消することができると考えられる。
Hydrogen contained in the metallizing paste
When titanium oxide diffuses to the metallized layer-AlN substrate interface
And SiO2 And Al of the oxide layer covering the surface of the AlN particles
2 O 3 To move to part of the metallized layer
The rate of movement of the glass component of is reduced. Therefore, subordinate
Metallurgy using only liquid phase reaction with oxide as in the past
Compared with the Iz method, it has more reliable and practical adhesion strength.
To obtain an AlN sintered body having a metallized layer with
become able to. In addition, plating failure and solder wetting
It is thought that good can be resolved.

【0011】本発明ではペースト中に水素化チタンを添
加しているが、これは活性金属としてチタンを単味で添
加する場合、金属チタンより水素化チタンの方が安定な
ためである。特に微粉化した場合、TiH2 は窒素雰囲
気中で約700℃まで分解・酸化せずに存在することを
実験的に確認している。本発明では、非酸化性雰囲気
中、好ましくは窒素雰囲気中1400℃以上1700℃
以下という低温でメタライズ層を形成するため、従来の
メタライズ方法のようなAlN基板の変形が発生しな
い。また、雰囲気制御が容易でコスト的にも有利であ
る。
In the present invention, titanium hydride is added to the paste because titanium hydride is more stable than metallic titanium when titanium alone is added as the active metal. In particular, it has been experimentally confirmed that TiH 2 exists in a nitrogen atmosphere without decomposition and oxidation up to about 700 ° C. when pulverized. In the present invention, in a non-oxidizing atmosphere, preferably in a nitrogen atmosphere, 1400 ° C. or higher and 1700 ° C.
Since the metallization layer is formed at a low temperature as described below, the deformation of the AlN substrate unlike the conventional metallization method does not occur. Further, the atmosphere control is easy, which is advantageous in terms of cost.

【0012】ペースト中に含有されるSiO2 量は0.
1重量%未満では酸化物による液相生成量が不足するた
め密着強度が低下する。また、SiO2 量が20重量%
以上では液相生成量が多すぎ、W及び/又はMo粒子表
面をガラス成分が覆いつくすため、密着強度が低下する
上に電気抵抗が増大する。ペースト中に含有される水素
化チタン量は、0.1重量%未満では十分な密着強度が
得られず、また50重量%以上ではメタライズ層の強度
が不足しなおかつ電気抵抗が大きくなる。よってペース
ト中に含有されるSiO2 量は0.1重量%以上20重
量%以下、水素化チタン量は0.1重量%以上50重量
%以下とするのがよい。
The amount of SiO 2 contained in the paste is 0.
If it is less than 1% by weight, the amount of the liquid phase produced by the oxide is insufficient, so that the adhesion strength is lowered. Also, the amount of SiO 2 is 20% by weight
In the above case, the amount of liquid phase produced is too large, and the surface of the W and / or Mo particles is covered with the glass component, so that the adhesion strength decreases and the electrical resistance increases. If the amount of titanium hydride contained in the paste is less than 0.1% by weight, sufficient adhesion strength cannot be obtained, and if it is 50% by weight or more, the strength of the metallized layer is insufficient and the electrical resistance increases. Therefore, it is preferable that the amount of SiO 2 contained in the paste is 0.1% by weight or more and 20% by weight or less, and the amount of titanium hydride is 0.1% by weight or more and 50% by weight or less.

【0013】さらに必要であれば、無電界めっきなどに
よりNi、Cu、Au、Ptなどの金属皮膜を上記の方
法で形成されたメタライズ層上に形成することも可能で
ある。
If necessary, a metal film of Ni, Cu, Au, Pt or the like can be formed on the metallized layer formed by the above method by electroless plating or the like.

【0014】[0014]

【実施例】以下に実施例を示す。ここでは水素化チタン
としてTiH2 を用いたが、TiH2 は水素化チタンの
不定比化合物をも代表するものである。 〔実施例1〕平均粒径2〜3μm、最大粒子径5μm以
下のW粉末に、平均粒径2〜3μm、最大粒径5μm以
下のSiO2 と、平均粒径5〜10μmの水素化チタン
(TiH2 )とを表1の割合で混合した粉末中にアクリ
ル樹脂、テレピネオールを添加し、3本ロールミルを用
いて、十分混練することによりペーストを作成した。こ
のペーストをAlNの含有量が98重量%であるAlN
焼結基板に、1mm×1mmの大きさのパッドパターン
を約20μmの厚さで形成するようにスクリーン印刷し
た。この試料を乾燥した後、窒素雰囲気中で1500〜
1600℃で焼成したメタライズ層を形成した。
EXAMPLES Examples will be shown below. Although TiH 2 is used here as titanium hydride, TiH 2 also represents a non-stoichiometric compound of titanium hydride. Example 1 The average particle diameter of 2 to 3 [mu] m, the following W powder maximum particle size 5 [mu] m, an average particle diameter of 2 to 3 [mu] m, and maximum particle size 5 [mu] m or less of SiO 2, having an average particle size of 5~10μm titanium hydride ( Acrylic resin and terpineol were added to the powder obtained by mixing TiH 2 ) with the ratio shown in Table 1 and sufficiently kneaded with a three-roll mill to prepare a paste. This paste is AlN containing 98% by weight of AlN.
The sintered substrate was screen-printed so as to form a pad pattern having a size of 1 mm × 1 mm with a thickness of about 20 μm. After this sample was dried, it was dried in a nitrogen atmosphere at 1500-500.
A metallized layer was formed by firing at 1600 ° C.

【0015】このようにして形成されたメタライズ層表
面に約2μmの厚膜を有するNiめっき層を形成した。
このめっき層上にリードフレームをはんだ付けし、リー
ドフレームを垂直方向に5mm/minで引っ張ること
によりピール強度(引き剥し強度)を測定した。また、
このNiめっき層を形成した試料を、250℃の60S
n−Pbはんだ浴中に浸漬することによりはんだ濡れ性
を調べた。
A Ni plating layer having a thickness of about 2 μm was formed on the surface of the metallized layer thus formed.
A lead frame was soldered on the plated layer, and the lead frame was pulled vertically at 5 mm / min to measure the peel strength (peeling strength). Also,
The sample on which this Ni plating layer was formed was subjected to 60S at 250 ° C.
The solder wettability was investigated by immersing in an n-Pb solder bath.

【0016】以上のようにして測定したピール強度及び
はんだ濡れ性を表1〜3に示す。表中*を付したものは
AlNとメタライズ層で破壊したもの又ははんだ濡れ性
の低いものである。 〔実施例2〕平均粒径0.5〜1μm、最大粒子2μm
以下のW粉末に、平均粒径1〜2μm、最大粒径3μm
以下のSiO2 と、平均粒径5〜10μmの水素化チタ
ン(TiH2 )とを表2の割合で混合し、実施例1と同
様にメタライズ層を形成した後、ピール強度の測定判定
とはんだ濡れ性試験を行った。結果を表4〜6に示す。
The peel strength and solder wettability measured as described above are shown in Tables 1 to 3. Those marked with * in the table are those which were destroyed by AlN and the metallized layer or which had low solder wettability. Example 2 Average particle size 0.5 to 1 μm, maximum particle 2 μm
The following W powder has an average particle size of 1 to 2 μm and a maximum particle size of 3 μm
The following SiO 2 and titanium hydride (TiH 2 ) having an average particle size of 5 to 10 μm were mixed in the ratio shown in Table 2, and a metallized layer was formed in the same manner as in Example 1. A wettability test was conducted. The results are shown in Tables 4-6.

【0017】〔実施例3〕主成分としてMoを用いた例
を表7〜8に示した。 〔実施例4〕主成分としてMo:W=1:1に混合した
例を表9〜10に示した。
[Example 3] Tables 7 to 8 show examples using Mo as a main component. [Example 4] Tables 9 to 10 show examples in which Mo: W = 1: 1 was mixed as the main component.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【表3】 [Table 3]

【0021】[0021]

【表4】 [Table 4]

【0022】[0022]

【表5】 [Table 5]

【0023】[0023]

【表6】 [Table 6]

【0024】[0024]

【表7】 [Table 7]

【0025】[0025]

【表8】 [Table 8]

【0026】[0026]

【表9】 [Table 9]

【0027】[0027]

【表10】 [Table 10]

【0028】本発明によって形成されたメタライズ層で
はAlN焼結基板内で破壊が起こり、密着強度はピール
強度として3kgf/mm□以上のものが得られ実用上
十分な強度を有している。また、はんだ濡れ性も95%
以上の濡れ性を示した。一方、本発明において限定した
範囲外の方法で形成したメタライズ層では、いずれの試
料においても十分な密着強度が得られず、ピール強度が
2kgf/mm□以下であった。また、はんだ濡れ性も
90%以下であった。
In the metallized layer formed according to the present invention, breakage occurs in the AlN sintered substrate, and the adhesive strength is 3 kgf / mm □ or more as the peel strength, which is a practically sufficient strength. Also, solder wettability is 95%
The above-mentioned wettability was exhibited. On the other hand, in the case of the metallized layer formed by the method outside the range limited in the present invention, sufficient adhesion strength was not obtained in any of the samples, and the peel strength was 2 kgf / mm □ or less. The solder wettability was also 90% or less.

【0029】[0029]

【発明の効果】本発明によれば、放熱性特性にすぐれろ
う付けやはんだ付けに対して信頼性の高いAlN基板を
得ることができる。
According to the present invention, it is possible to obtain an AlN substrate having excellent heat dissipation properties and high reliability for brazing and soldering.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 W及び/又はMoを主成分とし、SiO
2 及び水素化チタンを含有するペーストを窒化アルミニ
ウム焼結基板に塗布して非酸化性雰囲気中で焼成し、メ
タライズ層を形成することを特徴とする窒化アルミニウ
ム基板のメタライズ方法。
1. A SiO 2 containing W and / or Mo as a main component.
2. A method for metallizing an aluminum nitride substrate, which comprises applying a paste containing 2 and titanium hydride to an aluminum nitride sintered substrate and firing it in a non-oxidizing atmosphere to form a metallized layer.
【請求項2】 メタライズ層上に、さらに金属皮膜を形
成することを特徴とする請求項1記載の窒化アルミニウ
ム基板のメタライズ方法。
2. The method for metallizing an aluminum nitride substrate according to claim 1, further comprising forming a metal film on the metallized layer.
JP4040814A 1992-02-27 1992-02-27 Metallization method for aluminum nitride substrate Expired - Lifetime JP2578283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4040814A JP2578283B2 (en) 1992-02-27 1992-02-27 Metallization method for aluminum nitride substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4040814A JP2578283B2 (en) 1992-02-27 1992-02-27 Metallization method for aluminum nitride substrate

Publications (2)

Publication Number Publication Date
JPH05238857A true JPH05238857A (en) 1993-09-17
JP2578283B2 JP2578283B2 (en) 1997-02-05

Family

ID=12591123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4040814A Expired - Lifetime JP2578283B2 (en) 1992-02-27 1992-02-27 Metallization method for aluminum nitride substrate

Country Status (1)

Country Link
JP (1) JP2578283B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0695732A2 (en) 1994-08-02 1996-02-07 Sumitomo Electric Industries, Ltd. Metallized ceramic substrate having smooth plating layer and method for producing the same
JP2001097793A (en) * 1999-09-29 2001-04-10 Toshiba Corp Aluminum nitride base substrate and its production
KR100285789B1 (en) * 1998-06-22 2001-04-16 민흥식 Metallizing metal paste composition
JP2006299307A (en) * 2005-04-18 2006-11-02 Mitsubishi Materials Corp Sputtering target for forming protective film of optical recording medium
KR100747160B1 (en) * 2001-10-05 2007-08-07 엔지케이 스파크 플러그 캄파니 리미티드 Process for producing ceramic member for bonding, ceramic member for bonding, vacuum switch, and vacuum vessel
JP2008150285A (en) * 2007-12-26 2008-07-03 Ngk Spark Plug Co Ltd Method for producing ceramic member to be joined, ceramic member to be joined, vacuum switch and vacuum vessel
CN103189975A (en) * 2010-11-01 2013-07-03 日铁住金电设备株式会社 Package for storing electronic component elements

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0695732A2 (en) 1994-08-02 1996-02-07 Sumitomo Electric Industries, Ltd. Metallized ceramic substrate having smooth plating layer and method for producing the same
US5679469A (en) * 1994-08-02 1997-10-21 Sumitomo Electric Industries, Ltd. Metallized ceramic substrate having smooth plating layer and method for producing the same
KR100285789B1 (en) * 1998-06-22 2001-04-16 민흥식 Metallizing metal paste composition
JP2001097793A (en) * 1999-09-29 2001-04-10 Toshiba Corp Aluminum nitride base substrate and its production
JP4653272B2 (en) * 1999-09-29 2011-03-16 株式会社東芝 Method for manufacturing aluminum nitride substrate
KR100747160B1 (en) * 2001-10-05 2007-08-07 엔지케이 스파크 플러그 캄파니 리미티드 Process for producing ceramic member for bonding, ceramic member for bonding, vacuum switch, and vacuum vessel
JP2006299307A (en) * 2005-04-18 2006-11-02 Mitsubishi Materials Corp Sputtering target for forming protective film of optical recording medium
JP4697404B2 (en) * 2005-04-18 2011-06-08 三菱マテリアル株式会社 Sputtering target for forming an optical recording medium protective film
JP2008150285A (en) * 2007-12-26 2008-07-03 Ngk Spark Plug Co Ltd Method for producing ceramic member to be joined, ceramic member to be joined, vacuum switch and vacuum vessel
JP4659812B2 (en) * 2007-12-26 2011-03-30 日本特殊陶業株式会社 Method of manufacturing ceramic member for bonding, ceramic member for bonding, vacuum switch, and vacuum vessel
CN103189975A (en) * 2010-11-01 2013-07-03 日铁住金电设备株式会社 Package for storing electronic component elements
US9119297B2 (en) 2010-11-01 2015-08-25 Nippon Steel & Sumikin Electronics Devices Inc. Electronic component element housing package

Also Published As

Publication number Publication date
JP2578283B2 (en) 1997-02-05

Similar Documents

Publication Publication Date Title
EP0574956B1 (en) Metallized circuit substrate comprising nitride type ceramics
EP0097058B1 (en) Sic sintered body having metallized layer and production method therefor
JP3845925B2 (en) Semiconductor device member using aluminum nitride substrate and method for manufacturing the same
JP3924406B2 (en) Alumina sintered body and manufacturing method thereof, wiring board and manufacturing method thereof
JP3408298B2 (en) High thermal conductive silicon nitride metallized substrate, method of manufacturing the same, and silicon nitride module
JP2578283B2 (en) Metallization method for aluminum nitride substrate
JP3566569B2 (en) Wiring board and method of manufacturing the same
JPH05226515A (en) Aluminum nitride substrate having metallized layer and the metallizing method thereof
JP2822518B2 (en) Method for forming metallized layer on aluminum nitride sintered body
JPS61281089A (en) Surface structure of aluminum nitride base material
JPH05170552A (en) Aluminum nitride substrate having metallized layer and metallization of the substrate
JP3538549B2 (en) Wiring board and method of manufacturing the same
JPH05221759A (en) Aluminum nitride substrate with metallizing layer and metallizing method
JPH1179872A (en) Metallized silicon nitride-based ceramic, its production and metallizing composition used for the production
JPH05156303A (en) Metallizing metal powder composition and production of metallized substrate using the composition
JP2000114724A (en) Multilayer wiring board
JP2633879B2 (en) Conductive paste composition for non-oxide ceramics
JP3808376B2 (en) Wiring board
JP3420424B2 (en) Wiring board
JPH07172961A (en) Sintered aluminum nitride having metallized layer and its production
JPH0723273B2 (en) Method for metallizing aluminum nitride substrate
JPH05320943A (en) Metallizing paste for aluminum nitride sintered compact
JP2763516B2 (en) Metallization method for aluminum nitride substrate
JP2003234552A (en) Wiring board
JP2000349098A (en) Bonded body of ceramic substrate and semiconductor device, and its manufacture

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960917